EP1558058B1 - Method of manufacturing and individually shaped hearing device or hearing aid - Google Patents

Method of manufacturing and individually shaped hearing device or hearing aid Download PDF

Info

Publication number
EP1558058B1
EP1558058B1 EP05008109.0A EP05008109A EP1558058B1 EP 1558058 B1 EP1558058 B1 EP 1558058B1 EP 05008109 A EP05008109 A EP 05008109A EP 1558058 B1 EP1558058 B1 EP 1558058B1
Authority
EP
European Patent Office
Prior art keywords
hearing device
data storage
data
ear
geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05008109.0A
Other languages
German (de)
French (fr)
Other versions
EP1558058A2 (en
EP1558058A3 (en
Inventor
Christoph Widmer
Herbert BÄCHLER
Alfred Stirnemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonova Holding AG
Original Assignee
Phonak AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak AG filed Critical Phonak AG
Priority to EP05008109.0A priority Critical patent/EP1558058B1/en
Priority to DK05008109.0T priority patent/DK1558058T3/en
Publication of EP1558058A2 publication Critical patent/EP1558058A2/en
Publication of EP1558058A3 publication Critical patent/EP1558058A3/en
Application granted granted Critical
Publication of EP1558058B1 publication Critical patent/EP1558058B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/65Housing parts, e.g. shells, tips or moulds, or their manufacture
    • H04R25/652Ear tips; Ear moulds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/65Housing parts, e.g. shells, tips or moulds, or their manufacture
    • H04R25/658Manufacture of housing parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/77Design aspects, e.g. CAD, of hearing aid tips, moulds or housings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Description

  • This invention relates to a method of providing input parameters for the fitting process of individually shaped or customized hearing devices.
  • For a rapid manufacturing and final fitting of hearing devices, such as individually customized behind the ear or in-the-ear hearing aids, the process usually starts with taking an impression of the shape of the ear. The shape of this impression will than have to be digitized for instance by means of a scanning device. The first step must actually be performed with the user of the hearing device present at the location of the dispenser, whilst the following steps may be done either at the location of the dispenser or at the hearing device manufacturing center. With the digitized data of the outer shape of the hearing device, the shell of this hearing device may be typically manufactured by means of dedicated shell modeling software at the hearing device manufacturing center. This software produces a digital representation of the shell shape and the shell of the hearing device is then produced using a direct manufacturing process such as selective-laser sintering, stereo lithography or digital light processing. After assembling of the shell and the electronic and/or mechanical components of the hearing device, the hearing device is shipped to the dispenser for the final fitting according to the individual needs of the user of this device.
  • Although such a manufacturing process saves a reasonable amount of time for manufacturing individually shaped or customized hearing devices, the final process of fitting this device to the individual needs of the user is still time consuming and mostly based on empirically defined starting points or parameters and often leads to a lengthy series of trial and error steps until reaching the final result.
  • In absence of the exact geometric data, the input parameters for the fitting process dependent on the geometry of the shell and/or the ear will initially be set based on standard values or standardized estimates. During the fitting process, the parameters will then have to be adjusted by the mentioned trial and error principle to reach the desired result.
  • Documents US 2004/107080 and EP-A-1 345 470 disclose methods of manufacturing individually shaped or customized hearing devices, characterized by storing geometry data during the manufacturing process into data storage and selectively reading out data from this data storage.
  • It is thus an object of the present invention to provide a method for estimating or defining more appropriate input parameters for starting the fitting process for a hearing device. It is a further object of the present invention to improve the manufacturing process of hearing devices by shortening the fitting process by providing individually adapted starting parameters of a good quality.
  • This object will be inventively solved by the present invention providing a method according to claim 1. Preferred embodiments of this invention are set forth in the dependent claims 2 to 6.
  • The present invention provides a method of providing input parameters for the fitting process of individually shaped or customized hearing devices by storing geometry data during the manufacturing process into data storage and selectively reading out data from this data storage during the manufacturing and/or fitting process of the hearing device.
  • To improve the quality and to reduce the time required for the fitting process, all the data available from the manufacturing process, e.g. the geometry data, should be used during the final fitting process at the dispenser's office. To have all such data available during the fitting process, the dispenser will advantageously have access to those data as they are stored in the data storage.
  • In one preferred embodiment the data storage is a shared data storage, located at one or more locations, accessible via online connections from any other location. By providing a centralized data storage the storage capacity of this device may dynamically grow with the number of hearing devices and the amount of data to be stored. It is clear, that the centralized data storage may itself be a storage cluster with distributed shared storage devices, located at one location or at several different locations. As the data storage is accessible anytime from any location, all data generated in connection with the ordering and shell modeling may already be entered into the data storage and is thus instantly available for any following manufacturing process at any location.
  • In another preferred embodiment, the connection will be established via the Internet. The accessibility of the data in the data storage via an Internet connection allows a quick and simple transfer of those data without the need of specialized connection means only for the purpose of manufacturing the hearing device. By using secure services and/or encryption the privacy of the data may be ensured.
  • In a further preferred embodiment, the data storage is located directly in the hearing device memory. It is possible to store the geometry and parameter data directly in the memory of the hearing device. Thus the data is always directly available together with the hearing device itself and the hearing device therefore becomes a virtual extension of the data storage for all parameters and geometries generated during the manufacturing process. Instead of using the built-in memory of the hearing device, it is for instance as well possible to use memory of a remote control of the hearing device. As such data storage only has to storage the data of the particular hearing device, it is sufficient to provide only low storage capacity.
  • In a further preferred embodiment, the method further comprises the step of storing the parameter data used during the manufacturing process. For the optimization of the following processes, it may be of advantage not only to store geometric data of the shape of the ear or ear canal and the hearing device, but also to store other parameter data of a certain importance in connection with the fitting process of the hearing device.
  • In a further preferred embodiment, the available geometry and/or parameter data of the order and/or ear impression and/or shell modeling process will be stored as well into the data storage. The fitting software can thus simply read-out the required information from the data storage during the fitting process and use this information for pre-calculation and simulation of the acoustic behavior of the hearing device.
  • In a further preferred embodiment, at least one of the following geometry data is stored:
    • cross section area, shape of cross section and length of vent geometry,
    • vent microphone distances, microphone positions, depth of hearing device in concha, height of concha, width of concha;
    • length of hearing device, averaged ear canal cross section.
  • With such data available to the dispenser performing the fitting process, it is possible to obtain a simplified model to achieve a good approximation of the acoustic properties of the customized hearing device and to start the fitting process with nearly optimal parameters which only need minor modification during the final fitting process.
  • In a further preferred embodiment at least one of the following quantities will be estimated by reading out the appropriate data from the data storage:
    • vent loss, reduction of occlusion effect, real ear occluded gain, real ear to coupler difference for low frequency range;
    • microphone location effect, beamforming correction for higher frequencies, feedback threshold estimation;
    • estimation of residual volume and distance to ear drum;
    • real ear to coupler difference for high frequency range;
    • open ear gain.
  • By using the data stored in the data storage as input parameters, it is possible to estimate the above mentioned quantities for entering into the final fitting process.
  • It is pointed out that the present invention not only applies to hearing devices such as behind the ear or in the ear canal hearing aids for the compensation or correction of a hearing impairment. The present invention may be applied as well for any hearing device used to improve communication.
  • For the purpose of facilitating and understanding of the invention, there is illustrated in the accompanying drawing a preferred embodiment thereof to be considered in connection with the following description. Thus the invention may be readily understood and appreciated by the only figure showing schematically a process view of one embodiment of the inventive method.
  • Referring to the only figure, the process of manufacturing an individually shaped or customized hearing device in form of a miniaturized in-the-ear hearing aid starts at the moment of ordering such a device and ends with the final fitting process. In the upper part of the figure, the individual stages of ordering and manufacturing are shown while in the middle part the actual shape or stage of the hearing device shell is exemplary shown in small pictures.
  • The data storage is schematically shown as a bar in the lower part of the figure in order to manifest its accessibility during the whole process at each process step. The accessibility is independent of the location of the ordering and manufacturing process. At each process step, new data such as geometry data will be stored into the data storage and eventually read out of the data storage for input into one or more of the following process steps.
  • In one embodiment of the invention, this data storage is a centralized shared data storage, located i.e. at the hearing device manufacturing location. This data storage is advantageously online accessible from all different locations where the manufacturing process takes place. This access may for instance be provided via direct Internet access to this data storage. One of the great advantages of such a data storage is in fact its practically unlimited storage capacity. As the centralized data storage does not have to be moved together with the hearing devices, it is not limited by weight or shape and may be designed to dynamically grow with the needs of storage capacity. It is thus possible to store the complete digitized shape geometry of the whole ear and not only of the hearing device shell for each individual user, for an exact simulation of the acoustic properties and behavior of such a hearing device.
  • In another embodiment of the invention, this data storage is located directly in the storage area of the hearing device itself, e.g. in the memory of the hearing aid electronic components to be assembled into the hearing device itself or in the memory of a remote control for the hearing device. Such memory will then be transferred together with the model of the shell or later with the shell itself for the whole manufacturing process and the data will be transferred by means of direct link or remote link into the memory. For an economical use of the limited storage capacity of such memory, the data may be erased after the final fitting process and the free space used for other data or parameters used for the operation of the hearing device.
  • For the final fitting process, all of those stored data may preliminary be used for a complete simulation of the acoustical performance of the hearing device under operational conditions, i.e. when inserted into the user's ear canal and thus an intelligent pre-calculation of optimal hearing device settings may be performed prior to the final fitting process. For instance, vent shape such as cross section, length and curvature, vent microphone distances, shell thickness, estimated residual volume between the hearing device and the tympanic membrane are such geometry information that can be used for the fitting process. Also other parameters determined during the manufacturing process and stored in the data storage may used if of relevant influence with respect to the optimal acoustic performance of the hearing device.
  • A method for recording of information in a hearing aid is published in EP 1 414 271 . This method may be used for the technical process of storing the information described above either in the hearing aid memory or in a centralized or shared storage.
  • Thus, the present invention provides a method to improve the quality of the fitting in a time saving manner, as both known and/or estimated geometry data collected through the whole process of manufacturing of a hearing device are used preliminary and/or during the fitting of the hearing device at the dispenser's office. The usage of the entire shape data of the ear impression and the shell of the hearing device allows a complete simulation of acoustical performance of the hearing aid under operational conditions, i.e. when inserted into the user's ear canal, by considering aspects such as the shape of the concha bowl or reflection of sound waves from the vent at the tragus or the dampening effect of the shell structure. As it is currently not possible to store such data completely within the memory of the hearing device, the use of a centralized or shared data storage device is of great advantage.

Claims (6)

  1. Method of providing input parameters for the fitting process of individually shaped or customized hearing devices, by storing geometry data during the manufacturing process into data storage, characterized in by further storing the parameter data used during the manufacturing process and selectively reading out geometry and parameter data from this data storage during the fitting process of the hearing device for at least estimating one of the following quantities:
    - vent loss, reduction of occlusion effect, real ear occluded gain, real ear to coupler difference for low frequency range;
    - microphone location effect, beamforming correction for higher frequencies, feedback threshold estimation;
    - estimation of residual volume and distance to ear drum;
    - real ear to coupler difference for high frequency range;
    - open ear gain.
  2. The method of claim 1, characterized in that the data storage is a shared data storage, located at one or more locations, accessible via online connections from any other location.
  3. The method of claim 2, characterized in that the connection will be established via the Internet.
  4. The method according to any of claims 1 to 3, characterized in that the data storage is located directly in the hearing device memory.
  5. The method according to any of claims 1 to 4, characterized in that the available geometry and/or parameter data of the order and/or ear impression and/or shell modeling process will be stored as well into the data storage.
  6. The method according to any of claims 1 to 5, characterized in that at least one of the following geometry data is stored:
    - cross section area, shape of cross section and length of vent geometry,
    - vent microphone distances, microphone positions, depth of hearing device in concha, height of concha, width of concha;
    - length of hearing device, averaged ear canal cross section.
EP05008109.0A 2005-04-13 2005-04-13 Method of manufacturing and individually shaped hearing device or hearing aid Active EP1558058B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05008109.0A EP1558058B1 (en) 2005-04-13 2005-04-13 Method of manufacturing and individually shaped hearing device or hearing aid
DK05008109.0T DK1558058T3 (en) 2005-04-13 2005-04-13 Method of manufacturing and individually shaped hearing device or hearing aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05008109.0A EP1558058B1 (en) 2005-04-13 2005-04-13 Method of manufacturing and individually shaped hearing device or hearing aid

Publications (3)

Publication Number Publication Date
EP1558058A2 EP1558058A2 (en) 2005-07-27
EP1558058A3 EP1558058A3 (en) 2006-01-11
EP1558058B1 true EP1558058B1 (en) 2014-06-11

Family

ID=34626581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05008109.0A Active EP1558058B1 (en) 2005-04-13 2005-04-13 Method of manufacturing and individually shaped hearing device or hearing aid

Country Status (2)

Country Link
EP (1) EP1558058B1 (en)
DK (1) DK1558058T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061569B3 (en) 2005-12-22 2007-05-24 Siemens Audiologische Technik Gmbh Otoplastic or hearing aid shell designing method, involves adjusting acoustic model of canal, and designing otoplastic or shell using geometrical and acoustic models, where form of otoplastic or shell is provided in acoustic model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2378060T3 (en) * 2001-03-02 2012-04-04 3Shape A/S Procedure for modeling custom ear pieces
EP1345470B1 (en) * 2003-04-03 2006-11-02 Phonak Ag Method for manufacturing a body-worn electronic device adapted to the shape of an individual's body area
US7308328B2 (en) * 2003-05-15 2007-12-11 Siemens Medical Solutions Usa, Inc. Synchronized processing of ear shells for hearing aids

Also Published As

Publication number Publication date
EP1558058A2 (en) 2005-07-27
EP1558058A3 (en) 2006-01-11
DK1558058T3 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
US7949145B2 (en) Method of manufacturing an individually shaped hearing device or hearing aid
US8166312B2 (en) Method of individually fitting a hearing device or hearing aid
US10327080B2 (en) Method of manufacturing hearing devices
EP2432254B1 (en) Hearing instrument
US9271091B2 (en) Own voice shaping in a hearing instrument
EP1708544B1 (en) System and method for measuring vent effects in a hearing aid
Chung Challenges and recent developments in hearing aids: Part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies
JP5149896B2 (en) Hearing aid housing, hearing aid, and method of manufacturing a hearing aid
US8494201B2 (en) Hearing aid with occlusion suppression
US20100080398A1 (en) Method and system for hearing device fitting
US8238565B2 (en) System and method for adapting hearing aids
EP3038384A1 (en) A hearing device adapted for estimating a current real ear to coupler difference
US20110091060A1 (en) Hearing instrument
US20110255723A1 (en) Hearing aid
EP2434780B1 (en) Hearing aid with occlusion suppression and subsonic energy control
EP2673962B1 (en) Hearing aid with means for estimating the ear plug fitting
US8644535B2 (en) Method for adjusting a hearing device and corresponding hearing device
DK2172062T3 (en) A method of adapting a hearing aid by means of a perceptual model
EP1558058B1 (en) Method of manufacturing and individually shaped hearing device or hearing aid
US7587052B2 (en) Hearing aid and method for adjusting a hearing aid
US20230362562A1 (en) Hearing device
JP2020184746A (en) Hearing device having vent
US20130208934A1 (en) Method for Matching a Hearing Apparatus By Percentile Analysis and Matching Apparatus
US20130291370A1 (en) Method for producing an earpiece with a vent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060629

AKX Designation fees paid

Designated state(s): CH DE DK LI

17Q First examination report despatched

Effective date: 20070102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005043855

Country of ref document: DE

Effective date: 20140717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005043855

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005043855

Country of ref document: DE

Effective date: 20150312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20220427

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220503

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005043855

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 19

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430