EP1549820A1 - Appareil et procede de transmission d'un signal dans un puits de forage - Google Patents
Appareil et procede de transmission d'un signal dans un puits de forageInfo
- Publication number
- EP1549820A1 EP1549820A1 EP03758307A EP03758307A EP1549820A1 EP 1549820 A1 EP1549820 A1 EP 1549820A1 EP 03758307 A EP03758307 A EP 03758307A EP 03758307 A EP03758307 A EP 03758307A EP 1549820 A1 EP1549820 A1 EP 1549820A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- tubular
- amplifier
- drill pipe
- repeater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 44
- 239000004020 conductor Substances 0.000 claims abstract description 104
- 230000005540 biological transmission Effects 0.000 claims abstract description 58
- 238000004891 communication Methods 0.000 claims description 60
- 239000010410 layer Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 13
- 239000011888 foil Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 description 61
- 239000011248 coating agent Substances 0.000 description 56
- 238000005553 drilling Methods 0.000 description 34
- 230000008878 coupling Effects 0.000 description 17
- 238000010168 coupling process Methods 0.000 description 17
- 238000005859 coupling reaction Methods 0.000 description 17
- 239000012530 fluid Substances 0.000 description 12
- 239000004809 Teflon Substances 0.000 description 11
- 229920006362 Teflon® Polymers 0.000 description 11
- 230000001939 inductive effect Effects 0.000 description 8
- 239000012811 non-conductive material Substances 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011253 protective coating Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009750 centrifugal casting Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000006223 plastic coating Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/003—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/028—Electrical or electro-magnetic connections
- E21B17/0285—Electrical or electro-magnetic connections characterised by electrically insulating elements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0085—Adaptations of electric power generating means for use in boreholes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/13—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
Definitions
- the signal conductor may be arranged in a recess in the interior wall of the tubular.
- tubular is drill pipe.
- the invention also provides a string of the tubulars of the invention, the tubulars connect end to end, wherein the amplifier-repeaters are in series and are powerful enough to drive the signal past at least one following amplifier repeater and on to a third amplifier repeater .
- the invention also provides a method for transmitting a signal from deep in a wellbore through a string of tubulars, the method comprising the steps of passing a signal through an electrical conductor arranged in a tubular and amplifying the signal with an amplifier- repeater to enable the signal to travel at a distance substantially equal to between one and ten lengths of the tubular.
- Each coating method can be used to place a wire or conductive path on the inside of the pipe beneath the surface of the coating.
- wires or conductive paths are laid down and coated.
- Teflon coated wires are laid down on the surface of the pipe. Teflon is able to withstand 260°C (500°F) , which is above the range of the application of the coating so the Teflon wire survives the coating.
- 36 gauge wire can be used with as little as 0.5mm (20 mils) of coating and fully cover the wire . The coated wire in the pipe can then be tested under high pressure and high temperature.
- the inside of the T-Ring is exposed to turbulent mud flow which provides pressure variations on the piezoelectric device formed on the interior surface of the T-Ring adjacent the mud flow to generate power to the T-Ring. Drilling vibrations can also be used to generate power via the piezoelectric device.
- the processor in each of the four receiver sections in each T-Ring preferably performs a check sum. The check sums are compared and only the received signals with a matching check sum are retransmitted by the T-Ring.
- the T-Ring provides processor with memory provide a store and forward digital packet communication scheme wherein a digital packet is received and stored until a signal is received from another device or T-Ring to retransmit the packet.
- a drilling sensor module 59 is placed near the drill bit 50.
- the drilling sensor module 59 contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters . Such parameters preferably include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition.
- a suitable communication sub 72 sends data to the surface and receives data from the surface a communication path conductive path provided by the present invention.
- the drilling sensor module 59 processes the sensor information and transmits it to the surface control unit 40 via the communication path provided by the present invention .
- the communication sub 72, a power unit 78 and an Nuclear Magnetic Resonance (NMR) tool 79 are all connected in tandem with the drill string 20.
- NMR Nuclear Magnetic Resonance
- the present invention comprises repeaters 212 located at points within the communication path or conduit. These repeaters can be located between the internal upset on the back end of the box connection of the drill pipe and the end of the pin connection made up into it. It is also possible to temperature stabilize the electronics by boiling a coolant into the pipe ID at the high pressures normally encountered.
- the repeaters or T-Rings can be powered by piezoelectric, magneto hydrodynamic or other methods or generating power down hole. A battery may also be used to provide power.
- FIG. 5 a preferred embodiment of a communication coupling ring (T-Ring) is illustrated.
- T-Ring A major difficulty in communication through wire inside drill pipe is the connection problem between drill pipe sections .
- the coefficient of coupling between sections would have to be at least 99% on each of the 700 connections possible on a deep well string to enable communications through the drill string within the dynamic range of present electronics .
- An electronic device such as a sensor/transducer produces an electrical signal which is generally amplified and transmitted through a wire to a processing unit such as a computer. Due to line losses in the wire, the signal can only travel a specified distance through a wire .
- These four wires are brought to the face of the drill pipe connection on each end of a drill pipe section and embedded in the coating as four sections or quadrants of a circle, each section occupying slightly less than 90 degrees , so that the wires are insulated from each other through each drill pipe section .
- the connection between the drill pipe is provided by a T-Ring with a ring-shaped volume which is fitted with the transmitter/receiver amplifier-repeater.
- the signal is electrically transmitted through the conductive path, e.g., wire in a drill pipe section to each T-Ring.
- the T-Ring receives the signal from the wire in the drill pipe, amplifies the signal, and transmits the amplified signal to the adjacent wire through the next drill pipe section.
- the T-Ring provides sufficient dynamic range so that the complete failure of one or more T-Ring amplifier-repeaters can be tolerated by amplification of surrounding rings that enable a T-Ring to transmit past a failed T-Ring to the next drill pipe section or T-Ring.
- the T-Rings simply receive and retransmit between each other without the benefit of a conductive path in the drill pipe section between the T-Rings .
- the conductive path arcs 309, 311, 313 and 315 are covered with a coating or washer to insulate and/or protect the conductive path arcs 309, 311, 313 and 315 forming the communication path end.
- the arcs are separated by a space 301 to prevent the conductive paths from touching.
- each T-Ring has a power supply 420 and an amplifier 422.
- the power supply 420 can be a heat resistant battery, either long life or disposable or rechargeable or a power generating device such as a piezoelectric element that generates electric power from the mechanical vibration of drilling or turbulent flow and pressure fluctuations of mud flow through centre opening 418 of T-Ring 400.
- a mud motor may also generate power transferred to the T-Rings via inductive coupling or through the conductive paths.
- the data signal is super imposed over the power on the data path 308, 310, 312, or 314.
- Amplifier 422 contains signal conditioning circuitry and a processor to perform cyclic redundancy checking, fault detection and digital packet reception and retransmission .
- each T-Ring comprises four sections 409; 411; 413; and 415 each comprising receiver and transmitter antennas, power supplies 422 and process/amplifiers 420.
- the processor can detect when a section 409, 411, 413, or 415 has failed and will retransmit only the sections that are unctional. Thus if T-ring section 409 fails, only signals received by sections 411, 413 and 415 will be retransmitted.
- Figure 10 illustrates a thin, full-section micro strip line transmission line or communication path inside of a drill pipe section to maintain 50 ⁇ impedance levels with convenient line widths.
- a thin, full-section micro strip line as shown in Figure 10 works well .
- er is 6r, the relative dielectric constant, of the material inside of the full-section strip line transmission line assembly.
- the edges of the assembly are preferably rounded as shown in the Figure 11 diagram below, as long as the width of the ground plane portions is 3 or 4 times the width of the centre conductor, w.
- the centre conductor width is maximized in order to minimize losses, since the centre conduct is where most of the losses manifest. The wider the centre conductor, the lower the losses in the centre conductor.
- the characteris ic impedance, Z 0 of the micro strip line transmission path shown in Figure 10 and 11 decreases with increasing width, however, so there is a compromising process .
- the circumference of the # 26 centre conductor in the RG- 174 coax is about 0.127mm (0.050") whereas the effective width of the 25 ohm line below (third up from the bottom) is 1.3mm (0.051") and the solid, smooth ground planes should be slightly better than the single-thickness braid used on the coax outside conductor.
- the dielectric material in the strip line is preferably better than the polyethylene used in the coax.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Earth Drilling (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41752502P | 2002-10-10 | 2002-10-10 | |
US417525P | 2002-10-10 | ||
US42005202P | 2002-10-21 | 2002-10-21 | |
US420052P | 2002-10-21 | ||
US42038102P | 2002-10-22 | 2002-10-22 | |
US420381P | 2002-10-22 | ||
US44299203P | 2003-01-28 | 2003-01-28 | |
US442992P | 2003-01-28 | ||
PCT/GB2003/004417 WO2004033847A1 (fr) | 2002-10-10 | 2003-10-10 | Appareil et procede de transmission d'un signal dans un puits de forage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1549820A1 true EP1549820A1 (fr) | 2005-07-06 |
EP1549820B1 EP1549820B1 (fr) | 2006-11-08 |
Family
ID=32097080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03758307A Expired - Lifetime EP1549820B1 (fr) | 2002-10-10 | 2003-10-10 | Appareil et procede de transmission d'un signal dans un puits de forage |
Country Status (6)
Country | Link |
---|---|
US (1) | US20060151179A1 (fr) |
EP (1) | EP1549820B1 (fr) |
AU (1) | AU2003274318A1 (fr) |
CA (1) | CA2499331A1 (fr) |
NO (1) | NO20051943L (fr) |
WO (1) | WO2004033847A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9856730B2 (en) | 2013-03-21 | 2018-01-02 | Altan Technologies Inc. | Microwave communication system for downhole drilling |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7248177B2 (en) * | 2004-06-28 | 2007-07-24 | Intelliserv, Inc. | Down hole transmission system |
AR045237A1 (es) * | 2004-08-09 | 2005-10-19 | Servicios Especiales San Anton | Generador de energia electrica que usa las vibraciones provocadas por una herramienta de perforacion |
FR2881172B1 (fr) * | 2005-01-25 | 2008-03-14 | Deviatec Sarl | Tige tubulaire de forage |
US8344905B2 (en) * | 2005-03-31 | 2013-01-01 | Intelliserv, Llc | Method and conduit for transmitting signals |
US7413021B2 (en) | 2005-03-31 | 2008-08-19 | Schlumberger Technology Corporation | Method and conduit for transmitting signals |
US8270251B2 (en) | 2005-12-05 | 2012-09-18 | Xact Downhole Telemetry Inc. | Acoustic isolator |
US7777644B2 (en) * | 2005-12-12 | 2010-08-17 | InatelliServ, LLC | Method and conduit for transmitting signals |
CA2544457C (fr) | 2006-04-21 | 2009-07-07 | Mostar Directional Technologies Inc. | Systeme et methode de telemesure de fond de trou |
US20080238252A1 (en) * | 2007-03-27 | 2008-10-02 | Barnard Jason J | Piezoelectric resonant power generator |
US20090178802A1 (en) * | 2008-01-15 | 2009-07-16 | Baker Hughes Incorporated | Parasitically powered signal source and method |
US8453730B2 (en) * | 2008-05-23 | 2013-06-04 | Schlumberger Technology Corporation | System and method for improving operational characteristics |
KR101250243B1 (ko) * | 2008-09-05 | 2013-04-04 | 엘지전자 주식회사 | 배관 거리 감지 장치 및 감지 방법 |
BRPI0918681B1 (pt) * | 2009-01-02 | 2019-06-25 | Martin Scientific Llc | Sistema de transmissão de sinal ou energia em furos de poço |
US8109329B2 (en) * | 2009-01-15 | 2012-02-07 | Intelliserv, L.L.C. | Split-coil, redundant annular coupler for wired downhole telemetry |
US20110024103A1 (en) * | 2009-07-28 | 2011-02-03 | Storm Jr Bruce H | Method and apparatus for providing a conductor in a tubular |
US8851175B2 (en) | 2009-10-20 | 2014-10-07 | Schlumberger Technology Corporation | Instrumented disconnecting tubular joint |
CN101936302B (zh) * | 2010-09-07 | 2012-10-10 | 宁波巨神制泵实业有限公司 | 潜水电泵的电缆干式出线装置 |
US20130265171A1 (en) * | 2010-12-14 | 2013-10-10 | Halliburton Energy Services, Inc. | Data transmission in drilling operation environments |
US8511373B2 (en) * | 2011-04-27 | 2013-08-20 | Chevron U.S.A. Inc. | Flow-induced electrostatic power generator for downhole use in oil and gas wells |
DE102011081870A1 (de) * | 2011-08-31 | 2013-02-28 | Siemens Aktiengesellschaft | System und Verfahren zur Signalübertragung in Bohrlöchern |
BR112014009959B1 (pt) * | 2011-10-25 | 2020-11-03 | Jdi International Leasing Limited | sistema para a transmissão de sinal de fundo de poço e método para a comunicação de dados |
GB201120458D0 (en) * | 2011-11-28 | 2012-01-11 | Green Gecko Technology Ltd | Apparatus and method |
EP2861818B1 (fr) | 2012-07-10 | 2018-11-21 | Halliburton Energy Services, Inc. | Soupape de sûreté sous-marine électrique ayant un système de communication intégré |
US9303507B2 (en) | 2013-01-31 | 2016-04-05 | Saudi Arabian Oil Company | Down hole wireless data and power transmission system |
US10240435B2 (en) | 2013-05-08 | 2019-03-26 | Halliburton Energy Services, Inc. | Electrical generator and electric motor for downhole drilling equipment |
CN110299778A (zh) * | 2013-05-08 | 2019-10-01 | 哈里伯顿能源服务公司 | 井下钻井马达和在钻井操作中传导电力的方法 |
US9512682B2 (en) | 2013-11-22 | 2016-12-06 | Baker Hughes Incorporated | Wired pipe and method of manufacturing wired pipe |
US9920581B2 (en) * | 2014-02-24 | 2018-03-20 | Baker Hughes, A Ge Company, Llc | Electromagnetic directional coupler wired pipe transmission device |
US10181633B2 (en) | 2014-09-26 | 2019-01-15 | Halliburton Energy Services, Inc. | Preformed antenna with radio frequency connectors for downhole applications |
WO2016099505A1 (fr) | 2014-12-18 | 2016-06-23 | Halliburton Energy Services, Inc. | Communication sans fil de fond de trou haute efficacité |
WO2016108816A1 (fr) | 2014-12-29 | 2016-07-07 | Halliburton Energy Services, Inc. | Émetteurs-récepteurs à bande interdite électromagnétiquement couplés |
US10570902B2 (en) | 2014-12-29 | 2020-02-25 | Halliburton Energy Services | Band-gap communications across a well tool with a modified exterior |
BR112017015590A2 (pt) | 2015-03-31 | 2018-03-13 | Halliburton Energy Services Inc | dispositivo de sensor de ressonância magnética nuclear, e, sistema de inspeção de poço, e, método para fazer medições de ressonância magnética nuclear |
GB2537159A (en) | 2015-04-10 | 2016-10-12 | Nat Oilwell Varco Uk Ltd | A tool and method for facilitating communication between a computer apparatus and a device in a drill string |
US10125604B2 (en) * | 2015-10-27 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Downhole zonal isolation detection system having conductor and method |
US10669840B2 (en) * | 2015-10-27 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Downhole system having tubular with signal conductor and method |
US10693251B2 (en) * | 2017-11-15 | 2020-06-23 | Baker Hughes, A Ge Company, Llc | Annular wet connector |
GB2590307A (en) * | 2018-07-16 | 2021-06-23 | Baker Hughes Holdings Llc | Method of providing wired pipe drill services |
US20230088047A1 (en) * | 2021-09-15 | 2023-03-23 | Halliburton Energy Services, Inc. | Steerability of downhole ranging tools using rotary magnets |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3518608A (en) * | 1968-10-28 | 1970-06-30 | Shell Oil Co | Telemetry drill pipe with thread electrode |
US4001774A (en) * | 1975-01-08 | 1977-01-04 | Exxon Production Research Company | Method of transmitting signals from a drill bit to the surface |
US4176894A (en) * | 1978-01-30 | 1979-12-04 | Godbey Josiah J | Internal electrical interconnect coupler |
GB1571677A (en) * | 1978-04-07 | 1980-07-16 | Shell Int Research | Pipe section for use in a borehole |
ZA823430B (en) * | 1981-05-22 | 1983-03-30 | Coal Industry Patents Ltd | Drill pipe sections |
US4445734A (en) * | 1981-12-04 | 1984-05-01 | Hughes Tool Company | Telemetry drill pipe with pressure sensitive contacts |
US4523141A (en) * | 1982-04-16 | 1985-06-11 | The Kendall Company | Pipe coating |
FR2530876A1 (fr) * | 1982-07-21 | 1984-01-27 | Inst Francais Du Petrole | Ensemble permettant une liaison electrique a travers une conduite formee de plusieurs elements |
US4730234A (en) * | 1986-05-29 | 1988-03-08 | Monico Jr Michael A | Pipe assembly module with internal electrical circuitry |
FR2607975B1 (fr) * | 1986-12-05 | 1989-09-01 | Inst Francais Du Petrole | Ensemble permettant une liaison electrique a travers une conduite formee de plusieurs elements |
US4788544A (en) * | 1987-01-08 | 1988-11-29 | Hughes Tool Company - Usa | Well bore data transmission system |
GB8714754D0 (en) * | 1987-06-24 | 1987-07-29 | Framo Dev Ltd | Electrical conductor arrangements |
US4901069A (en) * | 1987-07-16 | 1990-02-13 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between a first unit and a second unit and in particular between well bore apparatus and the surface |
US4806928A (en) * | 1987-07-16 | 1989-02-21 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface |
US4914433A (en) * | 1988-04-19 | 1990-04-03 | Hughes Tool Company | Conductor system for well bore data transmission |
GB8926610D0 (en) * | 1989-11-24 | 1990-01-17 | Framo Dev Ltd | Pipe system with electrical conductors |
GB9019554D0 (en) * | 1990-09-07 | 1990-10-24 | Framo Dev Ltd | Pipe system with electrical conductors |
FR2708310B1 (fr) * | 1993-07-27 | 1995-10-20 | Schlumberger Services Petrol | Procédé et dispositif pour transmettre des informations relatives au fonctionnement d'un appareil électrique au fond d'un puits. |
US5551484A (en) * | 1994-08-19 | 1996-09-03 | Charboneau; Kenneth R. | Pipe liner and monitoring system |
US6098727A (en) * | 1998-03-05 | 2000-08-08 | Halliburton Energy Services, Inc. | Electrically insulating gap subassembly for downhole electromagnetic transmission |
US6310559B1 (en) * | 1998-11-18 | 2001-10-30 | Schlumberger Technology Corp. | Monitoring performance of downhole equipment |
GB2345199B (en) * | 1998-12-22 | 2003-06-04 | Philip Head | Tubing and conductors or conduits |
WO2002006716A1 (fr) * | 2000-07-19 | 2002-01-24 | Novatek Engineering Inc. | Systeme de transmission de donnees pour colonne d'organes de forage de fond de trou |
US6670880B1 (en) * | 2000-07-19 | 2003-12-30 | Novatek Engineering, Inc. | Downhole data transmission system |
US6392317B1 (en) * | 2000-08-22 | 2002-05-21 | David R. Hall | Annular wire harness for use in drill pipe |
FR2819851B1 (fr) * | 2001-01-22 | 2003-08-15 | Cie Du Sol | Tige creuse de forage pour la transmission d'informations |
US6768700B2 (en) * | 2001-02-22 | 2004-07-27 | Schlumberger Technology Corporation | Method and apparatus for communications in a wellbore |
JP4168325B2 (ja) | 2002-12-10 | 2008-10-22 | ソニー株式会社 | 高分子アクチュエータ |
US6844498B2 (en) * | 2003-01-31 | 2005-01-18 | Novatek Engineering Inc. | Data transmission system for a downhole component |
-
2003
- 2003-10-10 AU AU2003274318A patent/AU2003274318A1/en not_active Abandoned
- 2003-10-10 WO PCT/GB2003/004417 patent/WO2004033847A1/fr active IP Right Grant
- 2003-10-10 EP EP03758307A patent/EP1549820B1/fr not_active Expired - Lifetime
- 2003-10-10 CA CA002499331A patent/CA2499331A1/fr not_active Abandoned
- 2003-10-10 US US10/530,270 patent/US20060151179A1/en not_active Abandoned
-
2005
- 2005-04-21 NO NO20051943A patent/NO20051943L/no not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2004033847A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9856730B2 (en) | 2013-03-21 | 2018-01-02 | Altan Technologies Inc. | Microwave communication system for downhole drilling |
Also Published As
Publication number | Publication date |
---|---|
AU2003274318A8 (en) | 2004-05-04 |
NO20051943L (no) | 2005-07-04 |
WO2004033847A1 (fr) | 2004-04-22 |
AU2003274318A1 (en) | 2004-05-04 |
CA2499331A1 (fr) | 2004-04-22 |
US20060151179A1 (en) | 2006-07-13 |
EP1549820B1 (fr) | 2006-11-08 |
NO20051943D0 (no) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1549820B1 (fr) | Appareil et procede de transmission d'un signal dans un puits de forage | |
US10738596B2 (en) | Data transmission in drilling operation environments | |
US7098802B2 (en) | Signal connection for a downhole tool string | |
EP2625369B1 (fr) | Tuyau et ensemble tuyau comportant des couches de matériau électroconducteur pour transporter des substances | |
US8519865B2 (en) | Downhole coils | |
US6641434B2 (en) | Wired pipe joint with current-loop inductive couplers | |
US7565936B2 (en) | Combined telemetry system and method | |
US7265649B1 (en) | Flexible inductive resistivity device | |
CA2411566C (fr) | Tube modifie equipe d'un doublet magnetique incline ou transversal pour la diagraphie | |
US20080012569A1 (en) | Downhole Coils | |
US8810428B2 (en) | Electrical transmission between rotating and non-rotating members | |
US11162355B2 (en) | Electromagnetic surface wave communication in a pipe | |
US10385683B1 (en) | Deepset receiver for drilling application | |
US20230014307A1 (en) | A telemetry tool joint | |
US10498007B2 (en) | Loop antenna for downhole resistivity logging tool | |
NO346475B1 (en) | Electromagnetic Telemetry Apparatus and Methods for Use in Wellbores | |
US11387537B2 (en) | Parallel coil paths for downhole antennas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050314 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): FR GB |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VARCO I/P, INC. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070913 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070913 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081010 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081010 |