EP1548188A1 - Papier et procédé de fabrication - Google Patents

Papier et procédé de fabrication Download PDF

Info

Publication number
EP1548188A1
EP1548188A1 EP04257803A EP04257803A EP1548188A1 EP 1548188 A1 EP1548188 A1 EP 1548188A1 EP 04257803 A EP04257803 A EP 04257803A EP 04257803 A EP04257803 A EP 04257803A EP 1548188 A1 EP1548188 A1 EP 1548188A1
Authority
EP
European Patent Office
Prior art keywords
paper
web
pounds
per ton
monosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04257803A
Other languages
German (de)
English (en)
Inventor
Hugh West
David W. Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domtar Corp
Original Assignee
Weyerhaeuser Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weyerhaeuser Co filed Critical Weyerhaeuser Co
Publication of EP1548188A1 publication Critical patent/EP1548188A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/24Addition to the formed paper during paper manufacture
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides

Definitions

  • the present invention is directed to paper having reduced cockle and water induced curl, and the method of making this paper.
  • Hardwood and softwood wood pulp fibers are used in the manufacture of printing paper and newsprint. These fibers are produced in a chemical pulping process, either sulfate or sulfite, or in a mechanical pulping process. Mechanical processes would include thermomechanical and chemithermomechanical.
  • these hardwood or softwood pulp fibers and wet end chemicals are mixed with water in the headbox of the paper machine to form a suspension of fibers and chemicals.
  • the wet end chemicals may include fillers such as calcium carbonate and clay.
  • the suspension of fibers and chemicals flow from the headbox onto a wire.
  • the water is removed from the fibers and chemicals by both gravity and vacuum to form a wet web of pulp fibers into which the chemicals are incorporated.
  • the chemicals are throughout the sheet. The sheet may be pressed and dried to remove more water.
  • Starch, optical brightener additives and surface size may be placed on surface of the sheet in a surface sizing step at the size press Some of the materials may enter into the web if the pressure of the nip at the press is great enough.
  • the resulting product is referred to as an uncoated or lightly coated paper sheet or web.
  • the uncoated sheet may be coated in another application of one or more coating layers placed on the sheet in an off-line coating operation.
  • the uncoated sheet passes through a coating station and a second drying station. It may pass through a second calendering operation.
  • the resulting product is referred to as a coated paper sheet or web.
  • Uncoated or coated printing paper has a basis weight of from 16 to 180 pounds per 3300 square feet.
  • a digital printing technology such as web-fed ink jet printing presents new and different challenges for the paper maker as the optimum surface physics and chemistry of paper for these printers are very different than those required for conventional offset inks.
  • Standard desk top ink jet printers are increasing in speed and some of the same challenges are found when printing with these printers because of the water placed on the paper and the difficulty of completely drying the paper before it leaves the printer.
  • optical density of the printed image is also of primary concern for many print jobs as high levels of ink are required to provide vivid, robust colors. This is known as high optical density.
  • Uncoated papers are limited in the amount of ink they can tolerate because of their tendency to curl and cockle. Thus more expensive coated papers are generally required when high optical densities are needed.
  • the present invention is directed to an uncoated paper usable with ink having a water content and which has a maximum Cockle Value of 0.25.
  • the Cockle Value is used to determine the amount of cockle or water induced curl in the paper.
  • An embodiment of the invention is an uncoated paper having a paper basis weight of 16 to 60 pounds per 3300 square feet and a maximum Cockle Value of 0.25.
  • An embodiment of the invention is a paper that has been treated with at least 50 pounds per ton of paper with a material that is capable of being added at the size press, blade coater or by a spray before the heated drying section.
  • the material is water soluble, is highly concentrated during application, has low viscosity and low hygroscopicity.
  • Water soluble means a compound that is soluble to concentrations of 20-50% of the total weight of the solution at room temperature or at temperatures of 50° C. or less. Highly concentrated means the weight or concentration of the material is 20-50% of the weight of the solution.
  • Low viscosity means viscosities of 200 centipoises (cps) or less when the weight or concentration of the material is 20-50% of the weight of the solution.
  • Low hygroscopicity means the dried material will take up only a small amount of water in high humidity conditions.
  • Another embodiment is a paper that has been treated with at least 75 pounds of the material per ton of paper.
  • Another embodiment is a printing paper that has been treated with up to 250 pounds of the material per ton of paper.
  • Another embodiment is a paper that has been treated with up to 300 pounds of the material per ton of paper.
  • the material is a disaccharide. In another embodiment of the invention the material is a monosaccharide. In another embodiment of the invention the material is a urea. In another embodiment of the invention the material is a mono-citrate or di-citrate.
  • the material is combined with starch, latex, polyvinyl alcohol, styrene acrylic acid or an ester and the low viscosity of the additive can be maintained.
  • the present invention is directed to an uncoated or lightly coated paper which may be used for printing on ink jet printers and which has a maximum Cockle Value of 0.25 after such printing. It is also directed to an uncoated or lightly coated wide printing paper used with ink jet printers which has a maximum Cockle Value of 0.25
  • a quantitative test has been developed to determine the curl and cockle of paper. It replaces the subjective test of viewing the paper to determine whether there was curl and cockle and the amount of curl and cockle. This prior subjective test also determined whether a sheet of paper had sufficient treatment.
  • the quantitative test is the second side cockle test method.
  • the second side cockle test method is used to evaluate the amount of cockle that an inkjet print, at an ink application level of 5.9 grams/square meter, produces in the unprinted or second side of a paper printed with a block print.
  • the present test used a Scitex Test Cockle Form Print.
  • the unprinted side of the inkjet print is illuminated using low angle (15 0 ) lighting.
  • a digital image is made of the cockled area on the unprinted side associated with a 3.5 by 3.5 inch half-tone printed square on the printed side of the sample. The image is then evaluated to determine the amount of second side cockle.
  • the apparatus used for the second side cockle test method is shown in Figure 12. It includes a test platform 10, a Kodak® megaplus 8-bit digital camera 12, and a Dedolight® light 14.
  • the camera 12 is mounted above surface 16 of the test platform 10 and at 90 0 to the surface 16 of the test platform 10.
  • the camera is aimed directly at the center of the surface 16 of the platform.
  • the Dedolight light 14 is mounted at an angle of 15 0 to the surface 16 and also aimed at the center of the surface 16.
  • Mathworks, Inc. Matlab® computer software is used to analyze the images.
  • the samples of paper to be tested are printed on one side with a Scitex Test Cockle Form using an inkjet printer and inkjet ink.
  • a Hewlett Packard ink jet printer HP560C was used.
  • the ink used was Scitex Ink 2002 and the ink application level was 5.9 g/square meter.
  • the ink should be a water based ink.
  • the paper was handled carefully so as not to crease or wrinkle the paper because creases or wrinkles would be analyzed as cockle.
  • the settings of the camera 12 were adjusted to a pixel resolution of 100 microns/pixel and an f-stop of F8.
  • the camera control was on Fixed and the image centering was at 127.
  • the Dedolight light 14 was adjusted for uniform low angle lighting. All lighting was from the Delolight light 14. Other room lights were turned off.
  • the paper sample 18 was placed on the surface 16 of the test stand 10 with the unprinted side of the paper turned to the camera and facing up.
  • the 3.5 by 3.5 inch cockle area was centered in the camera field of view with the light aimed at the center of the cockle area.
  • the camera's exposure was adjusted until the average image pixel value was 127.
  • the image was collected and saved to a disk.
  • the images were analyzed using the Mathworks, Inc. Matlab® computer software. Version 6, release 13 was used.
  • the image is read into the program and smoothed with a 5x5 median filter to remove high frequency noise.
  • the mean, standard deviation and coefficient of variation were calculated for each row and column.
  • the larger of the maximum row coefficient of variability and maximum column coefficient of variability is taken as the sample Cockle Value.
  • the program is evaluating the differences between the light and dark areas of the image and determining the variability.
  • Cockle Value means the cockle value determined by this test.
  • An embodiment is an uncoated paper that has been treated with at least 50 pounds per ton of paper with a material that is water soluble, is highly concentrated during application, has low viscosity and low hygroscopicity to reduce curl, cockle or other deformation after printing with high levels of ink jet ink as compared to uncoated paper.
  • the maximum Cockle Value of the treated printing paper is 0.25.
  • a ton is defined here as 2000 pounds.
  • Water soluble means a compound that is soluble to concentrations of 20-50% of the total weight of the solution at room temperature or at temperatures of 50° C. or less. Highly concentrated means concentrations of 20-50% of the weight of the solution.
  • Low viscosity means viscosities of 200 centipoises or less at concentrations of 20-50% of the weight of the solution.
  • Low hygroscopicity means the dried material will not take up water in high humidity conditions.
  • At least 75 pounds of material per ton of paper is used. In another embodiment of the invention as much as 300 pounds of the material per ton of paper may be used. In another embodiment as much as 250 pounds of the material per ton of paper may be used.
  • the material is applied at the size press or the blade coater. It may be applied using a puddle, gate roll or metered size press, or a knife or blade coater. In one embodiment the material may be applied in a solution containing at least 20% by weight of material. In another embodiment the material may be applied in a solution containing 20 to 50% by weight of the material.
  • disaccharides may be used as the material.
  • Disaccharides such as sucrose and maltose can be used. Any disaccharide having the properties noted above can be used. Many disaccharides have viscosities below 200 centipoise (cps.) at concentrations 20 to 50% of the weight of the solution.
  • Another embodiment of the invention may use monosaccharides.
  • Monosaccharides such as glucose or mannose can be used.
  • Many monosaccharides have viscosities below 200 centipoise (cps.) at concentrations 20 to 50% of the weight of the solution.
  • a material such as corn syrup may also be used.
  • Hygroscopicities and solubilities of certain polyols are listed in table 1. From this table it can be seen that malitol, lacitol monohydrate and erythritol have the desired characteristics.
  • the percentages in this example are weight percentages.
  • a 60 gm./m 2 unsized paper was used for each of the samples in this example.
  • a control sample of paper was coated in a laboratory size press with ethylated starch at 12% concentration. Both side of the paper were coated to a coat weight of 40 pounds of starch per ton of paper per side. This is typical of most uncoated paper grades (Formula I).
  • One sample of paper was treated in a lab size press with a solution containing a concentration of 35% sucrose, 5% ethylated starch and 1% surface size (Hercules IJP). Both side of the paper were coated to a coat weight of 105 pounds of material per ton of paper per side (Formula II). The amount of sucrose was about 90 pounds per ton of paper per side.
  • a second sample was prepared with a solution containing a concentration of 40% sucrose, 5% ethylated starch and 1% surface size (Hercules UP). Both sides of the paper were coated to a coat weight of 112.5 pounds of material per ton of paper per side (Formula III). The amount of sucrose was about 98 pounds per ton of paper per side.
  • One set of the sheets was printed using an HP 560 printer and Scitex High Speed ink jet ink.
  • the image was a 3" x 3" square, printed at 60% density, using Corel Draw, Version 10.
  • Another embodiment of the invention may use urea as the material. This material has the desired characteristics.
  • 60 gm./m2 unsized paper was used as the base paper for the sheets in this example.
  • the percentages in this example are weight percentages.
  • a sample of paper was treated in a lab size press with a solution containing a concentration of 40% urea, 5% ethylated starch and 1% surface size (Hercules IJP). Both side of the paper were coated to a coat weight of 101.5 pounds of material per ton of paper per side (Formula IV). The amount of urea was about 88 pounds per ton of paper per side.
  • the sheets were then dried and conditioned at 50% R.H..
  • the sheets were printed using an HP 560 printer and Scitex High Speed ink jet ink. The sheets were then evaluated for curl and cockle, using the same technique as in Example 1.
  • Another embodiment of the invention uses a salt of citric acid as the material.
  • 60 gm./m2 unsized paper was used as the base paper for the sheets in this example.
  • the percentages in this example are weight percentages.
  • a sample of paper was treated in a lab size press with a solution containing a concentration a 25% of the monosodium salt of citric acid (monosodium citrate), heated to 50 degrees C. Both side of the paper were coated to a coat weight of 37.5 pounds of material per ton of paper per side (Formula V).
  • the sheets were then dried and conditioned at 50% R.H..
  • the sheets were printed using an HP 560 printer and Scitex High Speed ink jet ink. The sheets were then evaluated for curl and cockle, using the same technique as in Example 1. The sheets were also tested for water fastness via submersion in water for 60 seconds and the ink dye was completely immobilized by the salt.
  • Water fast means the ability of ink to remain intact when exposed to water or moisture. Water fast inks do not bleed. Water based inks must be treated to be water fast.
  • Water fastness is typically obtained with a nitrogen-containing organic compound of a cationic nature and functions by precipitating the dye in the ink, rendering it immobile, when exposed to moisture after printing.
  • these types of materials are incompatible with anionic fluorescent whitening agents, optical brighteners, which are typically applied at the size press to brighten paper. As such, these types of additives reduce the overall paper brightness, often times to levels below customer acceptance.
  • Monosodium citrate maintains the brightness of the paper while providing water fastness.
  • the percentage shown are weight percentages.
  • 60 gm./m2 unsized paper was used as the base paper for the sheets in this example.
  • a second sample was prepared with a solution containing a concentration of 44% sucrose, 5% ethylated starch and 1% surface size (Hercules UP). Both sides of the paper were coated to a coat weight of 105 pounds of material per ton of paper per side. The amount of sucrose was 92.4 pounds per ton of paper per side.
  • a third sample of paper was treated in a lab size press with a solution containing a concentration of 35% urea, 5% ethylated starch and 1% surface size (Hercules IJP). These percentages are weight percentages. Both side of the paper were coated to a coat weight of 101.5 pounds of material per ton of paper per side. The amount of urea was about 87 pounds per ton of paper per side.
  • a fourth sample of paper was treated in a lab size press with a solution containing a concentration a 25% of the monosodium salt of citric acid, heated to 50 degrees C. This percentage is a weight percentage. Both side of the paper were coated to a net coat weight of 37.5 pounds of material per ton of paper per side. The amount of citrate was 37.5 pounds per ton of paper per side.
  • FIG 13 is a schematic drawing of a paper machine. Wood pulp fiber furnish and wet end chemicals are mixed with water in a headbox 20 to form a slurry. The slurry exits the headbox through a slice 22 onto a wire 24. The water in the slurry drains from the wire. A vacuum chest 25 is also used to draw water from the slurry to form a wet paper web. The web is carried through press rolls 28 and a drier 30 that remove additional water.
  • the size press may be a horizontal type with the rolls horizontally aligned, a vertical type with the rolls vertically aligned.
  • the materials may be placed on the web from the rolls or from a puddle between the rolls.
  • the web may, in some instances, be coated with material by the spraying apparatus 34.
  • the materials described in the various embodiments in the present application would also be applied at the size press 32 or the spraying apparatus 34.
  • the paper web then passes through a drying section 36.
  • the drying is usually done by steam heated drier cans through which the paper web is threaded.
  • the paper is then calendered by calender rolls 38 and rolled into paper rolls at the winder 40.
  • the resulting product is known as uncoated paper.

Landscapes

  • Paper (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
EP04257803A 2003-12-22 2004-12-15 Papier et procédé de fabrication Withdrawn EP1548188A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US744856 1985-06-14
US10/744,856 US20050133182A1 (en) 2003-12-22 2003-12-22 Paper product and method of making field

Publications (1)

Publication Number Publication Date
EP1548188A1 true EP1548188A1 (fr) 2005-06-29

Family

ID=34552858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04257803A Withdrawn EP1548188A1 (fr) 2003-12-22 2004-12-15 Papier et procédé de fabrication

Country Status (4)

Country Link
US (1) US20050133182A1 (fr)
EP (1) EP1548188A1 (fr)
JP (1) JP2005179883A (fr)
CA (1) CA2488654A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862685B2 (en) * 2006-01-09 2011-01-04 Kemira Chemicals, Inc. Method for deinking pulp using premixed hydrophobically modified calcium carbonate particles
US7758934B2 (en) * 2007-07-13 2010-07-20 Georgia-Pacific Consumer Products Lp Dual mode ink jet paper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164512A (en) * 1962-08-03 1965-01-05 Fox River Paper Corp Method and means for forming a cockle finish in paper
JPS63237986A (ja) * 1987-03-27 1988-10-04 Fuji Photo Film Co Ltd 感熱記録紙
FR2691989A1 (fr) * 1992-06-05 1993-12-10 Mitsubishi Paper Mills Ltd Feuille d'enregistrement par jet d'encre.
US6291127B1 (en) * 2000-08-23 2001-09-18 Eastman Kodak Company Water-borne polyester coated imaging member
EP1391312A1 (fr) * 2002-08-22 2004-02-25 Scitex Digital Printing, Inc. Solution pour traitement préliminaire d'un substrat pour l'impression par jet d'encre

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423556A (en) * 1943-04-17 1947-07-08 Heyden Chemical Corp Hygroscopic liquid composition and the process of softening paper with said composition
US3532647A (en) * 1968-08-02 1970-10-06 American Cyanamid Co Coating composition comprising soluble starch or protein,melamine-formaldehyde resin and a <c18 sugar
DE2633659C3 (de) * 1976-07-27 1980-05-29 Eduard Gerlach Gmbh Chemische Fabrik, 4990 Luebbecke Verfahren zur Herstellung einer Folienbahn aus Rüben der Art B vulgaris
US4093564A (en) * 1977-02-14 1978-06-06 Yara Engineering Corporation Electroconductive coatings
US4157318A (en) * 1977-08-02 1979-06-05 International Paper Company Starch carrier composition for adhesive containing urea as a selatinizing agent
US4260452A (en) * 1978-11-24 1981-04-07 Krueger Horst Production of paper pulp from sugar mill bagasse
US4461311B1 (en) * 1981-12-24 1991-07-02 Method and smoking article wrapper for reducing sidestream smoke
US4453553A (en) * 1983-01-24 1984-06-12 Cohn Charles C Treatment of cigarette paper
US4856509A (en) * 1985-07-08 1989-08-15 Lemelson Jerome H Face mask and method
FR2590501B1 (fr) * 1985-11-22 1994-01-14 Beghin Say Sa Composition absorbant les liquides
US4882221A (en) * 1987-08-06 1989-11-21 Scott Paper Company Chemically treated paper products - towel and tissue
US4940739A (en) * 1988-01-07 1990-07-10 The Standard Register Company Process for making a high solids CB printing ink
US4940738A (en) * 1988-01-07 1990-07-10 The Standard Register Company High solids CB printing ink containing a protective colloid blend
US5416181A (en) * 1989-02-10 1995-05-16 Penford Products Company Reinforced films made from water soluble polymers
US5114999A (en) * 1989-04-03 1992-05-19 Ppg Industries, Inc. Glyoxal-containing binder insolubilizer
JPH02293491A (ja) * 1989-05-02 1990-12-04 Nippon Kakoh Seishi Kk キヤストコート紙の製造法
US5152304A (en) * 1989-10-31 1992-10-06 Philip Morris Incorporated Wrapper for a smoking article
US5107864A (en) * 1991-02-19 1992-04-28 P. H. Glatfelter Company Wrapper for smoking article, smoking article, and method of making same
JP3213630B2 (ja) * 1991-07-25 2001-10-02 三菱製紙株式会社 インクジェット記録シート
US5300192A (en) * 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
US5449551A (en) * 1993-06-03 1995-09-12 Kawano Paper Co., Ltd. Highly water absorbent fibrous web and a process for producing the same
FR2707310B1 (fr) * 1993-07-05 1995-10-06 Hoechst France Compositions pour le traitement des surfaces des papiers et/ou des cartons et leur application en industrie papetière.
US5830487A (en) * 1996-06-05 1998-11-03 The Procter & Gamble Company Anti-viral, anhydrous, and mild skin lotions for application to tissue paper products
US6238682B1 (en) * 1993-12-13 2001-05-29 The Procter & Gamble Company Anhydrous skin lotions having antimicrobial components for application to tissue paper products which mitigate the potential for skin irritation
US5527383A (en) * 1994-10-13 1996-06-18 Henkel Corporation Lubricant additives for paper coating compositions
US6284479B1 (en) * 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US6059928A (en) * 1995-09-18 2000-05-09 Fort James Corporation Prewettable high softness paper product having temporary wet strength
FR2744735B1 (fr) * 1996-02-13 1998-04-10 Beghin Say Eridania Utilisation de pulpes de betterave a sucre dans la fabrication de papier ou de carton
EP0889997B1 (fr) * 1996-03-28 2002-07-10 The Procter & Gamble Company Produits du type papier resistant a l'etat humide constitues de fibres cellulosiques a fonctionnalite aldehyde et de polymeres
NL1004379C2 (nl) * 1996-10-29 1998-05-08 Borculo Cooep Weiprod Toepassing van suikeraminen en suikeramiden als lijm, alsmede nieuwe suikeraminen en suikeramiden.
US5872199A (en) * 1997-08-29 1999-02-16 Lions Adhesives, Inc. Sugar based vinyl monomers and copolymers useful in repulpable adhesives and other applications
US6021598A (en) * 1997-12-19 2000-02-08 Ampro Industries, Inc. Pourable granular paper mulch composition
US6379318B1 (en) * 1998-09-02 2002-04-30 Arkray, Inc. Method for preventing blood denaturation and blood test tool to be used therein
US6764726B1 (en) * 1999-05-12 2004-07-20 Sen Yang Ink jet recording sheet with improved image waterfastness
US6929013B2 (en) * 2001-08-14 2005-08-16 R. J. Reynolds Tobacco Company Wrapping materials for smoking articles
US7077145B2 (en) * 2002-12-20 2006-07-18 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164512A (en) * 1962-08-03 1965-01-05 Fox River Paper Corp Method and means for forming a cockle finish in paper
JPS63237986A (ja) * 1987-03-27 1988-10-04 Fuji Photo Film Co Ltd 感熱記録紙
FR2691989A1 (fr) * 1992-06-05 1993-12-10 Mitsubishi Paper Mills Ltd Feuille d'enregistrement par jet d'encre.
US6291127B1 (en) * 2000-08-23 2001-09-18 Eastman Kodak Company Water-borne polyester coated imaging member
EP1391312A1 (fr) * 2002-08-22 2004-02-25 Scitex Digital Printing, Inc. Solution pour traitement préliminaire d'un substrat pour l'impression par jet d'encre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 025 (M - 787) 20 January 1989 (1989-01-20) *

Also Published As

Publication number Publication date
US20050133182A1 (en) 2005-06-23
JP2005179883A (ja) 2005-07-07
CA2488654A1 (fr) 2005-06-22

Similar Documents

Publication Publication Date Title
US9309626B2 (en) Paper substrates containing high surface sizing and low internal sizing and having high dimensional stability
US20170183823A1 (en) Paper substrate having enhanced print density
RU2517511C2 (ru) Регистрирующий лист с улучшенным качеством печати при низких уровнях добавок
US8460511B2 (en) Paper substrate containing a wetting agent and having improved printability
CN101351596A (zh) 具有增大的印刷密度的纸张衬底
US20070113998A1 (en) Paper product and method of making
EP1548187A2 (fr) Procédé de fabrication de papier
US20070113995A1 (en) Paper product and method of making
EP1548188A1 (fr) Papier et procédé de fabrication
EP1548186A2 (fr) Produits en papier
JP2008522053A (ja) 性能の改善された樹脂コーテッド紙
EP1548184A1 (fr) Produit de papier et procédé pour la fabrication
EP1548185A2 (fr) Produits en papier
WO2007149258A2 (fr) Substrats de papier contenant un composé à base de silicium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOMTAR CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701