EP1546793A2 - Device for tuning a bragg grating by means of compression using a piezoelectric actuator - Google Patents

Device for tuning a bragg grating by means of compression using a piezoelectric actuator

Info

Publication number
EP1546793A2
EP1546793A2 EP03780281A EP03780281A EP1546793A2 EP 1546793 A2 EP1546793 A2 EP 1546793A2 EP 03780281 A EP03780281 A EP 03780281A EP 03780281 A EP03780281 A EP 03780281A EP 1546793 A2 EP1546793 A2 EP 1546793A2
Authority
EP
European Patent Office
Prior art keywords
tube
optical waveguide
compression
bragg grating
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03780281A
Other languages
German (de)
French (fr)
Inventor
Michel Bugaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1546793A2 publication Critical patent/EP1546793A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides

Definitions

  • the present invention relates to a device for tuning a Bragg grating (“Bragg grating”) by compression of the latter. It applies in particular to optical telecommunications and, more particularly, to those which implement DWDM or dense wavelength division multiplexing ("Dense Wavelength Division Multiplexing").
  • the invention makes it possible, for example, to form filters, routers or add-drop devices according to the wavelengths of incident optical signals.
  • the subject of the present invention is a tuning device for a Bragg grating, which can be made very compact.
  • This device comprises a piezoelectric actuator for compressing the optical fiber, in which the network is formed, and means for preventing buckling of the fiber thus compressed.
  • the device further comprises means for regulating the compression of the fiber and position locking means.
  • means for regulating the compression of the fiber and position locking means The relative simplicity and compactness of the device that is the subject of the invention guarantees it good integrability and low manufacturing cost.
  • the compactness of the device gives it low mechanical inertia and therefore a low response time.
  • the present invention relates to a device for tuning a reflective element formed in a portion of an optical waveguide having first and second ends, this optical waveguide being intended to propagate a light, the reflective element being capable of reflecting this light at a reflection wavelength, this device comprising
  • the prevention means comprise a tube having first and second ends, this tube being crossed by the optical waveguide portion, and - means for guiding this portion in the tube
  • the compression means comprise a curved deformable element, having first and second sides, the respective first ends of the tube and of the optical waveguide portion being fixed to the first side, the second end of the tube being spaced from the second side and the second end of the optical waveguide portion being fixed to this second side, and - a piezoelectric actuator , disposed in a space between the curved deformable element and the tube and fixed to this element and to this tube, this actuator being able to elongate when excited and then deform the element, the latter then being able to compress the portion of optical waveguide.
  • the reflective element is a Bragg grating.
  • the optical waveguide is preferably an optical fiber.
  • the compression means have an axis of symmetry which is formed by the axis of the optical waveguide portion.
  • the guide means comprise rings which extend one after the other in the tube, are spaced from one another by elastic elements, preferably elastic toric spacers, and are crossed by the optical waveguide portion, this optical waveguide portion being able to slide freely in these rings.
  • the guide means comprise rigid washers which are placed one after the other in the tube, along the portion of optical waveguide, and are crossed by this portion of optical waveguide, and elastic elements which extend one after the other in the tube, alternate with the rigid washers and are integral with these rigid washers.
  • the elastic elements form a single block of elastic material which traps the optical waveguide portion.
  • the device which is the subject of the invention further comprises means for controlling the piezoelectric actuator, in a closed loop configuration.
  • control means may include measuring means comprising measuring means comprising the Bragg grating or a variable capacitor having two armatures which are respectively integral with the tube and the deformable element.
  • the device which is the subject of the invention may further comprise means for blocking the deformable element.
  • these locking means comprise an element which is made of a shape memory alloy and which is capable of clamping the tube.
  • FIG. 1 is a schematic view of a first particular embodiment of the device which is the subject of the invention
  • FIG. 2 is a schematic and partial view of the device of FIG. 1
  • Figure 3 is a schematic and partial view of a second particular embodiment of the device object of the invention.
  • the device according to the invention which is schematically represented in FIG. 1, is intended for tuning a Bragg network 2 which is formed in a portion 4 of an optical fiber 6.
  • the device compresses the portion 4 of the optical fiber, which is rectilinear.
  • the axis of this portion of optical fiber, which also constitutes the axis along which this portion is compressed, is denoted X.
  • the device of FIG. 1 comprises means 8 for compressing the portion 4 of optical fiber as well as means 10 provided for preventing buckling of this portion of optical fiber when it is put into longitudinal compression. These means 10 intended to prevent buckling are shown in more detail in FIG. 2.
  • the means 8 for compressing this portion of optical fiber are symmetrical with respect to the axis X and comprise a deformable element 12, of substantially elliptical shape, which is for example made of a material polymer.
  • the compression means 8 also include a double actuator piezoelectric comprising two elongated piezoelectric elements 20 and 22, which are arranged in the space delimited by the element 12. In addition, in this space, the elements 20 and 22 extend perpendicular to the axis X.
  • the tube 14 extends along the minor axis of the substantially elliptical element 12 while the piezoelectric elements 20 and 22 extend along the major axis of this element 12.
  • the piezoelectric element 20 is fixed, on one side, to the tube 14 and, on the other side, to the element 12.
  • the piezoelectric element 22 is fixed, on one side, to the tube 14 (opposite element 20) and, on the other side, element 12.
  • means 26 for controlling the piezoelectric elements 20 and 22 When these elements 20 and 22 are excited by these control means 26, the elements 20 and 22 elongate perpendicular to the axis X (arrows FI and F2 in FIG. 1), the element 12 deforms and the tube 14 and the tubular element 24 move relative to each other (arrows F3 and F4 in FIG. 1), which increases the covering of the end of the tube 14 by this tubular element 24.
  • one end of the portion 4 of optical fiber is fixed to the part 16 of the element 12 while the other end of this portion of optical fiber is fixed to the other part 18 of this element 12.
  • these parts 16 and 18 respectively comprise holes 28 and 30 at the level of the axis X.
  • the portion of optical fiber is fixed in each of these holes.
  • the deformation of the element 12, which is mentioned above, thus causes the compression of the portion of optical fiber.
  • a light I emitted by a broadband light source (not shown) is injected into the optical fiber 6, this light arrives at the Bragg grating 2.
  • the latter reflects the light R having a wavelength which depends on the pitch of the network.
  • the optical fiber transmits light T not reflected by this network.
  • the means 10 which prevent buckling of the portion of optical fiber during its compression, comprise rings 32 and elastic elements 34.
  • These elements 34 are toric spacers which are made of 'An elastic material with low coefficients of friction, preferably polyt ⁇ trafluorethylene honeycomb.
  • the rings 32 are placed one after the other in the tube 14. These rings surround the portion 4 of optical fiber and are spaced from each other by means of the elastic toric spacers
  • Each O-ring spacer 34 allows the spacing of two adjacent rings 32 by pressing on two chamfers 36, at 45 °, respectively formed on the ends of these rings, which are opposite
  • the portion 4 of optical fiber is guided in all of the rings, the latter being held longitudinally by the tube 14 which limits the offset of these rings, for example to + 0.5 ⁇ m.
  • the small axial and especially longitudinal play which is distributed evenly between the rings by all of the end pieces, or seals, O-rings 34, makes it possible to avoid buckling of the portion 4 of optical fiber during its compression.
  • the rings are self-aligned whatever the longitudinal displacement imposed by the substantially elliptical element 12, due to the presence chamfers 36 to 45 ° pressing symmetrically on the O-rings 34.
  • the ring closest to part 16 of this element 12 can be fixed to this part 16 and that the ring closest to part 18 of element 12 can be fixed to this part 18, but It is not mandatory.
  • a Bragg grating 36 for temperature compensation can be provided in a portion of the optical fiber 6 which is not subjected to compression, for example in the portion of this fiber which is found in the hole 28, where the portion 4 of optical fiber is fixed.
  • the deformation induced by the double piezoelectric actuator is amplified by the element 12 which is substantially elliptical.
  • an open loop configuration can be used.
  • a closed loop configuration is used ( Figure 2).
  • the longitudinal deformation of the piezoelectric elements 20 and 22 can be measured by means of a variable capacitor, the armatures 38 and 40 of which are coaxial.
  • One of these frames, having the reference 38, results from a metallization of the external wall of the end of the tube 14 which is capable of sliding in the tubular element 24.
  • the other frame 40 results from a metallization of the internal wall of this element 24.
  • the tube 14 and the element 24 are electrically insulating, for example made of a rigid plastic.
  • variable capacitor 38-40 The capacity of the variable capacitor 38-40 is a linear function of the position of the end of the tube 14 relative to the element 24 and therefore of the longitudinal deformation of the piezoelectric elements
  • the frames 38 and 40 are electrically connected to the control means 26 and provide the latter with information relating to this longitudinal deformation.
  • part 42 of the light R reflected by the Bragg grating 2 is recovered, for example by means of an optical coupler (not shown) which is inserted into the optical fiber 6 , outside the device of FIG. 1, and this light is processed by an appropriate photodetection interface 44 which then supplies, to the control means 26, the information relating to the longitudinal deformation.
  • means 46 have also been provided making it possible to immobilize the device in any position, corresponding to a determined elongation of the piezoelectric elements 20 and 22.
  • These means 46 comprise a ring or a spring 48, which is made of a shape memory alloy. This ring or this spring is fixed to the end of the tubular element 24, on the side of the internal wall of the latter.
  • the immobilization means also comprise another ring 50 forming a braking ring, which is between the ring 48 and the end of the tube 14.
  • the end of the tubular element 24 comprises a shoulder which supports the ring 48 and the braking ring 50.
  • the actuation of the blocking enabled by the ring 48 is done by a constriction of the internal diameter of this ring at ambient temperature.
  • the expansion of the ring 48 which allows free movement of the tubular element 24 actuated by the piezoelectric elements 20 and 22, takes place under the effect of a rise in temperature which is induced by the Joule effect, which causes the phase change of the shape memory alloy.
  • heating control means (voltage source) 52 by means of electrical connections 54.
  • the "educated” constriction is reversible by returning to an equally “educated” state corresponding to the other phase, namely the dilated phase, of the shape memory alloy.
  • the constriction tightens the braking ring 50 which then locks the tubular element 24 on the tube 14.
  • AMF AMF associated with a cladding acting as a spring, in polymer for example.
  • the different values of Young's modulus of AMF in the martensitic and austenitic phases allow the ring-spring, whose product of Young's modulus by the section. is intermediate to that of the AMF ring, to check the "expanded” or "closed” state of the locking device.
  • the means 10 intended to prevent buckling of the portion 4 of optical fiber comprise rigid washers 56 which are arranged in the tube 14, parallel to each other and perpendicular to the axis X, and which surround the portion of optical fiber. These washers are spaced from each other by elastic elements 58. These elastic elements 58 form a single block which is made of an elastomeric material, traps the portion 4 of optical fiber and extends from the part 16 to the part 18 of the element 12 as seen in FIG. 3.
  • the rigid washers are slightly spaced from the internal wall of the tube 14.
  • the washers move along the axis X, being guided by the tube 14. It is specified that the one-piece assembly of the elements 58 can be produced by molding and injection of an elastomer in one single piece which integrates the portion 4 of optical fiber.
  • the washers are machined with an accuracy of + 0.5 ⁇ m to limit the misalignment.
  • These washers are made integral with the elastomer by adhesion during molding; the same is true for the fiber portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The invention relates to a device for tuning a Bragg grating by means of compression using a piezoelectric actuator. The inventive device, which is intended, in particular, for optical telecommunications, comprises, for example: means (8) of compressing a segment (4) of optical fibre containing a Bragg grating (2); means (10) of preventing said segment from buckling; a tube (14), through which the aforementioned segment passes; and means (32, 34) of guiding the segment inside the tube. The compression means comprise a dished deformable element (8) and a piezoelectric actuator (20, 22) which is disposed between the deformable element and the tube. According to the invention, the piezoelectric actuator lengthens when excited and, in this way, causes the deformable element to bend, said element in turn compressing the segment.

Description

DISPOSITIF D'ACCORD D'UN RESEAU DE BRAGG. PAR COMPRESSION AU MOYEN D'UN ACTIONNEUR PIEZOELECTRIQUE TUNING DEVICE OF A BRAGG NETWORK. BY COMPRESSION BY MEANS OF A PIEZOELECTRIC ACTUATOR
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention concerne un dispositif d'accord d'un réseau de Bragg (« Bragg grating ») par compression de ce dernier. Elle s'applique notamment aux télécommunications optiques et, plus particulièrement, à celles qui mettent en œuvre le DWDM ou multiplexage dense en longueur d'onde (« Dense Wavelength Division Multiplexing ») . L'invention permet par exemple de former des filtres, des routeurs ou des dispositifs d'insertion- extraction (« add-drop devices ») en fonction des longueurs d'onde de signaux optiques incidents.The present invention relates to a device for tuning a Bragg grating (“Bragg grating”) by compression of the latter. It applies in particular to optical telecommunications and, more particularly, to those which implement DWDM or dense wavelength division multiplexing ("Dense Wavelength Division Multiplexing"). The invention makes it possible, for example, to form filters, routers or add-drop devices according to the wavelengths of incident optical signals.
ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART
II est connu de former un réseau de Bragg dans une fibre optique et d'utiliser ce réseau en tant qu'élément accordable en longueur d'onde.It is known to form a Bragg grating in an optical fiber and to use this grating as a tunable element in wavelength.
Pour accorder ce réseau, il est connu de déformer longitudinalement la fibre optique dans laquelle il se trouve, de façon à modifier le pasTo tune this network, it is known to deform longitudinally the optical fiber in which it is located, so as to modify the pitch
(« pitch ») du réseau et donc la réponse en longueur d'onde de ce dernier.("Pitch") of the network and therefore the wavelength response of the latter.
On connaît déjà des dispositifs d'accord d'un réseau de Bragg formé dans une fibre optique, par compression de cette dernière selon son axe longitudinal, tout en empêchant le flambage de la fibre.We already know tuning devices of a Bragg grating formed in an optical fiber, by compression of the latter along its axis longitudinal, while preventing the fiber from buckling.
A ce sujet, on se reportera aux documents suivants : [1] US 5 469 520 « Compression-tuned fiber grating »On this subject, reference is made to the following documents: [1] US 5,469,520 “Compression-tuned fiber grating”
[2] WO 00/37969. « Compression-tuned Bragg grating and laser ».[2] WO 00/37969. "Compression-tuned Bragg grating and laser".
EXPOSÉ DE L'INVENTION La présente invention a pour objet un dispositif d'accord d'un réseau de Bragg, que l'on peut rendre très compact .PRESENTATION OF THE INVENTION The subject of the present invention is a tuning device for a Bragg grating, which can be made very compact.
Ce dispositif comporte un actionneur piézoélectrique pour comprimer la fibre optique, dans laquelle est formé le réseau, et des moyens pour empêcher le flambage de la fibre ainsi comprimée.This device comprises a piezoelectric actuator for compressing the optical fiber, in which the network is formed, and means for preventing buckling of the fiber thus compressed.
De préférence, le dispositif comprend en outre des moyens de régulation de la compression de la fibre et des moyens de verrouillage de position. La relative simplicité et la compacité du dispositif objet de l'invention lui garantissent une bonne intëgrabilité et un faible coût de fabrication.Preferably, the device further comprises means for regulating the compression of the fiber and position locking means. The relative simplicity and compactness of the device that is the subject of the invention guarantees it good integrability and low manufacturing cost.
De plus, la compacité du dispositif lui confère une faible inertie mécanique et donc un faible temps de réponse.In addition, the compactness of the device gives it low mechanical inertia and therefore a low response time.
De façon précise, la présente invention a pour objet un dispositif d'accord d'un élément réflecteur formé dans une portion d'un guide d'onde optique comportant des première et deuxième extrémités, ce guide d'onde optique étant destiné à propager une lumière, l'élément réflecteur étant apte à réfléchir cette lumière à une longueur d'onde de réflexion, ce dispositif comprenantSpecifically, the present invention relates to a device for tuning a reflective element formed in a portion of an optical waveguide having first and second ends, this optical waveguide being intended to propagate a light, the reflective element being capable of reflecting this light at a reflection wavelength, this device comprising
- des moyens de compression de la portion de guide d'onde optique et donc de l'élément réflecteur, de façon à changer la longueur d'onde de réflexion, etmeans for compressing the optical waveguide portion and therefore the reflective element, so as to change the reflection wavelength, and
- des moyens d'empêchement, pour empêcher le flambage de la portion de guide d'onde optique lorsque cette dernière est comprimée, ce dispositif étant caractérisé en ce que les moyens d ' empêchement comprennent un tube ayant des première et deuxième extrémités, ce tube étant traversé par la portion de guide d'onde optique, et - des moyens de guidage de cette portion dans le tube, et les moyens de compression comprennent un élément deformable incurvé, ayant des premier et deuxième côtés, les premières extrémités respectives du tube et de la portion de guide d'onde optique étant fixées au premier côté, la deuxième extrémité du tube étant espacée du deuxième côté et la deuxième extrémité de la portion de guide d'onde optique étant fixée à ce deuxième côté, et - un actionneur piézoélectrique, disposé dans un espace compris entre l'élément deformable incurvé et le tube et fixé à cet élément et à ce tube, cet actionneur étant apte à s'allonger lorsqu'il est excité et à déformer alors l'élément, ce dernier étant alors apte à comprimer la portion de guide d'onde optique. De préférence, l'élément réflecteur est un réseau de Bragg.- prevention means, to prevent buckling of the optical waveguide portion when the latter is compressed, this device being characterized in that the prevention means comprise a tube having first and second ends, this tube being crossed by the optical waveguide portion, and - means for guiding this portion in the tube, and the compression means comprise a curved deformable element, having first and second sides, the respective first ends of the tube and of the optical waveguide portion being fixed to the first side, the second end of the tube being spaced from the second side and the second end of the optical waveguide portion being fixed to this second side, and - a piezoelectric actuator , disposed in a space between the curved deformable element and the tube and fixed to this element and to this tube, this actuator being able to elongate when excited and then deform the element, the latter then being able to compress the portion of optical waveguide. Preferably, the reflective element is a Bragg grating.
En outre, le guide d'onde optique est de préférence une fibre optique. Selon un mode de réalisation préféré du dispositif objet de l'invention, les moyens de compression ont un axe de symétrie qui est constitué par l'axe de la portion de guide d'onde optique.In addition, the optical waveguide is preferably an optical fiber. According to a preferred embodiment of the device which is the subject of the invention, the compression means have an axis of symmetry which is formed by the axis of the optical waveguide portion.
Selon un premier mode de réalisation particulier du dispositif objet de l'invention, les moyens de guidage comprennent des bagues qui s ' étendent les unes à la suite des autres dans le tube, sont espacées les unes des autres par des éléments élastiques, de préférence des entretoises toriques élastiques, et sont traversées par la portion de guide d'onde optique, cette portion de guide d'onde optique étant apte à glisser librement dans ces bagues.According to a first particular embodiment of the device which is the subject of the invention, the guide means comprise rings which extend one after the other in the tube, are spaced from one another by elastic elements, preferably elastic toric spacers, and are crossed by the optical waveguide portion, this optical waveguide portion being able to slide freely in these rings.
Ces éléments élastiques sont de préférence en polytétrafluoréthylène alvéolé. Selon un deuxième mode de réalisation particulier du dispositif objet de l'invention, les moyens de guidage comprennent des rondelles rigides qui sont placées les unes à la suite des autres dans le tube, le long de la portion de guide d'onde optique, et sont traversées par cette portion de guide d'onde optique, et des éléments élastiques qui s'étendent les uns à la suite des autres dans le tube, alternent avec les rondelles rigides et sont solidaires de ces rondelles rigides. De préférence, les éléments élastiques forment un unique bloc de matériau élastique qui emprisonne la portion de guide d'onde optique.These elastic elements are preferably made of cellular polytetrafluoroethylene. According to a second particular embodiment of the device which is the subject of the invention, the guide means comprise rigid washers which are placed one after the other in the tube, along the portion of optical waveguide, and are crossed by this portion of optical waveguide, and elastic elements which extend one after the other in the tube, alternate with the rigid washers and are integral with these rigid washers. Preferably, the elastic elements form a single block of elastic material which traps the optical waveguide portion.
Selon un mode de réalisation préféré, le dispositif objet de l'invention comprend en outre des moyens de commande de l' actionneur piézoélectrique, dans une configuration en boucle fermée.According to a preferred embodiment, the device which is the subject of the invention further comprises means for controlling the piezoelectric actuator, in a closed loop configuration.
Ces moyens de commande peuvent comprendre des moyens de mesure compenant des moyens de mesure comprenant le réseau de Bragg ou un condensateur variable ayant deux armatures qui sont respectivement solidaires du tube et de l'élément deformable.These control means may include measuring means comprising measuring means comprising the Bragg grating or a variable capacitor having two armatures which are respectively integral with the tube and the deformable element.
Le dispositif objet de l'invention peut comprendre en outre des moyens de blocage de l'élément deformable.The device which is the subject of the invention may further comprise means for blocking the deformable element.
De préférence, ces moyens de blocage comprennent un élément qui est fait d'un alliage à mémoire de forme et qui est apte à serrer le tube.Preferably, these locking means comprise an element which is made of a shape memory alloy and which is capable of clamping the tube.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : la figure 1 est une vue schématique d'un premier mode de réalisation particulier du dispositif objet de l'invention, la figure 2 est une vue schématique et partielle du dispositif de la figure 1, et la figure 3 est une vue schématique et partielle d'un deuxième mode de réalisation particulier du dispositif objet de l'invention.The present invention will be better understood on reading the description of embodiments given below, purely by way of indication and in no way limiting, with reference to the appended drawings in which: FIG. 1 is a schematic view of a first particular embodiment of the device which is the subject of the invention, FIG. 2 is a schematic and partial view of the device of FIG. 1, and Figure 3 is a schematic and partial view of a second particular embodiment of the device object of the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Le dispositif conforme à l'invention, qui est schématiquement représenté sur la figure 1, est destiné à l'accord d'un réseau de Bragg 2 qui est formé dans une portion 4 d'une fibre optique 6. Pour accorder ce réseau, le dispositif comprime la portion 4 de la fibre optique, qui est rectiligne. L'axe de cette portion de fibre optique, qui constitue également l'axe suivant lequel on comprime cette portion, est noté X.The device according to the invention, which is schematically represented in FIG. 1, is intended for tuning a Bragg network 2 which is formed in a portion 4 of an optical fiber 6. To tune this network, the device compresses the portion 4 of the optical fiber, which is rectilinear. The axis of this portion of optical fiber, which also constitutes the axis along which this portion is compressed, is denoted X.
Le dispositif de la figure 1 comprend des moyens 8 de compression de la portion 4 de fibre optique ainsi que des moyens 10 prévus pour empêcher le flambage de cette portion de fibre optique lors de sa mise en compression longitudinale. Ces moyens 10 prévus pour empêcher le flambage sont représentés de façon plus détaillée sur la figure 2.The device of FIG. 1 comprises means 8 for compressing the portion 4 of optical fiber as well as means 10 provided for preventing buckling of this portion of optical fiber when it is put into longitudinal compression. These means 10 intended to prevent buckling are shown in more detail in FIG. 2.
Dans l'exemple de la figure 1, les moyens 8 de compression de cette portion de fibre optique sont symétriques par rapport à 1 ' axe X et comprennent un élément deformable 12, de forme sensiblement elliptique, qui est par exemple fait d'un matériau polymère .In the example of FIG. 1, the means 8 for compressing this portion of optical fiber are symmetrical with respect to the axis X and comprise a deformable element 12, of substantially elliptical shape, which is for example made of a material polymer.
Sur la figure 1, on voit aussi un tube rigide 14 dont l'axe est l'axe X. Une extrémité de ce tube 14 est fixée à la paroi interne d'une partie 16 de l'élément 12 (partie inférieure sur la figure 1). L'autre extrémité du tube 14 est en regard de la paroi interne de l'autre partie 18 de l'élément 12 (partie supérieure sur la figure 1) et espacée de cette partie 18. Les moyens 8 de compression comprennent aussi un double actionneur piézoélectrique comportant deux éléments piézoélectriques 20 et 22, de forme allongée, qui sont disposés dans l'espace délimité par l'élément 12. De plus, dans cet espace, les éléments 20 et 22 s'étendent perpendiculairement à l'axe X.In FIG. 1, we can also see a rigid tube 14 whose axis is the X axis. One end of this tube 14 is fixed to the internal wall of a part 16 of the element 12 (lower part in the figure 1). The other end of the tube 14 is opposite the internal wall of the other part 18 of the element 12 (upper part in FIG. 1) and spaced from this part 18. The compression means 8 also include a double actuator piezoelectric comprising two elongated piezoelectric elements 20 and 22, which are arranged in the space delimited by the element 12. In addition, in this space, the elements 20 and 22 extend perpendicular to the axis X.
Dans l'exemple de la figure 1, le tube 14 s'étend suivant le petit axe de l'élément sensiblement elliptique 12 tandis que les éléments piézoélectriques 20 et 22 s'étendent suivant le grand axe de cet élément 12.In the example of FIG. 1, the tube 14 extends along the minor axis of the substantially elliptical element 12 while the piezoelectric elements 20 and 22 extend along the major axis of this element 12.
De plus, l'élément piézoélectrique 20 est fixé, d'un côté, au tube 14 et, de l'autre côté, à l'élément 12. De même, l'élément piézoélectrique 22 est fixé, d'un côté, au tube 14 (à l'opposé de l'élément 20) et, de l'autre côté, à l'élément 12.In addition, the piezoelectric element 20 is fixed, on one side, to the tube 14 and, on the other side, to the element 12. Likewise, the piezoelectric element 22 is fixed, on one side, to the tube 14 (opposite element 20) and, on the other side, element 12.
Un élément tubulaire de guidage 24, dont l'axe est l'axe X, se trouve aussi dans l'espace délimité par l'élément 12 et cet élément tubulaire est fixé à la paroi interne de la partie 18 de cet élément 12. L'extrémité du tube 14, qui se trouve en regard de cette partie 18, est placée dans l'élément tubulaire 24 et en est légèrement espacé pour pouvoir coulisser dans cet élément tubulaire lors de la compression de la portion de fibre optique, comme on le verra par la suite. On voit sur la figure 2 des moyens 26 de commande des éléments piézoélectriques 20 et 22. Lorsque ces éléments 20 et 22 sont excités par ces moyens de commande 26, les éléments 20 et 22 s'allongent perpendiculairement à l'axe X (flèches FI et F2 de la figure 1), l'élément 12 se déforme et le tube 14 ainsi que l'élément tubulaire 24 se déplacent l'un par rapport à l'autre (flèches F3 et F4 de la figure 1) , ce qui augmente le recouvrement de l'extrémité du tube 14 par cet élément tubulaire 24.A tubular guide element 24, the axis of which is the axis X, is also located in the space delimited by the element 12 and this tubular element is fixed to the internal wall of the part 18 of this element 12. L the end of the tube 14, which is opposite this part 18, is placed in the tubular element 24 and is slightly spaced therefrom so that it can slide in this tubular element during compression of the portion of optical fiber, as is will see later. We see in Figure 2 means 26 for controlling the piezoelectric elements 20 and 22. When these elements 20 and 22 are excited by these control means 26, the elements 20 and 22 elongate perpendicular to the axis X (arrows FI and F2 in FIG. 1), the element 12 deforms and the tube 14 and the tubular element 24 move relative to each other (arrows F3 and F4 in FIG. 1), which increases the covering of the end of the tube 14 by this tubular element 24.
On précise qu'une extrémité de la portion 4 de fibre optique est fixée à la partie 16 de l'élément 12 tandis que l'autre extrémité de cette portion de fibre optique est fixée à l'autre partie 18 de cet élément 12.It is specified that one end of the portion 4 of optical fiber is fixed to the part 16 of the element 12 while the other end of this portion of optical fiber is fixed to the other part 18 of this element 12.
Plus précisément, on voit que ces parties 16 et 18 comprennent respectivement des perçages 28 et 30 au niveau de l'axe X. La portion de fibre optique est fixée dans chacun de ces perçages. La déformation de l'élément 12, qui est mentionnée plus haut, provoque ainsi la compression de la portion de fibre optique.More specifically, it can be seen that these parts 16 and 18 respectively comprise holes 28 and 30 at the level of the axis X. The portion of optical fiber is fixed in each of these holes. The deformation of the element 12, which is mentioned above, thus causes the compression of the portion of optical fiber.
Si l'on injecte, dans la fibre optique 6, une lumière I émise par une source lumineuse à large bande (non représentée) , cette lumière arrive au réseau de Bragg 2. Ce dernier réfléchit la lumière R ayant une longueur d'onde qui dépend du pas du réseau. La fibre optique transmet la lumière T non réfléchie par ce - réseau.If a light I emitted by a broadband light source (not shown) is injected into the optical fiber 6, this light arrives at the Bragg grating 2. The latter reflects the light R having a wavelength which depends on the pitch of the network. The optical fiber transmits light T not reflected by this network.
Lors de la compression de la portion 4 de fibre optique, le pas du réseau diminue et la longueur d'onde de la lumière réfléchie R est modifiée. Dans l'exemple des figures 1 et 2 , les moyens 10, qui empêchent le flambage de la portion de fibre optique lors de sa compression, comprennent des bagues 32 et des éléments élastiques 34. Ces éléments 34 sont des entretoises toriques qui sont faites d'un matériau élastique à faible coefficients de frottement, de préférence le polytëtrafluoréthylène alvéolé.During the compression of the portion 4 of optical fiber, the pitch of the grating decreases and the wavelength of the reflected light R is modified. In the example of FIGS. 1 and 2, the means 10, which prevent buckling of the portion of optical fiber during its compression, comprise rings 32 and elastic elements 34. These elements 34 are toric spacers which are made of 'An elastic material with low coefficients of friction, preferably polytëtrafluorethylene honeycomb.
Les bagues 32 sont placées les unes à la suite des autres dans le tube 14. Ces bagues entourent la portion 4 de fibre optique et sont espacées les unes des autres grâce aux entretoises toriques élastiquesThe rings 32 are placed one after the other in the tube 14. These rings surround the portion 4 of optical fiber and are spaced from each other by means of the elastic toric spacers
34.34.
Chaque entretoise torique 34 permet l'espacement de deux bagues adjacentes 32 en s ' appuyant sur deux chanfreins 36, à 45°, respectivement formés sur les extrémités de ces bagues, qui sont en regardEach O-ring spacer 34 allows the spacing of two adjacent rings 32 by pressing on two chamfers 36, at 45 °, respectively formed on the ends of these rings, which are opposite
1 'une de 1 ' autre .One of the other.
Ainsi la portion 4 de fibre optique est-elle guidée dans l'ensemble des bagues, ces dernières étant maintenues longitudinalement par le tube 14 qui limite le désaxement de ces bagues, par exemple à +0,5μm.Thus the portion 4 of optical fiber is guided in all of the rings, the latter being held longitudinally by the tube 14 which limits the offset of these rings, for example to + 0.5 μm.
Le faible jeu axial et surtout longitudinal, qui est réparti de façon égale entre les bagues par l'ensemble des embouts, ou joints, toriques 34, permet d'éviter le flambage de la portion 4 de fibre optique lors de sa compression.The small axial and especially longitudinal play, which is distributed evenly between the rings by all of the end pieces, or seals, O-rings 34, makes it possible to avoid buckling of the portion 4 of optical fiber during its compression.
De plus, les bagues sont auto-alignées quel que soit le déplacement longitudinal imposé par l'élément sensiblement elliptique 12, en raison de la présence des chanfreins 36 à 45° s ' appuyant symétriquement sur les joints toriques 34.In addition, the rings are self-aligned whatever the longitudinal displacement imposed by the substantially elliptical element 12, due to the presence chamfers 36 to 45 ° pressing symmetrically on the O-rings 34.
Il convient de noter que la bague la plus proche de la partie 16 de cet élément 12 peut être fixée à cette partie 16 et que la bague la plus proche de la partie 18 de l'élément 12 peut être fixée à cette partie 18, mais ce n'est pas obligatoire.It should be noted that the ring closest to part 16 of this element 12 can be fixed to this part 16 and that the ring closest to part 18 of element 12 can be fixed to this part 18, but It is not mandatory.
De façon connue, on peut prévoir un réseau de Bragg 36 de compensation de température, différent du réseau 2, dans une portion de la fibre optique 6 qui n'est pas soumise à la compression, par exemple dans la portion de cette fibre qui se trouve dans le perçage 28, là où est fixée la portion 4 de fibre optique.In known manner, a Bragg grating 36 for temperature compensation, different from grating 2, can be provided in a portion of the optical fiber 6 which is not subjected to compression, for example in the portion of this fiber which is found in the hole 28, where the portion 4 of optical fiber is fixed.
Il convient de noter que la déformation induite par le double actionneur piézoélectrique est amplifiée par l'élément 12 sensiblement elliptique.It should be noted that the deformation induced by the double piezoelectric actuator is amplified by the element 12 which is substantially elliptical.
Pour commander cet actionneur piézoélectrique, on peut utiliser une configuration en boucle ouverte.To control this piezoelectric actuator, an open loop configuration can be used.
Cependant, on utilise de préférence une configuration en boucle fermée (figure 2) . Pour ce faire, on peut mesurer la déformation longitudinale des éléments piézoélectriques 20 et 22 au moyen d'un condensateur variable dont les armatures 38 et 40 sont coaxiales . L'une de ces armatures, ayant la référence 38, résulte d'une métallisation de la paroi externe de l'extrémité du tube 14 qui est apte à coulisser dans l'élément tubulaire 24. L'autre armature 40 résulte d'une métallisation de la paroi interne de cet élément 24. Dans ce cas, le tube 14 et l'élément 24 sont électriquement isolants, par exemple faits d'une matière plastique rigide.However, preferably a closed loop configuration is used (Figure 2). To do this, the longitudinal deformation of the piezoelectric elements 20 and 22 can be measured by means of a variable capacitor, the armatures 38 and 40 of which are coaxial. One of these frames, having the reference 38, results from a metallization of the external wall of the end of the tube 14 which is capable of sliding in the tubular element 24. The other frame 40 results from a metallization of the internal wall of this element 24. In this case, the tube 14 and the element 24 are electrically insulating, for example made of a rigid plastic.
La capacité du condensateur variable 38-40 est une fonction linéaire de la position de l'extrémité du tube 14 par rapport à 1 ' élément 24 et donc de la déformation longitudinale des éléments piézoélectriquesThe capacity of the variable capacitor 38-40 is a linear function of the position of the end of the tube 14 relative to the element 24 and therefore of the longitudinal deformation of the piezoelectric elements
20 et 22.20 and 22.
Les armatures 38 et 40 sont électriquement reliées aux moyens de commande 26 et fournissent à ces derniers l'information relative à cette déformation longitudinale .The frames 38 and 40 are electrically connected to the control means 26 and provide the latter with information relating to this longitudinal deformation.
En variante, pour mesurer cette déformation longitudinale, on récupère une partie 42 de la lumière R réfléchie par le réseau de Bragg 2, par exemple l'intermédiaire d'un coupleur optique (non représenté) que l'on insère dans la fibre optique 6, à l'extérieur du dispositif de la figure 1, et cette lumière est traitée par une interface de photodétection appropriée 44 qui fournit alors, aux moyens de commande 26, l'information relative à la déformation longitudinale.As a variant, to measure this longitudinal deformation, part 42 of the light R reflected by the Bragg grating 2 is recovered, for example by means of an optical coupler (not shown) which is inserted into the optical fiber 6 , outside the device of FIG. 1, and this light is processed by an appropriate photodetection interface 44 which then supplies, to the control means 26, the information relating to the longitudinal deformation.
Dans l'exemple de la figure 2, on a en outre prévu des moyens 46 permettant d'immobiliser le dispositif dans une position quelconque, correspondant à un allongement déterminé des éléments piézoélectriques 20 et 22.In the example of FIG. 2, means 46 have also been provided making it possible to immobilize the device in any position, corresponding to a determined elongation of the piezoelectric elements 20 and 22.
Ces moyens 46 comprennent une bague ou un ressort 48, qui est fait d'un alliage à mémoire de forme. Cette bague ou ce ressort est fixé à l'extrémité de l'élément tubulaire 24, du côté de la paroi interne de ce dernier. Dans l'exemple de la figure 2, les moyens d'immobilisation comprennent aussi une autre bague 50 formant une bague de freinage, qui est comprise entre la bague 48 et l'extrémité du tube 14. Comme on le voit sur la figure 2, l'extrémité de l'élément tubulaire 24 comprend un épaulement qui supporte la bague 48 et la bague de freinage 50.These means 46 comprise a ring or a spring 48, which is made of a shape memory alloy. This ring or this spring is fixed to the end of the tubular element 24, on the side of the internal wall of the latter. In the example of FIG. 2, the immobilization means also comprise another ring 50 forming a braking ring, which is between the ring 48 and the end of the tube 14. As can be seen in FIG. 2, the end of the tubular element 24 comprises a shoulder which supports the ring 48 and the braking ring 50.
L'actionnement du blocage permis par la bague 48 se fait par un rétreint du diamètre interne de cette bague à la température ambiante.The actuation of the blocking enabled by the ring 48 is done by a constriction of the internal diameter of this ring at ambient temperature.
La dilatation de la bague 48, qui permet un libre mouvement de l'élément tubulaire 24 actionné par les éléments piézoélectriques 20 et 22, a lieu sous l'effet d'une élévation de température que l'on induit par effet Joule, ce qui provoque le changement de phase de l'alliage à mémoire de forme.The expansion of the ring 48, which allows free movement of the tubular element 24 actuated by the piezoelectric elements 20 and 22, takes place under the effect of a rise in temperature which is induced by the Joule effect, which causes the phase change of the shape memory alloy.
Pour élever la température de la bague 48, on relie cette dernière à des moyens 52 de commande de chauffage (source de tension) par l'intermédiaire de connexions électriques 54.To raise the temperature of the ring 48, the latter is connected to heating control means (voltage source) 52 by means of electrical connections 54.
Le rétreint "éduqué" est réversible par retour à un état également "éduqué" correspondant à l'autre phase, à savoir la phase dilatée, de l'alliage à mémoire de forme. Le rétreint serre la bague de freinage 50 qui verrouille alors l'élément tubulaire 24 sur le tube 14.The "educated" constriction is reversible by returning to an equally "educated" state corresponding to the other phase, namely the dilated phase, of the shape memory alloy. The constriction tightens the braking ring 50 which then locks the tubular element 24 on the tube 14.
Dans un autre exemple, ne nécessitant pas l'éducation des deux phase de l'alliage à mémoire de forme, au lieu de l'ensemble des bagues 48 et 50 on utilise le couplage d'un alliage à mémoire de formeIn another example, not requiring education of the two phases of the shape memory alloy, instead of all the rings 48 and 50, the coupling of a shape memory alloy is used.
(AMF) associé à un gainage faisant office de ressort, en polymère par exemple. Les valeurs différentes de module d'Young de l'AMF dans les phases martensitique et austénitique permet à la bague-ressort, dont le produit du module d'Young par la section . est intermédiaire à celui de la bague AMF, de contrôler l'état "dilaté" ou "fermé" du dispositif de blocage..(AMF) associated with a cladding acting as a spring, in polymer for example. The different values of Young's modulus of AMF in the martensitic and austenitic phases allow the ring-spring, whose product of Young's modulus by the section. is intermediate to that of the AMF ring, to check the "expanded" or "closed" state of the locking device.
Dans l'exemple de la figure 3, les moyens 10 destinés à empêcher le flambage de la portion 4 de fibre optique comprennent des rondelles rigides 56 qui sont disposées dans le tube 14, parallèlement les unes aux autres et perpendiculairement à l'axe X, et qui entourent la portion de fibre optique. Ces rondelles sont espacées les unes des autres par des éléments élastiques 58. Ces éléments élastiques 58 ne forment qu'un seul bloc qui est fait d'un matériau élastomère, emprisonne la portion 4 de fibre optique et s'étend de la partie 16 à la partie 18 de 1 ' élément 12 comme on le voit sur la figure 3. Les rondelles rigides sont légèrement espacées de la paroi interne du tube 14.In the example of FIG. 3, the means 10 intended to prevent buckling of the portion 4 of optical fiber comprise rigid washers 56 which are arranged in the tube 14, parallel to each other and perpendicular to the axis X, and which surround the portion of optical fiber. These washers are spaced from each other by elastic elements 58. These elastic elements 58 form a single block which is made of an elastomeric material, traps the portion 4 of optical fiber and extends from the part 16 to the part 18 of the element 12 as seen in FIG. 3. The rigid washers are slightly spaced from the internal wall of the tube 14.
Lorsque la portion 4 de fibre est comprimée, les rondelles se déplacent suivant l'axe X, en étant guidées par le tube 14. On précise que l'assemblage monobloc des éléments 58 peut être réalisé par moulage et injection d'un élastomère en une seule pièce qui intégre la portion 4 de fibre optique.When the fiber portion 4 is compressed, the washers move along the axis X, being guided by the tube 14. It is specified that the one-piece assembly of the elements 58 can be produced by molding and injection of an elastomer in one single piece which integrates the portion 4 of optical fiber.
De plus, les rondelles sont usinées avec une précision de +0,5μm pour limiter le désaxement. Ces rondelles sont rendues solidaires de l' élastomère par adhésion lors du moulage; il en est de même pour la portion de fibre.In addition, the washers are machined with an accuracy of + 0.5μm to limit the misalignment. These washers are made integral with the elastomer by adhesion during molding; the same is true for the fiber portion.
Dans l'exemple de la figure 3, on peut encore utiliser les moyens de blocage 46 et . leur adjoindre les connexions électriques et les moyens de commande (non représentés) dont il a été question dans la description de la figure 2.In the example of Figure 3, one can still use the locking means 46 and. add to them the electrical connections and the control means (not shown) which were discussed in the description of FIG. 2.
On peut également utiliser la commande à régulation en boucle fermée pour les éléments piézoélectriques 20 et 22 et munir le dispositif du condensateur coaxial (non représenté) dont il a été question dans la description de la figure 2. It is also possible to use the closed loop control for the piezoelectric elements 20 and 22 and to provide the device with the coaxial capacitor (not shown) which has been discussed in the description of FIG. 2.

Claims

REVENDICATIONS
1. Dispositif d'accord d'un élément réflecteur1. Tuning device for a reflective element
(2) formé dans une portion (4) d'un guide d'onde optique (6) comportant des première et deuxième extrémités, ce guide d'onde optique étant destiné à propager une lumière, l'élément réflecteur étant apte à réfléchir cette lumière à une longueur d'onde de réflexion, ce dispositif comprenant - des moyens (8) de compression de la portion de guide d'onde optique et donc de l'élément réflecteur, de façon à changer la longueur d'onde de réflexion, et(2) formed in a portion (4) of an optical waveguide (6) having first and second ends, this optical waveguide being intended to propagate light, the reflective element being able to reflect this light at a reflection wavelength, this device comprising - means (8) for compressing the optical waveguide portion and therefore the reflective element, so as to change the reflection wavelength, and
- des moyens d'empêchement (10), pour empêcher le flambage de la portion de guide d'onde optique lorsque cette dernière est comprimée, ce dispositif étant caractérisé en ce que les moyens d'empêchement (10) comprennent- prevention means (10), to prevent buckling of the optical waveguide portion when the latter is compressed, this device being characterized in that the prevention means (10) comprise
- un tube (14) ayant des première et deuxième extrémités, ce tube étant traversé par la portion de guide d'onde optique, eta tube (14) having first and second ends, this tube being traversed by the optical waveguide portion, and
- des moyens (32-34, 56-58) de guidage de cette portion dans le tube, et les moyens de compression (8) comprennent - un élément deformable incurvé (12) , ayant des premier et deuxième côtés, les premières extrémités respectives du tube (14) et de la portion (4) de guide d'onde optique étant fixées au premier côté, la deuxième extrémité du tube étant espacée du deuxième côté et la deuxième extrémité de la portion de guide d'onde optique étant fixée à ce deuxième côté, et un actionneur piézoélectrique (20-22) , disposé dans un espace compris entre l'élément deformable incurvé (12) et le tube (14) et fixé à cet élément et à ce tube, cet actionneur étant apte à s'allonger lorsqu'il est excité et à déformer alors l'élément, ce dernier étant alors apte à comprimer la portion de guide d'onde optique.- Means (32-34, 56-58) for guiding this portion in the tube, and the compression means (8) comprise - a curved deformable element (12), having first and second sides, the respective first ends the optical waveguide tube (14) and portion (4) being fixed to the first side, the second end of the tube being spaced from the second side and the second end of the optical waveguide portion being fixed to this second side, and a piezoelectric actuator (20-22), disposed in a space between the curved deformable element (12) and the tube (14) and fixed to this element and to this tube, this actuator being able to extend when it is excited and then deform the element, the latter then being able to compress the optical waveguide portion.
2. Dispositif selon la revendication 1, dans lequel l'élément réflecteur est un réseau de Bragg (2) . 2. Device according to claim 1, in which the reflecting element is a Bragg grating (2).
3. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel le guide d'onde optique est une fibre optique (6) .3. Device according to any one of claims 1 and 2, wherein the optical waveguide is an optical fiber (6).
4. Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel les moyens de compression (8) ont un axe de symétrie qui est constitué par l'axe (X) de la portion (4) de guide d ' onde optique .4. Device according to any one of claims 1 to 3, wherein the compression means (8) have an axis of symmetry which is constituted by the axis (X) of the portion (4) of optical waveguide .
5. Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel les moyens de guidage comprennent des bagues (32) qui s'étendent les unes à la suite des autres dans le tube (14) , sont espacées les unes des autres par des éléments élastiques (34) , de préférence des entretoises toriques élastiques, et sont traversées par la portion (4) de guide d'onde optique, cette portion (4) de guide d'onde optique étant apte à glisser librement dans ces bagues.5. Device according to any one of claims 1 to 4, wherein the guide means comprise rings (32) which extend one after the other in the tube (14), are spaced from each other by elastic elements (34), preferably elastic toric spacers, and are crossed by the optical waveguide portion (4), this optical waveguide portion (4) being able to slide freely in these rings .
6. Dispositif selon la revendication 5, dans lequel les éléments élastiques (34) sont en polytétrafluoréthylène alvéolé. 6. Device according to claim 5, in which the elastic elements (34) are made of cellular polytetrafluoroethylene.
7. Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel les moyens de guidage comprennent des rondelles rigides (56) qui sont placées les unes à la suite des autres dans le tube (14) , le long de la portion (4) de guide d'onde optique, et sont traversées par cette portion de guide d'onde optique, et des éléments élastiques (58) qui s'étendent les uns à la suite des autres dans le tube, alternent avec les rondelles rigides et sont solidaires de ces rondelles rigides.7. Device according to any one of claims 1 to 4, wherein the guide means comprise rigid washers (56) which are placed one after the other in the tube (14), along the portion (4) of optical waveguide, and are crossed by this portion of waveguide optical, and elastic elements (58) which extend one after the other in the tube, alternate with the rigid washers and are integral with these rigid washers.
8. Dispositif selon la revendication 7, dans lequel les éléments élastiques (58) forment un unique bloc de matériau élastique qui emprisonne la portion (4) de guide d'onde optique.8. Device according to claim 7, wherein the elastic elements (58) form a single block of elastic material which traps the portion (4) of optical waveguide.
9. Dispositif selon l'une quelconque des revendications 1 à 8, comprenant en outre des moyens (26) de commande de l' actionneur piézoélectrique (20- 22), dans une configuration en boucle fermée.9. Device according to any one of claims 1 to 8, further comprising means (26) for controlling the piezoelectric actuator (20-22), in a closed loop configuration.
10. Dispositif selon la revendication 9, dans lequel les moyens de commande comprennent des moyens de mesure comprenant le réseau de Bragg (2) ou un condensateur variable ayant deux armatures (38, 40) qui sont respectivement solidaires du tube (14) et de l'élément deformable (12).10. Device according to claim 9, in which the control means comprise measuring means comprising the Bragg grating (2) or a variable capacitor having two armatures (38, 40) which are respectively integral with the tube (14) and the deformable element (12).
11. Dispositif selon l'une quelconque des revendications 1 à 10, comprenant en outre des moyens (48, 50) de blocage de l'élément deformable 12.11. Device according to any one of claims 1 to 10, further comprising means (48, 50) for locking the deformable element 12.
12. Dispositif selon la revendication 11, dans lequel les moyens de blocage comprennent un élément (48) qui est fait d'un alliage à mémoire de forme et qui est apte à serrer le tube (14) . 12. Device according to claim 11, in which the locking means comprise an element (48) which is made of a shape memory alloy and which is capable of clamping the tube (14).
EP03780281A 2002-09-30 2003-09-26 Device for tuning a bragg grating by means of compression using a piezoelectric actuator Withdrawn EP1546793A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0212061A FR2845166B1 (en) 2002-09-30 2002-09-30 DEVICE FOR CONNECTING A BRAGG NETWORK BY COMPRESSION USING A PIEZOELECTRIC ACTUATOR
FR0212061 2002-09-30
PCT/FR2003/050069 WO2004029696A2 (en) 2002-09-30 2003-09-26 Device for tuning a bragg grating by means of compression using a piezoelectric actuator

Publications (1)

Publication Number Publication Date
EP1546793A2 true EP1546793A2 (en) 2005-06-29

Family

ID=31985328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780281A Withdrawn EP1546793A2 (en) 2002-09-30 2003-09-26 Device for tuning a bragg grating by means of compression using a piezoelectric actuator

Country Status (6)

Country Link
US (1) US7054525B1 (en)
EP (1) EP1546793A2 (en)
JP (1) JP2006501496A (en)
CA (1) CA2500316A1 (en)
FR (1) FR2845166B1 (en)
WO (1) WO2004029696A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999742B1 (en) * 2012-12-13 2018-03-30 Dav TOUCH CONTROL INTERFACE
CN114265143B (en) * 2022-01-10 2024-01-26 安徽理工大学 Packaging structure of fiber bragg grating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469520A (en) 1994-09-30 1995-11-21 United Technologies Corporation Compression-tuned fiber grating
US5889901A (en) * 1997-06-06 1999-03-30 University Technology Corporation Strain measuring apparatus/method having a sensor and a reference optical fiber grating
US5999671A (en) * 1997-10-27 1999-12-07 Lucent Technologies Inc. Tunable long-period optical grating device and optical systems employing same
KR100294540B1 (en) * 1997-12-31 2001-07-12 윤종용 Tunable chirped fiber gratings
US6792009B2 (en) * 1998-12-04 2004-09-14 Cidra Corporation Tunable grating-based channel filter parking device
WO2000037969A2 (en) 1998-12-04 2000-06-29 Cidra Corporation Compression-tuned bragg grating and laser
AU3111900A (en) * 1998-12-04 2000-06-19 Cidra Corporation Pressure-isolated bragg grating temperature sensor
BR9915956B1 (en) * 1998-12-04 2011-10-18 pressure sensor, and method for sensing pressure.
US7386204B1 (en) * 2000-08-26 2008-06-10 Cidra Corporation Optical filter having a shaped filter function
US6955085B2 (en) * 2003-06-02 2005-10-18 Weatherford/Lamb, Inc. Optical accelerometer or displacement device using a flexure system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004029696A2 *

Also Published As

Publication number Publication date
WO2004029696A3 (en) 2004-05-13
CA2500316A1 (en) 2004-04-08
WO2004029696A2 (en) 2004-04-08
JP2006501496A (en) 2006-01-12
FR2845166B1 (en) 2004-10-29
FR2845166A1 (en) 2004-04-02
US7054525B1 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
FR3071626B1 (en) OPTICAL COUPLING DEVICE FOR A PHOTONIC CIRCUIT.
EP2435855B1 (en) Fiber bragg grating hydrophone comprising a diaphragm amplifier
EP2435856B1 (en) Bragg grating fiber hydrophone with a bellows amplifier
US7239778B2 (en) Active in-fiber optic components powered by in-fiber light
EP0033048B1 (en) Interferometer with tunable optical cavity comprising a monomodal optical fibre, and its application to filtration and spectrography
FR2974263A1 (en) ANY OPTICAL HYDROPHONE THAT IS INSENSITIVE AT TEMPERATURE AND STATIC PRESSURE
CA2489344A1 (en) Pressure sensor with temperature compensated optical fiber
EP3433575B1 (en) Optical fibre curvature sensor and measurement device comprising said sensor
WO2016156197A1 (en) Optical-fibre sensor device
EP0791812B1 (en) Optical vibration sensor
FR2772487A1 (en) METHOD FOR PRODUCING A BRAGG NETWORK STABILIZATION DEVICE WITH RESPECT TO TEMPERATURE
EP1546793A2 (en) Device for tuning a bragg grating by means of compression using a piezoelectric actuator
EP0750114A1 (en) Double element thermal actuator with big stroke
EP0655125A1 (en) Reconfigurable multipoint temperature sensor
EP3647738A1 (en) Opto-mechanical resonator with a wave sub-length waveguide
EP3658869A2 (en) Temperature-compensating device and electro-optic transponder implementing such a device
EP1588124B1 (en) Extensometer comprising a flexible sensing element and bragg gratings
EP1159642B1 (en) Improved optical connector, particularly for operating in high pressure environment
WO2021130367A1 (en) Optical device for detecting an acoustic wave
CA2500274A1 (en) Bragg grating pressure sensor
EP0943906B1 (en) Fibre-optical force sensor, fabrication method and detection device using the sensor
FR2688584A1 (en) Fibre-optic damage control structure and implementation method
EP0503985B1 (en) Force sensor and apparatus for sensing the current of a catenary line from a motor by using this sensor
EP1996824A1 (en) Pivot with flexible connections and method of producing it
EP4382875A1 (en) Strain gauge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050322

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070331