EP1538514B1 - Transparent substrate with invisible electrodes and devices incorporating the same - Google Patents

Transparent substrate with invisible electrodes and devices incorporating the same Download PDF

Info

Publication number
EP1538514B1
EP1538514B1 EP03027566A EP03027566A EP1538514B1 EP 1538514 B1 EP1538514 B1 EP 1538514B1 EP 03027566 A EP03027566 A EP 03027566A EP 03027566 A EP03027566 A EP 03027566A EP 1538514 B1 EP1538514 B1 EP 1538514B1
Authority
EP
European Patent Office
Prior art keywords
transparent
conductive film
electrodes
substrate
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03027566A
Other languages
German (de)
French (fr)
Other versions
EP1538514A1 (en
Inventor
Gian-Carlo Poli
Joachim Grupp
Pierre-Yves Baroni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE60322549T priority Critical patent/DE60322549D1/en
Application filed by Asulab AG filed Critical Asulab AG
Priority to EP03027566A priority patent/EP1538514B1/en
Priority to ES03027566T priority patent/ES2311666T3/en
Priority to AT03027566T priority patent/ATE403184T1/en
Priority to KR1020040096668A priority patent/KR101093301B1/en
Priority to CNB200410095531XA priority patent/CN100472301C/en
Priority to US10/998,800 priority patent/US7843061B2/en
Priority to JP2004348546A priority patent/JP4836442B2/en
Publication of EP1538514A1 publication Critical patent/EP1538514A1/en
Priority to HK05109898.9A priority patent/HK1077887A1/en
Application granted granted Critical
Publication of EP1538514B1 publication Critical patent/EP1538514B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/781Possessing nonosized surface openings that extend partially into or completely through the host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material

Definitions

  • the present invention relates to a transparent substrate having at least one face provided with transparent electrodes whose structure is such that their contours can not be perceived by an observer in the wavelength range of visible light.
  • the invention also relates to devices, generally electronic devices, comprising one or more transparent substrates with invisible electrodes in which the electrodes have control or energy collector roles, and more particularly such devices arranged above the electrodes. display of an electronic device on which the information of said display must be read without being hindered by the structuring and the arrangement of the electrodes.
  • the invention also relates to a method for performing, economically and with high precision, structuring of the electrodes on any transparent substrate while providing optical compensation between the electrodes to make their contours invisible.
  • the ice can also be replaced or supplemented by a cell formed of two substrates with transparent electrodes between which is placed an active material, for example to form a photovoltaic cell constituting the energy source as described in document WO 93/19479 , or to form a liquid crystal cell which may have a transparent state and a state to display on request additional or different information from that displayed on an underlying dial, as described in the document WO 99/32945 .
  • TCO transparent conductive oxides
  • ITO indium
  • ITO indium
  • ITO indium
  • ITO indium
  • SnO 2 doped with antimony
  • It can also be used as a conductive film for structuring electrodes of transparent conductive polymers which are conjugated double bond organic compounds whose conductivity can be enhanced by chemical or electrochemical doping. It is for example a polyacetylene or polyanilines such as Ormecon®.
  • These deposits of the order of 50 to 100 nm, are made directly on the transparent substrate or on an intermediate layer by a large number of known techniques such as spraying, evaporation, sol-gel technique, and techniques. of vapor deposition (CVD), which will particularly note laser assisted deposition (LICVD).
  • CVD vapor deposition
  • LICVD laser assisted deposition
  • the structuring of the electrodes there are also various known methods used, using at least one mask corresponding to the electrode contour, or during the deposition of the TCO by localized crystallization of a sol-gel film by irradiation with a UV laser, either by performing a chemical etching on a continuous TCO film, or a localized ablation by irradiating with a UV laser at a sufficient fluence or mechanical ablation, as described in FIG. US Patent 6,225,577 .
  • the nature of the transparent substrate, glass or plastic is obviously decisive from the technical and economic point of view for the choice of the process to be applied.
  • Localized crystallization of a sol-gel film by UV laser is, for example, hardly applicable to a plastic substrate, such as PMMA, because it is a photothermal process.
  • non-conductive spaces between the electrodes can still remain perceptible to the naked eye, regardless of how to fill said non-conductive spaces.
  • These non-conductive spaces may also be visible because of the difficulty of filling them without forming beads or depressions capable of deflecting the light rays, since it is necessary to use two complementary masks, respectively for etching and for the lining.
  • the method proposed in the application European EP 1 457 865 in the name of the applicant, consists in using a single mask by employing laser radiation whose characteristics (fluence, number of pulses, frequency) are adjusted in two different modes for two successive steps.
  • the first step is to completely eliminate the TCO in the non-conductive spaces, and the second step to cause the deposition of a material of refractive index and thickness appropriate in said spaces. It seemed rather obvious that two close electrodes from each other could only be electrically isolated by removing all traces of conductive material in the space between them.
  • the subject of the invention is a transparent substrate with invisible electrodes comprising a transparent support on which is deposited a transparent conductive film in which electrodes are structured with contours separated by non-conductive spaces.
  • the substrate is characterized in that the conductive film at the location of said non-conductive spaces comprises nanofissures, the greater number of which crosses the entire thickness of the conductive film, making it possible to interrupt the electrical conductivity between adjacent electrodes, without modifying the path of a ray of light in a manner noticeable to the naked eye.
  • edges of these nanofissures are at most separated by a few microns and can not be seen by an observer whose visual acuity does not allow him to distinguish, in close vision (20 - 30 cm), objects distant from less than 1 / 10 millimeters.
  • the conductive film may be a transparent conductive oxide (TCO), but also a transparent conductive polymer.
  • TCO transparent conductive oxide
  • TCOs which are the most known products for producing transparent electrodes.
  • the transparent support prior to the deposition of the TCO film, is coated with a layer of hard non-conductive hard material (Hard coating) which contributes to the formation of nanofissures.
  • Hard coating hard non-conductive hard material
  • the entire surface of the substrate that is to say the electrodes and the non-conductive spaces, with the possible exception of the contact zones of the electrodes, is covered with a protective film, which can also have anti-reflection properties and helps stabilize the nanofissures over time.
  • radiation characteristics is meant the fluence, the number of pulses and their frequency.
  • the method according to the invention therefore has the advantage of not requiring the above step, and therefore of being more economical. Nor does it impose the delicate choice of a dielectric material having a refractive index and a thickness adapted to obtain a satisfactory optical compensation, given the specific characteristics of the TCO film (refractive index and thickness).
  • the substrate After structuring the electrodes, it may be advantageous to leave the substrate in the enclosure, to replace the previous mask with another mask whose UV-transparent window makes it possible to deposit a transparent protective film on the entire substrate. , that is to say the electrodes and the non-conductive spaces, with the possible exception of the contact areas of the electrodes, by introducing a precursor gas into the chamber.
  • a material is preferably chosen whose nature and thickness make it possible to have anti-reflection properties.
  • the film also has the advantage of stabilizing nanofissures over time.
  • a transparent substrate with invisible electrodes is usable in all the applications mentioned in the preamble by offering qualities of transparency and uniformity superior to those of the known products of the prior art.
  • the figure 1 schematically represents the device which basically comprises a source 14 of UV radiation constituted by a laser source, a telescope type optical comprising a converging lens 16 and a diverging lens 18 making it possible to reduce the section of the laser beam in order to increase its fluence, a mask 10 comprising zones 12 transparent to UV radiation, and an enclosure 2.
  • the enclosure 2 comprises a window 8 transparent to UV radiation, a gas supply 4 and a pumping outlet 6.
  • the chamber 2 may also include an additional supply (not shown) of a carrier gas of a precursor gas.
  • a substrate which, in this example, has a transparent base which is already coated with a TCO film. It would obviously be possible to form the TCO film directly in the enclosure 2, for example by LICVD, but of less economic interest, since the energy consumption would be 100 times greater.
  • the UV radiation source is an eximeric laser, such as a long pulse (250 ns) XeF laser (308 nm) providing maximum energy 150 mJ per pulse with a 1.9 x 2.4 cm 2 rectangular beam, or a short pulse (20 ns) KrF (248 nm) laser providing a maximum energy of 180 mJ per pulse with a rectangular beam of 1 , 5 x 4 cm 2 .
  • a long pulse (250 ns) XeF laser (308 nm) providing maximum energy 150 mJ per pulse with a 1.9 x 2.4 cm 2 rectangular beam or a short pulse (20 ns) KrF (248 nm) laser providing a maximum energy of 180 mJ per pulse with a rectangular beam of 1 , 5 x 4 cm 2 .
  • Other lasers for example a tripled or quadrupled Nd: YAG laser, can of course be used, provided that the characteristics are adjusted to the desired objective.
  • FIGS. 2 and 3 correspond to the simplest embodiment in which a support 1 of a transparent material is coated with a continuous film of TCO, such as a tin oxide and indium (ITO) having in this example a thickness of 70 nm. It would obviously be possible to use another TCO, such as In 2 O 3 or Sn O 2 doped with Sb, and to have a different thickness, for example between 50 and 100 nm, preferably between 65 and 75 nm.
  • TCO such as tin oxide and indium (ITO) having in this example a thickness of 70 nm.
  • another TCO such as In 2 O 3 or Sn O 2 doped with Sb
  • non-conductive spaces 9 created by nanofissures 11 passing through the ITO film and electrically separating the electrodes 7 and the contact zones 15 are formed.
  • the substrate consists of a support 1, which is in this example PMMA, on which is deposited an intermediate layer 3 made of a non-conductive hard hard material (hardcoating).
  • This intermediate layer which protects the PMMA and which contributes to stabilize the base of the ITO after nanofissuration, is for example composed of a resin incorporating SiO 2 and its thickness is of the order of 20 microns.
  • This substrate is placed in the chamber 2, then subjected through the mask 10 to the UV radiation of a source 14.
  • the figure 5 schematically represents the formation of nanofissures 11 creating the non-conductive spaces 9 separating the electrodes 7 and the contact zones 15.
  • the figure 6 represents an optional step in which the substrate remains in the chamber 2, but where the mask 10 has been replaced by another mask whose radiation-transparent window delimits the useful contour of the transparent substrate.
  • a precursor gas is then introduced into the chamber via the supply duct 4, which makes it possible to deposit a protective film 13 by performing a new adjustment of the characteristics of the UV radiation.
  • the film 13 is for example constituted by a deposition of uniform thickness of SiO 2 and TiO 2 optionally modified to have anti-reflection properties.
  • the film 13 also allows one hand to stabilize the nanofissures 11 in time, on the other hand to make the electrodes even less visible by filling the spaces between the nanofissures.
  • the Figures 7 to 11 show on examples how to adjust the characteristics of UV radiation.
  • three identical samples were taken comprising an intermediate layer having a thickness of 20 ⁇ m onto which a 70 nm thick ITO film was deposited and a surface of 3 ⁇ 4 mm was illuminated with an excimer laser. at 308 nm long pulses with 20 pulses at 5 Hz, varying the fluence.
  • the diagram shown in figure 7 corresponds to an assembly for measuring the electrical characteristics of the samples in the illuminated area.
  • the "sample portion 23" is taken between two tips 24 0.3 to 0.5 mm apart on either side of a nanofissure, as shown in FIG. figure 8 . It is also possible to use a loop-shaped end (not shown), that is to say to have a softened contact to prevent deterioration of the ITO film by the tips.
  • the resistance between tips is 180 ⁇ for a current flowing through the sample of 1.5 mA with a calibrated resistor of 670 ⁇ .
  • the observed image was redrawn by reflection microscopy with a magnification of about 15 times, after irradiation with a laser beam having the above characteristics and a fluence of 65 mJ / cm 2 . It is observed that nonofissures are numerous. By performing the same electrical measurements as for the non-illuminated sample with the same distance between measuring points, the alternating current is no longer measurable ("0.2 ⁇ A), which means that the ITO other of the crack 11 are sufficiently electrically insulated.
  • the nanofissure has a maximum depth of 75 nm, that is to say that the base of said nanofissure penetrates very slightly into the hardcoating insulator 3 making the lower edges of the nanofissure are electrically separated by about 70 nm. It can also be seen that, at the upper part, the maximum width of the nanofissure 11 is of the order of 500 nm, that is to say a width much too small to be detected with the naked eye.
  • fissures are also obtained, as shown in FIG. figure 9 , but with a small variation in electrical characteristics.
  • an initial resistance of 670 Q a resistance between 800 ⁇ peaks and a current of 1.19 mA is observed, meaning that there is still a significant conductivity at the crack.
  • AFM imaging it is indeed possible to determine that the maximum depth of the crack is 66 nm, that is to say that there remains an electrical conduction junction at the base of the crack.
  • zones 22 are formed in which the ITO film is torn off to a width sufficient to make the zone separating the electrodes visible to the naked eye.
  • the electrical conductivity is obviously interrupted, but it is then necessary to carry out a complementary manufacturing step to obtain an optical compensation, for example according to the method proposed in the application EP No. 1,457,865 already mentioned.
  • the skilled person can therefore easily, by some preliminary tests, determine the optimal conditions for causing nanofissures without removal of material, but so sufficient to interrupt the electrical conductivity between electrodes.

Abstract

A transparent substrate comprises invisible electrodes including a transparent support having transparent conductive film. The electrodes and their contact zones are structured with contours separated by non-conductive spaces, where the conductive film located at the site of the non-conductive spaces includes nano fissures. A transparent substrate comprises invisible electrodes including a transparent support having transparent conductive film, where electrodes and their contact zones are structured with contours separated by non-conductive spaces, where the conductive film located at the site of the non-conductive spaces includes nano fissures for interrupting the electrical conductivity between neighboring electrodes, without altering the path of a light ray in a manner perceptible to the naked eye. An independent claim is also included for a method of manufacturing a transparent substrate, comprising: (1) placing the substrate, formed of the support and the conductive film possibly deposited on an intermediate layer made of a transparent hard non-conductive material, in a sealed enclosed space having a gaseous fluid supply inlet and a pump outlet; (2) inserting, between the UV radiation source and the substrate, a mask including windows transparent to UV radiation, the windows corresponding to the dielectric non-conductors; and (3) adjusting, as a function of the choice of materials used for the substrate and the emitting source, the UV radiation features to cause nano fissures to be created in the conductive film in the radiated zone, without removing any matter.

Description

La présente invention a pour objet un substrat transparent ayant au moins une face pourvue d'électrodes transparentes dont la structuration est telle que leurs contours ne peuvent pas être perçus par un observateur dans le domaine de longueurs d'ondes de la lumière visible.The present invention relates to a transparent substrate having at least one face provided with transparent electrodes whose structure is such that their contours can not be perceived by an observer in the wavelength range of visible light.

L'invention concerne également des dispositifs, généralement des appareils électroniques, comportant un ou plusieurs substrats transparents à électrodes invisibles dans lesquels les électrodes ont des rôles de commandes ou de collecteurs d'énergie, et plus particulièrement de tels dispositifs disposés au-dessus de l'affichage d'un appareil électronique sur lequel on doit pouvoir lire les informations dudit affichage, sans être gêné par la structuration et l'agencement des électrodes.The invention also relates to devices, generally electronic devices, comprising one or more transparent substrates with invisible electrodes in which the electrodes have control or energy collector roles, and more particularly such devices arranged above the electrodes. display of an electronic device on which the information of said display must be read without being hindered by the structuring and the arrangement of the electrodes.

L'invention concerne également un procédé permettant d'effectuer, de façon économique et avec une grande précision, une structuration des électrodes sur un substrat transparent quelconque tout en procurant une compensation optique entre les électrodes permettant de rendre leurs contours invisibles.The invention also relates to a method for performing, economically and with high precision, structuring of the electrodes on any transparent substrate while providing optical compensation between the electrodes to make their contours invisible.

Des solutions ont déjà été proposées pour que l'interface constituée par des électrodes disposées entre un affichage et un observateur reste la plus discrète possible et ne nuise pas à l'aspect esthétique de l'appareil électronique, notamment dans le cas d'une pièce d'horlogerie. On connaît par exemple des montres-bracelets dont la face intérieure de la glace comporte des électrodes permettant une commande tactile des fonctions horaires ou non horaires par effet capacitif ou résistif, comme cela est décrit de façon non limitative dans les brevets US 4,228,534 , EP 0 674 247 et EP 1 207 439 . La glace peut également être remplacée ou complétée par une cellule formée de deux substrats à électrodes transparents entre lesquels est placé un matériau actif, par exemple pour former une cellule photovoltaïque constituant la source d'énergie comme décrit dans le document WO 93/19479 , ou pour former une cellule à cristaux liquides pouvant avoir un état transparent et un état permettant d'afficher sur demande des informations complémentaires ou différentes de celles affichées sur un cadran sous-jacent, comme décrit dans le document WO 99/32945 .Solutions have already been proposed so that the interface formed by electrodes arranged between a display and an observer remains as discrete as possible and does not harm the aesthetic appearance of the electronic device, particularly in the case of a room. watchmaking. For example, wristwatches are known whose inner face of the ice includes electrodes allowing a tactile control of the hourly or non-hourly functions by capacitive or resistive effect, as is described in a non-limiting manner in the US Patents 4,228,534 , EP 0 674 247 and EP 1 207 439 . The ice can also be replaced or supplemented by a cell formed of two substrates with transparent electrodes between which is placed an active material, for example to form a photovoltaic cell constituting the energy source as described in document WO 93/19479 , or to form a liquid crystal cell which may have a transparent state and a state to display on request additional or different information from that displayed on an underlying dial, as described in the document WO 99/32945 .

Pour réaliser les électrodes on utilise de façon connue des oxydes conducteurs transparents (TCO), c'est-à-dire des matériaux qui sont à la fois bon conducteurs et transparents dans le visible, tels que l'oxyde d'étain et d'indium (ITO), In2O3 ou SnO2 dopé à l'antimoine. On peut également utiliser comme film conducteur servant à la structuration des électrodes des polymères conducteurs transparents qui sont des composés organiques à doubles liaisons conjuguées dont la conductivité peut être améliorée par dopage chimique ou électrochimique. II s'agit par exemple d'un polyacétylène ou de polyanilines telles que l'Ormecon®. Ces dépôts, de l'ordre de 50 à 100nm, sont effectués directement sur le substrat transparent ou sur une couche intermédiaire par un grand nombre de techniques connues telles que la pulvérisation, l'évaporation, la technique sol-gel, ainsi que des techniques de dépôt en phase vapeur (CVD), dont on retiendra particulièrement le dépôt assisté par laser (LICVD).To achieve the electrodes transparent conductive oxides (TCO) are used in known manner, that is to say materials which are both good conductors and transparent in the visible, such as tin oxide and indium (ITO), In 2 O 3 or SnO 2 doped with antimony. It can also be used as a conductive film for structuring electrodes of transparent conductive polymers which are conjugated double bond organic compounds whose conductivity can be enhanced by chemical or electrochemical doping. It is for example a polyacetylene or polyanilines such as Ormecon®. These deposits, of the order of 50 to 100 nm, are made directly on the transparent substrate or on an intermediate layer by a large number of known techniques such as spraying, evaporation, sol-gel technique, and techniques. of vapor deposition (CVD), which will particularly note laser assisted deposition (LICVD).

En ce qui concerne la structuration des électrodes, il existe également différentes méthodes connues mises en oeuvre, en utilisant au moins un masque correspondant au contour des électrodes, soit lors du dépôt du TCO par cristallisation localisée d'un film sol-gel par irradiation avec un laser UV, soit en effectuant sur un film continu de TCO une attaque chimique, ou une ablation localisée en irradiant avec un laser UV à une fluence suffisante ou une ablation mécanique, comme décrit dans le brevet US 6 225 577 . La nature du substrat transparent, verre ou plastique, est évidemment déterminante du point de vue technique et économique pour le choix du processus à appliquer. La cristallisation localisée d'un film sol-gel par laser UV n'est, par exemple, guère applicable à un substrat plastique, tel que le PMMA, car elle relève d'un processus photothermique.As regards the structuring of the electrodes, there are also various known methods used, using at least one mask corresponding to the electrode contour, or during the deposition of the TCO by localized crystallization of a sol-gel film by irradiation with a UV laser, either by performing a chemical etching on a continuous TCO film, or a localized ablation by irradiating with a UV laser at a sufficient fluence or mechanical ablation, as described in FIG. US Patent 6,225,577 . The nature of the transparent substrate, glass or plastic, is obviously decisive from the technical and economic point of view for the choice of the process to be applied. Localized crystallization of a sol-gel film by UV laser is, for example, hardly applicable to a plastic substrate, such as PMMA, because it is a photothermal process.

D'autre part, l'emploi de composés chimiques très agressifs dans les procédés de gravage sélectif peut conduire à une dégradation du substrat ou d'une couche intermédiaire interposée entre ledit substrat et le film de TCO, telle que les espaces non conducteurs entre les électrodes peuvent encore rester perceptibles à l'oeil nu, quelle que soit la façon de garnir lesdits espaces non conducteurs. Ces espaces non conducteurs peuvent également être visibles en raison de la difficulté à les garnir sans former ni bourrelets, ni dépressions susceptibles de dévier les rayons lumineux, étant donné qu'il est nécessaire d'utiliser deux masques complémentaires, respectivement pour la gravure et pour le garnissage.On the other hand, the use of very aggressive chemical compounds in selective etching processes can lead to a degradation of the substrate or an intermediate layer interposed between said substrate and the TCO film, such as non-conductive spaces between the electrodes can still remain perceptible to the naked eye, regardless of how to fill said non-conductive spaces. These non-conductive spaces may also be visible because of the difficulty of filling them without forming beads or depressions capable of deflecting the light rays, since it is necessary to use two complementary masks, respectively for etching and for the lining.

Pour pallier l'inconvénient sus-indiqué, le procédé proposé dans la demande européenne EP 1 457 865 , au nom de la demanderesse, consiste à utiliser un unique masque en employant un rayonnement laser dont les caractéristiques (fluence, nombre d'impulsions, fréquence) sont ajustées selon deux modes différents pour deux étapes successives. La première étape consiste à éliminer totalement le TCO dans les espaces non conducteurs, et la deuxième étape à provoquer le dépôt d'un matériau d'indice de réfraction et d'épaisseur appropriés dans lesdits espaces. Il semblait en effet assez évident que deux électrodes proches l'une de l'autre ne pouvaient être isolées électriquement qu'en supprimant toute trace de matériau conducteur dans l'espace qui les sépare.To overcome the aforementioned drawback, the method proposed in the application European EP 1 457 865 , in the name of the applicant, consists in using a single mask by employing laser radiation whose characteristics (fluence, number of pulses, frequency) are adjusted in two different modes for two successive steps. The first step is to completely eliminate the TCO in the non-conductive spaces, and the second step to cause the deposition of a material of refractive index and thickness appropriate in said spaces. It seemed rather obvious that two close electrodes from each other could only be electrically isolated by removing all traces of conductive material in the space between them.

Il est toutefois apparu de façon surprenante que la conductivité électrique pouvait être abaissée à niveau si faible que deux électrodes proches soient isolées électriquement, sans pour autant éliminer le TCO, ce qui permet de maintenir les propriétés optiques initiales, et donc de rendre invisibles les contours des électrodes, quel que soit l'angle sous lequel on observe un substrat transparent comportant lesdites électrodes.Surprisingly, however, it appeared that the electrical conductivity could be lowered to such a low level that two adjacent electrodes were electrically isolated, without however eliminating the TCO, which makes it possible to maintain the initial optical properties, and thus to make the contours invisible. electrodes, regardless of the angle under which there is a transparent substrate having said electrodes.

A cet effet, l'invention a pour objet un substrat transparent à électrodes invisibles comprenant un support transparent sur lequel est déposé un film transparent conducteur dans lequel des électrodes sont structurées avec des contours séparés par des espaces non conducteurs. Le substrat est caractérisé en ce que le film conducteur se trouvant à l'emplacement desdits espaces non conducteurs comporte des nanofissures dont le plus grand nombre traverse toute l'épaisseur du film conducteur en permettant d'interrompre la conductivité électrique entre électrodes voisines, sans modifier le trajet d'un rayon lumineux d'une façon perceptible à l'oeil nu. Les bords de ces nanofissures sont au plus écartées de quelques microns et ne peuvent être vus par un observateur dont l'acuité visuelle ne lui permet pas de distinguer, en vision rapprochée (20 - 30 cm), des objets distants de moins de 1/10 de millimètre.To this end, the subject of the invention is a transparent substrate with invisible electrodes comprising a transparent support on which is deposited a transparent conductive film in which electrodes are structured with contours separated by non-conductive spaces. The substrate is characterized in that the conductive film at the location of said non-conductive spaces comprises nanofissures, the greater number of which crosses the entire thickness of the conductive film, making it possible to interrupt the electrical conductivity between adjacent electrodes, without modifying the path of a ray of light in a manner noticeable to the naked eye. The edges of these nanofissures are at most separated by a few microns and can not be seen by an observer whose visual acuity does not allow him to distinguish, in close vision (20 - 30 cm), objects distant from less than 1 / 10 millimeters.

Le film conducteur peut être un oxyde conducteur transparent (TCO), mais aussi un polymère conducteur transparent. Toutefois, dans la suite de la description on se référera essentiellement aux TCO qui sont les produits les plus connus pour réaliser des électrodes transparentes.The conductive film may be a transparent conductive oxide (TCO), but also a transparent conductive polymer. However, in the remainder of the description, reference will be made essentially to TCOs, which are the most known products for producing transparent electrodes.

Dans un mode de réalisation préféré, préalablement au dépôt du film de TCO, le support transparent est revêtu d'une couche en un matériau dur transparent non conducteur (Hard coating) qui contribue à la formation des nanofissures.In a preferred embodiment, prior to the deposition of the TCO film, the transparent support is coated with a layer of hard non-conductive hard material (Hard coating) which contributes to the formation of nanofissures.

Selon un autre mode de réalisation préféré, après la structuration des électrodes, toute la surface du substrat, c'est-à-dire les électrodes et les espaces non conducteurs, à l'exception éventuellement des zones de contact des électrodes, est recouverte d'un film protecteur, pouvant également avoir des propriétés anti-reflets et contribuant à stabiliser les nanofissures au cours du temps.According to another preferred embodiment, after the structuring of the electrodes, the entire surface of the substrate, that is to say the electrodes and the non-conductive spaces, with the possible exception of the contact zones of the electrodes, is covered with a protective film, which can also have anti-reflection properties and helps stabilize the nanofissures over time.

Les nanofissures dans la couche de TCO sont obtenues par irradiation UV au moyen d'une source laser. Pour cela, le procédé consiste à :

  • placer le substrat, formé du support et du film de TCO éventuellement déposé sur une couche intermédiaire, dans une enceinte fermée ayant une amenée de fluide gazeux et une sortie de pompage;
  • interposer, entre la source de rayonnement UV et le substrat, un masque comportant des fenêtres transparentes au rayonnement UV, lesdites fenêtres reproduisant les contours désirés des espaces non conducteurs, et
  • en fonction des matériaux utilisés pour former le substrat, de leurs épaisseurs et du choix de la source émettrice, ajuster les caractéristiques du rayonnement pour provoquer une nanofissuration du film de TCO sans enlèvement de matière.
The nanofissures in the TCO layer are obtained by UV irradiation using a laser source. For this, the method consists of:
  • placing the substrate, formed of the support and the TCO film optionally deposited on an intermediate layer, in a closed chamber having a gaseous fluid supply and a pumping outlet;
  • interposing, between the UV radiation source and the substrate, a mask having windows transparent to UV radiation, said windows reproducing the desired contours of the non-conductive spaces, and
  • depending on the materials used to form the substrate, their thickness and the choice of the emitting source, adjust the characteristics of the radiation to cause nanofissuration of the TCO film without removal of material.

En ce qui concerne le choix de la source, on utilise de préférence un laser à excimère pulsé qui émet principalement dans l'ultraviolet et dont l'usage est connu pour effectuer de la photoablation ou du marquage. Il s'agit par exemple d'un excimère KrF (λ = 248 nm) à impulsions courtes (20 ns) ou d'un excimère XeF (λ = 308 nm) à impulsions longues (250 ns). Par "caractéristiques du rayonnement" on entend la fluence, le nombre d'impulsions et leur fréquence.As regards the choice of the source, a pulsed excimer laser which emits mainly in the ultraviolet light and whose use is known to carry out photoablation or marking is preferably used. It is, for example, a short-pulse (20 ns) KrF (λ = 248 nm) excimer or a long-pulse (250 ns) XeF (λ = 308 nm) excimer. By "radiation characteristics" is meant the fluence, the number of pulses and their frequency.

L'ajustement de ces caractéristiques doit s'effectuer entre une limite inférieure où on peut observer des fissures, mais sans baisse suffisante de la conductivité électrique, et une limite supérieure provoquant l'ablation de la couche de TCO rendant les contours des électrodes visibles, étant donné que l'espace isolant usuel entre les électrodes est de l'ordre de quelques dixièmes de millimètres. Il est évidemment possible, comme indiqué dans la demande européenne No 03005615.4 déjà citée, de garnir ces espaces avec un matériau diélectrique transparent permettant d'obtenir une compensation optique.The adjustment of these characteristics must take place between a lower limit where cracks can be observed, but without a sufficient decrease in the electrical conductivity, and an upper limit causing the removal of the TCO layer making the contours of the electrodes visible, since the usual insulating space between the electrodes is of the order of a few tenths of a millimeter. It is obviously possible, as indicated in the application No 03005615.4 already cited, to fill these spaces with a transparent dielectric material to obtain an optical compensation.

Le procédé selon l'invention présente donc l'avantage de ne pas nécessiter l'étape ci-dessus, et donc d'être plus économique. Il n'impose pas non plus le choix délicat d'un matériau diélectrique ayant un indice de réfraction et une épaisseur adaptés pour obtenir une compensation optique satisfaisante, compte tenu des caractéristiques propres du film de TCO (indice de réfraction et épaisseur).The method according to the invention therefore has the advantage of not requiring the above step, and therefore of being more economical. Nor does it impose the delicate choice of a dielectric material having a refractive index and a thickness adapted to obtain a satisfactory optical compensation, given the specific characteristics of the TCO film (refractive index and thickness).

Après la structuration des électrodes, il peut être avantageux de laisser le substrat dans l'enceinte, de remplacer le masque précédent par un autre masque dont la fenêtre transparente aux UV permet d'effectuer le dépôt d'un film protecteur transparent sur tout le substrat, c'est-à-dire les électrodes et les espaces non conducteurs, à l'exception éventuellement des zones de contact des électrodes, en introduisant un gaz précurseur dans l'enceinte. On choisit de préférence pour former le film protecteur un matériau dont la nature et l'épaisseur permettent d'avoir des propriétés anti-reflets. Le film présente également l'avantage de stabiliser les nanofissures dans le temps.After structuring the electrodes, it may be advantageous to leave the substrate in the enclosure, to replace the previous mask with another mask whose UV-transparent window makes it possible to deposit a transparent protective film on the entire substrate. , that is to say the electrodes and the non-conductive spaces, with the possible exception of the contact areas of the electrodes, by introducing a precursor gas into the chamber. To form the protective film, a material is preferably chosen whose nature and thickness make it possible to have anti-reflection properties. The film also has the advantage of stabilizing nanofissures over time.

Ainsi, un substrat transparent à électrodes invisibles est utilisable dans toutes les applications citées en préambule en offrant des qualités de transparence et d'uniformité supérieures à celles des produits connus de l'art antérieur.Thus, a transparent substrate with invisible electrodes is usable in all the applications mentioned in the preamble by offering qualities of transparency and uniformity superior to those of the known products of the prior art.

D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante, donnée à titre illustratif et non limitatif, en référence aux dessins annexés dans lesquels :

  • la figure 1 est une représentation schématique d'un dispositif permettant d'obtenir un substrat transparent à électrodes invisibles selon l'invention;
  • les figures 2 et 3 représentent les étapes de fabrication d'un premier mode de réalisation;
  • les figures 4, 5 et 6 représentent les étapes de fabrication d'un deuxième mode de réalisation;
  • la figure 7 représente le schéma de montage permettant d'effectuer des mesures électriques;
  • la figure 8 est une vue d'une zone diélectrique nanofissurée selon l'invention;
  • la figure 9 correspond à la figure 8 lorsque les caractéristiques du rayonnement UV sont insuffisantes;
  • la figure 10 correspond à la figure 8 lorsque les caractéristiques du rayonnement UV sont au contraire excessives, et
  • la figure 11 est une image AFM d'une nanofissure référencée à la figure 8.
Other characteristics and advantages of the present invention will appear in the following description, given by way of illustration and without limitation, with reference to the appended drawings in which:
  • the figure 1 is a schematic representation of a device for obtaining a transparent substrate with invisible electrodes according to the invention;
  • the Figures 2 and 3 represent the manufacturing steps of a first embodiment;
  • the Figures 4, 5 and 6 represent the manufacturing steps of a second embodiment;
  • the figure 7 represents the circuit diagram for performing electrical measurements;
  • the figure 8 is a view of a nanofissured dielectric zone according to the invention;
  • the figure 9 corresponds to the figure 8 when the characteristics of UV radiation are insufficient;
  • the figure 10 corresponds to the figure 8 when the characteristics of the UV radiation are on the contrary excessive, and
  • the figure 11 is an AFM image of a nanofissure referenced to the figure 8 .

La figure 1 représente schématiquement le dispositif qui comporte fondamentalement une source 14 de rayonnement UV constituée par une source laser, une optique de type télescope comprenant une lentille convergente 16 et une lentille divergente 18 permettant de diminuer la section du faisceau laser afin d'en augmenter la fluence, un masque 10 comportant des zones 12 transparentes au rayonnement UV, et une enceinte 2. L'enceinte 2 comporte une fenêtre 8 transparente au rayonnement UV, une amenée 4 de gaz et une sortie 6 de pompage . L'enceinte 2 peut également comporter une amenée supplémentaire (non représentée) d'un gaz vecteur d'un gaz précurseur. A l'intérieur de l'enceinte 2 on a placé un substrat qui, dans cet exemple, comporte une base transparente qui est déjà revêtue d'un film 5 en TCO. Il serait évidemment possible, de former le film de TCO directement dans l'enceinte 2, par exemple par LICVD, mais d'un intérêt économique moindre, étant donné que la consommation d'énergie serait 100 fois supérieure.The figure 1 schematically represents the device which basically comprises a source 14 of UV radiation constituted by a laser source, a telescope type optical comprising a converging lens 16 and a diverging lens 18 making it possible to reduce the section of the laser beam in order to increase its fluence, a mask 10 comprising zones 12 transparent to UV radiation, and an enclosure 2. The enclosure 2 comprises a window 8 transparent to UV radiation, a gas supply 4 and a pumping outlet 6. The chamber 2 may also include an additional supply (not shown) of a carrier gas of a precursor gas. Inside the chamber 2 is placed a substrate which, in this example, has a transparent base which is already coated with a TCO film. It would obviously be possible to form the TCO film directly in the enclosure 2, for example by LICVD, but of less economic interest, since the energy consumption would be 100 times greater.

La source de rayonnement UV est constituée par un laser eximère, tel qu'un laser XeF (308 nm) à impulsions longues (250 ns) fournissant une énergie maximale de 150 mJ par impulsion avec un faisceau rectangulaire de 1,9 x 2,4 cm2, ou un laser KrF (248 nm) à impulsions courtes (20 ns) fournissant une énergie maximale de 180 mJ par impulsion avec un faisceau rectangulaire de 1,5 x 4 cm2. D'autres lasers, par exemple un laser Nd:YAG triplé ou quadruplé, peuvent évidemment être utilisés, à condition d'en ajuster les caractéristiques au but recherché.The UV radiation source is an eximeric laser, such as a long pulse (250 ns) XeF laser (308 nm) providing maximum energy 150 mJ per pulse with a 1.9 x 2.4 cm 2 rectangular beam, or a short pulse (20 ns) KrF (248 nm) laser providing a maximum energy of 180 mJ per pulse with a rectangular beam of 1 , 5 x 4 cm 2 . Other lasers, for example a tripled or quadrupled Nd: YAG laser, can of course be used, provided that the characteristics are adjusted to the desired objective.

Les figures 2 et 3 correspondent au mode de réalisation le plus simple dans lequel un support 1 en un matériau transparent est revêtu d'un film continu de TCO, tel qu'un oxyde d'étain et d'indium (ITO) ayant dans cet exemple une épaisseur de 70 nm. Il serait bien évidemment possible d'utiliser un autre TCO, tel que In2O3 ou Sn O2 dopé par Sb, et d'avoir une épaisseur différente comprise par exemple entre 50 et 100nm, de préférence entre 65 et 75 nm. Comme représenté à la figure 3, après irradiation UV dans l'enceinte 2, il se forme des espaces non conducteurs 9 crées par des nanofissures 11 traversant le film d'ITO et séparant électriquement les électrodes 7 et les zones de contact 15. Pour obtenir ces fissures et non l'ablation de l'ITO dans ces espaces d'électriques 9, il est nécessaire d'ajuster les caractéristiques du rayonnement UV dans des limites telles que la profondeur des nanofissures provoque une interruption de la conductivité suffisante pour isoler électriquement des électrodes voisines, sans pour autant provoquer une ablation de la couche d'ITO, comme cela est expliqué plus en détails pour le deuxième mode de réalisation correspondant aux figures 4 à 6.The Figures 2 and 3 correspond to the simplest embodiment in which a support 1 of a transparent material is coated with a continuous film of TCO, such as a tin oxide and indium (ITO) having in this example a thickness of 70 nm. It would obviously be possible to use another TCO, such as In 2 O 3 or Sn O 2 doped with Sb, and to have a different thickness, for example between 50 and 100 nm, preferably between 65 and 75 nm. As represented in figure 3 after UV irradiation in the chamber 2, non-conductive spaces 9 created by nanofissures 11 passing through the ITO film and electrically separating the electrodes 7 and the contact zones 15 are formed. To obtain these cracks and not the ablation of the ITO in these electrical spaces 9, it is necessary to adjust the characteristics of the UV radiation in such limits that the depth of the nanofissures causes an interruption of the conductivity sufficient to electrically isolate neighboring electrodes, without however causing a removal of the ITO layer, as explained in more detail for the second embodiment corresponding to the Figures 4 to 6 .

A la figure 4, on voit que le substrat est constitué par un support 1, qui est dans cet exemple en PMMA, sur lequel est déposée une couche intermédiaire 3 en un matériau dur transparent non conducteur (hardcoating). Cette couche intermédiaire, qui protège le PMMA et qui contribue à stabiliser la base de l'ITO après nanofissuration, est par exemple composée d'une résine incorporant du SiO2 et son épaisseur est de l'ordre de 20 µm. Ce substrat est placé dans l'enceinte 2, puis soumis à travers le masque 10 au rayonnement UV d'une source 14. Dans les exemples qui vont suivre, la source est constituée par un laser à eximère XeF (λ = 308 nm) à impulsions longues (250ns), avec comme caractéristiques d'illumination 20 impulsions à 5 Hz avec une surface illuminée de 3 x 4 mm2, en faisant varier la fluence.To the figure 4 it can be seen that the substrate consists of a support 1, which is in this example PMMA, on which is deposited an intermediate layer 3 made of a non-conductive hard hard material (hardcoating). This intermediate layer, which protects the PMMA and which contributes to stabilize the base of the ITO after nanofissuration, is for example composed of a resin incorporating SiO 2 and its thickness is of the order of 20 microns. This substrate is placed in the chamber 2, then subjected through the mask 10 to the UV radiation of a source 14. In the examples which follow, the source is constituted by a XeF eximer laser (λ = 308 nm) to long pulses (250ns), with as 20-pulse illumination characteristics at 5 Hz with an illuminated surface of 3 x 4 mm 2 , by varying the fluence.

La figure 5 représente schématiquement la formation de nanofissures 11 créant les espaces non conducteurs 9 séparant les électrodes 7 et les zones de contact 15.The figure 5 schematically represents the formation of nanofissures 11 creating the non-conductive spaces 9 separating the electrodes 7 and the contact zones 15.

La figure 6 représente une étape optionnelle dans laquelle le substrat reste dans l'enceinte 2, mais où on a remplacé le masque 10 par un autre masque dont la fenêtre transparente au rayonnement délimite le contour utile du substrat transparent. On introduit alors dans l'enceinte par le conduit d'amenée 4 un gaz précurseur permettant le dépôt d'un film protecteur 13 en effectuant un nouveau réglage du caractéristiques du rayonnement UV. Le film 13 est par exemple constitué par un dépôt d'épaisseur uniforme de SiO2 et TiO2 éventuellement modifié pour avoir des propriétés anti-reflets. Le film 13 permet aussi d'une part de stabiliser les nanofissures 11 dans le temps, d'autre part de rendre les électrodes encore moins visibles en garnissant les espaces entre les nanofissures.The figure 6 represents an optional step in which the substrate remains in the chamber 2, but where the mask 10 has been replaced by another mask whose radiation-transparent window delimits the useful contour of the transparent substrate. A precursor gas is then introduced into the chamber via the supply duct 4, which makes it possible to deposit a protective film 13 by performing a new adjustment of the characteristics of the UV radiation. The film 13 is for example constituted by a deposition of uniform thickness of SiO 2 and TiO 2 optionally modified to have anti-reflection properties. The film 13 also allows one hand to stabilize the nanofissures 11 in time, on the other hand to make the electrodes even less visible by filling the spaces between the nanofissures.

Les figures 7 à 11 montrent sur des exemples comment il convient d'ajuster les caractéristiques du rayonnement UV. Pour cela on a pris trois échantillons identiques comportant une couche intermédiaire ayant une épaisseur de 20 µm sur laquelle on a déposé un film d'ITO de 70 nm d'épaisseur et on a illuminé une surface de 3 x 4 mm avec un laser à excimère à 308 nm à impulsions longues avec 20 impulsions à 5 Hz, en faisant varier la fluence.The Figures 7 to 11 show on examples how to adjust the characteristics of UV radiation. For this, three identical samples were taken comprising an intermediate layer having a thickness of 20 μm onto which a 70 nm thick ITO film was deposited and a surface of 3 × 4 mm was illuminated with an excimer laser. at 308 nm long pulses with 20 pulses at 5 Hz, varying the fluence.

Le schéma représenté à la figure 7 correspond à un montage permettant de mesurer les caractéristiques électriques des échantillons dans la zone illuminée. Un générateur 17 délivre une tension sinusoïdale de 1,77 V à un circuit comprenant en série une résistance 19 calibrée entre 2,2 k Ω et 570 k Ω et une portion de l'échantillon 23, ce qui permet de déduire des valeurs de courant comprises entre 0,7 m A et 0,2 µ A en mesurant au moyen d'un voltamètre 21 la tension aux bornes de la résistance 19. (Rech. = (Vgen.-V)/I). La "portion d'échantillon 23" est prise entre deux pointes 24 distantes de 0,3 à 0,5 mm de part et d'autre d'une nanofissure, comme représenté à la figure 8. On peut également utiliser une extrémité en forme de boucle (non représentée), c'est-à-dire d'avoir un contact adouci pour éviter la détérioration du film d'ITO par les pointes.The diagram shown in figure 7 corresponds to an assembly for measuring the electrical characteristics of the samples in the illuminated area. A generator 17 delivers a sinusoidal voltage of 1.77 V to a circuit comprising in series a resistor 19 calibrated between 2.2 k Ω and 570 k Ω and a portion of the sample 23, which makes it possible to deduce current values. between 0.7 m A and 0.2 μ A by measuring with a voltameter 21 the voltage across the resistor 19. (R ech = (V gen. -V) / I). The "sample portion 23" is taken between two tips 24 0.3 to 0.5 mm apart on either side of a nanofissure, as shown in FIG. figure 8 . It is also possible to use a loop-shaped end (not shown), that is to say to have a softened contact to prevent deterioration of the ITO film by the tips.

Lorsque l'échantillon n'a subi aucune irradiation UV, la résistance entre pointes est de 180 Ω pour un courant traversant l'échantillon de 1,5 mA avec une résistance calibrée de 670 Ω.When the sample has not undergone any UV irradiation, the resistance between tips is 180 Ω for a current flowing through the sample of 1.5 mA with a calibrated resistor of 670 Ω.

A la figure 8 on a redessiné l'image observée, par microscopie en réflexion avec un grossissement d'environ 15 fois, après irradiation avec un faisceau laser ayant les caractéristiques précitées et une fluence de 65 mJ/cm2. On observe que les nonofissures sont nombreuses. En effectuant les mêmes mesures électriques que pour l'échantillon non illuminé avec la même distance entre pointes de mesure le courant alternatif n'est plus mesurable («0,2 µA), ce qui signifie que les plages d'ITO situées de part et d'autre de la fissure 11 sont suffisamment isolées électriquement.To the figure 8 the observed image was redrawn by reflection microscopy with a magnification of about 15 times, after irradiation with a laser beam having the above characteristics and a fluence of 65 mJ / cm 2 . It is observed that nonofissures are numerous. By performing the same electrical measurements as for the non-illuminated sample with the same distance between measuring points, the alternating current is no longer measurable ("0.2 μA), which means that the ITO other of the crack 11 are sufficiently electrically insulated.

Cela est confirmé par l'imagerie AFM faite à travers une nanofissure et représentée à la figure 11. On voit que la nanofissure a une profondeur maximale de 75 nm, c'est-à-dire que la base de ladite nanofissure pénètre très légèrement dans le hardcoating isolant 3 faisant que les bords inférieurs de la nanofissure sont séparés électriquement par environ 70 nm. On voit également qu'à la partie supérieure la largeur maximale de la nanofissure 11 est de l'ordre de 500 nm, c'est-à-dire une largeur beaucoup trop faible pour pouvoir être décelée à l'oeil nu.This is confirmed by AFM imaging made through a nanofissure and represented in the figure 11 . It can be seen that the nanofissure has a maximum depth of 75 nm, that is to say that the base of said nanofissure penetrates very slightly into the hardcoating insulator 3 making the lower edges of the nanofissure are electrically separated by about 70 nm. It can also be seen that, at the upper part, the maximum width of the nanofissure 11 is of the order of 500 nm, that is to say a width much too small to be detected with the naked eye.

En effectuant sur un deuxième échantillon la même irradiation mais avec une fluence plus faible, à savoir de 60 mJ/cm2, on obtient également des fissures, comme représenté à la figure 9, mais avec une faible variation des caractéristiques électriques. Avec une résistance initiale de 670 Q, on observe une résistance entre pointes de 800 Ω et un courant de 1,19 mA signifiant qu'il existe encore une conductivité importante au niveau de la fissure. Par imagerie AFM (non représentée) on peut en effet déterminer que la profondeur maximale de la fissure est de 66 nm, c'est-à-dire qu'il reste une jonction de conduction électrique à la base de la fissure.By performing the same irradiation on a second sample but with a lower fluence, namely 60 mJ / cm 2 , fissures are also obtained, as shown in FIG. figure 9 , but with a small variation in electrical characteristics. With an initial resistance of 670 Q, a resistance between 800 Ω peaks and a current of 1.19 mA is observed, meaning that there is still a significant conductivity at the crack. By AFM imaging (not shown) it is indeed possible to determine that the maximum depth of the crack is 66 nm, that is to say that there remains an electrical conduction junction at the base of the crack.

Inversement, en se référant à la figure 10, on voit qu'en augmentant la fluence de 65 mJ/cm2 à 70 mJ/cm2, il se forme des zones 22 dans lesquelles le film d'ITO est arraché sur une largeur suffisante pour rendre la zone séparant les électrodes visible à l'oeil nu. La conductivité électrique est évidemment interrompue, mais il est alors nécessaire d'effectuer une étape de fabrication complémentaire pour obtenir une compensation optique, par exemple selon le procédé proposé dans la demande EP No 1 457 865 déjà citée.Conversely, referring to the figure 10 it can be seen that by increasing the fluence from 65 mJ / cm 2 to 70 mJ / cm 2 , zones 22 are formed in which the ITO film is torn off to a width sufficient to make the zone separating the electrodes visible to the naked eye. The electrical conductivity is obviously interrupted, but it is then necessary to carry out a complementary manufacturing step to obtain an optical compensation, for example according to the method proposed in the application EP No. 1,457,865 already mentioned.

Il est bien évident que l'homme de métier peut, en fonction d'une part de la nature du film de TCO, voire de celle de la couche intermédiaire et de leurs épaisseurs respectives, définir les caractéristiques du rayonnement UV en fonction de la source laser utilisée pour se situer entre une limite inférieure où l'interruption de conductivité électrique est insuffisante et une limite supérieure où il se produit un arrachage de TCO.It is obvious that one skilled in the art can, depending on a part of the nature of the TCO film, or even that of the intermediate layer and their respective thicknesses, define the characteristics of the UV radiation depending on the source laser used to be between a lower limit where the interruption of electrical conductivity is insufficient and an upper limit where there is TCO pulling.

Ainsi on peut, dans les mêmes conditions de mesures que celles décrites en référence à la figure 8 obtenir les mêmes résultats concernant la conductivité électrique lorsque la zone irradiée à une surface de 1 x 4 mm2 avec une fluence de 85 mJ/cm2.Thus, under the same measurement conditions as those described with reference to the figure 8 obtain the same results concerning the electrical conductivity when the irradiated zone has a surface area of 1 x 4 mm 2 with a fluence of 85 mJ / cm 2 .

En utilisant un laser à 248 nm, impulsions courtes, on obtient également le résultat correspondant à la figure 8 avec un échantillon de 2 x 8 mm2, avec 50 impulsions à 5 Hz et une fluence de 50 mJ/cm2.Using a laser at 248 nm, short pulses, one also obtains the result corresponding to the figure 8 with a sample of 2 x 8 mm 2 , with 50 pulses at 5 Hz and a fluence of 50 mJ / cm 2 .

En fonction de la source laser utilisée qui n'est pas limité à un laser à eximère, l'homme de métier peut donc facilement, par quelques essais préliminaires, déterminer les conditions optimales permettant de provoquer des nanofissures sans enlèvement de matière, mais de façon suffisante pour interrompre la conductivité électrique entre électrodes.Depending on the laser source used which is not limited to an eximer laser, the skilled person can therefore easily, by some preliminary tests, determine the optimal conditions for causing nanofissures without removal of material, but so sufficient to interrupt the electrical conductivity between electrodes.

Claims (16)

  1. Transparent substrate with invisible electrodes including a transparent support (1) on which there is deposited a transparent conductive film (5),
    characterized in that fissures (11) whose maximum width is less than the human acuteness of vision are incorporated in the transparent conductive film (5) in order to define non-conductive spaces (9) appropriate to structure in a non visible manner in said transparent conductive film electrodes (7) and their contact zones (15).
  2. Substrate according to claim 1, characterized in that the transparent conductive film (5) is a transparent conductive oxide (TCO), selected from the group comprising tin and indium oxide (ITO), In2O3 and SnO2 doped with Sb.
  3. Substrate according to claim 2, characterized in that the conductive film (5) is an ITO film having a thickness comprised between 50 and 100 nm, preferably between 65 and 75 nm.
  4. Substrate according to claim 1, characterized in that the transparent conductive film (5) is a doped conductive polymer with conjugated double bonds selected from among a polyacetylene and polyanilines.
  5. Substrate according to any of the preceding claims, characterized in that an intermediate layer (3) made of a transparent hard non-conductive material or hardcoating is inserted between the support (1) and the transparent conductive film (5).
  6. Substrate according to claim 5, characterized in that the intermediate layer (3) is formed of a resin incorporating SiO2 and having a thickness at least equal to 20 µm.
  7. Substrate according to any of the preceding claims, characterized in that the majority of the fissures (11) pass through the entire conductive film.
  8. Substrate according to any of the preceding claims, characterized in that the support (1) is made of a material selected from among polymethylene methacrylate (PMMA) and polycarbonate (PC).
  9. Substrate according to any one of the preceding claims, characterized in that the electrodes (7) and the non-conductive spaces (9) are further coated with a protective film (13) also able to have anti-reflective properties, said protective film (13) not covering the contact zones (15) of the electrodes (7).
  10. Substrate according to any of the preceding claims, characterized in that it forms a touch-type control screen for an electronic apparatus in which it is integrated.
  11. Substrate according to any of claims 1 to 9, characterized in that it forms at least one closing plate for a liquid crystal display cell or a photovoltaic cell for an electronic apparatus.
  12. Method of manufacturing a transparent substrate with invisible electrodes including a transparent support (1) on which there is deposited a transparent conductive film (5) wherein electrodes (7) are structured with contours separated by non-conductive spaces (9), by UV radiation by means of a radiation source (14),
    characterized in that it comprises of the following steps:
    - placing the substrate, formed of the support (1) and the transparent conductive film (5) possibly deposited on an intermediate layer (3) made of a transparent hard non-conductive material, in a sealed enclosed space (2) having a gaseous fluid supply inlet (4) and a pump outlet (6);
    - inserting, between the UV radiation source (14) and the substrate, a mask (10) including windows (12) transparent to UV radiation, said windows corresponding to the non-conductive spaces (9), and
    - adjusting, as a function of the choice of materials used for the substrate and the emitting source (14), the UV radiation features to cause fissures to be created in the transparent conductive film (5) whose maximum width is less than the human acuteness of vision in the radiated zone.
  13. Method according to claim 12, characterized in that it includes an additional step of depositing a conductive film (13), which may be anti-reflective, from a precursor gas with the same UV source (14), but replacing the mask (10) used by another mask corresponding to the desired useful surface of the transparent substrate, while leaving the contact zones (15) of the electrodes (7) visible.
  14. Method according to claim 12, characterized in that the transparent conductive film (5) is a transparent conductive oxide (TOC) selected from the group comprising tin and indium oxide (ITO), In2O3 and SnO2 doped with Sb.
  15. Method according to claim 12, characterized in that the transparent conductive film (5) is a doped conductive polymer selected from among a polyacetylene and polyanilines.
  16. Method according to claim 12, characterized in that the source (14) is formed by an excimer laser selected from among XeF long pulse lasers and KrF short pulse lasers.
EP03027566A 2003-12-01 2003-12-01 Transparent substrate with invisible electrodes and devices incorporating the same Expired - Lifetime EP1538514B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP03027566A EP1538514B1 (en) 2003-12-01 2003-12-01 Transparent substrate with invisible electrodes and devices incorporating the same
ES03027566T ES2311666T3 (en) 2003-12-01 2003-12-01 TRANSPARENT SUBSTRATE, WITH INVISIBLE ELECTRODES AND DEVICES THAT INCLUDE IT.
AT03027566T ATE403184T1 (en) 2003-12-01 2003-12-01 TRANSPARENT SUBSTRATE WITH INVISIBLE ELECTRODES AND DEVICES COMPRISING THIS SUBSTRATE
DE60322549T DE60322549D1 (en) 2003-12-01 2003-12-01 Transparent substrate with invisible electrodes and devices with this substrate
KR1020040096668A KR101093301B1 (en) 2003-12-01 2004-11-24 Transparent substrate with invisible electrodes and devices incorporating the same
CNB200410095531XA CN100472301C (en) 2003-12-01 2004-11-29 Transparent substrate with invisible electrodes and device incorporating the same
US10/998,800 US7843061B2 (en) 2003-12-01 2004-11-30 Transparent substrate with invisible electrodes and device incorporating the same
JP2004348546A JP4836442B2 (en) 2003-12-01 2004-12-01 Transparent substrate with invisible electrode and device incorporating the same
HK05109898.9A HK1077887A1 (en) 2003-12-01 2005-11-07 Transparent substrate with invisible electrodes and devices incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03027566A EP1538514B1 (en) 2003-12-01 2003-12-01 Transparent substrate with invisible electrodes and devices incorporating the same

Publications (2)

Publication Number Publication Date
EP1538514A1 EP1538514A1 (en) 2005-06-08
EP1538514B1 true EP1538514B1 (en) 2008-07-30

Family

ID=34442920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03027566A Expired - Lifetime EP1538514B1 (en) 2003-12-01 2003-12-01 Transparent substrate with invisible electrodes and devices incorporating the same

Country Status (9)

Country Link
US (1) US7843061B2 (en)
EP (1) EP1538514B1 (en)
JP (1) JP4836442B2 (en)
KR (1) KR101093301B1 (en)
CN (1) CN100472301C (en)
AT (1) ATE403184T1 (en)
DE (1) DE60322549D1 (en)
ES (1) ES2311666T3 (en)
HK (1) HK1077887A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7208401B2 (en) * 2004-03-12 2007-04-24 Hewlett-Packard Development Company, L.P. Method for forming a thin film
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
EP2069838A2 (en) 2006-10-06 2009-06-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
EP2366945A1 (en) 2006-10-06 2011-09-21 Qualcomm Mems Technologies, Inc. Optical loss layer integrated in an illumination apparatus of a display
EP2109116B1 (en) * 2007-01-16 2012-04-25 Teijin Limited Transparent conductive multilayer body and touch panel made of the same
CN101330796B (en) * 2007-06-22 2011-08-17 宝创科技股份有限公司 Turn-on structure and application thereof
JP5380723B2 (en) * 2007-08-07 2014-01-08 Nltテクノロジー株式会社 Surface display device and electronic device
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8118468B2 (en) 2008-05-16 2012-02-21 Qualcomm Mems Technologies, Inc. Illumination apparatus and methods
US9274553B2 (en) 2009-10-30 2016-03-01 Synaptics Incorporated Fingerprint sensor and integratable electronic display
EP2519868A1 (en) 2009-12-29 2012-11-07 Qualcomm Mems Technologies, Inc. Illumination device with metalized light-turning features
CN102236457A (en) * 2010-04-28 2011-11-09 友发科技股份有限公司 Touch element
KR101489161B1 (en) 2010-07-30 2015-02-06 주식회사 잉크테크 Method for manufacturing transparent conductive layer and transparent conductive layer manufactured by the method
TWI490789B (en) * 2011-05-03 2015-07-01 Synaptics Inc Fingerprint sensor and integratable electronic display
WO2015083874A1 (en) * 2013-12-03 2015-06-11 재단법인 멀티스케일 에너지시스템 연구단 High-sensitivity sensor comprising conductive thin film containing cracks and method for manufacturing same
CN104699310A (en) * 2015-03-31 2015-06-10 合肥京东方光电科技有限公司 Touch screen and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH607872B (en) 1976-11-04 1900-01-01 Centre Electron Horloger WATCH EQUIPPED WITH A MANUAL CONTROL DEVICE.
DE3236099A1 (en) * 1982-09-29 1984-03-29 Siemens Ag Keyboard panel for a computer graphics system
JPH0228626A (en) * 1988-04-07 1990-01-30 Toyoda Gosei Co Ltd Electrochromic element
CH686206A5 (en) * 1992-03-26 1996-01-31 Asulab Sa Cellule photoelectrochimique regeneratrice transparent.
JP3752010B2 (en) * 1995-07-04 2006-03-08 新日本石油株式会社 Light control element
JPH09260695A (en) * 1996-03-19 1997-10-03 Canon Inc Manufacture of photovoltaic device array
JP3602675B2 (en) * 1997-01-29 2004-12-15 アルプス電気株式会社 Coordinate input device and method of manufacturing the coordinate input device
JP4494628B2 (en) 1997-12-19 2010-06-30 アスラブ・エス アー Display assembly with two superimposed display devices
DE19914304A1 (en) * 1999-03-29 2000-10-05 Bayer Ag Electrochrome contrast plate
ES2327708T3 (en) 2000-11-17 2009-11-03 Asulab S.A. ELECTRONIC WATCH THAT INCLUDES CAPACITIVE BUTTONS ON YOUR CRYSTAL.
EP1457865B1 (en) 2003-03-12 2017-11-08 Asulab S.A. Substrate with transparent electrodes and corresponding fabrication process

Also Published As

Publication number Publication date
US7843061B2 (en) 2010-11-30
JP2005165329A (en) 2005-06-23
CN1624609A (en) 2005-06-08
KR101093301B1 (en) 2011-12-14
ATE403184T1 (en) 2008-08-15
JP4836442B2 (en) 2011-12-14
EP1538514A1 (en) 2005-06-08
DE60322549D1 (en) 2008-09-11
US20050116343A1 (en) 2005-06-02
HK1077887A1 (en) 2006-02-24
ES2311666T3 (en) 2009-02-16
KR20050052992A (en) 2005-06-07
CN100472301C (en) 2009-03-25

Similar Documents

Publication Publication Date Title
EP1538514B1 (en) Transparent substrate with invisible electrodes and devices incorporating the same
EP1457865B1 (en) Substrate with transparent electrodes and corresponding fabrication process
JP6250169B2 (en) Method for producing flat glass with a conductive coating containing electrically isolated defects
EP0710433B1 (en) Electrical circuits with very high conductivity and great fineness, methods of manufacture and devices comprising same
EP2978123A1 (en) Method for manufacturing a triboelectric generator with rough dielectric polymer
FR2962818A1 (en) ELECTROCHEMICAL DEVICE HAVING ELECTRO - CONTROLLABLE OPTICAL AND / OR ENERGY TRANSMISSION PROPERTIES.
CH629002A5 (en) Passive electrooptic display cell and method for manufacture thereof
CA2912805A1 (en) Method for producing a substrate provided with a coating
WO2010046604A1 (en) Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device
EP3362416A1 (en) Method for rapid annealing of a stack of thin layers containing an indium overlay
EP3213146B1 (en) Reflective cell with modular reflectivity
WO2020212728A1 (en) Method for the creation of an iridescent effect on the surface of a material, and devices for carrying out said method
BE1025341B1 (en) METHOD FOR STRUCTURING A SUBSTRATE
FR2875915A1 (en) Electrically insulating and optically conducting centrosymetric material e.g. pure silica glass, electronic poling method, involves simultaneously subjecting material to electric field and electromagnetic radiation of X rays
JP2024030514A (en) Electrochemical device, driving method of electrochemical device
FR3106006A1 (en) Optical system, insulating glazing comprising such an optical system, method of manufacturing this insulating glazing and method of protecting an optical system
FR2835924A1 (en) Fabrication of attenuation device for luminous signals carried by fibre optics incorporating two opposed monomode fibres mounted in capillary containing liquid crystal
Wu et al. Laser Fabrication of Low Resistivity Electrode on Glass
EP1607790A1 (en) Liquid crystal device comprising a heterogeneous alignment layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051208

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60322549

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081230

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2311666

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081030

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ASULAB S.A.

Effective date: 20081231

26N No opposition filed

Effective date: 20090506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091203

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090131

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101127

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 403184

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121122

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTD , CH

Free format text: FORMER OWNER: ASULAB S.A., CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191119

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191120

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60322549

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL