EP1537125A1 - Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms - Google Patents

Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms

Info

Publication number
EP1537125A1
EP1537125A1 EP03794905A EP03794905A EP1537125A1 EP 1537125 A1 EP1537125 A1 EP 1537125A1 EP 03794905 A EP03794905 A EP 03794905A EP 03794905 A EP03794905 A EP 03794905A EP 1537125 A1 EP1537125 A1 EP 1537125A1
Authority
EP
European Patent Office
Prior art keywords
lithium
compounds
substituted
alkyl
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03794905A
Other languages
German (de)
French (fr)
Inventor
Andreas Meudt
Bernd Lehnemann
Michael Erbes
Klaus Forstinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euticals GmbH
Original Assignee
Archimica GmbH
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Archimica GmbH, Clariant GmbH filed Critical Archimica GmbH
Publication of EP1537125A1 publication Critical patent/EP1537125A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/16Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of hydrazones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides

Definitions

  • the invention relates to a process for the preparation of organic compounds having carbon-heteroatom bonds, a lithium compound (II) being first generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, which compound is then used to deprotonate the compounds (III) or ( V) is used, and the resulting lithium salts of the formulas (IV) or (VI) are finally reacted with suitable carbon electrophiles to form the lower bond of the heteroatom-carbon bond and form the products (VIII) or (VIII). (EQUATION 1).
  • Step 1 creating the base
  • Step 2 deprotonation of the substrate
  • Step 3 implementation with an electrophile
  • organometallic chemistry especially that of the element lithium
  • the boom in organometallic chemistry, especially that of the element lithium, in the production of compounds for the pharmaceutical and agrochemical industry and for numerous other applications has been almost exponential in recent years, given the number of applications and the quantity of products manufactured accordingly plots against a timeline.
  • the main reasons for this are the increasingly complex structures of the required fine chemicals for the pharmaceutical and agro sectors on the one hand and the almost unlimited synthetic potential of lithium organyls for the construction of complex organic structures on the other.
  • a large part of this development is the use of organolithium compounds and alkali metal hydrides as strong, less nucleophilic bases for the deprotonation of alcohols, phenols, thiols, amines etc., ie the generation of heteroatom anions, for the conversion with electrophiles.
  • the present invention solves all of these problems and relates to a method for forming heteroatom-carbon bonds, a lithium compound (II) being first generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, which compound is then used to deprotonate the compounds (III ) or (V) is used, and the resulting lithium salts of the formulas (IV) or (VI) are finally linked with suitable carbon electrophiles to form the heteroatom-carbon bond and form the products (VIII) or (VIII) for the reaction brought (equation I).
  • Step 1 creating the base lithium
  • Step 2 deprotonation of the substrate
  • Step 3 implementation with an electrophile
  • R stands for methyl, primary, secondary or tertiary branched and unbranched alkyl radicals having 1 to 20 carbon atoms, phenyl, aryl and heteroaryl radicals, substituted by a radical from the group ⁇ methyl, primary, secondary or tertiary alkyl, phenyl Phenyl, aryl, heteroaryl, alkoxy, dialkylamino, alkylthio ⁇ substituted alkyl, substituted or unsubstituted cycloalkyl having 3 to 8 C atoms,
  • Xi represents an oxygen or sulfur bound by a single bond to R1 or an sp2-hybridized nitrogen bound by a double bond to R1
  • X 2 represents an sp3-hybridized nitrogen
  • R 1 and R 2 radicals independently of one another represent substituents from the group ⁇ hydrogen, methyl, primary, secondary or tertiary, cyclic or acyclic alkyl, alkenyl or alkynyl radicals having 1 to 20 C atoms, substituted cyclic or acyclic alkyl groups, acyl groups , Alkoxy, aryloxy, dialkylamino, alkylamino, arylamino, diarylamino, alkylarylamino, imino, sulfone, sulfonyl, phenyl, substituted phenyl, alkylthio, diarylphosphino,
  • Preferred compounds of formula (III) which can be reacted by the process according to the invention are e.g. Alcohols, thiols, phenols, thiophenols, oximes, hydrazones, preferred compounds of formula (V) are e.g. Amines, carboxamides, sulfonamides and hydrazines, to name but a few.
  • the lithium organyls prepared in this way can be reacted with any electrophilic compounds by methods of the prior art.
  • reaction with carbon electrophiles for example, alkylations to ethers, thioethers, secondary and tertiary amines etc. can be carried out or semi-acetals and their secondary products as well as esters, acid amides and carbonyl derivatives can be prepared by carbonyl additions.
  • the carbon electrophiles come in particular from one of the following categories (the product groups in brackets):
  • Aryl or alkyl cyanates, isocyanates (carbonic acid derivatives) Oxirane, substituted oxiranes (2-hydroxyethers, amines, thioethers, etc.) aziridines, substituted aziridines (2-aminoethers, amines, thioethers, etc.) imines, aldehydes, ketones (hemiacetals, aminals, thioacetals, etc.) organic halogen compounds, triflates, other sulfonates, sulfates (substitution products / alkylation products) ketenes (carboxylic acid derivatives) carboxylic acid chlorides (carboxylic acid derivatives) carboxylic acid esters, thioesters and amides (carboxylic acid derivatives) carbonic acid esters and phosgene derivatives (carboxylic acid derivatives)
  • fluorine, chlorine, bromine or iodine compounds can be used as halogen aliphates or aromatics, since lithium metal in ethereal solvents reacts easily and in almost all cases with quantitative yields with all halogen aromatics and aliphates.
  • Chlorine or bromoaliphatics are preferably used here, since iodine compounds are often expensive, fluorine compounds lead to the formation of LiF, which can lead to material problems in later aqueous workups as HF. In special cases, however, such halides can also be used advantageously.
  • alkyl or aryl halides which can be converted to liquid alkanes or aromatics after deprotonation.
  • Chloro- or bromocyclohexane, benzyl chloride, tert-butyl chloride, chlorhexanes, chlorheptanes or chloroctanes as well as chloro- and bromobenzenes, -toluenes and -xylenes are particularly preferably used.
  • reaction is carried out in a suitable organic solvent; ethereal solvents, for example tetrahydrofuran, dioxane, diethyl ether, di-n-butyl ether, diisopropyl ether, glyme, diglyme, dibutyl diglyme or anisole are preferred, tetrahydrofuran is particularly preferably used.
  • ethereal solvents for example tetrahydrofuran, dioxane, diethyl ether, di-n-butyl ether, diisopropyl ether, glyme, diglyme, dibutyl diglyme or anisole are preferred, tetrahydrofuran is particularly preferably used.
  • Another advantage of the method according to the invention is that it is possible to work with organolithium compounds at very high concentrations. Concentrations of the aliphatic or aromatic intermediates of formula (II) of 5 to 30% by weight, in particular 12 to 25% by weight, are preferred.
  • halogen compound (R-Hal) and substrate to be deprotonated (III or IV) are metered in simultaneously or as a mixture to lithium metal in the ether.
  • the organolithium compound first forms, which then immediately deprotonates the substrate.
  • the preferred reaction temperatures are in the range from -100 to +70 ° C, and temperatures from -80 to -25 ° C are particularly preferred when deprotonation not at the same time as the lithiation, but in a second step.
  • the particularly preferred temperature range is between -40 and +40 ° C.
  • the lithium can be used as a dispersion, powder, chips, sand, granules, pieces, bars or in some other form, the size of the lithium particles not being quality-relevant but merely influencing the reaction times. Smaller particle sizes are therefore preferred, for example granules, powders or dispersions.
  • the amount of lithium added is 1.95 to 2.5 mol, preferably 1.98 to 2.15 mol, per mole of halogen to be reacted.
  • organic redox systems by adding, for example biphenyl, 4,4 '-di-tert-butylbiphenyl or anthracene, substantial increases in reaction rates are observed. The addition of such systems proved to be particularly advantageous when the lithiation times were> 12 h without this catalysis.
  • Substrates that can be used for deprotonation are initially all oxygen, sulfur and nitrogen compounds which carry a sufficiently acidic hydrogen atom on the corresponding heteroatom in order to be deprotonated under the reaction conditions.
  • the lithium compounds generated according to the invention can be converted using the methods familiar to the person skilled in the art with electrophilic carbon compounds (electrophilic) to give products with newly formed heteroatom-carbon bonds which are of great interest for the pharmaceutical and agrochemical industry.
  • the workups are generally aqueous, with either water or aqueous mineral acids being metered in or the reaction mixture being metered into water or aqueous mineral acids.
  • the pH of the product to be isolated is adjusted here.
  • the reaction products are obtained, for example, by extraction and evaporation of the organic phases, alternatively the organic solvents can also be distilled off from the hydrolysis mixture and the product which then precipitates can be obtained by filtration.
  • the purities of the products from the processes according to the invention are generally high, but a further purification step, for example by recrystallization with the addition of small amounts of activated carbon, may be required for special applications (pharmaceutical precursors).
  • the yields of the reaction products are between 70 and 99%, typical yields are in particular 80 to 95%.
  • the method according to the invention opens up a very economical method for the transformation of acidic hydrogen into any residues in a highly selective, economical way.
  • Tetrahydrofuran is cooled to -35 ° C and 13.29 g (0.105 mol) of 4-chlorotoluene are slowly added. The mixture is stirred at this temperature until the conversion of the 4-chlorotoluene is at least 97% a / a It. GC (approx. 8 h). 9.81 g (0.100 mol) of 2-furylmethanol are added, the mixture is allowed to warm to room temperature, 14.28 g (0.120 mol) of propargyl bromide are added and the mixture is boiled under reflux for 2 h. To
  • a suspension of 1.45 g (0.210 mol) of lithium granules in 150 ml of tetrahydrofuran and 19.63 g (0.100 mol) of benzaldehyde phenylhydrazone is mixed with 15.61 g (0.105 mol) of octyl chloride at -40 ° C. and at - 30 ° C stirred until the conversion of the octyl chloride It. GC at min. 97% a / a is (approx. 8 h). Then 11.34 g (0.120 mol) of methyl chloroformate are added dropwise and the reaction mixture is stirred at 0 ° C. for 30 minutes.
  • the reaction mixture is hydrolyzed with 100 ml of water, the phases are separated and the aqueous phase is extracted three times with 50 ml of toluene.
  • the combined organic phases are concentrated and the crude product is recrystallized from ethanol.
  • the product is obtained in the form of colorless, flake-like crystals with a yield of 20.85 g (0.082 mol, 82%) and an HPLC purity of> 98.5% a / a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a method for binding heteroatom-carbon bonds. According to said method, a lithium compound (II) is first generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, said compound is then used for the deprotonation of the compounds (III) or (V). The lithium salts of formulas (IV) or (VI) obtained by said deprotonation are subsequently reacted with suitable carbon electrophiles (equation I), said process binding the heteroatom-carbon bond and forming the products (VIII) or (VIII), (equation I).

Description

Beschreibungdescription
Verfahren zur metallorganischen Herstellung organischer Zwischenprodukte mit Kohlenstoff-Heteroatom-Bindungen über die Deprotonierung von HeteroatomenProcess for organometallic production of organic intermediates with carbon-heteroatom bonds via the deprotonation of heteroatoms
Die Erfindung betrifft ein Verfahren zur Herstellung von organischen Verbindungen mit Kohlenstoff-Heteroatom-Bindungen, wobei zunächst durch Umsetzung von aliphatischen oder aromatischen Halogenverbindungen (I) mit Lithiummetall eine Lithiumverbindung (II) generiert wird, die dann zur Deprotonierung der Verbindungen (III) oder (V) eingesetzt wird, und wobei die daraus resultierenden Lithiumsalze der Formeln (IV) oder (VI) abschließend mit geeigneten Kohlenstoff- Elektrophilen untere Knüpfung der Heteroatom-Kohlenstoff-Bindung und Bildung der Produkte (VIII) oder (VIII) zur Umsetzung gebracht werden. (GLEICHUNG 1 ). The invention relates to a process for the preparation of organic compounds having carbon-heteroatom bonds, a lithium compound (II) being first generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, which compound is then used to deprotonate the compounds (III) or ( V) is used, and the resulting lithium salts of the formulas (IV) or (VI) are finally reacted with suitable carbon electrophiles to form the lower bond of the heteroatom-carbon bond and form the products (VIII) or (VIII). (EQUATION 1).
Schritt 1 : Erzeugung der BaseStep 1: creating the base
Lithium R-Hal *- R— LILithium R-Hal * - R-LI
I III II
Schritt 2: Deprotonierung des SubstratsStep 2: deprotonation of the substrate
R-Li + R1 — X H ^ R1 — XrüR-Li + R1 - XH ^ R1 - X r ü
II III IVII III IV
R1 R1R1 R1
\\
R— Li x2 -H X -LiR— Li x 2 -HX -Li
R2 R2R2 R2
V VIV VI
Schritt 3: Umsetzung mit einem ElektrophilStep 3: implementation with an electrophile
R1-X Li ElΘktrθ h 1 il R1-XrEiR1-X Li ElΘktrθ h 1 il R1-X r Ei
IV VIIIV VII
R1 R1R1 R1
X2— Li Elektr°Phil X2— ElX 2 - Li Elektr ° P hil X 2 - El
R2 R2R2 R2
VI VIIIVI VIII
(GLEICHUNG I)(EQUATION I)
Der Aufschwung der metallorganischen Chemie, insbesondere derjenigen des Elementes Lithium, in der Herstellung von Verbindungen für die pharmazeutische und agrochemische Industrie sowie für zahlreiche weitere Anwendungen ist in den vergangenen Jahren beinahe exponentiell verlaufen, wenn man die Anzahl der Anwendungen bzw. die Menge entsprechend hergestellter Produkte gegen eine Zeitachse aufträgt. Wesentliche Gründe hierfür sind die immer komplexer werdenden Strukturen der benötigten Feinchemikalien für die Bereiche Pharma und Agro einerseits sowie das fast unbegrenzte Synthesepotential der Lithiumorganyle für den Aufbau komplexer organischer Strukturen andererseits. Einen großen Anteil an dieser Entwicklung hat der Einsatz von Organolithium- Verbindungen und Alkalimetallhydriden als starke, wenig nukleophile Basen zur Deprotonierung von Alkoholen, Phenolen, Thiolen, Aminen etc., d.h. die Erzeugung von Heteroatom-Anionen, zum Umsatz mit Elektrophilen.The boom in organometallic chemistry, especially that of the element lithium, in the production of compounds for the pharmaceutical and agrochemical industry and for numerous other applications has been almost exponential in recent years, given the number of applications and the quantity of products manufactured accordingly plots against a timeline. The main reasons for this are the increasingly complex structures of the required fine chemicals for the pharmaceutical and agro sectors on the one hand and the almost unlimited synthetic potential of lithium organyls for the construction of complex organic structures on the other. A large part of this development is the use of organolithium compounds and alkali metal hydrides as strong, less nucleophilic bases for the deprotonation of alcohols, phenols, thiols, amines etc., ie the generation of heteroatom anions, for the conversion with electrophiles.
Für den größten Teil dieser Chemie ist der Einsatz von käuflichen Alkyl- oder Aryllithium-Verbindungen erforderlich, wobei hier meistens n-Butyllithium, Methyllithium oder Phenyllithium eingesetzt werden. Die Synthese von derartigen Lithiumaromaten und Lithiumaliphaten ist technisch aufwendig und erfordert sehr viel Know-how, wodurch Methyllithium, n-Butyllithium, s-Butyllithium, tert- Butyllithium, Phenyllithium und ähnliche Moleküle nur - an industriellen Maßstäben gemessen - sehr teuer angeboten werden. Dies ist der wichtigste, aber bei weitem nicht der einzige Nachteil dieser ansonsten sehr vorteilhaft und breit einsetzbaren starken Basen. Alkalimetallhydride sind zwar preiswerter, haben jedoch aufgrund ihrer erheblich geringeren Basizität den Nachteil einer erheblich geringeren Anwendungsbreite.The majority of this chemistry requires the use of commercially available alkyl or aryllithium compounds, n-butyllithium, methyllithium or phenyllithium mostly being used here. The synthesis of such lithium aromatics and lithium aliphatics is technically complex and requires a great deal of know-how, as a result of which methyl lithium, n-butyllithium, s-butyllithium, tert-butyllithium, phenyllithium and similar molecules are only offered at very high prices - measured on an industrial scale. This is the most important, but by no means the only disadvantage of these otherwise very advantageous and widely usable strong bases. Alkali metal hydrides are cheaper, but because of their considerably lower basicity they have the disadvantage of a considerably smaller range of applications.
Aufgrund der extremen Empfindlichkeit und in konzentrierten Lösungen pyrophorer Natur von Lithiumorganylen sind bei den in der industriellen Großproduktion angestrebten Größenordnungen (Jahresproduktionsmengen zwischen 5 und 500 Tonnen) sehr aufwendige logistische Systeme für Transport, Einspeisung in die Dosiervorlage und Dosierung erforderlich. Ähnliches gilt für die Alkalimetallhydride, die in reiner Form ebenfalls pyrophor sind und häufig mit Mineralöl phlegmatisiert werden. Die Verarbeitung dieser sehr schlecht in organischen Lösungsmitteln löslichen Feststoffe unter den entsprechenden Bedingungen ist ein technisch kaum gelöstes Problem.Due to the extreme sensitivity and pyrophoric nature of lithium organyls in concentrated solutions, very large logistical systems for transport, feeding into the dosing template and dosing are required for the sizes desired in large industrial production (annual production quantities between 5 and 500 tons). The same applies to the alkali metal hydrides, which are also pyrophoric in their pure form and are frequently phlegmatized with mineral oil. The processing of these solids, which are very poorly soluble in organic solvents, under the corresponding conditions is a problem that is hardly technically solved.
Des weiteren entstehen bei der Deprotonierung H-acider Verbindungen mit Methyllithium Methangas sowie bei Verwendung von n-, s- und tert.-Butyllithium Butane, die bei Raumtemperatur ebenfalls gasförmig sind und während der Reaktion oder bei den erforderlichen hydrolytischen Aufarbeitungen den Reaktionsmischungen entweichen. Dadurch werden zusätzlich auch noch aufwendige Abgasaufreinigungen oder entsprechende Verbrennungsvorrichtungen erforderlich, um den strengen gesetzlichen Immissionsvorschriften zu genügen. Als Ausweg bieten die spezialisierten Unternehmen Alternativen wie n-Hexyllithium an, die zwar keine Butane entstehen lassen, dafür aber nochmals deutlich teurer sind als Butyllithium. Der Einsatz von Phenyllithium hingegen führt zur Entstehung des humancancerogenen Benzols, was den technischen Einsatz häufig ausschließt. Alternativen wie 4-Tolyllithium sind auf dem Markt kaum erhältlich, vor allem nicht im für Produktionsaufgaben benötigten Volumen.Furthermore, the deprotonation of H-acidic compounds with methyllithium methane gas and the use of n-, s- and tert-butyllithium butanes, which are also gaseous at room temperature and escape the reaction mixtures during the reaction or during the required hydrolytic work-ups. As a result, complex exhaust gas purifications or corresponding are also required Combustion devices required to meet the strict legal immission regulations. As a way out, the specialized companies offer alternatives such as n-hexyllithium, which do not produce butanes, but are significantly more expensive than butyllithium. The use of phenyllithium, on the other hand, leads to the development of human carcinogenic benzene, which often precludes technical use. Alternatives such as 4-tolyllithium are hardly available on the market, especially not in the volume required for production tasks.
Noch größere Schwierigkeiten als bei den niederen Alkyllithiumverbindungen bereitet das Arbeiten mit Alkalimetallhydriden, da bei deren Einsatz Wasserstoff entsteht, der insbesondere bei hohen Temperaturen zusätzlich zur Abluftproblematik (Gefahr der Knallgasbildung) noch zu Werkstoffschäden, v.a. Versprödung von Metallen durch Diffusion und Einlagerung, führen kann.Working with alkali metal hydrides is even more difficult than with the lower alkyl lithium compounds, since their use produces hydrogen, which in addition to the exhaust air problem (risk of oxyhydrogen gas formation) leads to material damage, especially at high temperatures. Embrittlement of metals due to diffusion and storage.
Ein weiterer Nachteil ist das Anfallen komplexer Lösungsmittelgemische nach der Aufarbeitung. Aufgrund der hohen Reaktivität von Lithiumorganylen gegenüber Ethern, die fast immer Lösungsmittel für die Folgeumsetzungen sind, können Alkyllithium-Verbindungen meist nicht in diesen Lösungsmitteln angeboten werden. Die Hersteller bieten zwar eine breite Palette von Alkyllithium- Verbindungen verschiedenster Konzentrationen in verschiedenstenAnother disadvantage is that complex solvent mixtures occur after working up. Because of the high reactivity of lithium organyls towards ethers, which are almost always solvents for the subsequent reactions, alkyl lithium compounds cannot usually be offered in these solvents. The manufacturers do offer a wide range of alkyl lithium compounds of different concentrations in different
Kohlenwasserstoffen und Ether-Kohlenwasserstoff-Gemischen an. Daher erhält man nach Hydrolyse allerdings wasserhaltige Gemische aus Ethern und Kohlenwasserstoffen, deren Auftrennung aufwendig und in vielen Fällen gar nicht ökonomisch durchführbar ist. Dies gilt ebenso für das Mineralöl, in dem die Alkalimetallhydride meist geliefert werden. Für eine industrielle Großproduktion ist allerdings die Rückführung der verwendeten Lösungsmittel unabdingbare Voraussetzung.Hydrocarbons and ether-hydrocarbon mixtures. Therefore, after hydrolysis, water-containing mixtures of ethers and hydrocarbons are obtained, the separation of which is complex and in many cases cannot be carried out economically. This also applies to the mineral oil in which the alkali metal hydrides are usually supplied. For large-scale industrial production, however, the recycling of the solvents used is an essential requirement.
Aus den genannten Gründen wäre es daher sehr wünschenswert, ein Verfahren zu haben, bei dem eine zur Deprotonierung einzusetzende Alkyllithiumverbindung, die die erwähnten Nachteile möglichst umgeht, ausgehend von den billigen Rohstoffen Halogenalkan oder Halogenaromat und Lithiummetall in einem Ether erzeugt und dabei gleichzeitig oder anschließend mit dem zu deprotonierenden Substrat umgesetzt wird, da durch diese Vorgehensweise alle oben genannten Nachteile der „klassischen" Erzeugung der genannten Lithiumverbindungen umgangen werden könnten.For the reasons mentioned, it would therefore be very desirable to have a process in which an alkyl lithium compound to be used for deprotonation, which avoids the disadvantages mentioned as far as possible, is produced in an ether from the cheap raw materials haloalkane or haloaromatic and lithium metal and at the same time or subsequently with the one to be deprotonated Substrate is implemented because this procedure could avoid all of the above-mentioned disadvantages of the "classic" production of the lithium compounds mentioned.
Die vorliegende Erfindung löst alle diese Aufgaben und betrifft ein Verfahren zur Knüpfung von Heteroatom-Kohlenstoff-Bindungen, wobei zunächst durch Umsetzung von aliphatischen oder aromatischen Halogenverbindungen (I) mit Lithiummetall eine Lithiumverbindung (II) generiert wird, die dann zur Deprotonierung der Verbindungen (III) oder (V) eingesetzt wird, und wobei die daraus resultierenden Lithiumsalze der Formeln (IV) oder (VI) abschließend mit geeigneten Kohlenstoff-Elektrophilen untere Knüpfung der Heteroatom- Kohlenstoff-Bindung und Bildung der Produkte (VIII) oder (VIII) zur Umsetzung gebracht werden (Gleichung I). The present invention solves all of these problems and relates to a method for forming heteroatom-carbon bonds, a lithium compound (II) being first generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, which compound is then used to deprotonate the compounds (III ) or (V) is used, and the resulting lithium salts of the formulas (IV) or (VI) are finally linked with suitable carbon electrophiles to form the heteroatom-carbon bond and form the products (VIII) or (VIII) for the reaction brought (equation I).
Schritt 1 : Erzeugung der Base LithiumStep 1: creating the base lithium
R-Ha! R— Li I IIR-Ha! R - Li I II
Schritt 2: Deprotonierung des SubstratsStep 2: deprotonation of the substrate
R— Li R1 — Xr-H R1 — X— LiR - Li R1 - Xr-H R1 - X - Li
IM IVIN IV
R1R1
R1\ R1 \
R— Li XM— H XR - Li XM - H X
/2 /,2— Li/ 2 /, 2 - Li
R2 R2 VIR2 R2 VI
Schritt 3: Umsetzung mit einem ElektrophilStep 3: implementation with an electrophile
Elektrophilelectrophile
R1 — X— Li R1 — X-ElR1 - X - Li R1 - X-El
IV VIIIV VII
R1\ R1 R1 \ R1
XM— Li ElektrophilXM - Li electrophile
/2 X— El/ 2 X— El
R2 R2R2 R2
VI VIIIVI VIII
(GLEICHUNG I)(EQUATION I)
Dabei steht R für Methyl, primäre, sekundäre oder tertiäre verzweigte und unverzweigte Alkylreste mit 1 bis 20 C-Atomen, Phenyl-, Aryl- und Heteroarylreste, mit einem Rest aus der Gruppe {Methyl, primäres, sekundäres oder tertiäres Alkyl, Phenyl, substituiertes Phenyl, Aryl, Heteroaryl, Alkoxy, Dialkylamino, Alkylthio} substituiertes Alkyl, substituiertes oder unsubstituiertes Cycloalkyl mit 3 bis 8 C-Atomen,R stands for methyl, primary, secondary or tertiary branched and unbranched alkyl radicals having 1 to 20 carbon atoms, phenyl, aryl and heteroaryl radicals, substituted by a radical from the group {methyl, primary, secondary or tertiary alkyl, phenyl Phenyl, aryl, heteroaryl, alkoxy, dialkylamino, alkylthio} substituted alkyl, substituted or unsubstituted cycloalkyl having 3 to 8 C atoms,
Hai = Fluor, Chlor, Brom oder lod, Xi steht für einen durch eine Einfachbindung an R1 gebundenen Sauerstoff oder Schwefel oder einen durch eine Doppelbindung an R1 gebundenen sp2- hybridisierten Stickstoff, und X2 für einen sp3-hybridisierten Stickstoff,Shark = fluorine, chlorine, bromine or iodine, Xi represents an oxygen or sulfur bound by a single bond to R1 or an sp2-hybridized nitrogen bound by a double bond to R1, and X 2 represents an sp3-hybridized nitrogen,
die Reste Ri und R2 stehen unabhängig voneinander für Substituenten aus der Gruppe {Wasserstoff, Methyl, primäre, sekundäre oder tertiäre, cyclische oder acyclische Alkyl-, Alkenyl- oder Alkinylreste mit 1 bis 20 C-Atomen, substituierte cyclische oder acyclische Alkylgruppen, Acylgruppen, Alkoxy, Aryloxy, Dialkylamino, Alkylamino, Arylamino, Diarylamino, Alkylarylamino, Imino, Sulfon, Sulfonyl, Phenyl, substituiertes Phenyl, Alkylthio, Diarylphosphino,the R 1 and R 2 radicals independently of one another represent substituents from the group {hydrogen, methyl, primary, secondary or tertiary, cyclic or acyclic alkyl, alkenyl or alkynyl radicals having 1 to 20 C atoms, substituted cyclic or acyclic alkyl groups, acyl groups , Alkoxy, aryloxy, dialkylamino, alkylamino, arylamino, diarylamino, alkylarylamino, imino, sulfone, sulfonyl, phenyl, substituted phenyl, alkylthio, diarylphosphino,
Dialkylphosphino, Alkylarylphosphino, Dialkyl- oder Diarylaminocarbonyl, Monoalkyl- oder Monoarylaminocarbonyl, Alkylarylaminocarbonyl, Alkoxyalkyl, Carboxylat, Alkylcarboxylat, CN oder CHO, Heteroaryl}, wobei zwei benachbarte Reste Ri und R2 zusammen einem aromatischen oder aliphatischen Ring entsprechen können.Dialkylphosphino, alkylarylphosphino, dialkyl- or diarylaminocarbonyl, monoalkyl- or monoarylaminocarbonyl, alkylarylaminocarbonyl, alkoxyalkyl, carboxylate, alkyl carboxylate, CN or CHO, heteroaryl}, where two adjacent radicals R 1 and R 2 together can correspond to an aromatic or aliphatic ring.
Bevorzugte Verbindungen der Formel (III), die nach dem erfindungsgemäßen Verfahren umgesetzt werden können, sind z.B. Alkohole, Thiole, Phenole, Thiophenole, Oxime, Hydrazone, bevorzugte Verbindungen der Formel (V) sind z.B. Amine, Carbonsäureamide, Sulfonamide und Hydrazine, um nur einige zu nennen.Preferred compounds of formula (III) which can be reacted by the process according to the invention are e.g. Alcohols, thiols, phenols, thiophenols, oximes, hydrazones, preferred compounds of formula (V) are e.g. Amines, carboxamides, sulfonamides and hydrazines, to name but a few.
Die so hergestellten Lithiumorganyle können mit beliebigen elektrophilen Verbindungen nach Verfahren des Standes der Technik umgesetzt werden. Durch Umsetzung mit Kohlenstoff-Elektrophilen können beispielsweise Alkylierungen zu Ethern, Thioethem, sekundären und tertiären Aminen etc. vorgenommen werden oder durch Carbonyladditionen Halbacetale und deren Folgeprodukte sowie Ester, Säureamide und Carbonylderivate hergestellt werden.The lithium organyls prepared in this way can be reacted with any electrophilic compounds by methods of the prior art. By reaction with carbon electrophiles, for example, alkylations to ethers, thioethers, secondary and tertiary amines etc. can be carried out or semi-acetals and their secondary products as well as esters, acid amides and carbonyl derivatives can be prepared by carbonyl additions.
Die Kohlenstoff-Elektrophile stammen insbesondere aus einer der folgenden Kategorien (in Klammern jeweils die Produktgruppen):The carbon electrophiles come in particular from one of the following categories (the product groups in brackets):
Aryl- oder Alkylcyanate, -isocyanate (Kohlensäurederivate) Oxiran, substituierte Oxirane (2-Hydroxyether, -amine, -thioether usw.) Aziridine, substituierte Aziridine (2-Aminoether, -amine, -thioether usw.) Imine, Aldehyde, Ketone (Halbacetale, -aminale, -thioacetale usw.) organische Halogenverbindungen, Triflate, andere Sulfonate, Sulfate (Substitutionsprodukte/Alkylierungsprodukte) Ketene (Carbonsäurederivate) Carbonsäurechloride (Carbonsäurederivate) Carbonsäureester, -thioester und -amide (Carbonsäurederivate) Kohlensäureester und Phosgenderivate (Carbonsäurederivate)Aryl or alkyl cyanates, isocyanates (carbonic acid derivatives) Oxirane, substituted oxiranes (2-hydroxyethers, amines, thioethers, etc.) aziridines, substituted aziridines (2-aminoethers, amines, thioethers, etc.) imines, aldehydes, ketones (hemiacetals, aminals, thioacetals, etc.) organic halogen compounds, triflates, other sulfonates, sulfates (substitution products / alkylation products) ketenes (carboxylic acid derivatives) carboxylic acid chlorides (carboxylic acid derivatives) carboxylic acid esters, thioesters and amides (carboxylic acid derivatives) carbonic acid esters and phosgene derivatives (carboxylic acid derivatives)
Als Halogenaliphaten oder -aromaten können alle verfügbaren oder herstellbaren Fluor-, Chlor-, Brom- oder lodverbindungen eingesetzt werden, da Lithiummetall in etherischen Lösungsmitteln mit allen Halogenaromaten und -aliphaten leicht und in fast allen Fällen mit quantitativen Ausbeuten reagiert. Bevorzugt werden hierbei Chlor- oder Bromaliphaten eingesetzt, da lodverbindungen oft teuer sind, Fluorverbindungen zur Bildung von LiF führen, das bei späteren wässrigen Aufarbeitungen als HF zu Werkstoffproblemen führen kann. In Spezialfällen können aber auch solche Halogenide vorteilhaft einsetzbar sein.All available or producible fluorine, chlorine, bromine or iodine compounds can be used as halogen aliphates or aromatics, since lithium metal in ethereal solvents reacts easily and in almost all cases with quantitative yields with all halogen aromatics and aliphates. Chlorine or bromoaliphatics are preferably used here, since iodine compounds are often expensive, fluorine compounds lead to the formation of LiF, which can lead to material problems in later aqueous workups as HF. In special cases, however, such halides can also be used advantageously.
Gemäß dem erfindungsgemäßen Verfahren werden bevorzugt solche Alkyl- oder Arylhalogenide eingesetzt, die nach der Deprotonierung zu flüssigen Alkanen oder Aromaten umgesetzt werden können. Besonders bevorzugt werden Chlor- oder Bromcyclohexan, Benzylchlorid, tert.-Butylchlorid, Chlorhexane, Chlorheptane oder Chloroctane sowie Chlor- und Brombenzole, -toluole und -xylole eingesetzt.In the process according to the invention, preference is given to using alkyl or aryl halides which can be converted to liquid alkanes or aromatics after deprotonation. Chloro- or bromocyclohexane, benzyl chloride, tert-butyl chloride, chlorhexanes, chlorheptanes or chloroctanes as well as chloro- and bromobenzenes, -toluenes and -xylenes are particularly preferably used.
Die Reaktion wird in einem geeigneten organischen Lösungsmittel durchgeführt, bevorzugt sind etherische Lösungsmittel, beispielsweise Tetrahydrofuran, Dioxan, Diethylether, Di-n-butylether, Diisopropylether, Glyme, Diglyme, Dibutyldiglyme oder Anisol, besonders bevorzugt wird Tetrahydrofuran eingesetzt.The reaction is carried out in a suitable organic solvent; ethereal solvents, for example tetrahydrofuran, dioxane, diethyl ether, di-n-butyl ether, diisopropyl ether, glyme, diglyme, dibutyl diglyme or anisole are preferred, tetrahydrofuran is particularly preferably used.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass bei recht hohen Konzentrationen an lithiumorganischen Verbindungen gearbeitet werden kann. Bevorzugt sind Konzentrationen der aliphatischen bzw. aromatischen Zwischenprodukte der Formel (II) von 5 bis 30 Gew.-%, insbesondere 12 bis 25 Gew.-%.Another advantage of the method according to the invention is that it is possible to work with organolithium compounds at very high concentrations. Concentrations of the aliphatic or aromatic intermediates of formula (II) of 5 to 30% by weight, in particular 12 to 25% by weight, are preferred.
In der bevorzugten Ausführungsform werden Halogenverbindung (R-Hal) und zu deprotonierendes Substrat (III oder IV) gleichzeitig oder als Mischung zu Lithiummetall im Ether zudosiert. Bei dieser Eintopfvariante bildet sich zunächst die Organolithiumverbindung, die dann sofort das Substrat deprotoniert. Es ist aber auch möglich (sinnvoll vor allem dann, wenn das Substrat mit metallischem Lithium Nebenreaktionen eingehen kann), zunächst durch Reaktion der Halogenverbindung und Lithium die Organolithiumverbindung in Ether zu erzeugen und erst anschließend das Substrat zuzudosieren.In the preferred embodiment, halogen compound (R-Hal) and substrate to be deprotonated (III or IV) are metered in simultaneously or as a mixture to lithium metal in the ether. In this one-pot variant, the organolithium compound first forms, which then immediately deprotonates the substrate. However, it is also possible (particularly useful if the substrate can undergo side reactions with metallic lithium) to first generate the organolithium compound in ether by reaction of the halogen compound and lithium and only then to add the substrate.
Aufgrund der hohen Reaktivität von Alkyl- und Aryllithiumverbindungen, insbesondere auch gegenüber den als Lösungsmittel eingesetzten Ethern, liegen die bevorzugten Reaktionstemperaturen im Bereich von -100 bis +70 °C, besonders bevorzugt sind Temperaturen von -80 bis -25 °C, wenn die Deprotonierung nicht gleichzeitig mit der Lithiierung, sondern in einem zweiten Schritt erfolgt. Bei der Variante gleichzeitiger Lithiierung und Deprotonierung liegt der besonders bevorzugte Temperaturbereich zwischen -40 und +40 °C.Because of the high reactivity of alkyl and aryllithium compounds, in particular also towards the ethers used as solvents, the preferred reaction temperatures are in the range from -100 to +70 ° C, and temperatures from -80 to -25 ° C are particularly preferred when deprotonation not at the same time as the lithiation, but in a second step. In the variant of simultaneous lithiation and deprotonation, the particularly preferred temperature range is between -40 and +40 ° C.
Überraschenderweise haben wir gefunden, dass bei der bevorzugten Ausführungsform als Eintopf in vielen Fällen deutlich höhere Ausbeuten und kürzere Reaktionszeiten beobachtet werden, als wenn man zunächst RLi generiert und anschließend erst das zu deprotonierende Substrat zugibt.Surprisingly, we have found that in the preferred embodiment as a one-pot, significantly higher yields and shorter reaction times are observed in many cases than when RLi is first generated and only then is the substrate to be deprotonated added.
Das Lithium kann im vorliegenden Verfahren als Dispersion, Pulver, Späne, Sand, Granalien, Stücke, Barren oder in anderer Form eingesetzt werden, wobei die Größe der Lithiumpartikel nicht qualitätsrelevant ist, sondern lediglich die Reaktionszeiten beeinflusst. Daher sind kleinere Partikelgrößen bevorzugt, beispielsweise Granalien, Pulver oder Dispersionen. Die zugesetzte Lithiummenge beträgt je Mol umzusetzenden Halogens 1 ,95 bis 2,5 mol, bevorzugt 1 ,98 bis 2,15 Mol. In allen Fällen können durch Zusatz organischer Redoxsysteme, beispielsweise Biphenyl, 4,4'-Di-tert.-butylbiphenyl oder Anthracen, deutliche Steigerungen der Reaktionsgeschwindigkeiten beobachtet werden. Der Zusatz solcher Systeme erwies sich vor allem dann als vorteilhaft, wenn die Lithiierungszeiten ohne diese Katalyse > 12 h waren.In the present process, the lithium can be used as a dispersion, powder, chips, sand, granules, pieces, bars or in some other form, the size of the lithium particles not being quality-relevant but merely influencing the reaction times. Smaller particle sizes are therefore preferred, for example granules, powders or dispersions. The amount of lithium added is 1.95 to 2.5 mol, preferably 1.98 to 2.15 mol, per mole of halogen to be reacted. In all cases, organic redox systems by adding, for example biphenyl, 4,4 '-di-tert-butylbiphenyl or anthracene, substantial increases in reaction rates are observed. The addition of such systems proved to be particularly advantageous when the lithiation times were> 12 h without this catalysis.
Für die Deprotonierung einsetzbare Substrate sind zunächst alle Sauerstoff-, Schwefel- und Stickstoff-Verbindungen, die am entsprechenden Heteroatom ein hinreichend acides Wasserstoffatom tragen, um unter den Reaktionsbedingungen deprotoniert zu werden.Substrates that can be used for deprotonation are initially all oxygen, sulfur and nitrogen compounds which carry a sufficiently acidic hydrogen atom on the corresponding heteroatom in order to be deprotonated under the reaction conditions.
Hier sind zunächst alle Alkohole, Thiole und nichttertiären Amine zu nennen. Die Basizität der gebildeten Organolithiumverbindung ist in nahezu jedem Falle ausreichend, um diese Verbindungen zu deprotonieren. Besonders leicht zu deprotonieren sind Verbindungen (III) oder (V), wenn sie über Gruppen R1 und R2 verfügen, die die entstehende negative Ladung durch mesomere und/oder induktive Effekte zu stabilisieren vermögen. Dies betrifft z.B. Carbonsäureamide, Arylamine, Phenole, Thiophenole, Naphtole sowie konjugierte Oxime, Hydrazone usw.All alcohols, thiols and non-tertiary amines are to be mentioned here first. The basicity of the organolithium compound formed is sufficient in almost every case to deprotonate these compounds. Compounds (III) or (V) are particularly easy to deprotonate if they have groups R1 and R2 which are able to stabilize the resulting negative charge through mesomeric and / or inductive effects. This affects e.g. Carboxamides, arylamines, phenols, thiophenols, naphthols and conjugated oximes, hydrazones etc.
Die erfindungsgemäß generierten Lithiumverbindungen können nach den dem Fachmann geläufigen Methoden mit elektrophilen Kohlenstoffverbindungen (Elektrophil) zu Produkten mit neu geknüpften Heteroatom-Kohlenstoff-Bindungen umgesetzt werden, die für die pharmazeutische und agrochemische Industrie von großem Interesse sind.The lithium compounds generated according to the invention can be converted using the methods familiar to the person skilled in the art with electrophilic carbon compounds (electrophilic) to give products with newly formed heteroatom-carbon bonds which are of great interest for the pharmaceutical and agrochemical industry.
Die Aufarbeitungen geschehen im allgemeinen wässrig, wobei entweder Wasser bzw. wässrige Mineralsäuren zudosiert werden oder die Reaktionsmischung auf Wasser bzw. wässrige Mineralsäuren dosiert wird. Zur Erzielung bester Ausbeuten wird hier jeweils der pH-Wert des zu isolierenden Produkts eingestellt. Die Reaktionsprodukte werden beispielsweise durch Extraktion und Eindampfen der organischen Phasen gewonnen, alternativ können auch aus der Hydrolysemischung die organischen Lösungsmittel abdestilliert und das dann ausfallende Produkt durch Filtration gewonnen werden. Die Reinheiten der Produkte aus den erfindungsgemäßen Verfahren sind im allgemeinen hoch, für Spezialanwendungen (Pharmavorprodukte) kann allerdings noch ein weiterer Aufreinigungsschritt, beispielsweise durch Umkristallisation unter Zusatz geringer Mengen Aktivkohle, erforderlich werden. Die Ausbeuten an den Reaktionsprodukten betragen zwischen 70 und 99 %, typische Ausbeuten sind insbesondere 80 bis 95 %.The workups are generally aqueous, with either water or aqueous mineral acids being metered in or the reaction mixture being metered into water or aqueous mineral acids. To achieve the best yields, the pH of the product to be isolated is adjusted here. The reaction products are obtained, for example, by extraction and evaporation of the organic phases, alternatively the organic solvents can also be distilled off from the hydrolysis mixture and the product which then precipitates can be obtained by filtration. The purities of the products from the processes according to the invention are generally high, but a further purification step, for example by recrystallization with the addition of small amounts of activated carbon, may be required for special applications (pharmaceutical precursors). The yields of the reaction products are between 70 and 99%, typical yields are in particular 80 to 95%.
Das erfindungsgemäße Verfahren eröffnet eine sehr ökonomische Methode, um die Transformation von acidem Wasserstoff in beliebige Reste auf einem hochselektiven, wirtschaftlichen Weg zu bewerkstelligen.The method according to the invention opens up a very economical method for the transformation of acidic hydrogen into any residues in a highly selective, economical way.
Das erfindungsgemäße Verfahren soll durch die nachfolgenden Beispiele erläutert werden, ohne die Erfindung darauf zu beschränken. The process according to the invention is to be illustrated by the following examples, without restricting the invention thereto.
Beispiel 1example 1
Herstellung von 2-Furylmethyl-propargylether aus Furylmethanol undProduction of 2-furylmethyl propargyl ether from furylmethanol and
Propargylbromid (zweischrittige Durchführung)Propargyl bromide (two-step procedure)
Eine Suspension von 1 ,45 g (0,210 mol) Lithium-Granalien in 170 mlA suspension of 1.45 g (0.210 mol) lithium granules in 170 ml
Tetrahydrofuran wird auf -35°C gekühlt und langsam mit 13,29 g (0,105 mol) 4-Chlortoluol versetzt. Man rührt bei dieser Temperatur, bis der Umsatz des 4-Chlortoluols mindestens 97 % a/a It. GC beträgt (ca. 8 h). Man gibt 9,81 g (0,100 mol) 2-Furylmethanol zu, lässt auf Raumtemperatur erwärmen, ergänzt 14,28 g (0,120 mol) Propargylbromid und kocht 2 h unter Rückfluss. NachTetrahydrofuran is cooled to -35 ° C and 13.29 g (0.105 mol) of 4-chlorotoluene are slowly added. The mixture is stirred at this temperature until the conversion of the 4-chlorotoluene is at least 97% a / a It. GC (approx. 8 h). 9.81 g (0.100 mol) of 2-furylmethanol are added, the mixture is allowed to warm to room temperature, 14.28 g (0.120 mol) of propargyl bromide are added and the mixture is boiled under reflux for 2 h. To
Abkühlung wird das Reaktionsgemisch mit 100 ml 2 N Salzsäure geschüttelt und die Phasen getrennt. Die wässrige Phase wird zweimal mit je 50 ml Toluol reextrahiert, die vereinigten organischen Phasen eingeengt und das Rohprodukt im Vakuum bei max. 70°C über eine Vigreux-Kolonne destilliert. Man erhält 12,66 g (0,093 mol, 93 %) 2-Prop-2-ylyloxymethyl-furan in einer HPLC-Reinheit von > 97 % a/a.Cooling, the reaction mixture is shaken with 100 ml of 2N hydrochloric acid and the phases are separated. The aqueous phase is re-extracted twice with 50 ml of toluene, the combined organic phases are concentrated and the crude product in vacuo at max. Distilled 70 ° C over a Vigreux column. 12.66 g (0.093 mol, 93%) of 2-prop-2-ylyloxymethyl-furan are obtained in an HPLC purity of> 97% a / a.
Beispiel 2Example 2
Herstellung von N'-Benzyliden-N-phenylhydrazincarbonsäuremethylester (Acylierung von Benzaldehyd-phenylhydrazon, Eintopf-Variante)Preparation of N'-benzylidene-N-phenylhydrazinecarboxylic acid methyl ester (acylation of benzaldehyde-phenylhydrazone, one-pot variant)
Eine Suspension von 1 ,45 g (0,210 mol) Lithium-Granalien in 150 ml Tetrahydrofuran und 19,63 g (0,100 mol) Benzaldehyd-phenylhydrazon wird bei -40°C mit 15,61 g (0,105 mol) Octylchlorid versetzt und bei -30°C gerührt, bis der Umsatz des Octylchlorids It. GC bei min. 97 % a/a liegt (ca. 8 h). Dann werden 11 ,34 g (0,120 mol) Chlorameisensäuremethylester zugetropft und das Reaktionsgemisch 30 min bei 0°C gerührt. Das Reaktionsgemisch wird mit 100 ml Wasser hydrolysiert, die Phasen getrennt und die wässrige Phase dreimal mit je 50 ml Toluol extrahiert. Die vereinigten organischen Phasen werden eingeengt und das Rohprodukt aus Ethanol umkristallisiert. Man erhält das Produkt in Form farbloser, blättchenartiger Kristalle mit einer Ausbeute von 20,85 g (0,082 mol, 82 %) und einer HPLC-Reinheit von > 98,5 % a/a. Beispiel 3A suspension of 1.45 g (0.210 mol) of lithium granules in 150 ml of tetrahydrofuran and 19.63 g (0.100 mol) of benzaldehyde phenylhydrazone is mixed with 15.61 g (0.105 mol) of octyl chloride at -40 ° C. and at - 30 ° C stirred until the conversion of the octyl chloride It. GC at min. 97% a / a is (approx. 8 h). Then 11.34 g (0.120 mol) of methyl chloroformate are added dropwise and the reaction mixture is stirred at 0 ° C. for 30 minutes. The reaction mixture is hydrolyzed with 100 ml of water, the phases are separated and the aqueous phase is extracted three times with 50 ml of toluene. The combined organic phases are concentrated and the crude product is recrystallized from ethanol. The product is obtained in the form of colorless, flake-like crystals with a yield of 20.85 g (0.082 mol, 82%) and an HPLC purity of> 98.5% a / a. Example 3
Herstellung von N,N-Diphenyl-carbaminsäuremethylester aus DiphenylaminProduction of N, N-diphenyl-carbamic acid methyl ester from diphenylamine
(Eintopf-Variante, katalysierte Lithiierung)(One-pot version, catalyzed lithiation)
16,92 g (0,100 mol) Diphenylamin, 25 mg Biphenyl als Redox-Katalysator und 1 ,45 g (0,105 mol) Lithium-Granalien werden in 150 ml Tetrahydrofuran gegeben und die entstehende Suspension auf -25°C gekühlt. Es werden über 60 min 13,29 g (0,105 mol) 4-Chlortoluol zugetropft. Man rührt, bis die GC- Umsatzkontrolle einen Umsatz von > 97 % a/a anzeigt (ca. 4 h), und versetzt das Reaktionsgemisch dann tropfenweise mit 11 ,34 g (0,120 mol)16.92 g (0.100 mol) of diphenylamine, 25 mg of biphenyl as redox catalyst and 1.45 g (0.105 mol) of lithium granules are added to 150 ml of tetrahydrofuran and the resulting suspension is cooled to -25 ° C. 13.29 g (0.105 mol) of 4-chlorotoluene are added dropwise over 60 min. The mixture is stirred until the GC conversion control indicates a conversion of> 97% a / a (approx. 4 h), and 11.34 g (0.120 mol) are then added dropwise to the reaction mixture.
Chlorameisensäuremethylester. Man erwärmt das Reaktionsgemisch auf Raumtemperatur, destilliert das Lösungsmittel und nicht umgesetzten Chlorameisensäureester ab und fraktioniert den Rückstand über eine kurze Kolonne. Man erhält 19,77 g (0,087 mol, 87 %) des N,N-Diphenyl- carbaminsäuremethylesters.Methyl chloroformate. The reaction mixture is warmed to room temperature, the solvent and unreacted chloroformate are distilled off and the residue is fractionated through a short column. 19.77 g (0.087 mol, 87%) of the N, N-diphenylcarbamic acid methyl ester are obtained.
Beispiel 4Example 4
Herstellung von Dihexylthioether aus Hexanthiol und BromhexanProduction of dihexyl thioether from hexanethiol and bromhexane
1 ,45 g (0,105 mol) Lithium-Granalien werden in einer Lösung von 50 mg Biphenyl in 150 ml Tetrahydrofuran suspendiert. Bei -30°C werden 13,29 g (0,105 mol) des technischen Isomerengemisches der Monochlortoluole zugetropft und das Reaktionsgemisch bei dieser Temperatur gerührt, bis die Lithiumgranalien weitgehend aufgelöst sind (ca. 6 h). Dann werden 11 ,82 g (0,100 mol) Hexanthiol zugetropft, das Reaktionsgemisch auf 0°C erwärmt, 16,51 g (0,100 mol)1.45 g (0.105 mol) of lithium granules are suspended in a solution of 50 mg of biphenyl in 150 ml of tetrahydrofuran. 13.29 g (0.105 mol) of the technical isomer mixture of the monochlorotoluenes are added dropwise at -30 ° C. and the reaction mixture is stirred at this temperature until the lithium granules have largely dissolved (about 6 h). Then 11.82 g (0.100 mol) of hexanethiol are added dropwise, the reaction mixture is warmed to 0 ° C., 16.51 g (0.100 mol)
Bromhexan zugegeben und unter Rückfluss gekocht, bis die GC-Umsatzkontrolle vollständigen Umsatz anzeigt. Das abgekühlte Reaktionsgemisch wird mit 50 ml Wasser extrahiert, die wässrige Phase mit 50 ml Toluol reextrahiert und die vereinigten organischen Phasen eingeengt. Der Rückstand wird im Vakuum destilliert. Man erhält 17,81 g (0,085 mol, 85 %) des Dihexylthioethers mit einer GC-Reinheit von > 98 %. Beispiel 5Bromohexane added and boiled under reflux until GC conversion control shows complete conversion. The cooled reaction mixture is extracted with 50 ml of water, the aqueous phase is re-extracted with 50 ml of toluene and the combined organic phases are concentrated. The residue is distilled in vacuo. 17.81 g (0.085 mol, 85%) of the dihexylthioether are obtained with a GC purity of> 98%. Example 5
Herstellung von N-Benzyl-N-benzolsulfonylcarbaminsäurebenzylester ausProduction of benzyl N-benzyl-N-benzenesulfonylcarbamate from
N-BenzylbenzolsulfonamidN-Benzylbenzolsulfonamid
Eine Suspension von 1 ,45 g (0,210 mol) Lithium-Granalien in 150 mlA suspension of 1.45 g (0.210 mol) lithium granules in 150 ml
Tetrahydrofuran und 24,73 g (0,100 mol) N-Benzyl-benzoIsulfonamid wird bei -40°C tropfenweise mit 13,29 g (0,105 mol) 4-Chlortoluol versetzt und bei dieser Temperatur gerührt, bis der Umsatz des Tolylchlorids It. GC bei min. 97 % a/a liegt (ca. 6 h). Dann werden 11 ,34 g (0,120 mol) Chlorameisensäurebenzylester zugetropft und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Das Reaktionsgemisch wird mit 100 ml Wasser hydrolysiert, die Phasen getrennt und die wässrige Phase mit 100 ml Toluol reextrahiert. Die vereinigten organischen Phasen werden eingeengt und der Rückstand flashchromatographisch gereinigt. Man erhält 26,30 g (0,069 mol, 69 %) des Produkts mit einer HPLC-Reinheit von > 96 %. Tetrahydrofuran and 24.73 g (0.100 mol) of N-benzylbenzoisulfonamide are added dropwise at -40 ° C. with 13.29 g (0.105 mol) of 4-chlorotoluene and stirred at this temperature until the conversion of the tolyl chloride according to GC minute 97% a / a lies (approx. 6 h). Then 11.34 g (0.120 mol) of benzyl chloroformate are added dropwise and the reaction mixture is stirred overnight at room temperature. The reaction mixture is hydrolyzed with 100 ml of water, the phases are separated and the aqueous phase is re-extracted with 100 ml of toluene. The combined organic phases are concentrated and the residue is purified by flash chromatography. 26.30 g (0.069 mol, 69%) of the product with an HPLC purity of> 96% are obtained.

Claims

Patentansprüche: claims:
1. Verfahren zur Knüpfung von Heteroatom-Kohlenstoff-Bindungen, wobei zunächst durch Umsetzung von aliphatischen oder aromatischen Halogenverbindungen (I) mit Lithiummetall eine Lithiumverbindung (II) generiert wird, die dann zur Deprotonierung der Verbindungen (III) oder (V) eingesetzt wird, und wobei die daraus resultierenden Lithiumsalze der Formeln (IV) oder (VI) abschließend mit geeigneten Kohlenstoff-Elektrophilen untere Knüpfung der Heteroatom-Kohlenstoff-Bindung und Bildung der Produkte (VIII) oder (VIII) zur Umsetzung gebracht werden (Gleichung I).1. A process for forming heteroatom-carbon bonds, a lithium compound (II) initially being generated by reacting aliphatic or aromatic halogen compounds (I) with lithium metal, which is then used to deprotonate the compounds (III) or (V), and the resulting lithium salts of the formulas (IV) or (VI) are finally reacted with suitable carbon electrophiles by forming the heteroatom-carbon bond and forming the products (VIII) or (VIII) (equation I).
Schritt 1 : Erzeugung der BaseStep 1: creating the base
Lithium R-Hal *- R— LiLithium R-Hal * - R— Li
I III II
Schritt 2: Deprotonierung des SubstratsStep 2: deprotonation of the substrate
R— Li + R1 — XrH ^ R1 — X Li II III IVR - Li + R1 - X r H ^ R1 - X Li II III IV
R1 R1R1 R1
\ \\ \
R— Li + X -j2 — H ■ ■ > - X Λ2 — L l_ilR— Li + X -j2 - H ■ ■> - X Λ 2 - L l_il
R2 R2R2 R2
II V VIII V VI
Schritt 3: Umsetzung I mit einem ElektrophilStep 3: Implementation I with an electrophile
Elektrophilelectrophile
R1— X— Li R1 — XrEIR1 - X - Li R1 - X r EI
IV VIIIV VII
R1 R1 X— Li Elektrophil X— ElR1 R1 X— Li electrophile X— El
R2 R2R2 R2
VI VIIIVI VIII
(GLEICHUNG I) dabei steht R für Methyl, primäre, sekundäre oder tertiäre verzweigte und unverzweigte Alkylreste mit 1 bis 20 C-Atomen, Phenyl-, Aryl- und Heteroarylreste, mit einem Rest aus der Gruppe {Methyl, primäres, sekundäres oder tertiäres Alkyl, Phenyl, substituiertes Phenyl, Aryl, Heteroaryl, Alkoxy, Dialkylamino, Alkylthio} substituiertes Alkyl, substituiertes oder unsubstituiertes Cycloalkyl mit 3 bis 8 C-Atomen;(EQUATION I) R stands for methyl, primary, secondary or tertiary branched and unbranched alkyl radicals having 1 to 20 carbon atoms, phenyl, aryl and heteroaryl radicals, substituted by a radical from the group {methyl, primary, secondary or tertiary alkyl, phenyl Phenyl, aryl, heteroaryl, alkoxy, dialkylamino, alkylthio} substituted alkyl, substituted or unsubstituted cycloalkyl having 3 to 8 C atoms;
Hai = Fluor, Chlor, Brom oder lod,Shark = fluorine, chlorine, bromine or iodine,
Xi steht für einen durch eine Einfachbindung an R1 gebundenen Sauerstoff oder Schwefel oder einen durch eine Doppelbindung an R1 gebundenen sp2- hybridisierten Stickstoff, und X2 für einen sp3-hybridisierten Stickstoff;Xi stands for an oxygen or sulfur bound by a single bond to R1 or an sp2-hybridized nitrogen bound by a double bond to R1, and X 2 for an sp3-hybridized nitrogen;
die Reste Ri und R2 stehen unabhängig voneinander für Substituenten aus der Gruppe {Wasserstoff, Methyl, primäre, sekundäre oder tertiäre, cyclische oder acyclische Alkyl-, Alkenyl- oder Alkinylreste mit 1 bis 20 C-Atomen, substituierte cyclische oder acyclische Alkylgruppen, Acylgruppen, Alkoxy, Aryloxy, Dialkylamino, Alkylamino, Arylamino, Diarylamino, Alkylarylamino, Imino, Sulfon, Sulfonyl, Phenyl, substituiertes Phenyl, Alkylthio, Diarylphosphino, Dialkylphosphino, Alkylarylphosphino, Dialkyl- oder Diarylaminocarbonyl,the R 1 and R 2 radicals independently of one another represent substituents from the group {hydrogen, methyl, primary, secondary or tertiary, cyclic or acyclic alkyl, alkenyl or alkynyl radicals having 1 to 20 C atoms, substituted cyclic or acyclic alkyl groups, acyl groups , Alkoxy, aryloxy, dialkylamino, alkylamino, arylamino, diarylamino, alkylarylamino, imino, sulfone, sulfonyl, phenyl, substituted phenyl, alkylthio, diarylphosphino, dialkylphosphino, alkylarylphosphino, dialkyl- or diarylaminocarbonyl,
Monoalkyl- oder Monoarylaminocarbonyl, Alkylarylaminocarbonyl, Alkoxyalkyl, Carboxylat, Alkylcarboxylat, CN oder CHO, Heteroaryl}, wobei zwei benachbarte Reste Ri und R2 zusammen einem aromatischen oder aliphatischen Ring entsprechen können.Monoalkyl or monoarylaminocarbonyl, alkylarylaminocarbonyl, alkoxyalkyl, carboxylate, alkyl carboxylate, CN or CHO, heteroaryl}, where two adjacent radicals R 1 and R 2 together can correspond to an aromatic or aliphatic ring.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Verbindungen der Formel (III), vorzugsweise Alkohole, Thiole, Phenole, Thiophenole, Oxime, Hydrazone, und als Verbindungen der Formel (V) vorzugsweise Amine, Carbonsäureamide, Sulfonamide und Hydrazine, umgesetzt werden.2. The method according to claim 1, characterized in that as compounds of the formula (III), preferably alcohols, thiols, phenols, thiophenols, oximes, hydrazones, and as compounds of the formula (V) preferably amines, carboxamides, sulfonamides and hydrazines become.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Elektrophil eine Verbindung aus folgender Gruppe eingesetzt wird: Aryl- oder Alkylcyanate, -isocyanate, Oxiran, substituierte Oxirane, Aziridine, substituierte Aziridine, Imine, Aldehyde, Ketone, organische Halogenverbindungen, Triflate, andere Sulfonate, Sulfate, Ketene, Carbonsäurechloride, Carbonsäureester, -thioester und -amide, Kohlensäureester und Phosgenderivate.3. The method according to claim 1 or 2, characterized in that a compound from the following group is used as an electrophile: or Alkyl cyanates, isocyanates, oxirane, substituted oxiranes, aziridines, substituted aziridines, imines, aldehydes, ketones, organic halogen compounds, triflates, other sulfonates, sulfates, ketenes, carboxylic acid chlorides, carboxylic acid esters, thioesters and amides, carbonic acid esters and phosgene derivatives.
4. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Reaktion in einem organischen etherischen Lösungsmittel durchgeführt wird.4. The method according to at least one of the preceding claims, characterized in that the reaction is carried out in an organic ethereal solvent.
5. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Reaktionstemperatur im Bereich von -100 bis +70°C liegt.5. The method according to at least one of the preceding claims, characterized in that the reaction temperature is in the range of -100 to + 70 ° C.
6. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Konzentrationen der aliphatischen oder aromatischen6. The method according to at least one of the preceding claims, characterized in that the concentrations of the aliphatic or aromatic
Zwischenprodukte der Formel (II) im Bereich von 5 bis 30 Gew. % liegt.Intermediates of formula (II) is in the range of 5 to 30% by weight.
7. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zugesetzte Lithiummenge je Mol umgesetztes Halogen 1 ,95 bis 2,5 Mol beträgt.7. The method according to at least one of the preceding claims, characterized in that the amount of lithium added per mole of converted halogen is 1.95 to 2.5 moles.
8. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dem Reaktionsgemisch organische Redoxsysteme zugesetzt werden. 8. The method according to at least one of the preceding claims, characterized in that organic redox systems are added to the reaction mixture.
EP03794905A 2002-08-31 2003-08-21 Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms Withdrawn EP1537125A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240260A DE10240260A1 (en) 2002-08-31 2002-08-31 Formation of heteroatom-carbon bonds, giving products of interest for the pharmaceutical and agrochemical industries, comprises using an organolithium compound prepared by reacting an aliphatic or aromatic halide with lithium
DE10240260 2002-08-31
PCT/EP2003/009250 WO2004024737A1 (en) 2002-08-31 2003-08-21 Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms

Publications (1)

Publication Number Publication Date
EP1537125A1 true EP1537125A1 (en) 2005-06-08

Family

ID=31502217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03794905A Withdrawn EP1537125A1 (en) 2002-08-31 2003-08-21 Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms

Country Status (5)

Country Link
US (1) US20050258553A1 (en)
EP (1) EP1537125A1 (en)
JP (1) JP2005537331A (en)
DE (1) DE10240260A1 (en)
WO (1) WO2004024737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432188B (en) * 2006-05-02 2012-08-15 西门子公司 Method for operation of a marine-vessel propulsion system with waste-heat recovery, as well as a marine-vessel propulsion system with waste-heat recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739485B2 (en) * 1987-05-01 1995-05-01 ダイセル化学工業株式会社 New block copolyether glycol manufacturing method
DE10150610A1 (en) * 2001-10-12 2003-04-30 Clariant Gmbh Process for organometallic production of organic intermediates using amide bases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004024737A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432188B (en) * 2006-05-02 2012-08-15 西门子公司 Method for operation of a marine-vessel propulsion system with waste-heat recovery, as well as a marine-vessel propulsion system with waste-heat recovery

Also Published As

Publication number Publication date
US20050258553A1 (en) 2005-11-24
JP2005537331A (en) 2005-12-08
DE10240260A1 (en) 2004-03-11
WO2004024737A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
WO2002010178A1 (en) Adamantyl groups containing phosphane ligands, the production and use thereof in catalytical reactions
EP0670303B1 (en) Process for the preparation of aliphatic imines
DE10240262A1 (en) Production of aryllithium-electrophile reaction products of interest for the pharmaceutical and agrochemical industries comprises using an organolithium compound prepared by reacting an aryl halide with lithium
EP1266904B1 (en) Improved process for preparing fluorinated aromatic compounds
EP1988095B1 (en) Method for manufacturing aminoaryl or heteroaryl boronic acid and their derivatives
EP1436300B1 (en) Method for producing, via organometallic compounds, organic intermediate products
DE10150614A1 (en) Process for organometallic production of organic intermediates via halogen-metal exchange reactions
WO2004024663A1 (en) Method for the organometallic production of organic intermediate products by halogen-metal exchange reactions
EP1537125A1 (en) Method for the organometallic production of organic intermediate products comprising carbon-heteroatom bonds achieved by the deprotonation of heteroatoms
WO2020049072A1 (en) Method for producing dialkylamido element compounds
KR20020001905A (en) The synthetic method of glycidylether without solvent and water
DE10322843A1 (en) Process for the preparation of aniline boronic acids and their derivatives
WO2011113925A2 (en) Carbonylation of organic zinc compounds
EP1087931A1 (en) Method for symmetrically and asymmetrically disubstituting carboxylic acid amides with organotitanates and grignard reagents
DE2629945A1 (en) PROCESS FOR MANUFACTURING AMINES AND THE INTERMEDIATE PRODUCTS USED THEREOF
DE2064301A1 (en) Process for the production of Diarvl connections
DE1768182C3 (en) Process for the production of aromatic isothiocyanates
WO2003033505A1 (en) Method for organometallic production of organic intermediate products via lithium amide bases
DE19933833A1 (en) Process for the production of Grignard reagents and new Grignard reagents
DE19838666B4 (en) Heterogeneous process for the preparation of enamines, imines, indoles and diamines from alkynes and further processing of the products obtained by catalytic hydrogenation
DE69714404T2 (en) METHOD FOR PRODUCING BENZYL METAL COMPOUNDS AND METHOD FOR PRODUCING 4-PHENYL-1-BUTEN USING THEREOF
EP1619188A1 (en) Process for the preparation of monoaryl piperazines
DE19632643C1 (en) Catalyzed coupling of aryl magnesium halides and bromoarylcarboxylic acid compounds to produce biphenylcarboxylic acids
DE19827166A1 (en) Process for the catalytic disubstitution of carboxamides with at least one Grignard reagent
DE19751427C2 (en) 3-chloro-2,6-difluorobenzoic acid and process for the preparation of 3,5-difluoroaniline

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCHIMICA GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FORSTINGER, KLAUS

Inventor name: ERBES, MICHAEL

Inventor name: LEHNEMANN, BERND

Inventor name: MEUDT, ANDREAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090511