EP1532361A1 - Circuit d'air d'admission pour moteur thermique dote d'un turbocompresseur - Google Patents

Circuit d'air d'admission pour moteur thermique dote d'un turbocompresseur

Info

Publication number
EP1532361A1
EP1532361A1 EP03756511A EP03756511A EP1532361A1 EP 1532361 A1 EP1532361 A1 EP 1532361A1 EP 03756511 A EP03756511 A EP 03756511A EP 03756511 A EP03756511 A EP 03756511A EP 1532361 A1 EP1532361 A1 EP 1532361A1
Authority
EP
European Patent Office
Prior art keywords
air
main
intake
engine
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP03756511A
Other languages
German (de)
English (en)
Inventor
Michel Potier
Bertrand Gessier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Thermique Moteur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur SA filed Critical Valeo Thermique Moteur SA
Publication of EP1532361A1 publication Critical patent/EP1532361A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10288Air intakes combined with another engine part, e.g. cylinder head cover or being cast in one piece with the exhaust manifold, cylinder head or engine block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of turbocharger heat engines, in particular for motor vehicles.
  • an intake air circuit 'for a heat engine provided with a turbocharger of the type comprising a main air duct connecting the turbocharger to the engine intake and a main cooler mounted on the duct main air to cool the charge air sent to the engine intake.
  • turbocharger driven by engine exhaust gases, produces pressurized air, also called “charge air", which is sent to the engine intake.
  • pressurized air also called “charge air”
  • a turbocharger heat engine is supplied by pressurized air, unlike the conventional heat engine which is supplied by air at atmospheric pressure.
  • RAS charge air cooler
  • the object of the invention is in particular to overcome this drawback.
  • the invention provides an intake air circuit of the type defined in the introduction, in which the main charge air cooler is installed on the engine, while a secondary exchanger for charge air is placed upstream of the main cooler on the main air duct.
  • the charge air is first precooled by the secondary exchanger and then cooled by the main cooler which is installed on the engine.
  • the main cooler is therefore designed each time to adapt to the engine that receives it, while the secondary exchanger can be composed of standard elements.
  • the main charge air cooler is located in an air intake plenum (also called air intake chamber) that the engine comprises.
  • an air intake plenum also called air intake chamber
  • the main air cooler to be integrated into the plenum and to limit the latter's dimensions while simplifying the circulation circuit and limiting the associated connections.
  • the intake air circuit comprises a bypass duct connecting directly the intake of the engine to the main air duct, at a point located downstream of the secondary exchanger and upstream of the main cooler, as well as selection means mounted at the intersection of the main air duct and the bypass duct to send the charge air from the secondary exchanger, either to the main cooler or directly to the engine intake.
  • bypass duct it is possible to send directly to the engine intake the charge air from the turbocharger and the secondary exchanger, bypassing the main cooler.
  • the selection means direct the supercharged air, already precooled, to the main cooler to produce a flow of cooled air which is sent to the intake of the engine.
  • intake generally designates the intake manifold which receives the charge air and which directs it towards the cylinders of the engine.
  • the main air duct comprises an adjustment valve used to control the flow rate of charge air sent to the engine intake.
  • the selection means comprise an upstream valve placed downstream of the secondary exchanger and upstream of the main cooler, to selectively direct the charge air either to the main cooler or to the bypass duct ,.
  • the invention allows different implementations of the main charge air cooler on the engine.
  • the main charge air cooler is located in the air intake plenum (air intake chamber) that the engine comprises.
  • the main cooler can be formed in part from a material with lower thermal resistance than the secondary charge air exchanger.
  • the main charge air cooler comprises a plastic casing, for example polyamide
  • the secondary charge air exchanger comprises a metal casing, for example alloy aluminum or stainless steel.
  • the secondary charge air exchanger is located at a distance from the main cooler.
  • the secondary exchanger makes it possible to achieve sufficient overall performance due to the precooling action that it performs.
  • FIG. 1 shows an air intake circuit according to the invention in a first mode of operation where the precooled charge air is sent directly to the intake of the " engine;
  • FIG. 2 shows the intake air circuit of Figure 1 in a second mode of operation where the precooled charge air is sent to the main charge air cooler;
  • FIG. 3 is an overall perspective view of an engine and a circuit according to Figures 1 and 2, without one heat exchanger for cooling the recirculated exhaust gas;
  • Figure 4 and Figure 5 are respectively a top view and a side view corresponding to Figure 3;
  • Figure 6 is a detail of Figure 5 showing the structure of the selection valve.
  • FIG. 1 represents a heat engine 10, in particular a diesel engine, intended for a motor vehicle, in particular a passenger vehicle.
  • the engine 10 includes an intake manifold 12 (hereinafter called “intake” for simplicity) and an exhaust manifold 14 (hereinafter called “exhaust” for simplicity).
  • the engine 10 is supplied by an intake air circuit comprising a main air duct 16 connecting a turbocharger 18 to the intake 12 of the engine.
  • the turbocharger 18 is driven by the exhaust gases from the engine and is supplied by outside air. It produces a pressurized air flow, called "charge air", which is sent to the engine inlet 12.
  • the main air duct 16 supplies a main cooler 20 for charge air (called "RAS" for short) which is installed on the engine 10, as will be seen in detail below.
  • RAS charge air
  • the function of this cooler is to cool the charge air by heat exchange with the liquid of a secondary cooling circuit (not shown). It is therefore an air / water type heat exchanger.
  • the exhaust 14 of the engine is connected to an exhaust duct 22 to which a valve 24 is connected which allows part of the exhaust gases to be recirculated to the engine by means of a duct 26.
  • the intake air circuit further comprises a secondary exchanger 36 for the charge air, which is placed upstream of the main cooler 20.
  • This secondary exchanger also called a “precooler”
  • the secondary exchanger 36 is an air / water type exchanger. It is usually traversed by the engine coolant. This exchanger can also perform the function of heating the intake air to reduce noise and facilitate the regeneration of the particle trap (not shown).
  • a bypass duct 32 directly connects the main air duct 16, at a point located downstream of the secondary exchanger 36 and upstream of the main cooler 20, at the intake 12 of the engine .
  • a selection valve 34 (also called “upstream valve”) is placed between the secondary exchanger 36 and the main cooler 20, at the intersection of the main air duct 16 and the bypass duct 32.
  • the selection valve 34 is also placed at the intersection of a duct 33 leading to the main cooler 20. This selection valve has the function of directing the charge air, which has been precooled by the secondary exchanger 36, ie towards the main cooler 20 via the duct 33, or directly to the intake 12 of the engine via the bypass duct 32.
  • the selection valve 34 is advantageously a three-way type valve actuated by a micromotor and controlled by an appropriate control circuit which takes account of the operating parameters of the heat engine.
  • the main cooler 20 is installed on the engine 10, and more particularly in the air intake plenum 40
  • the secondary exchanger 36 is in turn placed at a distance from the main cooler 20. This makes it possible to offer maximum volume to the main cooler and therefore to obtain optimal performance from
  • the main cooler 20 receives already precooled charge air, it can be formed in part from a material with lower thermal resistance than the secondary exchanger 36.
  • the main cooler 20 comprises a plastic casing, such as polyamide (in particular PA6.6), while the secondary exchanger 36 comprises a metallic casing, advantageously made of aluminum alloy or, if the temperature conditions require it, steel stainless.
  • a closing flap 42 is installed in the plenum 40, downstream of the main cooler 20, to prevent the charge air sent to the intake 12 of the engine from flowing back to the main cooler.
  • the flap can be, for example of the register type, which makes it possible to limit its size.
  • An actuator 44 is used to control the shutter.
  • the device of the invention operates as follows.
  • the selection valve 34 directs the precooled charge air, which comes from the secondary exchanger 36, bypassing the main cooler 20.
  • This precooled charge air is directed directly to the intake of engine 12, together with a portion of the recirculated exhaust gases, through the adjustment valve 24 which thus makes it possible to control the recirculation flow rate of the exhaust gases.
  • the flap 42 is closed.
  • the selection valve 34 directs the precooled charge air to the main cooler 20 located in the plenum 40.
  • the valve 34 directs the precooled charge air to the main cooler 20 located in the plenum 40. On leaving the main cooler 20, the charge air passes through the flap 42 which is open, to gain admission 12 of the motor.
  • the shutter 42 can possibly take intermediate positions between the closed position of FIG. 1 and the open position of FIG. 2.
  • the intake air circuit of the invention thus makes it possible to offer numerous installation possibilities for the main cooler, due to its installation on the engine.
  • the charge air is cooled beforehand, which improves engine performance. It also offers the advantage of being able to send the precooled charge air either directly to the engine intake or via the main cooler.
  • the first operating mode makes it possible to limit the volume of air contained in the exchangers and the air ducts, and to improve the response time of the engine, in particular to acceleration.
  • the control elements in particular the selection means and the shutter controls, are controlled by an appropriate control circuit (not shown). This circuit takes into account the operating parameters of the heat engine, in particular the injection parameters, the engine load and the flow rate of the recirculated gases.
  • FIG. 3 to 5 are different views of an engine and a circuit according to Figures 1 and 2, the heat exchanger 30 for cooling the recirculated exhaust gas is not shown.
  • the elements common with Figures 1 and 2 are designated by the same reference numerals. These figures show in particular the layout of the elements of the circuit with respect to the motor 10.
  • FIG. 6 shows how the selection valve 34 makes it possible to direct the charge air either towards the duct 32 or towards the duct 33.
  • the invention finds an application to the engines of motor vehicles, and in particular to passenger vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Abstract

L’invention concerne un circuit d’air d’admission pour un moteur thermique (10) comprenant un conduit d’air principal (16) reliant un turbocompresseur (18) à l’admission (12) du moteur et un refroidisseur principal (20) monté sur le conduit d’air principal pour refroidir l’air de suralimentation envoyé à l’admission du moteur. Le refroidisseur principal (20) d’air de suralimentation est implanté sur le moteur (10), de préférence dans un plenum d’admission d’air (40) que comporte le moteur, tandis qu’un échangeur secondaire (36) pour l’air de suralimentation est placé en amont du refroidisseur principal (20) sur le conduit d’air principal (16). Application aux moteurs diesels de véhicules automobiles.

Description

Circuit d'air d'admission pour moteur thermique doté d'un turbocompresseur
L'invention se rapporte au domaine des moteurs thermiques à turbocompresseur, en particulier pour véhicules automobiles.
Elle concerne plus particulièrement un circuit d'air d'admission ' pour un moteur thermique doté d'un turbocompresseur, du type comprenant un conduit d'air principal reliant le turbocompresseur à l'admission du moteur et un refroidisseur principal monté sur le conduit d'air principal pour refroidir l'air de suralimentation envoyé à l'admission du moteur.
Les moteurs thermiques utilisés sur les véhicules automobiles, et en particulier les moteurs diesels, sont le plus souvent équipés d'un turbocompresseur pour améliorer les performances du moteur.
Le turbocompresseur, entraîné par les gaz d'échappement du moteur, produit de l'air sous pression, encore appelé "air de suralimentation", qui est envoyé à l'admission du moteur. Ainsi, un moteur thermique à turbocompresseur est alimenté par de l'air sous pression, à la différence du moteur thermique classique qui est alimenté par de l'air à pression atmosphérique .
Cependant, comme l'air issu du turbocompresseur se trouve à une température élevée, il est nécessaire de le refroidir avant de l'envoyer vers l'admission du moteur, pour que ce dernier puisse fonctionner dans des conditions optimales.
C'est la raison pour laquelle on utilise un refroidisseur d'air de suralimentation (en abrégé RAS) qui est placé en sortie du turbocompres-seur pour abaisser la température de l'air de suralimentation.
Il est connu pour cela d'utiliser un refroidisseur principal du type air/air qui refroidit l'air de suralimentation par échange thermique avec un flux d'air extérieur.
Il est connu aussi de disposer, en amont du refroidisseur principal du type air/air, un échangeur secondaire qui est refroidi à l'eau, que l'on appelle aussi "precooler" (terme anglo-saxon) .
On sait aussi que les moteurs diesels sont habituellement équipés d'un piège à particules pour limiter l'émission de particules nocives dans l'environnement. Il est connu de réduire le bruit dû à la combustion et de faciliter la régénération de ce piège à particules en réchauffant l'air d'admission grâce à un autre échangeur, appelé "Réchauffeur d'Air d'Admission" ("RAA" en abrégé), qui est alimenté par l'eau de refroidissement du moteur.
La présence de ces différents échangeurs, notamment celle du refroidisseur principal d'air de suralimentation, et de leurs différents conduits de connexion a pour inconvénient d'occuper un volume important sous le capot moteur. Ceci va à l'encontre des impératifs exigés par les automobiles actuelles, dans lesquelles l'espace dévolu aux équipements, en particulier sous le capot moteur, est de plus en plus limité.
Une solution est de réduire la dimension de ce refroidisseur principal, mais cela se fait bien entendu au détriment des performances de ce dernier, et oblige alors à utiliser un échangeur secondaire de plus grandes dimensions.
L'invention a notamment pour but de surmonter cet inconvénient.
Elle vise en particulier à optimiser le fonctionnement du circuit d'air d'admission des moteurs à turbocompresseur équipés d'un refroidisseur d'air de suralimentation.
L'invention propose à cet effet un circuit d'air d'admission du type défini en introduction, dans lequel le refroidisseur principal d'air de suralimentation est implanté sur le moteur, tandis qu'un échangeur secondaire pour l'air de suralimentation est placé en amont du refroidisseur principal sur le conduit d'air principal.
Ainsi, l'air de suralimentation est d'abord prérefroidi par 1'échangeur secondaire puis refroidi par le refroidisseur principal qui est implanté sur le moteur.
Cela autorise une plus grande liberté d'implantation du refroidisseur principal sur le moteur, tout en bénéficiant du prérefroidissement effectué par l' échangeur secondaire.
Le refroidisseur principal est de ce fait conçu à chaque fois pour s'adapter au moteur qui le reçoit, tandis que l'échangeur secondaire peut être composé d'éléments standards.
Ceci offre en outre pour avantage d'envoyer au refroidisseur principal un air de suralimentation déjà prérefroidi grâce à l'action de l' échangeur secondaire.
De manière préférentielle, le refroidisseur principal d'air de suralimentation est implanté dans un plénum d'admission d'air (encore appelé chambre d'admission d'air) que comporte le moteur. Cela permet d'intégrer le refroidisseur d'air principal dans le plénum et de limiter l'encombrement de ce dernier tout en simplifiant le circuit de circulation et limitant les connexions associées.
Selon une autre caractéristique de l'invention, le circuit d'air d'admission comprend un conduit de dérivation reliant directement l'admission du moteur au conduit d'air principal, en un point situé en aval de l'échangeur secondaire et en amont du refroidisseur principal, ainsi que des moyens de sélection montés à l'intersection du conduit d'air principal et du conduit de dérivation pour envoyer l'air de suralimentation provenant de l'échangeur secondaire, soit vers le refroidisseur principal soit directement à l'admission du moteur.
Ainsi, grâce à ce conduit de dérivation, il est possible d'envoyer directement vers l'admission du moteur l'air de suralimentation issu du turbocompresseur et de l' échangeur secondaire, en contournant ainsi le refroidisseur principal.
Ceci a pour avantage, en particulier lors d'une accélération du moteur, d'améliorer le temps de réponse de ce moteur.
Par contre, en mode de fonctionnement normal, les moyens de sélection dirigent l'air de suralimentation, déjà prérefroidi, vers le refroidisseur principal pour produire un flux d'air refroidi qui est envoyé à l'admission du moteur.
Dans le sens où il est utilisé ici, le terme "admission" désigne de façon générale le collecteur d'admission qui reçoit l'air de suralimentation et qui le dirige vers les cylindres du moteur.
Dans les moteurs du type précité, il est connu aussi de recirculer une partie des gaz d'échappement en les envoyant vers le collecteur d'admission pour les brûler à nouveau dans les cylindres du moteur et réduire l'émission de gaz nocifs.
Selon une autre caractéristique de l'invention, le conduit d'air principal comporte une vanne de réglage servant à contrôler le débit d'air de suralimentation envoyé à l'admission du moteur. Dans une forme de réalisation préférée de l'invention, les moyens de sélection comprennent une vanne amont placée en aval de l'échangeur secondaire et en amont du refroidisseur principal, pour diriger sélectivement l'air de suralimentation soit vers le refroidisseur principal, soit vers le conduit de dérivation,.
L'invention permet de réaliser différentes implantations du refroidisseur principal d'air de suralimentation sur le moteur.
Comme déjà indiqué, dans une forme de réalisation particulièrement avantageuse, le refroidisseur principal d'air de suralimentation est implanté dans le plénum d'admission d'air (chambre d'admission d'air) que comporte le moteur.
Cette solution permet de supprimer des conduits de liaison et, par conséquent, de limiter l'encombrement.
Dans cette dernière forme de réalisation, on peut prévoir un volet de fermeture implanté dans le plénum, en aval du refroidisseur principal d'air de suralimentation, pour empêcher l'air de suralimentation envoyé directement à l'admission du moteur de refluer vers le refroidisseur principal.
Par ailleurs, du fait que le refroidisseur principal d'air de suralimentation est alimenté par de l'air prérefroidi, le refroidisseur principal peut être formé en partie dans une matière à plus faible résistance thermique que l' échangeur secondaire d'air de suralimentation.
Ainsi dans une forme de réalisation avantageuse, le refroidisseur principal d'air de suralimentation comprend une enveloppe en matière plastique, par exemple en polyamide, tandis que l' échangeur secondaire d'air de suralimentation comprend une enveloppe métallique, par exemple en alliage d'aluminium ou en acier inoxydable. Selon encore une autre caractéristique de l'invention, 1'échangeur secondaire d'air de suralimentation est implanté à distance du refroidisseur principal.
Même si les performances du refroidisseur principal sont insuffisantes, par exemple du fait d'un volume insuffisant pour son implantation, l'échangeur secondaire permet d'atteindre des performances globales suffisantes du fait de l'action de prérefroidissement qu'il accomplit.
Dans la description qui suit, faite seulement à titre d'exemple, on se réfère aux dessins annexés, sur lesquels :
- la Figure 1 montre un circuit d'admission d'air selon l'invention dans un premier mode de fonctionnement où l'air de suralimentation prérefroidi est envoyé directement à l'admission du" moteur ;
- la Figure 2 montre le circuit d'air d'admission de la Figure 1 dans un deuxième mode de fonctionnement où l'air de suralimentation prérefroidi est envoyé au refroidisseur principal d'air de suralimentation ;
- la Figure 3 est une vue d'ensemble en perspective d'un moteur et d'un circuit selon les Figures 1 et 2, sans 1 'échangeur de chaleur servant au refroidissement des gaz d'échappement recirculés ;
- la Figure 4 et la Figure 5 sont respectivement une vue de dessus et une vue de côté correspondant à la Figure 3 ; et
- la figure 6 est un détail de la Figure 5 montrant la structure de la vanne de sélection.
On se réfère d'abord à la Figure 1 qui représente un moteur thermique 10, en particulier un moteur diesel, destiné à un véhicule automobile, en particulier à un véhicule de tourisme.
Le moteur 10 comprend un collecteur d'admission 12 (appelé par la suite "admission" pour simplifier) et un collecteur d'échappement 14 (appelé par la suite "échappement" pour simplifier) .
Le moteur 10 est alimenté par un circuit d'air d'admission comprenant un conduit d'air principal 16 reliant un turbocompresseur 18 à l'admission 12 du moteur. Le turbocompresseur 18 est entraîné par les gaz d'échappement du moteur et est alimenté par de l'air extérieur. Il produit un flux d'air sous pression, appelé "air de suralimentation", qui est envoyé à l'admission 12 du moteur.
Le conduit d'air principal 16 alimente un refroidisseur principal 20 d'air de suralimentation (appelé "RAS" en abrégé) qui est implanté sur le moteur 10, comme on le verra en détail plus loin. Ce refroidisseur a pour fonction de refroidir l'air de suralimentation par échange thermique avec le liquide d'un circuit de refroidissement secondaire (non représenté). Il s'agit donc d'un échangeur de chaleur du type air/eau.
De façon en soi connue, l'échappement 14 du moteur est relié à un conduit d'échappement 22 sur lequel est raccordée une vanne 24 qui permet de recirculer vers le moteur une partie des gaz d'échappement grâce à un conduit 26.
En aval de la vanne 24 est monté un échangeur de chaleur 30 encore appelé "exhaust gas recirculation cooler" (terme anglo- saxon) dont la fonction est de refroidir les gaz d'échappement recirculés qui sont envoyés au moteur. Les gaz d'échappement ainsi recirculés sont brûlés à nouveau, en même temps que l'air d'admission, dans les cylindres du moteur pour améliorer la combustion et diminuer l'émission de gaz nocifs dans 1 ' environnement . Le circuit d'air d'admission comprend, en outre, un échangeur secondaire 36 pour l'air de suralimentation, qui est placé en amont du refroidisseur principal 20. Cet échangeur secondaire, encore appelé "precooler" (terme anglo-saxon), a pour fonction de prérefroidir l'air de suralimentation avant son refroidissement par le refroidisseur principal 20. A l'instar du refroidisseur principal 20, l' échangeur secondaire 36 est un échangeur du type air/eau. Il est habituellement parcouru par le liquide de refroidissement du moteur. Cet échangeur peut aussi réaliser la fonction de réchauffer l'air d'admission pour réduire le bruit et faciliter la régénération du piège à particules (non représenté) .
Dans le circuit de l'invention, un conduit de dérivation 32 relie directement le conduit d'air principal 16, en un point situé en aval de l 'échangeur secondaire 36 et en amont du refroidisseur principal 20, à l'admission 12 du moteur. Une vanne de sélection 34 (encore appelée "vanne amont") est placée entre l' échangeur secondaire 36 et le refroidisseur principal 20, à l'intersection du conduit d'air principal 16 et du conduit de dérivation 32. La vanne de sélection 34 est placée également à l'intersection d'un conduit 33 menant au refroidisseur principal 20. Cette vanne de sélection a pour fonction de diriger l'air de suralimentation, qui a été prérefroidi par l'échangeur secondaire 36, soit vers le refroidisseur principal 20 via le conduit 33, soit directement à l'admission 12 du moteur via le conduit de dérivation 32.
La vanne de sélection 34 est avantageusement une vanne de type trois voies actionnée par un micromoteur et pilotée par un circuit de commande approprié qui tient compte des paramètres de fonctionnement du moteur thermique.
Le refroidisseur principal 20 est implanté sur le moteur 10, et plus particulièrement dans le plénum d'admission d'air 40
(encore appelé chambre d'admission d'air), ce qui permet d'offrir une plus grande liberté d'implantation au refroidisseur principal 20. L'échangeur secondaire 36 est quant à lui placé à distance du refroidisseur principal 20. Cela permet d'offrir un maximum de volume au refroidisseur principal et donc d'obtenir des performances optimales de la part de
( celui-ci. Cependant, si le volume disponible pour le refroidisseur principal est insuffisant pour lui permettre d'avoir les performances requises, ces dernières seront néanmoins atteintes grâce à l'action combinée de l'échangeur secondaire et du refroidisseur principal.
Du fait que le refroidisseur principal 20 reçoit de l'air de suralimentation déjà prérefroidi, il peut être formé en partie dans une matière à plus faible résistance thermique que l'échangeur secondaire 36. Ainsi, dans un exemple de réalisation, le refroidisseur principal 20 comprend une enveloppe en matière plastique, telle que du polyamide (en particulier du PA6.6), tandis que l'échangeur secondaire 36 comprend une enveloppe métallique, avantageusement en alliage d'aluminium ou, si les conditions de température le nécessitent, en acier inoxydable.
Un volet de fermeture 42 est implanté dans le plénum 40, en aval du refroidisseur principal 20, pour empêcher l'air de suralimentation envoyé à l'admission 12 du moteur de refluer vers le refroidisseur principal. Le volet peut être, par exemple du type à registre, ce qui permet de limiter son encombrement. Un actionneur 44 sert à la commande du volet.
Le dispositif de l'invention fonctionne de la façon suivante. Dans le mode de fonctionnement de la Figure 1, la vanne de sélection 34 dirige l'air de suralimentation prérefroidi, qui provient de l'échangeur secondaire 36, en contournant le refroidisseur principal 20. Cet air de suralimentation prérefroidi est dirigé directement à l'admission du moteur 12, en même temps qu'une partie des gaz d'échappement recirculés, au travers de la vanne de réglage 24 qui permet ainsi de contrôler le débit de recirculation des gaz d'échappement. Par ailleurs, le volet 42 est fermé.
Dans ce mode de fonctionnement, le volume d'air compris entre le turbocompresseur 18 et l'entrée des cylindres du moteur est réduit, ce qui permet d'améliorer le temps de réponse du moteur, notamment lors d'une accélération.
En revanche, dans le mode de fonctionnement normal tel que représenté à la Figure 2, la vanne de sélection 34 dirige l'air de suralimentation prérefroidi vers le refroidisseur principal 20 implanté dans le plénum 40.
La vanne 34 dirige l'air de suralimentation prérefroidi vers le refroidisseur principal 20 implanté dans le plénum 40. A sa sortie du refroidisseur principal 20, l'air de suralimentation passe à travers le volet 42 qui est ouvert, pour gagner l'admission 12 du moteur.
Le volet 42 peut prendre éventuellement des positions intermédiaires entre la position de fermeture de la Figure 1 et la position d'ouverture de la Figure 2.
Le circuit d'air d'admission de l'invention permet ainsi d'offrir de nombreuses possibilités d'implantation au refroidisseur principal, du fait de son implantation sur le moteur. De plus dans tous les modes de fonctionnement l'air de suralimentation est refroidi au préalable, ce qui améliore les performances du moteur. Il offre aussi l'avantage de pouvoir envoyer l'air de suralimentation prérefroidi, soit directement à l'admission du moteur, soit par l'intermédiaire du refroidisseur principal. Le premier mode de fonctionnement permet de limiter le volume d'air contenu dans les échangeurs et les conduits d'air, et d'améliorer le temps de réponse du moteur, notamment à l'accélération. Dans les différentes formes de réalisation de l'invention, les éléments de commande, en particulier les moyens de sélection et les commandes du volet, sont pilotés par un circuit de commande approprié (non représenté). Ce circuit tient compte des paramètres de fonctionnement du moteur thermique, notamment des paramètres d'injection, de la charge du moteur et du débit des gaz recirculés.
Les Figure 3 à 5 sont différentes vues d'un moteur et d'un circuit conforme aux Figures 1 et 2, l'échangeur de chaleur 30 servant au refroidissement des gaz d'échappement recirculés n'étant pas représenté. Les éléments communs avec les Figures 1 et 2 sont désignés par les mêmes références numériques. Ces figures font apparaître notamment 1 ' implantation des éléments du circuit par rapport au moteur 10. La Figure 6 montre comment la vanne de sélection 34 permet de diriger l'air de suralimentation soit vers le conduit 32 soit vers le conduit 33.
L'invention trouve une application aux moteurs de véhicules automobiles, et notamment aux véhicules de tourisme.

Claims

Revendications
1. Circuit d'air d'admission pour un moteur thermique doté d'un turbocompresseur, comprenant un conduit d'air principal (16) reliant le turbocompresseur (18) à l'admission (12) du moteur (10) et un refroidisseur principal - (20) monté sur le conduit d'air principal pour refroidir l'air de suralimentation envoyé à l'admission du moteur,
caractérisé en ce que le refroidisseur principal (20) d'air de suralimentation est implanté sur le moteur (10), et en ce qu'un échangeur secondaire (36) pour l'air de suralimentation est placé en amont du refroidisseur principal (20) sur le conduit d'air principal (16).
2. Circuit d'air d'admission selon la revendication 1, caractérisé en ce que le refroidisseur principal (20) d'air de suralimentation est implanté dans un plénum d'admission d'air (40) que comporte le moteur.
3. Circuit d'air d'admission selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend un conduit de dérivation (32) reliant directement l'admission (12) du moteur au conduit d'air principal (16), en un point situé en aval de l'échangeur secondaire (36) et en amont du refroidisseur principal (20) de l'air de suralimentation, ainsi que des moyens de sélection (34) montés à l'intersection du conduit d'air principal (16) et du conduit de dérivation (32) pour envoyer l'air de suralimentation provenant de l'échangeur secondaire (36), soit vers le refroidisseur principal (20), soit directement à l'admission (12) du moteur.
4. Circuit d'air d'admission selon la revendication 3, caractérisé en ce que le conduit d'air principal (16) comporte une vanne de réglage (28) servant à contrôler le débit d'air de suralimentation envoyé à l'admission du moteur.
5. Circuit d'air d'admission selon l'une des revendications 3 et 4, caractérisé en ce que les moyens de sélection comprennent une vanne amont (34), placée en aval de l'échangeur secondaire (36) et en amont du refroidisseur principal (20), pour diriger sélectivement l'air de suralimentation soit vers le refroidisseur- principal (20), soit vers le conduit de dérivation (32).
6. Circuit d'air d'admission selon l'une des revendications 2 à 5, caractérisé en ce qu'il comprend un volet de fermeture
(42) implanté dans le plénum (40), en aval du refroidisseur principal (20) d'air de suralimentation, pour empêcher l'air de suralimentation envoyé directement à l'admission (12) du moteur de refluer vers le refroidisseur principal.
7. Circuit d'air d'admission selon l'une des revendications 1 à 6, caractérisé en ce que le refroidisseur principal (20) d'air de suralimentation est formé en partie dans une matière à plus faible résistance- thermique que l'échangeur secondaire (36) d'air de suralimentation.
8. Circuit d'air d'admission selon la revendication 7, caractérisé en ce que le refroidisseur principal (20) d'air de suralimentation comprend une enveloppe en matière plastique, par exemple en polyamide, tandis que l'échangeur secondaire (36) d'air de suralimentation comprend une enveloppe métallique, par exemple en alliage métallique ou en acier inoxydable.
9. Circuit d'air d'admission selon l'une des revendications 1 à 8, caractérisé en ce que l'échangeur secondaire (36) d'air de suralimentation est implanté à distance du refroidisseur principal (20) .
EP03756511A 2002-08-29 2003-07-28 Circuit d'air d'admission pour moteur thermique dote d'un turbocompresseur Pending EP1532361A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0210728 2002-08-29
FR0210728A FR2844009B1 (fr) 2002-08-29 2002-08-29 Circuit d'air d'admission pour moteur thermique dote d'un turbocompresseur
PCT/FR2003/002374 WO2004020812A1 (fr) 2002-08-29 2003-07-28 Circuit d’air d’admission pour moteur thermique doté d’un turbocompresseur

Publications (1)

Publication Number Publication Date
EP1532361A1 true EP1532361A1 (fr) 2005-05-25

Family

ID=31502982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03756511A Pending EP1532361A1 (fr) 2002-08-29 2003-07-28 Circuit d'air d'admission pour moteur thermique dote d'un turbocompresseur

Country Status (4)

Country Link
EP (1) EP1532361A1 (fr)
AU (1) AU2003293679A1 (fr)
FR (1) FR2844009B1 (fr)
WO (1) WO2004020812A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212867A1 (de) * 2012-07-23 2014-01-23 Behr Gmbh & Co. Kg System zur Ladeluftkühlung und zugehöriges Verfahren zur Bereitstellung einer Ladeluftkühlung für einen Verbrennungsmotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881455A (en) * 1973-10-31 1975-05-06 Allis Chalmers Aftercooler for internal combustion engine
FR2461101A1 (fr) * 1979-08-06 1981-01-30 Alsacienne Constr Meca Dispositif de regulation de l'air de suralimentation des moteurs diesel
US5269143A (en) * 1992-12-07 1993-12-14 Ford Motor Company Diesel engine turbo-expander
FR2710953B1 (fr) * 1993-10-05 1995-12-08 Renault Vehicules Ind Procédé et dispositif de commande d'un fluide traversant un boîtier de dérivation et système équipé d'un tel dispositif pour réguler l'air de suralimentation d'un moteur à combustion interne.
US6029637A (en) * 1998-12-16 2000-02-29 General Motors Corporation Induction assembly for supercharged internal combustion engine
JP2001248448A (ja) * 2000-03-07 2001-09-14 Yanmar Diesel Engine Co Ltd 内燃機関の給気冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004020812A1 *

Also Published As

Publication number Publication date
AU2003293679A1 (en) 2004-03-19
FR2844009B1 (fr) 2006-05-26
WO2004020812A1 (fr) 2004-03-11
FR2844009A1 (fr) 2004-03-05

Similar Documents

Publication Publication Date Title
FR2894315A1 (fr) Vanne comportant des moyens d'actionnement entre deux conduits de sortie.
FR2888887A1 (fr) Appareil de circulation de gaz destine a recirculer des gaz d'echappement d'un moteur a combustion interne
WO2005073536A1 (fr) Moteur a combustion interne suralimente par turbocompresseur
EP2069620A2 (fr) Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile
FR2920834A1 (fr) Dispositif et procede de recirculation des gaz d'echappement d'un moteur thermique
EP1748179B1 (fr) Système pour le contrôle de la circulation de gaz, en particulier des gaz d'échappement d'un moteur
WO2003102396A1 (fr) Module d'echange de chaleur conforme pour envelopper un moteur de vehicule automobile
FR2930296A1 (fr) Ligne d'echappement avec un conduit de recyclage des gaz d'echappement muni d'un echangeur de recuperation de chaleur.
FR2893363A1 (fr) Vanne et dispositif de recyclage de gaz d'echappement pour un moteur
WO2005116415A1 (fr) Refroidisseur d’air d’admission pour moteur thermique dote d’un turbocompresseur
FR3079880A1 (fr) Module d'admission double flux
EP1658419A1 (fr) Dispositif de regulation thermique de gaz d'echappement
WO2003023216A1 (fr) Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
WO2004020812A1 (fr) Circuit d’air d’admission pour moteur thermique doté d’un turbocompresseur
EP3217006B1 (fr) Moteur thermique à système de recirculation des gaz d'échappement
FR2841595A1 (fr) Tube des gaz d'echappement pour l'installation des gaz d'echappement d'un vehicule automobile
FR2907848A1 (fr) Moteur a combustion interne comportant au moins un turbocompresseur a fonctionnement a bas regime ameliore
WO2021170442A1 (fr) Echangeur de circuit egr avec ventilation
EP1984609A2 (fr) Circuit d'air d'admission pour moteur a combustion interne
WO2004020802A1 (fr) Circuit d'air d'admission pour moteur thermique a turbocompresseur
EP0718480A1 (fr) Dispositif d'échappement pour moteur à combustion interne
FR2859238A1 (fr) Dispositif de regulation thermique de gaz d'echappement
FR2983533A1 (fr) Dispositif de regulation thermique de l'air d'admission d'un moteur a combustion interne d'un vehicule automobile et vehicule automobile comprenant un tel dispositif
EP3494298B1 (fr) Refroidisseur d'air de suralimentation pour moteur à combustion interne et circuit de suralimentation associé
EP0850791B1 (fr) Système de chauffage de l'habitacle d'un véhicule automobile à moteur diesel à injection directe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESSIER, BERTRAND

Inventor name: POTIER, MICHEL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SYSTEMES THERMIQUES

17Q First examination report despatched

Effective date: 20081106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN