EP1511804A1 - Nanocomposites based on polyolefin, method for the production thereof, and use of the same - Google Patents

Nanocomposites based on polyolefin, method for the production thereof, and use of the same

Info

Publication number
EP1511804A1
EP1511804A1 EP03732205A EP03732205A EP1511804A1 EP 1511804 A1 EP1511804 A1 EP 1511804A1 EP 03732205 A EP03732205 A EP 03732205A EP 03732205 A EP03732205 A EP 03732205A EP 1511804 A1 EP1511804 A1 EP 1511804A1
Authority
EP
European Patent Office
Prior art keywords
polyamide
polyolefin
nanocomposites
hdpe
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03732205A
Other languages
German (de)
French (fr)
Inventor
Daniela Tomova
Klaus Rucho
Angelo SCHÜTZ
Stefan Reinemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Original Assignee
Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thueringisches Institut fuer Textil und Kunststoff Forschung eV filed Critical Thueringisches Institut fuer Textil und Kunststoff Forschung eV
Publication of EP1511804A1 publication Critical patent/EP1511804A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to nanocomposites based on polyolefins, in particular based on high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • the nanocomposites contain an HDPE of 70 to 99% by weight, a polyamide, preferably polyamide 6, of 1 to 30% by weight and a layered silicate of 1 to 10% by weight.
  • the layered silicate can for example
  • 15 can be a natural sodium montmorillonite, hectorite, bentonite or synthetic mica modified with onium ions.
  • organophilic phyllosilicates into polymers by in-situ polymerization or via melt compounding is described in the literature and known to the person skilled in the art. It is usually associated with an improvement in the mechanical and barrier properties, dimensional stability under heat and 5 flame resistance. The prerequisite for the improvement of the properties is due to the ability of the individual layers of the layered silicates to expand (intercalate) or to separate completely from one another (exfoliation). This creates an enlarged surface of the filler and also an enlarged interface with the matrix polymer. Intercalation or exfoliation in the manufacture of polymer In order to achieve nanocomposites, the layered silicates are first modified with organic compounds by cation exchange, ie they are made organophilic.
  • organic compounds are usually tetraalkylammonium ions, which contain one or two C12 to C18 long chains. Since the affinity for the matrix polymer is also a prerequisite for the improvement of the corresponding properties, this takes place predominantly when using polar polymers, such as polyamide, polyester, polyethylene oxide, polyvinyl alcohol, polyethyleneimine and others, which belong to the organophi - contain structural units compatible with layered silicates. In order to improve the compatibility with the non-polar polyolefins, additional modifications of the layered silicates with monomers, oligomers, silanes or block copolymers are applied [WO 0105879 AI, US 5910523,
  • WO 9907790 AI The preparation of the additional modification is usually carried out in solution and is associated with high costs and effort.
  • An alternative to binding layered silicates in non-polar polymer matrices is to use adhesion promoters and intercalants directly in the melt compounding. This is done in one or two stages using highly concentrated compositions with subsequent dilution.
  • oligomers or polymers which are functionalized with carboxyl or anhydride groups are suitable as adhesion promoters. These include maleic anhydride (MA) grafted polyolefins or olefin-based copolymers as appropriate.
  • MA maleic anhydride
  • the aim of the invention is therefore to improve the mechanical properties, in particular the modulus of elasticity and the impact strength, of polyolefin nanocomposites, preferably of high density polyethylene (HDPE nanocomposites).
  • polyolefin nanocomposites preferably of high density polyethylene (HDPE nanocomposites).
  • This aim is achieved according to the invention by compounding the HDPE or optionally polypropylene with a highly concentrated polyamide / layered silicate masterbatch and optionally with a maleic anhydride grafted polyolefin in an extrusion process.
  • the layered silicate is first incorporated into polyamide to form a highly concentrated masterbatch (20-40% by weight) via melt compounding and mixed in a second step with the HDPE in the melt.
  • a maleic anhydride-grafted polyolefin is added in the second stage.
  • the process according to the invention for the production of the HDPE nanocomposites with improved mechanical properties thus comprises the following stages: a) melt intercalation of the organophilic phyllosilicates in a polyamide matrix and production of a highly concentrated polyamide / phyllosilicate masterbach with a proportion of 20 to 40% by weight organophilic layered silicate and 80-60 wt .-% polyamide 6 and b) compounding the masterbatch into the HDPE matrix and the optional addition of a carboxylated polyolefin.
  • polyamides are fundamentally immiscible with polyolefins because of different polarities, but also structural differences.
  • Mixing for example in a single-screw extruder and without a conventional adhesion promoter, with limited shear intensities, occurs strong phase separation in the HDPE / PA 6 blends.
  • Adhesion promoters are used to improve compatibility.
  • Carboxyl acid or anhydride modified polyolefins or copolymers are suitable as adhesion promoters.
  • Despite a compatibility of this type even with intensified shear forces in the twin-screw extruder, no improvement in the mechanical properties of HDPE in the blend with PA 6 has been described in the literature to date.
  • highly concentrated polyamide 6 / layered silicate compositions were first mixed in a ratio of 13: 7 at temperatures in the range from 210 to 250 ° C. by means of a ZSK25 twin-screw extruder: Tetraalkylammonium ion-modified montmorillonite was used as the organophilic layered silicate.
  • HDPE was compounded with the corresponding concentrate at temperatures in the range of 200 to 230 ° C and a speed of 400 min "1.
  • the HDPE-PA 6 nanocomposites became test specimens for mechanical and HDT tests and 1 mm thick plates for WAKS analysis using an Arburg Allrounder 320M 850-210 injection molding machine Based on the WAXS analyzes, a complete exfoliation of the layered silicates was found for all HDPE-PA 6 nanocomposites according to the invention and confirmed by means of transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the polyamide 6 / layered silicate concentrate was compounded into the HDPE matrix polymer with a melt index of 11 ccm / 10 min (HDPE-1) using a twin-screw extruder in accordance with the aforementioned conditions to give nanocomposites with 4.2% by weight of organophilic layered silicate.
  • HDPE with a melt index of 11 ccm / 10 min (HDPE-1) was compounded with 8.2% by weight of polyamide 6 to form blends under the same conditions as the HDPE nanocomposites.
  • the polyamide 6 / layered silicate concentrate was compounded into the HDPE matrix polymer with a melt index of 0.2 ccm / 10 min (HDPE-2) using a twin-screw extruder in accordance with the aforementioned conditions to give nanocomposites with 3.2% by weight of layered silicate.
  • HDPE-2 melt index of 0.2 ccm / 10 min
  • the polyamide 6 / layered silicate concentrate and a maleic anhydride-grafted HDPE were converted into nanocomposites using a twin-screw extruder in accordance with the aforementioned conditions compounded with 3.2% by weight of layered silicate.

Abstract

The invention relates to nanocomposites based on HDPE-polyolefin with improved mechanical properties, especially an increased E module and an improved notch value. Said nanocomposites contain at least two thermoplastic plastics: (A) a polyolefin, preferably between 70 and 99 wt. % of polyethylene, (B) a polyamide, preferably between 1 and 30 wt. % of polyamide 6, and between 1 and 10 wt. % of an organophyllically formed phyllosilicate. Optionally, a polyolefin grafted by maleic anhydride is added, forming between 1 and 10 wt. % of the total quantity. The invention also relates to a method for producing said nanocomposites and to the use of the same as injection moulded parts, containers or pipes.

Description

[Patentanmeldung] [Patent application]
[Bezeichnung der Erfindung : ][Name of the invention:]
NANOCOMPOSITES AUF POLYOLEFIN-BASIS UND VERFAHREN ZU DEREN HERSTELLUNG SOWIE DE REN VERWENDUNGPOLYOLEFIN-BASED NANOCOMPOSITES AND METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
[Beschreibung][Description]
Die Erfindung betrifft Nanocomposites auf Polyolefinbasis, insbesondere auf Basis Polyethylen hoher Dichte (HDPE) mitThe invention relates to nanocomposites based on polyolefins, in particular based on high density polyethylene (HDPE)
10 erhöhtem Elastizitäts-Modul und verbesserter Kerbschlagzähigkeit und ein Verfahren zu deren Herstellung. Die Nanocomposites enthalten ein HDPE von 70 bis 99 Gew.-%, ein Polyamid, bevorzugt Polyamid 6, von 1 bis 30 Gew.-% und ein Schichtsilikat von 1 bis 10 Gew.%. Das Schichtsilikat kann beispiels-10 increased modulus of elasticity and notched impact strength and a method for their production. The nanocomposites contain an HDPE of 70 to 99% by weight, a polyamide, preferably polyamide 6, of 1 to 30% by weight and a layered silicate of 1 to 10% by weight. The layered silicate can for example
15 weise ein mit Onium-Ionen modifiziertes natürliches Natrium- Montmorillonit , Hektorit, Bentonit oder synthetisches Mica sein.15 can be a natural sodium montmorillonite, hectorite, bentonite or synthetic mica modified with onium ions.
[Stand der Technik][State of the art]
20 Die Einarbeitung von organophilen Schichtsilikaten in Polymeren durch in-situ Polymerisation oder via Schmelzecompoundie- rung ist in der Literatur beschrieben und dem Fachmann bekannt. Sie ist meistens mit einer Verbesserung der mechanischen und Barriere-Eigenschaften, Wärmeformstabilität sowie 5 der Flammwidrigkeit verbunden. Die Voraussetzung für die Verbesserung der Eigenschaften ist auf die Fähigkeit der einzelnen Schichten der Schichtsilikate zurückzuführen, sich aufzuweiten (intercalieren) oder sich vollkommen voneinander zu trennen (Exfolierung) . Damit wird eine vergrößerte Ober- 0 fläche des Füllstoffs und ebenfalls eine vergrößerte Grenzfläche zu dem Matrixpolymer geschaffen. Um eine Intercalie- rung bzw. eine Exfolierung bei der Herstellung von Polymer- Nanocomposites zu erreichen, werden die Schichtsilikate zunächst mit organischen Verbindungen durch Kationenaustausch modifiziert, d.h. organophil eingestellt. Diese organischen Verbindungen sind in der Regel Tetraalkylammonium- Ionen, die eine oder zwei C12- bis C18-Langketten enthalten. Da die Affinität zu dem Matrixpolymer ebenfalls eine Voraussetzung für die Verbesserung der entsprechenden Eigenschaften ist, erfolgt dies vorwiegend bei der Anwendung von polaren Polymeren, wie z.B. Polyamid, Polyester, Polyethylen-Oxid, Po- lyvinyl-Alkohol, Polyethylenimin u.a., die zu den organophi- len Schichtsilikaten kompatible Struktureinheiten enthalten. Um die Kompatibilität mit den unpolaren Polyolefinen zu verbessern, werden zusätzliche Modifizierungen der Schichtsilikate mit Monomeren, Oligomeren, Silanen oder Block- Copolymeren angebracht [WO 0105879 AI, US 5910523,20 The incorporation of organophilic phyllosilicates into polymers by in-situ polymerization or via melt compounding is described in the literature and known to the person skilled in the art. It is usually associated with an improvement in the mechanical and barrier properties, dimensional stability under heat and 5 flame resistance. The prerequisite for the improvement of the properties is due to the ability of the individual layers of the layered silicates to expand (intercalate) or to separate completely from one another (exfoliation). This creates an enlarged surface of the filler and also an enlarged interface with the matrix polymer. Intercalation or exfoliation in the manufacture of polymer In order to achieve nanocomposites, the layered silicates are first modified with organic compounds by cation exchange, ie they are made organophilic. These organic compounds are usually tetraalkylammonium ions, which contain one or two C12 to C18 long chains. Since the affinity for the matrix polymer is also a prerequisite for the improvement of the corresponding properties, this takes place predominantly when using polar polymers, such as polyamide, polyester, polyethylene oxide, polyvinyl alcohol, polyethyleneimine and others, which belong to the organophi - contain structural units compatible with layered silicates. In order to improve the compatibility with the non-polar polyolefins, additional modifications of the layered silicates with monomers, oligomers, silanes or block copolymers are applied [WO 0105879 AI, US 5910523,
WO 9907790 AI] . Die Präparation der zusätzlichen Modifizierung erfolgt in der Regel in Lösung und ist mit hohen Kosten und Aufwand verbunden. Eine Alternative, Schichtsilikate in unpolaren Polymermatri- zes anzubinden, ist die Anwendung von Haftvermittlern und Intercalants direkt bei der Schmelzecompoundierung. Dies erfolgt in einer oder zwei Stufen über hochkonzentrierte Kompositionen mit nachfolgender Verdünnung. Bekannt ist auch, dass als Haftvermittler Oligomere oder Polymere geeignet sind, die mit Carboxyl- oder Anhydridgruppen funktionalisiert sind. Dazu zählen Maleinsäureanhydrid (MSA) -gepfropfte Polyolefine oder Copolymere auf Olefinbasis als zweckentsprechend. Für die Auswahl der MSA-funktionalisierten Polyolefine ist der MSA-Anteil, die Rheologie und die Kompatibilität mit dem Matrixpolymer von großer Bedeutung. Block-Copolymere könnten ebenfalls als Haf vermittler bzw. Intercalants verwendet werden. Dabei wurde darauf hingewiesen, dass die Kompatibilität mit dem Matrixpolymer eine nicht unwesentliche Rolle spielt. In der Regel bestehen geeignete Block- Copolymere aus polaren Blöcken, die für die Kopplung mit den polaren Schichtsilikaten sorgen, und unpolare Blöcke, die kompatibel mit dem unpolaren Matrixpolymer sind. Die oben genannten Methoden zur Einarbeitung von Schichtsilikaten in Polyolefinen werden bisher mit Erfolg vorwiegend für Polypropylen angewendet und führen zu einer deutlichen Verbesserung der mechanischen Festigkeit der Composite. Eine Verbesserung der mechanischen Eigenschaften von Polyethylen- Nanocomposites, insbesondere HDPE-Nanocomposites, mit Hilfe von den genannten Haftvermittlern bzw. Intercalants wurde damit jedoch bisher nicht erreicht.WO 9907790 AI]. The preparation of the additional modification is usually carried out in solution and is associated with high costs and effort. An alternative to binding layered silicates in non-polar polymer matrices is to use adhesion promoters and intercalants directly in the melt compounding. This is done in one or two stages using highly concentrated compositions with subsequent dilution. It is also known that oligomers or polymers which are functionalized with carboxyl or anhydride groups are suitable as adhesion promoters. These include maleic anhydride (MA) grafted polyolefins or olefin-based copolymers as appropriate. The MSA content, the rheology and the compatibility with the matrix polymer are of great importance for the selection of the MSA-functionalized polyolefins. Block copolymers could also be used as adhesive agents or intercalants. It was pointed out that the compatibility with the matrix polymer plays a not insignificant role. As a rule, there are suitable block Copolymers of polar blocks, which ensure the coupling with the polar layered silicates, and non-polar blocks, which are compatible with the non-polar matrix polymer. The above-mentioned methods for incorporating layered silicates into polyolefins have so far been used primarily successfully for polypropylene and have led to a significant improvement in the mechanical strength of the composites. However, an improvement in the mechanical properties of polyethylene nanocomposites, in particular HDPE nanocomposites, with the aid of the aforementioned adhesion promoters or intercalants has not been achieved to date.
Bei den Polyethylen/Clay Nanocomposites wurde in GB 1114174, GB 1118723 and WO 0166627 AI nur eine flammhemmende Wirkung der Schichtsilikate beschrieben. In-situ Polymerisation von HDPE in Anwesenheit von mit Onium- Ionen modifizierten Schichtsilikaten wurden in den Patenten DE 198 46 314 und WO 9947598 AI beschrieben. Es wurde eine Exfolierung nachgewiesen, jedoch konnte keine Verbesserung der mechanischen Eigenschaften, insbesondere des E-Moduls und der Kerbschlagzähigkeit, festgestellt und erzielt werden. Durch die Anwesenheit von aktiven Ionen, die die Wirkung der Katalysatoren beeinflussen, wird das Kettenwachstum bei der fortschreitenden Polymerisation erschwert. Es ist bekannt, dass bei linearen Polyethylenen wie HDPE das Eigenschaftspro- fil stark von der Kettenlänge bzw. der Molmasse abhängt. Mit der abnehmender Molmasse nimmt die Festigkeit und die Zähigkeit ab. Die Entstehung von Verzweigungen und die Zugabe von niedermolekularen olefinhaltigen Verbindungen beeinflusst ebenfalls die mechanischen Eigenschaften von HDPE. Dadurch kommt es offenbar zu keiner Verbesserung bei der Anwendung von den oben erwähnten Haftvermittlern und Intercalants in den HDPE/Schichtsilikat-Nanocomposites im Vergleich zu den PP/Schichtsilikat-Nanocomposites, obwohl eine Exfolierung stattfinden kann. [Aufgabe der Erfindung]In the case of the polyethylene / clay nanocomposites, only a flame-retardant effect of the layered silicates was described in GB 1114174, GB 1118723 and WO 0166627 AI. In-situ polymerization of HDPE in the presence of layer silicates modified with onium ions have been described in the patents DE 198 46 314 and WO 9947598 A1. An exfoliation was demonstrated, however, no improvement in the mechanical properties, in particular the modulus of elasticity and the notched impact strength, was found and achieved. The presence of active ions, which influence the action of the catalysts, makes chain growth more difficult as the polymerization progresses. It is known that with linear polyethylenes such as HDPE, the property profile strongly depends on the chain length or the molar mass. As the molar mass decreases, the strength and toughness decrease. The formation of branches and the addition of low molecular weight olefinic compounds also influence the mechanical properties of HDPE. As a result, there is apparently no improvement in the use of the above-mentioned adhesion promoters and intercalants in the HDPE / layered silicate nanocomposites compared to the PP / layered silicate nanocomposites, although exfoliation can take place. OBJECT OF THE INVENTION
Ziel der Erfindung ist es deshalb, die mechanischen Eigenschaften, insbesondere den E-Modul und die Kerbschlagzähigkeit, von Polyolefin-Nanocompositen, bevorzugt von Polyethy- lenen hoher Dichte (HDPE-Nanocompositen) zu verbessern.The aim of the invention is therefore to improve the mechanical properties, in particular the modulus of elasticity and the impact strength, of polyolefin nanocomposites, preferably of high density polyethylene (HDPE nanocomposites).
Dieses Ziel wird erfindungsgemäß dadurch erreicht, in dem das HDPE oder gegebenenfalls Polypropylen mit einem hochkonzentrierten Polyamid/Schichtsilikat-Masterbatch und optional mit einem maleinsäureanhydrid gepfropften Polyolefin im Extrusi - onsverfahren compoundiert wird.This aim is achieved according to the invention by compounding the HDPE or optionally polypropylene with a highly concentrated polyamide / layered silicate masterbatch and optionally with a maleic anhydride grafted polyolefin in an extrusion process.
Das Schichtsilikat wird dabei erfindungsgemäß zunächst in Polyamid zu einem hochkonzentrierten Masterbatch (20-40 Gew.- %) via Schmelzecompoundierung eingearbeitet und in einer zweiten Stufe mit dem HDPE in der Schmelze vermischt. Optional wird in der zweiten Stufe ein maleinsäureanhydrid- gepfropftes Polyolefin zugegeben.According to the invention, the layered silicate is first incorporated into polyamide to form a highly concentrated masterbatch (20-40% by weight) via melt compounding and mixed in a second step with the HDPE in the melt. Optionally, a maleic anhydride-grafted polyolefin is added in the second stage.
Das erfindungsgemäße Verfahren zur Herstellung von den HDPE- Nanocomposites mit verbesserten mechanischen Eigenschaften umfasst somit die folgende Stufen: a) Schmelze-Intercalierung vom organophilen Schichtsilikaten in Polyamidmatrix und Herstellung von hochkonzentriertem Polyamid/Schichtsilikat-Masterbach mit einem Anteil von 20 bis 40 Gew.-% organophilen Schichtsilikat und 80-60 Gew.-% Polyamid 6 und b) Eincompoundierung des Masterbatch in die HDPE-Matrix und die optionale Zugabe von einem carboxylierten Polyolefin.The process according to the invention for the production of the HDPE nanocomposites with improved mechanical properties thus comprises the following stages: a) melt intercalation of the organophilic phyllosilicates in a polyamide matrix and production of a highly concentrated polyamide / phyllosilicate masterbach with a proportion of 20 to 40% by weight organophilic layered silicate and 80-60 wt .-% polyamide 6 and b) compounding the masterbatch into the HDPE matrix and the optional addition of a carboxylated polyolefin.
Es ist bekannt, dass Polyamide wegen unterschiedlicher Polaritäten, aber auch Strukturdifferenzen, grundsätzlich mit Polyolefinen nicht mischbar sind. Beim Mischen z.B. im Einschneckenextruder und ohne herkömmlichen Haftvermittler, wobei die Scherintensitäten begrenzt sind, kommt es zur starken Phasenseparation in den HDPE/PA 6-Blends. Um die Kompatibilität zu verbessern, werden Haftvermittler eingesetzt. Als Haftvermittler dazu eignen sich Carboxylsäure- oder Anhydrid modifizierte Polyolefine oder Copolymere. Trotz einer Kompatibilisierung dieser Art, auch bei intensivierten Scherkräften im Doppelschneckenextruder, wurde bis jetzt keine Verbesserung der mechanischen Eigenschaften von HDPE im Blend mit PA 6 in der Literatur beschrieben. Das Mischen von HDPE mit kleinen Mengen Polyamid 6 mittels Doppelschneckenex- truder kann jedoch in einer laminaren Morphologie resultieren. Dies führt zur enormen Reduzierung z.B. der Toluen- Permeabilität im Vergleich zu dem reinen HDPE. Erst bei den erfindungsgemäßen HDPE-Nanocomposites mit in Polyamid 6 intercalierten Schichsilikaten, kommt es überra- schenderweise zur Erhöhung des E-Moduls um etwa 28 % und der Wärmeformstabilität bis zu 30 % (Tabelle 1) . Dieser Effekt könnte vom Vorteil sein bei der Herstellung von z.B. Kraftstoffbehältern oder Rohren aus HDPE-Nanocomposites statt aus HDPE-Laminaten mit verbesserten mechanischen und Barriereei- genschaften.It is known that polyamides are fundamentally immiscible with polyolefins because of different polarities, but also structural differences. Mixing, for example in a single-screw extruder and without a conventional adhesion promoter, with limited shear intensities, occurs strong phase separation in the HDPE / PA 6 blends. Adhesion promoters are used to improve compatibility. Carboxyl acid or anhydride modified polyolefins or copolymers are suitable as adhesion promoters. Despite a compatibility of this type, even with intensified shear forces in the twin-screw extruder, no improvement in the mechanical properties of HDPE in the blend with PA 6 has been described in the literature to date. However, mixing HDPE with small amounts of polyamide 6 using a twin screw extruder can result in a laminar morphology. This leads to an enormous reduction in toluene permeability, for example, compared to pure HDPE. It is only in the case of the HDPE nanocomposites according to the invention with layered silicates intercalated in polyamide 6 that, surprisingly, the modulus of elasticity increases by about 28% and the heat resistance up to 30% (Table 1). This effect could be of advantage in the production of, for example, fuel tanks or pipes from HDPE nanocomposites instead of from HDPE laminates with improved mechanical and barrier properties.
Die Erfindung wird an folgenden Beispielen näher erläutert.The invention is illustrated by the following examples.
[Beispiele][Examples]
Zur Herstellung der HDPE-Nanocomposites wurde ein Doppelschneckenextruder ZSK 25 mit L/D=40 angewendet. Entsprechend der Erfindung wurden zunächst hochkonzentrierte Polyamid 6/Schichtsilikat Kompositionen in einem Verhältnis vo 13:7 bei Temperaturen im Bereich von 210 bis 250°C mittels Doppelschneckenextruder ZSK25 gemischt: Als organophiles Schichtsilikat wurde Tetraalkylammonium-Ion modifiziertes Montmorillo- nit verwendet. Die Compoundierung von HDPE mit dem entsprechenden Konzentrat erfolgte bei Temperaturen im Bereich von 200 bis 230°C und einem Drehzahl von 400 min"1. Die HDPE-PA 6-Nanocomposites wurden zu Prüfkörpern für die mechanischen sowie HDT Prüfungen und 1 mm dicken Platten für die WAKS- Analyse mit Hilfe eines Spritzgussautomats Arburg Allrounder 320M 850-210 gespritzt. Anhand der WAXS-Analysen wurde für alle erfindungsgemäße HDPE-PA 6-Nanocomposites eine vollständige Exfolierung der Schichtsilikate festgestellt und mittels Transmissions-Elektronen-Mikroskopie (TEM) bestätigt. Die Ergebnisse aus den mechanischen Prüfungen und der HDT- Messungen auf HDPE-PA 6-Nanocomposites, ausgeführt in den folgenden Beispielen, sind in Tabelle 1 zusammengestellt.A twin-screw extruder ZSK 25 with L / D = 40 was used to produce the HDPE nanocomposites. According to the invention, highly concentrated polyamide 6 / layered silicate compositions were first mixed in a ratio of 13: 7 at temperatures in the range from 210 to 250 ° C. by means of a ZSK25 twin-screw extruder: Tetraalkylammonium ion-modified montmorillonite was used as the organophilic layered silicate. HDPE was compounded with the corresponding concentrate at temperatures in the range of 200 to 230 ° C and a speed of 400 min "1. The HDPE-PA 6 nanocomposites became test specimens for mechanical and HDT tests and 1 mm thick plates for WAKS analysis using an Arburg Allrounder 320M 850-210 injection molding machine Based on the WAXS analyzes, a complete exfoliation of the layered silicates was found for all HDPE-PA 6 nanocomposites according to the invention and confirmed by means of transmission electron microscopy (TEM). The results from the mechanical tests and the HDT measurements on HDPE-PA 6-Nanocomposites, carried out in the following examples, are summarized in Table 1.
Beispiel 1example 1
In das HDPE-Matrixpolymer mit einem Schmelzindex von 11 ccm/10 min (HDPE-1) wurde das Polyamid 6/Schichtsilikat- Konzentrat mittels Doppelschneckenextruder entsprechend den vorgenannten Bedingungen zu Nanocomposite mit 4,2 Gew.-% organophiles Schichtsilikat eincompoundiert .The polyamide 6 / layered silicate concentrate was compounded into the HDPE matrix polymer with a melt index of 11 ccm / 10 min (HDPE-1) using a twin-screw extruder in accordance with the aforementioned conditions to give nanocomposites with 4.2% by weight of organophilic layered silicate.
Vergleichsbeispiel 1Comparative Example 1
HDPE mit Schmelzindex von 11 ccm/10 min (HDPE-1) wurde mit 8,2 Gew.-% Polyamid 6 zu Blends unter den gleichen Bedingungen wie die HDPE-Nanocomposites compoundiert .HDPE with a melt index of 11 ccm / 10 min (HDPE-1) was compounded with 8.2% by weight of polyamide 6 to form blends under the same conditions as the HDPE nanocomposites.
Beispiel 2Example 2
In das HDPE-Matrixpolymer mit einem Schmelzindex von 0,2 ccm/10 min (HDPE-2) wurde das Polyamid 6/Schichtsilikat- Konzentrat mittels Doppelschneckenextruder entsprechend den vorgenannten Bedingungen zu Nanocomposites mit 3,2 Gew.-% Schichtsilikat eincompoundiert. Beispiel 3The polyamide 6 / layered silicate concentrate was compounded into the HDPE matrix polymer with a melt index of 0.2 ccm / 10 min (HDPE-2) using a twin-screw extruder in accordance with the aforementioned conditions to give nanocomposites with 3.2% by weight of layered silicate. Example 3
In das HDPE-Matrixpolymer mit einem Schmelzindex von 0,2 ccm/10 min (HDPE-2) wurde das Polyamid 6/Schichtsilikat- Konzentrat und ein maleinsäureanhydrid-gepfropftes HDPE (HDPE-g-MA) mittels Doppelschneckenextruder entsprechend den vorgenannten Bedingungen zu Nanocomposites mit 3,2 Gew.-% Schichtsilikat compoundiert . In the HDPE matrix polymer with a melt index of 0.2 ccm / 10 min (HDPE-2), the polyamide 6 / layered silicate concentrate and a maleic anhydride-grafted HDPE (HDPE-g-MA) were converted into nanocomposites using a twin-screw extruder in accordance with the aforementioned conditions compounded with 3.2% by weight of layered silicate.

Claims

[Patentansprüche] [Claims]
1. Verfahren zur Herstellung von Nanocomposites auf Polyolefinbasis, dadurch gekennzeichnet, dass a) organophiles Schichtsilikat zu einem Anteil von 20-40 Gew.-% in eine Polyamidmatrix mit 80-60 Gew.-% durch Schmelze-Intercalierung (Schmelzecompoundierung) zu einem hochkonzentrierten Masterbatch eingearbeitet und b) das hochkonzentrierte Masterbatch anschließend in ei- ne Polyethylen-Matrix hoher Dichte (HDPE-Matrix) eincompoundiert wird.1. Process for the production of nanocomposites based on polyolefins, characterized in that a) organophilic layered silicate in a proportion of 20-40% by weight in a polyamide matrix with 80-60% by weight by melt intercalation (melt compounding) to a highly concentrated one Masterbatch incorporated and b) the highly concentrated masterbatch is then compounded into a high density polyethylene matrix (HDPE matrix).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Polyamidmatrix eine Polyamid 6-Matrix ist.2. The method according to claim 1, characterized in that the polyamide matrix is a polyamide 6 matrix.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schichtsilikate ein durch Kationenaustausch mit Onium- Ionen modifiziertes natürliches Sodium-Montmorillonit , Hektorit, Bentonit oder synthetisches Mica ist.3. The method according to claim 1, characterized in that the layered silicates is a natural sodium montmorillonite, hectorite, bentonite or synthetic mica modified by cation exchange with onium ions.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass in Stufe (b) ein carboxyliertes Polyolefin mit 1 bis 10 Gew.-% der Gesamtmenge zugegeben wird.4. The method according to claim 1 to 3, characterized in that in step (b) a carboxylated polyolefin is added with 1 to 10 wt .-% of the total amount.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als carboxyliertes Polyolefin ein maleinsäureanhydrid- gepfropftes Polyolefin, bevorzugt ein maleinsäureanhydrid gepfropftes Polyethylen eingesetzt wird.5. The method according to claim 4, characterized in that a maleic anhydride-grafted polyolefin, preferably a maleic anhydride-grafted polyethylene is used as the carboxylated polyolefin.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schmelzecompoundierung in Stufe (a) bei Temperaturen im Bereich von 210 bis 250°C und in Stufe (b) bei Temperaturen im Bereich von 200 bis 230°C erfolgt. 6. The method according to any one of claims 1 to 5, characterized in that the melt compounding in stage (a) at temperatures in the range of 210 to 250 ° C and in stage (b) at temperatures in the range of 200 to 230 ° C.
7. Nanocomposites auf Polyolefinbasis, hergestellt nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass sie aus mindestens zwei thermoplastischen Kunststoffen (A und B) bestehen, wovon (A) mindestens ein Polyolefin von 70 bis 98 Gew.-% und (B) mindestens ein Polyamid von 1 bis 30 Gew.-% ist, und (C) mindestens ein Schichtsilikat von 1 bis 10 Gew.-% und (D) optional ein carboxyliertes Polyolefin von 1 bis7. Nanocomposites based on polyolefins, produced according to claims 1 to 6, characterized in that they consist of at least two thermoplastics (A and B), of which (A) at least one polyolefin of 70 to 98 wt .-% and (B) is at least one polyamide from 1 to 30% by weight, and (C) at least one layered silicate from 1 to 10% by weight and (D) optionally a carboxylated polyolefin from 1 to
10 Gew.-% bestehen.10 wt .-% exist.
8. Komposition nach Anspruch 7, dadurch gekennzeichnet, dass die Komponente A ein Polyethylen hoher Dichte ist.8. Composition according to claim 7, characterized in that component A is a high density polyethylene.
9. Komposition nach Anspruch 7, dadurch gekennzeichnet, dass die Komponente B ein Polyamid 6 ist.9. Composition according to claim 7, characterized in that component B is a polyamide 6.
10. Komposition nach Anspruch 7, wobei die Komponente C ein durch Kationenaustausch mit Onium-Ionen modifiziertes natürliches Natrium-Montmorillonit , Hektorit, Bentonit oder synthetisches Mica ist.10. The composition of claim 7, wherein component C is a natural sodium montmorillonite, hectorite, bentonite or synthetic mica modified by cation exchange with onium ions.
11. Komposition nach Anspruch 7, dadurch gekennzeichnet, dass als Komponente (D) ein maleinsäureanhydrid- gepfropftes Polyolefin, bevorzugt ein maleinsäureanhydrid ge- pfropftes Polyethylen, zugegeben wird.11. Composition according to claim 7, characterized in that a maleic anhydride-grafted polyolefin, preferably a maleic anhydride-grafted polyethylene, is added as component (D).
12. Verwendung der nach einem der Ansprüche 1 bis 11 hergestellten Nanocomposite als Spritzgussteile, Rohre, Behälter. 12. Use of the nanocomposites produced according to one of claims 1 to 11 as injection molded parts, pipes, containers.
EP03732205A 2002-05-18 2003-04-09 Nanocomposites based on polyolefin, method for the production thereof, and use of the same Withdrawn EP1511804A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10222169 2002-05-18
DE10222169A DE10222169A1 (en) 2002-05-18 2002-05-18 Polyolefin-based nanocomposites and process for their production and use
PCT/DE2003/001158 WO2003097738A1 (en) 2002-05-18 2003-04-09 Nanocomposites based on polyolefin, method for the production thereof, and use of the same

Publications (1)

Publication Number Publication Date
EP1511804A1 true EP1511804A1 (en) 2005-03-09

Family

ID=29413942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03732205A Withdrawn EP1511804A1 (en) 2002-05-18 2003-04-09 Nanocomposites based on polyolefin, method for the production thereof, and use of the same

Country Status (5)

Country Link
US (1) US20050228102A1 (en)
EP (1) EP1511804A1 (en)
AU (1) AU2003238342A1 (en)
DE (1) DE10222169A1 (en)
WO (1) WO2003097738A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419017C (en) * 2004-08-13 2008-09-17 于志文 Overall plastic microcosmic laminar composite and its preparation method
WO2006071833A1 (en) * 2004-12-28 2006-07-06 Polyone Corporation Blends of nanocomposites and their use
US20080102236A1 (en) * 2006-10-27 2008-05-01 Fish Robert B Pipes containing nanoclays and method for their manufacture
US20180177254A1 (en) * 2016-12-22 2018-06-28 Russell Neuman Method of extruding a thermoplastic polymer to produce random coloration and a product using same
CN109593249A (en) * 2018-11-12 2019-04-09 张桂芬 A kind of rub resistance PE alloy
CN113789012A (en) * 2021-09-29 2021-12-14 重庆会通科技有限公司 Polypropylene composite material with high paint adhesion and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910523A (en) * 1997-12-01 1999-06-08 Hudson; Steven David Polyolefin nanocomposites
KR20010040964A (en) * 1998-02-13 2001-05-15 마크 에프. 웍터 Polymer nanocomposite composition
NL1013520C2 (en) * 1999-07-19 2001-01-22 Dsm Nv Extruded polyolefin molded part.
US6906127B2 (en) * 2002-08-08 2005-06-14 Amcol International Corporation Intercalates, exfoliates and concentrates thereof formed with low molecular weight; nylon intercalants polymerized in-situ via ring-opening polymerization
KR100733922B1 (en) * 2004-12-03 2007-07-02 주식회사 엘지화학 Article having barrier property

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03097738A1 *

Also Published As

Publication number Publication date
WO2003097738A1 (en) 2003-11-27
DE10222169A1 (en) 2003-12-04
US20050228102A1 (en) 2005-10-13
AU2003238342A1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
EP1394197B1 (en) Highly viscous moulding materials with nanoscale fillers
DE3211393C2 (en)
EP1801162B1 (en) Polyamid-eva-blends
EP2331611B1 (en) Method for manufacturing flat molded members or films
DE19842845A1 (en) Resin composite including organophilic clay and functionalized (co)polymer, useful for injection, extrusion, blow and compression molding and for films
DE60016046T2 (en) THERMOPLASTIC NANOCOMPOSITE BASED ON POLYPROPYLENE AND THE PRODUCTION THEREOF
EP1841824B1 (en) Highly viscose thermoplastic polymer-based moulding compounds and the use thereof
DE102017214080B4 (en) Composition of compounds as an interior material for vehicles by using natural fibers
DE10164335A1 (en) Resin composite material
DE112009003546T5 (en) Preparation of High Strength and High Impact Polypropylene / Nanotone / Rubber Composite Using a Rubber / Nanotone Premix
DE112019001653T5 (en) REINFORCED POLYOLEFINE COMPOSITE
EP0545181B1 (en) Thermoplastic moulding matter
DE1694913B2 (en) MOLDINGS WITH IMPROVED LIGHT TRANSMISSION ON THE BASIS OF POLYPROPYLENE
EP3962994B1 (en) Polymer compositions that contain a semi-crystalline polymer, and process of preparation
EP1299467B1 (en) Method for producing nanoreinforced thermoplastic polymers
WO2004099316A1 (en) Polymer-nanocomposite blends
WO2003097738A1 (en) Nanocomposites based on polyolefin, method for the production thereof, and use of the same
EP1780241A1 (en) Use of polyamide moulding materials for the fabrication of moulded articles with reduced superficial charring
EP0617088A2 (en) Ternary polymer blends and their use
DE10348548A1 (en) Extrusion process for the production of toughened and layer silicate reinforced thermoplastic systems
EP3460001A1 (en) Thermoplastic elastomer composition based on styrene block copolymer with low density and good mechanical properties
EP1050557B1 (en) Thermoplastic resins and blends thereof containing modified inorganic layered compounds and their utilisation
EP1359196B1 (en) Polyamide composition reinforced with layered silicate
DE60311500T2 (en) polyolefin resin
DE60103666T2 (en) USE OF A NANO FILLER-CONTAINING POLYOLEFIN COMPOSITION FOR THE MANUFACTURE OF IMPROVED ARTICLES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050623

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20050623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070612