EP1498983A1 - Verfahren zur Ausrichtung einer auf einem Fahrzeug angebrachten Richtantenne eines Satellitensignalempfängers auf einem Kommunikationssatelliten - Google Patents
Verfahren zur Ausrichtung einer auf einem Fahrzeug angebrachten Richtantenne eines Satellitensignalempfängers auf einem Kommunikationssatelliten Download PDFInfo
- Publication number
- EP1498983A1 EP1498983A1 EP04015289A EP04015289A EP1498983A1 EP 1498983 A1 EP1498983 A1 EP 1498983A1 EP 04015289 A EP04015289 A EP 04015289A EP 04015289 A EP04015289 A EP 04015289A EP 1498983 A1 EP1498983 A1 EP 1498983A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- directional antenna
- shading
- satellite
- areas
- search
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 claims description 16
- 230000033001 locomotion Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 1
- 230000002411 adverse Effects 0.000 abstract 1
- 238000010295 mobile communication Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/325—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
- H01Q1/3275—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/125—Means for positioning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
Definitions
- the invention relates to a method for continuous Alignment of a directional antenna mounted on a vehicle a satellite signal receiver to a radio signals transmitting communication satellites by means of receive level evaluation the satellite broadcast over the Directional antenna received radio signals, wherein a tracking operation (Tracking) for the initial and reorientation of the Directional antenna on the satellite a search and acquisition operation which falls below a certain Receive signal level threshold is effective.
- a tracking operation Tracking
- Antennas such as e.g. a parabolic antenna, in one direction a sharp main club and thus have a very high profit.
- Antenna for mobile reception provided and on one Vehicle, e.g. a motor vehicle, a ship or a Plane, attached, so there is a need to align this antenna continuously with the satellite, to compensate for the vehicle movements and thus the Maintain satellite communication link.
- the directional antenna alignment is still between the status of the coarse alignment, the status of the acquisition and the status of the actual tracking (tracking phase) the directional antenna distinguished.
- the main lobe of the Directional antenna tracked until the received power is optimized and in the course of the subsequent actual tracking phase (tracking phase) of the Directional antenna, the reception is maintained in mobile operation, including slight misdirections of the direction antenna main lobe be readjusted.
- the duration for search and acquisition should always be minimal be to ensure a rapid recording of the transmission Initialization of the transmission system or after loss of the satellite signal.
- the search and acquisition duration can by restricting the search areas e.g. by location and position information of the mobile Directional antenna be shortened.
- Figures 1 to 4 show for clarity the receiving states described in detail, where P in the received power and P opt represent the optimal orientation of a directional antenna 1, for example, a parabolic antenna, and received without shading maximum power.
- the direct direction of incidence of the satellite signal is indicated by an arrow 2 in all four figures.
- the received power can be greatly different from P in ⁇ P opt to P in ⁇ P opt .
- the reception in the mobile Maintain operation which is shown by the Fig.2 is. Will the communication link between the satellite and the mobile directional antenna 1 through the obstacle 4 disturbed, as shown in Figure 4, so is so due to the signal shading connected a signal loss.
- the cause of the signal loss is a coarse misalignment of the directional antenna 1 according to FIG. 3 or a shadowing due to an obstacle 4 according to FIG.
- a consequence of the signal loss is a renewed systematic search of the direction of arrival of the satellite signal, which of course will be unsuccessful in the case of the presence of shadowing by an obstacle.
- a new search while driving through a shading through an obstacle can not be for retrieval of the satellite signal and extends after decline shadowing the time of signal retrieval.
- a train on which an alignable directional antenna is mounted enters a tunnel or shadows mobile obstacle, such as a truck, one up a passenger car mounted, alignable antenna This is the case with the conventional tracking methods automatically after a certain time with a new search of the satellite signal started.
- the invention is based on the object of such methods for alignment of a vehicle mounted Directional antenna of a satellite signal receiver on a To perfect communications satellites that the time period for the signal detection and thus the Duration until recording of transmission after passing through obstacle-related signal shading areas and a As a result, generated signal loss are minimized.
- this object is achieved in advantageous and suitably solved by means of a sensor additionally provided on the vehicle Obstacles on the connection path between satellite and Directional antenna detected conditional signal shading and information About shading areas in the field of view and / or be delivered in the range of motion of the directional antenna, and that the search and acquisition operation on the basis of the sensor obtained over the shading areas Information for the duration of driving through these shading areas not in previous tracking operation switched on or at previous search and acquisition operation is disabled, although the particular received signal level threshold is fallen below.
- the method according to the invention thus introduced an additional sensor, the direct information about shading areas the directional antenna gives. This information will be used by the antenna controller to do a search in one Shading area to prevent and thus the times to Minimize signal detection.
- the search and acquisition operation at least initially not activated and thus no new satellite signal search started, but the directional antenna remains in the direction prior to the respective shadowing orientation.
- the detection of shading areas in opposition to areas of free view to the sky and so too to the satellite can advantageously by means of a with the directional antenna mitbewegten distance measuring sensor in Trap that shading areas always throughout the reception area the directional antenna, e.g. in tunnels one Train route occur, taking obstacles in the near field of view of the directional antenna by means of the distance measuring sensor, the same opening angle as the guided tracking antenna has and its line of sight with the directional antenna is moved, be recognized.
- Such a distance measuring sensor can advantageously work on ultrasound basis.
- the detection of shading areas in contrast to areas of free view to the sky and so too to the satellite by means of a shading database which are the result of a shading pattern Shading areas stored in the database and using Position information Obstacles in the movement area be determined.
- the detection of shading areas in contrast to areas free view to the sky and thus to the satellite can be advantageous but also by means of a directional antenna mitbewegten arrays of infrared sensors made be such that one derived from the infrared sensor array Infrared image due to the different temperature from the open sky and obstacles the shading areas in the entire reception area of the directional antenna reproduces.
- the noise temperature of a mobile directional antenna in the microwave range is between 3 ° and 100 ° Kelvin against the open sky depending on the elevation angle or over 1000 ° Kelvin in alignment with the sun, whereas shading the ambient noise temperature is between about 250 ° Kelvin and about 350 ° Kelvin.
- a noise temperature sensor can thus easily analyze the noise temperature of the directional antenna, so that a clear distinction between shaded areas and a clear view of the sky.
- FIG.5 and Fig.6 are each in three successive state images (a), (b) and (c) the Orientation states of a directional antenna 5, which on a on a street 6 to the right moving bus 7 is attached, passing through an obstacle 8 shading region shown, FIG the Zusatandsablauf known method without detection of Shading and Fig.6 the state of the process according to the invention with detection of shading shows.
- Fig. 6 shows shading is detected, then no satellite signal search during the shading started as the state image (b) of Fig. 6 shows and the satellite communication link is due to the unchanged orientation of the directional antenna 5 and its main lobe 10 immediately after the end of the shading again, which shows the state image (c) of FIG.
- the main lobe 10 of the directional antenna 5 conditionally by a change of direction of the bus 7 and thus also the directional antenna 5 during shading, e.g. through a tunnel with curve, after the end of the shading in the wrong direction, that is no longer in the direction of incidence 9 of the satellite signal.
- the search for the satellite signal only then started when receiving the satellite signal again is possible what the search and acquisition time significantly can shorten.
- the entire reception area must be the directional antenna, e.g. the entire upper hemisphere, systematically searched for the satellite signal become.
- the Time required for signal search as low as possible to hold by varying prior knowledge of limitation of the search area is used. If one knows, e.g. the current position and approximate orientation of the mobile Satellite receiver, so the search area can through This information will be restricted because of this Elevation and azimuth range are given.
- FIG. 7 shows a schematic fisheye image the current environment of the mobile satellite receiver illustrates how one in azimuth elevation coordinates applied hemispherical fisheye image to be used can further speed up the signal search by only areas are searched that are not obstructed are shadowed.
- the vehicle in the form of hemispherical Fisheye recording additionally provided sensors be through obstacles on the connection path between signal shading conditioned on the satellite and the directional antenna detected and information about shading areas in the field of view and / or range of motion of the directional antenna issued.
- the search and acquisition operation in the mobile satellite receiver is due to the fisheye sensor via the shading areas gained information for the Duration of driving through these shading areas at previous Tracking mode (tracking) not switched on or deactivated in previous search and acquisition operation, although a fixed received signal level threshold is below, below which else, so misalignment of the directional antenna, the search and acquisition operation is turned on. Only after longer lasting Shadowing and of course recognized by all Misalignment of the directional antenna then becomes a new search the satellite signal started and only in the narrower Areas not shaded by obstacles are.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radio Relay Systems (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- Fig.1 bis 4
- die bereits vorher erläuterten unterschiedlichen Empfangszustände von Satellitensignalen bei unterschiedlich ausgerichteter Richtantenne in schematischen Ansichten,
- Fig.5
- in drei aufeinanderfolgenden schematischen Bildern die Ausrichtungszustände einer auf einem Omnibus angebrachten Richtantenne beim Passieren eines durch ein Hindernis verursachten Abschattungsbereiches ohne Erkennung der Abschattung,
- Fig.6
- in ebenfalls drei aufeinanderfolgenden schematischen Bildern die Ausrichtungszustände der auf dem Omnibus angebrachten Richtantenne beim Passieren des durch ein Hindernis verursachten Abschattungsbereiches mit Erkennung der Abschattung, und
- Fig.7
- ein schematisches Beispiel der Umgebung eines mobilen Satellitenempfängers als hemisphärisches Fisheye-Abbild, aus dem die Abschattungen verursachenden Hindernisse ersichtlich sind.
- 1
- Richtantenne
- 2
- Einfallsrichtung des Satellitensignals
- 3
- Hauptkeule
- 4
- Hindernis
- 5
- Richtantenne
- 6
- Straße
- 7
- Omnibus, Fahrzeug
- 8
- Hindernis
- 9
- Einfallsrichtung des Satellitensignals
- 10
- Hauptkeule
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003132777 DE10332777B3 (de) | 2003-07-17 | 2003-07-17 | Verfahren zur Ausrichtung einer auf einem Fahrzeug angebrachten Richtantenne eines Satellitensignalempfängers auf einen Kommunikationssatelliten |
DE10332777 | 2003-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1498983A1 true EP1498983A1 (de) | 2005-01-19 |
Family
ID=33461996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04015289A Withdrawn EP1498983A1 (de) | 2003-07-17 | 2004-06-30 | Verfahren zur Ausrichtung einer auf einem Fahrzeug angebrachten Richtantenne eines Satellitensignalempfängers auf einem Kommunikationssatelliten |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1498983A1 (de) |
CA (1) | CA2473479C (de) |
DE (1) | DE10332777B3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008119763A1 (de) * | 2007-03-30 | 2008-10-09 | Continental Teves Ag & Co. Ohg | Steuerung von antennnen zur erhöhung der kommunikationsreichweite eines fahrzeugs |
DE102008016311B4 (de) | 2007-03-30 | 2022-05-12 | Continental Teves Ag & Co. Ohg | Steuerung von Antennen zur Erhöhung der Kommunikationsreichweite eines Fahrzeugs |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008033724A1 (de) * | 2008-07-14 | 2009-09-24 | Siemens Aktiengesellschaft | Satellitenempfangseinrichtung und Verfahren zu deren Betrieb |
DE202016103801U1 (de) * | 2016-07-14 | 2017-10-19 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Luftfahrzeug, Luftraumüberwachungssystem und Computerprogramm |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338379A2 (de) * | 1988-04-12 | 1989-10-25 | Nippon Steel Corporation | Verfahren und Anordnung zur Antennenstabilisierung |
US5917446A (en) * | 1995-11-08 | 1999-06-29 | The Charles Stark Draper Laboratory, Inc. | Radio-wave reception system using inertial data in the receiver beamforming operation |
US6384779B1 (en) * | 1999-12-23 | 2002-05-07 | Hyundai Motor Company | Method for improving tracking speed of satellite antenna |
US20020072843A1 (en) * | 2000-08-16 | 2002-06-13 | Russell Mark E. | Safe distance algorithm for adaptive cruise control |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6413801A (en) * | 1987-07-08 | 1989-01-18 | Aisin Seiki | Attitude controller for antenna on mobile body |
DE69020319T2 (de) * | 1989-12-11 | 1996-03-14 | Toyoda Chuo Kenkyusho Kk | Mobiles Antennensystem. |
IT1240809B (it) * | 1990-03-28 | 1993-12-17 | Selenia Spazio Spa Ora Alenia | Sistema integrato sensore-attuatore per il controllo del puntamento di antenne a bordo di satelliti artificiali. |
EP0691039A1 (de) * | 1994-01-20 | 1996-01-10 | Nippon Steel Corporation | Antennenvorrichtung für den mobilen satellitenfunkempfang |
JP3339358B2 (ja) * | 1997-05-09 | 2002-10-28 | 三菱電機株式会社 | アンテナ制御装置 |
-
2003
- 2003-07-17 DE DE2003132777 patent/DE10332777B3/de not_active Expired - Lifetime
-
2004
- 2004-06-30 EP EP04015289A patent/EP1498983A1/de not_active Withdrawn
- 2004-07-12 CA CA002473479A patent/CA2473479C/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338379A2 (de) * | 1988-04-12 | 1989-10-25 | Nippon Steel Corporation | Verfahren und Anordnung zur Antennenstabilisierung |
US5917446A (en) * | 1995-11-08 | 1999-06-29 | The Charles Stark Draper Laboratory, Inc. | Radio-wave reception system using inertial data in the receiver beamforming operation |
US6384779B1 (en) * | 1999-12-23 | 2002-05-07 | Hyundai Motor Company | Method for improving tracking speed of satellite antenna |
US20020072843A1 (en) * | 2000-08-16 | 2002-06-13 | Russell Mark E. | Safe distance algorithm for adaptive cruise control |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008119763A1 (de) * | 2007-03-30 | 2008-10-09 | Continental Teves Ag & Co. Ohg | Steuerung von antennnen zur erhöhung der kommunikationsreichweite eines fahrzeugs |
DE102008016311B4 (de) | 2007-03-30 | 2022-05-12 | Continental Teves Ag & Co. Ohg | Steuerung von Antennen zur Erhöhung der Kommunikationsreichweite eines Fahrzeugs |
Also Published As
Publication number | Publication date |
---|---|
DE10332777B3 (de) | 2005-03-10 |
CA2473479A1 (en) | 2005-01-17 |
CA2473479C (en) | 2008-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69528807T2 (de) | Verfahren und Vorrichtung zum Entdecken von Antwortgeräten | |
EP2804013B1 (de) | Vorrichtung zum Messen der Position eines Fahrzeugs oder einer Oberfläche desselben | |
DE69425092T2 (de) | System zur dreidimensionalen Millimeterwellenabbildung, -verfolgung und -lenkung | |
EP0627718B1 (de) | Verfahren zur Durchführung eines drahtlosen Datenaustauschs zwischen einer Feststation und sich bewegenden Objekten, insbesondere Fahrzeugen | |
WO1992002831A1 (de) | Ultraschall-überwachungssystem für einen kfz-innenraum | |
DE102006012413B4 (de) | Objekterfassungsvorrichtung für ein Fahrzeug | |
WO2021032423A1 (de) | Radarsensor, kraftfahrzeug und verfahren zum betrieb eines radarsensors | |
DE3587408T2 (de) | Verfolgungssystem für antennen mittels sequentieller mehrkeulenbildung. | |
EP0679902B1 (de) | Verfahren zur Selektion von Signalen von Navigationssatelliten | |
DE102020001153A1 (de) | Flugkörper, insbesondere Lenkflugkörper, mit einer Radarsensoreinheit | |
DE60224169T2 (de) | Antennensteuerung und steuerverfahren | |
DE102009053872A1 (de) | Verfahren zur Lokalisierung eines passiven RFID-Transponders | |
EP1498983A1 (de) | Verfahren zur Ausrichtung einer auf einem Fahrzeug angebrachten Richtantenne eines Satellitensignalempfängers auf einem Kommunikationssatelliten | |
DE102017214020B4 (de) | Kraftfahrzeug mit mehreren Radarsensoren zur Umfelderfassung | |
EP1499848B1 (de) | Verfahren zum datenaustausch zwischen militärischen flugzeugen und vorrichtung zur durchführung dieses verfahrens | |
DE102017114223A1 (de) | Nahfeld-Radareinrichtung, Land-, Luft- oder Wasser-Fahrzeug, Verwendung einer Radareinrichtung, Verfahren zum Betrieb einer Radareinrichtung sowie Computerprogramm | |
DE69428766T2 (de) | Falschradarspurenunterscheidung in Nebenzipfeln von Monopulsantennen | |
DE10101991C1 (de) | Verfahren zur Signalverarbeitung- und Prozessierung nach dem ROSAR-System | |
EP1894036A1 (de) | Verfahren zur erhöhung der genauigkeit eines dopplerradarsensors | |
EP0475169B1 (de) | Laserstrahleinrichtung für Kraftfahrzeuge | |
EP2804012B1 (de) | Verfahren zum Messen der Position einer Oberfläche eines Fahrzeugs | |
EP4351943A1 (de) | Transportables parkassistenzsystem, verfahren und computerprogrammprodukt | |
DE102019211375B4 (de) | Kraftfahrzeug mit einem Radarsensor und Verfahren zum Betrieb des Kraftfahrzeugs | |
DE102018216389B3 (de) | Betriebsverfahren für ein Antennenarray eines Fahrzeugs | |
EP0578060A2 (de) | Verfahren zur Datenübertragung zwischen einer Feststation und sich bewegenden Objekten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050329 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. |
|
17Q | First examination report despatched |
Effective date: 20070402 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/32 20060101AFI20150325BHEP Ipc: H01Q 1/12 20060101ALI20150325BHEP Ipc: H01Q 3/26 20060101ALI20150325BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150504 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150905 |