EP1497901A1 - Magnetic return path and permanent-magnet fixing of a rotor - Google Patents

Magnetic return path and permanent-magnet fixing of a rotor

Info

Publication number
EP1497901A1
EP1497901A1 EP02795016A EP02795016A EP1497901A1 EP 1497901 A1 EP1497901 A1 EP 1497901A1 EP 02795016 A EP02795016 A EP 02795016A EP 02795016 A EP02795016 A EP 02795016A EP 1497901 A1 EP1497901 A1 EP 1497901A1
Authority
EP
European Patent Office
Prior art keywords
permanent magnets
rotor
permanent
lamella
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02795016A
Other languages
German (de)
French (fr)
Inventor
Tilo Koenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1497901A1 publication Critical patent/EP1497901A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets

Definitions

  • the invention relates to a rotor for an electrical machine, in particular for an electric motor, with the features of the preamble of claim 1
  • rotors for, for example, brushless DC motors (BLDC motors) with a back yoke, on the circumference of which permanent magnets are arranged.
  • the inference can be composed of laminations as a laminated core.
  • BLDC motors brushless DC motors
  • yoke with the permanent magnets in a protective tube.
  • the permanent magnets have to be positioned at the back yoke and must be held during the curing of the adhesive, synthetic resin or plastic or during the insertion into the protective tube.
  • holders must be provided in an injection mold, which hold the permanent magnets positioned on the back yoke during the injection process. When shedding the tolerant permanent magnets are inserted in tolerances recesses of the yoke and consequently cast in undefined positions.
  • the problem with positioning the permanent magnets at the back yoke is the manufacturing tolerance of the permanent magnets. Since the manufacturing tolerances do not decrease to the same extent as the dimensions themselves when the dimensions become smaller, relative inaccuracies increase with decreasing size of the permanent magnets and the rotors. Relative inaccuracy means a tolerance with regard to absolute component dimensions. In particular when using rare earth magnets, which have a magnetic force that is several times higher than conventional ferrite magnets and which can therefore be smaller, an inaccuracy of the positioning becomes noticeable due to the small absolute dimensions of the magnets and the rotor.
  • the invention is therefore intended in particular for small permanent magnets, for example the rare earth magnets mentioned, and for small rotors and small motors. However, the invention can in principle be used for all sizes of electrical machines and rotors as well as all magnet types.
  • the rotor according to the invention with the features of claim 1 has a back yoke with a laminated core consisting of fins and a number of permanent magnets arranged at the back yoke.
  • Lamellae of the laminated core of the yoke of the rotor have at least one fixing element which is integral with the lamellae.
  • the permanent magnets are fixed between two fixing elements, which are fixed relative to each other Permanent magnets are preferably arranged opposite one another.
  • Each lamella preferably has one or more pairs of fixing elements, a permanent magnet being fixed between a pair of fixing elements.
  • a permanent magnet can also be fixed between two fixing elements of different lamellae, so that lamellae with a fixing element or individual fixing elements are possible instead of one or more pairs of fixing elements.
  • the rotor according to the invention can also have fins without fixing elements. With their fixing elements, in particular a lamella clamps one, several, and possibly also all permanent magnets of the rotor, depending on whether it has one or more pairs of fixing elements. Fixing elements of several lamellae are provided for fixing a permanent magnet.
  • the fixing elements have the advantage that they compensate for the manufacturing tolerances of the permanent magnets. Since the fixing elements fix a permanent magnet on sides of the permanent magnet facing away from one another, in particular clamp them, they position the permanent magnet between them irrespective of its manufacturing tolerance.
  • the fixing elements keep the permanent magnets of the rotor in position during gluing, casting or spraying until an adhesive, plastic or synthetic resin has hardened.
  • the fixing elements also hold the permanent magnets in position when the rotor is inserted into a protective tube.
  • An additional advantage of the fixing elements is that they contribute to torque transmission and offer protection against displacement in the event of a mechanical defect in the electrical machine.
  • the back yoke has mutually rotated lamellae, between the spring elements of which different permanent magnets are clamped.
  • the slats are rotated by 360 ° divided by the number of permanent magnets or a multiple thereof.
  • pairs of spring eggs may be provided on a lamella for every second permanent magnet. This is advantageous or necessary if the provision of spring element pairs on one lamella is difficult or not possible for all permanent magnets for reasons of space.
  • twisting the slats against each other has the advantage that fluctuating slat thicknesses and warped slats are compensated for over a surface of the slats, in particular if such shape errors are systematic, ie are present in all slats.
  • the lamellae c 15 can have sides of different thicknesses, for example by rolling the sheet, these shape errors being the same for each lamella.
  • the rotor according to the invention is particularly useful as so-called internal rotor.
  • With on an outer periphery of the laminated core of the 'inference 2.0 arranged permanent magnet is provided (claim 5).
  • the rotor With on an outer periphery of the laminated core of the 'inference 2.0 arranged permanent magnet is provided (claim 5).
  • the rotor it is also possible to design the rotor as a so-called external rotor with permanent magnets arranged on an inner circumference of the laminated core.
  • lamellae of the laminated core must be ring-shaped, ie have a hole.
  • the fixing elements are spring elements (claim 6) which clamp the permanent magnets between them due to their elasticity. This achieves a compensation of permanent magnets of different widths.
  • Figure 2 shows a conclusion of the rotor according to the invention with laminated cores composed of lamellae according to Figure 1 in perspective
  • FIG. 3 shows the inference from FIG. 2 with permanent magnets.
  • the lamella 10 shown in Figure 1 is stamped from a sheet metal. It has an essentially square shape with a central hole 12. At each corner, the lamella 10 has a spring element 14 which is designed as a Fecler tongue which is one-piece with the lamella 10 and which is produced in one operation by punching the lamella 10. Instead of being punched, the lamella 10 with the spring elements 14 can also be produced by laser cutting, water jet cutting, eroding or another method. In each case two adjacent spring elements 14 face each other and are assigned to one another, they form a pair of spring elements 14. In FIG. 1, the two spring elements 14 shown above and the two below are assigned to one another and form a pair.
  • lamellae 10 are assembled to form a laminated core 18. All lamellae 10 of the laminated core 18 are identical and have the shape shown in FIG. 1. In each case, a number of, for example, five to six slats 10 is congruently assembled. The next, for example, five to six slats 10 are rotated by 90 °. The angle of rotation of 90 ° applies to the illustrated and described embodiment of the invention, in which the rotor has four permanent magnets. In general, the angle of rotation of the lamellae 10 is 360 ° divided by the number of permanent magnets.
  • the yoke 16 By twisting the slats 10 against one another, the yoke 16 has spring element pairs 14 arranged on all of its four outer or circumferential sides 20 distributed over its axial length, although the individual lamellae 10 have spring element pairs 14 only on two of four outer sides.
  • the next but one, for example five to six slats 10 are rotated by a further 90 °, that is to say rotated by 180 ° with respect to the first slats 10.
  • manufacturing-related, systematic thickness and shape errors of the slats 10 are compensated for.
  • systematic it is meant that the inaccuracy is present at the same point on each lamella 10.
  • Such manufacturing inaccuracy can be, for example, a local difference in thickness or a local curvature of the lamella 10, which is present at the same location on each lamella 10.
  • the rotor 16 has four permanent magnets 22 (FIG. 3).
  • the permanent magnets 22 have a D-shaped cross section (“loaf of bread”), that is to say they have a flat base side with which they rest on the outside 20 of the rotor 16.
  • Longitudinal side surfaces 24 of the permanent magnets 22 that are axially parallel to the rotor are perpendicular to the base surface and are low in relation to a width of the base area, an outer surface 26 of the permanent magnets 22 facing away from the yoke 16 is curved in a cylindrical shape, a cylinder radius corresponding to a distance of the outer surface 26 from an imaginary rotor axis.
  • the number and shape of the permanent magnets 22 can differ from the above information in other configurations of the invention.
  • the permanent magnets 22 can be, for example, cylindrical shells instead of D-shaped (not shown), in this case the lamellae 10 preferably have a circular instead of a square basic shape, and the permanent magnets are convex with a concave inner surface curved peripheral edge of the slats. It is also not imperative that the cylinder radius of the outer surface 26 of the permanent magnets 22 coincides with a distance from the imaginary rotor axis.
  • the permanent magnets 22 are inserted between the spring element pairs 14, the spring elements 14 resiliently pressing against the longitudinal side surfaces 24 of the permanent magnets 22 and in this way clamping the permanent magnets 22 between them and thus at the yoke 16. Since the spring elements 14 press uniformly against the permanent magnets 22 from both sides, the spring elements 14 position the permanent magnets 22 in the lateral (tangential or circumferential) direction and the same manufacturing tolerances of the permanent magnets 22.
  • the spring elements 14 hold the permanent magnets 22 during a connection of the permanent magnets 22 to the yoke 16 by, for example, gluing, casting with a synthetic resin or overmolding with plastic.
  • the yoke 16 with the permanent magnets 22 can, for example, also be inserted into a so-called protective tube (not shown). A rotor shaft (not shown) is pressed into the hole 12 for the manufacture of the rotor according to the invention or is used in another manner to prevent rotation.
  • the back yoke 16 has two identical laminated cores 18, each with its own permanent magnet 22.
  • the laminated cores 18 are twisted at an angle of for example 15 ° to each other, so that a generated by the permanent magnets 22 of the rotor magnetic pole having a quasi- ⁇ skew. This reduces the cogging torque and the torque wisdom of the rotor.
  • the rotor can have more than two laminated cores 18 rotated relative to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The invention relates to a permanent magnet rotor for an electromotor, comprising a return path (16) that is provided with packs of sheet metal (18). Laminae (10) of the inventive return path (16) are provided with spring elements (14) which press against the permanent magnets (22) of the rotor from two sides, thereby centering said permanent magnets (22) in a lateral direction regardless of production tolerances. The return path (16) is cast together with the permanent magnets (22), for example by means of artificial resin, or extrusion-coated with plastic once the permanent magnets (22) have been placed between the spring elements (14). The inventive permanent magnet rotor has the advantage of compensating production tolerances of the permanent magnets (22).

Description

Magnetischer Ruckschluss und Permanentmagnetfixierung eines Rotors Magnetic return and permanent magnet fixation of a rotor
Beschreibungdescription
Stand der TechnikState of the art
Die Erfindung betrifft einen Rotor für eine elektrische Maschine, insbesondere für einen Elektromotor, mit den Merkmaien des Oberbegriffs des Anspruchs 1The invention relates to a rotor for an electrical machine, in particular for an electric motor, with the features of the preamble of claim 1
Es ist bekannt, Rotoren für beispielsweise bürstenlose Gleichstrommotoren (BLDC-Motoren) mit einem Ruckschluss auszubilden, an dessen Umfang Permanentmagnete angeordnet sind. Der Ruckschluss kann als Blechpaket aus Lamellen zusammengesetzt sein. Zur Befestigung ist es bekannt, die Permanentmagnete mit dem Ruckschluss zu verkleben, den Ruckschluss und die Permanentmagnete mit einem Kunstharz zu vergießen oder mit Kunststoff zu umspritzen. Dabei ist das Vergießen mit Kunstharz eine Art des Verklebens. Auch ist es bekannt, den Ruckschluss mit den Permanentmagneten in ein Schutzrohr einzusetzen. Ali diesen Möglichkeiten ist gemeinsam, dass die Permanentmagnete am Ruckschluss positioniert und während des Aushärtens des Klebstoffs, Kunstharzes oder Kunststoffs oder während des Einsetzens in das Schutzrohr gehalten werden müssen. Beim Spritzgießen müssen Halter in einem Spritzwerkzeug vorgesehen werden, die die Permanentmagnete während des Spritzvorgangs positioniert am Ruckschluss halten. Beim Vergießen werden die toleranzbehafteten Permanentmagnete in toleranzbehaftete Aussparungen des Rückschlusses eingelegt und infolge dessen in Undefinierten Positionen vergossen.It is known to design rotors for, for example, brushless DC motors (BLDC motors) with a back yoke, on the circumference of which permanent magnets are arranged. The inference can be composed of laminations as a laminated core. For fastening, it is known to glue the permanent magnets to the yoke, to cast the yoke and the permanent magnets with a synthetic resin or to encapsulate them with plastic. Potting with synthetic resin is a way of gluing. It is also known to use the yoke with the permanent magnets in a protective tube. All these options have in common that the permanent magnets have to be positioned at the back yoke and must be held during the curing of the adhesive, synthetic resin or plastic or during the insertion into the protective tube. During injection molding, holders must be provided in an injection mold, which hold the permanent magnets positioned on the back yoke during the injection process. When shedding the tolerant permanent magnets are inserted in tolerances recesses of the yoke and consequently cast in undefined positions.
Problem beim Positionieren der Permanentmagnete am Ruckschluss ist die Fertigungstoleranz der Permanentmagnete. Da die Fertigungstoleranzen bei kleiner werdenden Abmessungen nicht in gleichem Maße abnehmen wie die Abmessungen selbst, steigen relative Ungenauigkeiten mit abnehmender Größe der Permanentmagnete und der Rotoren. Dabei ist mit relativer Ungenauigkeit eine Toleranz in Bezug auf absolute Bauteilabmessungen gemeint. Insbesondere beim Einsatz von Seltenerdmagneten, die eine mehrfach höhere Magnetkraft als übliche Ferritmagnete aufweisen und die deswegen kleiner sein können, macht sich eine Ungenauigkeit der Positionierung wegen der kleinen absoluten Abmessungen der Magnete und des Rotors bemerkbar. Die Erfindung ist deswegen insbesondere für kleine Permanentmagnete, beispielsweise die genannten Seltenerdmagnete, und für kleine Rotoren und Kleinmotoren gedacht. Die Erfindung ist allerdings grundsätzlich für alle Größen elektrischer Maschinen und Rotoren sowie alle Magnettypen verwendbar.The problem with positioning the permanent magnets at the back yoke is the manufacturing tolerance of the permanent magnets. Since the manufacturing tolerances do not decrease to the same extent as the dimensions themselves when the dimensions become smaller, relative inaccuracies increase with decreasing size of the permanent magnets and the rotors. Relative inaccuracy means a tolerance with regard to absolute component dimensions. In particular when using rare earth magnets, which have a magnetic force that is several times higher than conventional ferrite magnets and which can therefore be smaller, an inaccuracy of the positioning becomes noticeable due to the small absolute dimensions of the magnets and the rotor. The invention is therefore intended in particular for small permanent magnets, for example the rare earth magnets mentioned, and for small rotors and small motors. However, the invention can in principle be used for all sizes of electrical machines and rotors as well as all magnet types.
Eine ungenaue Positionierung der Permanentmagnete eines Rotors macht sich durch ungleiche, von einer Winketlage des Rotors abhängige sog. Rastmomente bemerkbar. Beim Betrieb des Elektromotors kann es zu einer erhöhten Momentenweiligkeit und zu drehrichtungsabhängigem Laufverhalten kommen.An inaccurate positioning of the permanent magnets of a rotor is noticeable by uneven so-called cogging torques, which depend on an angular position of the rotor. When operating the electric motor, there may be an increased torque retention and running behavior dependent on the direction of rotation.
Erläuterung und Vorteile der ErfindungExplanation and advantages of the invention
Der erfindungsgemäße Rotor mit den Merkmalen des Anspruchs 1 weist einen Ruckschluss mit einem aus Lamellen bestehenden Blechpaket sowie eine Anzahl am Ruckschluss angeordneter Permanentmagnete • auf. Lamellen des Blechpakets des Rückschlusses des Rotors weisen mindestens ein Fixierelement auf, das mit den Lamellen einstückig ist. Die Permanentmagnete sind zwischen zwei Fixierelementen festgelegt, die einander in Bezug auf den festgelegten Permanentmagneten vorzugsweise gegenüberliegend angeordnet sind. Vorzugsweise weist jede Lamelle ein oder mehrere Paare Fixierelemente auf, wobei zwischen einem Paar Fixierelemente ein Permanentmagnet festgelegt ist. Es kann allerdings auch ein Permanentmagnet zwischen zwei Fixierlementen verschiedener Lamellen festgelegt sein, so dass Lamellen mit einem Fixierelement oder einzelnen Fixiereiementen anstatt einem oder mehreren Paaren von Fixierelementen möglich sind. Ausser Lamellen mit Fixierelementen kann der erfindungsgemässe Rotor auch Lamellen ohne Fixierelemente aufweisen. Mit ihren Fixierelementen legt, insbesondere klemmt eine Lamelle einen, mehrere, ggf. auch alle Permanentmagnete des Rotors fest, je nachdem, ob sie ein oder mehrere Paare Fixierelemente aufweist. Zum Festlegen eines Permanentmagneten sind Fixierelemente mehrerer Lamellen vorgesehen.The rotor according to the invention with the features of claim 1 has a back yoke with a laminated core consisting of fins and a number of permanent magnets arranged at the back yoke. Lamellae of the laminated core of the yoke of the rotor have at least one fixing element which is integral with the lamellae. The permanent magnets are fixed between two fixing elements, which are fixed relative to each other Permanent magnets are preferably arranged opposite one another. Each lamella preferably has one or more pairs of fixing elements, a permanent magnet being fixed between a pair of fixing elements. However, a permanent magnet can also be fixed between two fixing elements of different lamellae, so that lamellae with a fixing element or individual fixing elements are possible instead of one or more pairs of fixing elements. In addition to fins with fixing elements, the rotor according to the invention can also have fins without fixing elements. With their fixing elements, in particular a lamella clamps one, several, and possibly also all permanent magnets of the rotor, depending on whether it has one or more pairs of fixing elements. Fixing elements of several lamellae are provided for fixing a permanent magnet.
Die Fixierelemente haben den Vorteil, dass sie Fertigungstoleranzen der Permanentmagnete ausgleichen. Da die Fixierelemente einen Permanentmagneten an einander abgewandten Seiten des Permanentmagneten festlegen, insbesonder festklemmen, positionieren sie den Permanentmagneten unabhängig von seiner Fertigungstoleranz rniüig zwischen sich.The fixing elements have the advantage that they compensate for the manufacturing tolerances of the permanent magnets. Since the fixing elements fix a permanent magnet on sides of the permanent magnet facing away from one another, in particular clamp them, they position the permanent magnet between them irrespective of its manufacturing tolerance.
Weiterer Vorteil ist, dass die Fixierelemente die Permanentmagnete des Rotors während des Klebens, Vergießens oder Versprifzens positioniert halten, bis ein Klebstoff, Kunststoff oder Kunstharz ausgehärtet ist. Auch beim Einsetzen des Rotors in ein Schutzrohr halten die Fixierelemente die Permanentmagnete positioniert.Another advantage is that the fixing elements keep the permanent magnets of the rotor in position during gluing, casting or spraying until an adhesive, plastic or synthetic resin has hardened. The fixing elements also hold the permanent magnets in position when the rotor is inserted into a protective tube.
Zusätzlicher Vorteil der Fixierelemente ist, dass sie zu einer Momentenübertragung beitragen und einen Verschiebeschutz, bei einem mechanischen Defekt der elektrischen Maschine bieten.An additional advantage of the fixing elements is that they contribute to torque transmission and offer protection against displacement in the event of a mechanical defect in the electrical machine.
Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen der im Anspruch 1 angegebenen Erfindung zum Gegenstand. Gemäß Anspruch 3 weist der Ruckschluss gegeneinander verdrehte Lamellen auf, zwischen deren Federelemente verschiedene Permanentmagnete festgeklemmt sind. Die Lamellen sind um 360° geteilt durch die Anzahl der Permanentmagnete oder ein Vielfaches hiervon gegeneinander verdreht. Durch 5 das gegeneinander Verdrehen der Lamellen ist es möglich, weniger Federelement-Paare an einer Lamelle vorzusehen als der Rotor Permanentmagnete aufweist. Es .können beispielsweise Federeiernent-Paare für jeden zweiten Permanentmagneten an einer Lamelle vorgesehen sein. Dies ist vorteilhaft oder notwendig, wenn das Vorsehen von Federelementen-Paare an 0 einer Lamelle für alle Permanentmagnete aus Platzgründen schwierig oder nicht möglich ist. Außerdem hat das gegeneinander Verdrehen der Lamellen den Vorteil, dass über eine Fläche der Lamellen schwankende Lamellendicken und verzogene Lamellen ausgeglichen werden, insbesondere wenn derartige Formfehler systematisch, d.h. bei allen Lamellen gegeben sind. Die Lamellen c 15 können beispielsweise durch ein Walzen des Blechs unterschiedlich dicke Seiten aufweisen, wobei diese Formfehler bei jeder Lamelle gleich sind.The subclaims relate to advantageous refinements and developments of the invention specified in claim 1. According to claim 3, the back yoke has mutually rotated lamellae, between the spring elements of which different permanent magnets are clamped. The slats are rotated by 360 ° divided by the number of permanent magnets or a multiple thereof. By rotating the lamellae against each other, it is possible to provide fewer spring element pairs on a lamella than the rotor has permanent magnets. For example, pairs of spring eggs may be provided on a lamella for every second permanent magnet. This is advantageous or necessary if the provision of spring element pairs on one lamella is difficult or not possible for all permanent magnets for reasons of space. In addition, twisting the slats against each other has the advantage that fluctuating slat thicknesses and warped slats are compensated for over a surface of the slats, in particular if such shape errors are systematic, ie are present in all slats. The lamellae c 15 can have sides of different thicknesses, for example by rolling the sheet, these shape errors being the same for each lamella.
Der erfindungsgemäße Rotor ist insbesondere als sog. Innenläufer mit an einem Außenumfang des Blechpakets des ' Rückschlusses angeordneten 2.0 Permanentmagneten vorgesehen (Anspruch 5). Allerdings ist es grundsätzlich auch möglich, den Rotor als sog. Außenläufer mit an einem Innenumfang des Blechpakets angeordneten Permanentmagneten auszubilden. In diesem Fall müssen Lamellen des Blechpakets ringförmig sein, d.h. ein Loch aufweisen.The rotor according to the invention is particularly useful as so-called internal rotor. With on an outer periphery of the laminated core of the 'inference 2.0 arranged permanent magnet is provided (claim 5). In principle, however, it is also possible to design the rotor as a so-called external rotor with permanent magnets arranged on an inner circumference of the laminated core. In this case, lamellae of the laminated core must be ring-shaped, ie have a hole.
25 Vorzugsweise sind die Fixierelemente Federelemente (Anspruch 6), die die Permanentmagnete aufgrund ihrer Federelastizität zwischen sich festklemmen. Dadurch wird ein Ausgleich unterschiedlich breiter Permanentmagnete erreicht.25 Preferably, the fixing elements are spring elements (claim 6) which clamp the permanent magnets between them due to their elasticity. This achieves a compensation of permanent magnets of different widths.
Zeichnungdrawing
3030
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen: Figur 1 eine Lamelle eines erfinclungsgemäßen Rotors in Ansicht;The invention is explained in more detail below with reference to an embodiment shown in the drawing. Show it: 1 shows a lamella of a rotor according to the invention in view;
Figur 2 einen Ruckschluss des erfindungsgemäßen Rotors mit aus Lamellen gemäß Figur 1 zusammengesetzten Blechpaketen in perspektivischerFigure 2 shows a conclusion of the rotor according to the invention with laminated cores composed of lamellae according to Figure 1 in perspective
Darstellung; undPresentation; and
Figur 3 den Ruckschluss aus Figur 2 mit Permanentmagneten.3 shows the inference from FIG. 2 with permanent magnets.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Die in Figur 1 dargestellte Lamelle 10 ist aus einem Blech gestanzt. Sie weist eine im wesentlichen quadratische Form mit einem Mittelloch 12 auf. An jeder Ecke weist die Lamelle 10 ein Federelement 14 auf, das als mit der Lamelle 10 einslückige Feclerzunge ausgebildet und in einem Arbeitsgang mit dem Stanzen der Lamelle 10 hergestellt ist. Anstatt gestanzt kann die Lamelle 10 mit den Federelementen 14 auch durch Laserschnitt, Wasserstrahlschneiden, Erodieren oder ein sonstiges Verfahren hergestellt sein. Jeweils zwei benachbarte Federelemente 14 sind einander zugewandt und einander zugeordnet, sie bilden ein Paar Federelemente 14. In Figur 1 sind die beiden oben und die beiden unten dargestellten Federelemente 14 einander zugeordnet und bilden ein Paar.The lamella 10 shown in Figure 1 is stamped from a sheet metal. It has an essentially square shape with a central hole 12. At each corner, the lamella 10 has a spring element 14 which is designed as a Fecler tongue which is one-piece with the lamella 10 and which is produced in one operation by punching the lamella 10. Instead of being punched, the lamella 10 with the spring elements 14 can also be produced by laser cutting, water jet cutting, eroding or another method. In each case two adjacent spring elements 14 face each other and are assigned to one another, they form a pair of spring elements 14. In FIG. 1, the two spring elements 14 shown above and the two below are assigned to one another and form a pair.
Zur Herstellung eines in Figur 2 dargestellten Rückschlusses 16 eines erfindungsgemäßen Flotors sind Lamellen 10 zu einem Blechpaket 18 zu- sammengesetzt. Alle Lamellen 10 des Blechpakels 18 sind identisch und weisen die in Figur 1 dargestellte Form auf. Es ist jeweils eine Anzahl von beispielsweise fünf bis sechs Lamellen 10 deckungsgleich zusammengesetzt. Die nächsten beispielsweise fünf bis sechs Lamellen 10 sind um 90° verdreht. Der Verdrehwinkel von 90° gilt für das dargestellte und beschriebene Ausführungsbeispiel der Erfindung, bei dem der Rotor vier Permanentmagnete aufweist. Allgemein ist der Drehwinkel άer Lamellen 10 360° geteilt durch die Anzahl der Permanentmagnete. Durch die Verdrehung der Lamellen 10 gegeneinander weist der Ruckschluss 16 über seine axiale Länge verteilt an allen seinen vier Außen- bzw. Umfangsseiten 20 angeordnete Federelement-Paare 14 auf, obwohl die einzelnen Lamellen 10 Federelement-Paare 14 nur an zwei von vier Außenseiten aufweisen.In order to produce a conclusion 16 of a rotor according to the invention shown in FIG. 2, lamellae 10 are assembled to form a laminated core 18. All lamellae 10 of the laminated core 18 are identical and have the shape shown in FIG. 1. In each case, a number of, for example, five to six slats 10 is congruently assembled. The next, for example, five to six slats 10 are rotated by 90 °. The angle of rotation of 90 ° applies to the illustrated and described embodiment of the invention, in which the rotor has four permanent magnets. In general, the angle of rotation of the lamellae 10 is 360 ° divided by the number of permanent magnets. By twisting the slats 10 against one another, the yoke 16 has spring element pairs 14 arranged on all of its four outer or circumferential sides 20 distributed over its axial length, although the individual lamellae 10 have spring element pairs 14 only on two of four outer sides.
Die übernächsten beispielsweise fünf bis sechs Lamellen 10 sind um weitere 90°, gegenüber den ersten Lamellen 10 also um 180° verdreht. Dadurch werden fertigungsbedingte, systematische Dicken- und Formfehler der Lamellen 10 ausgeglichen. Mit systematisch ist gemeint, dass die Ungenauigkeit an jeder Lamelle 10 an gleicher Stelle vorhanden ist. Eine solche Fertigungsungenauigkeit kann beispielsweise ein örtlicher Dickenunterschied oder eine örtliche Wölbung der Lamelle 10 sein, die an jeder Lamelle 10 an gleicher Stelle vorhanden ist. Durch die Verdrehung der Lamellen 10 um 90°, 180°, 270° und 0°/360° gegeneinander werden solche systematischen Formungenauigkeiten ausgeglichen.The next but one, for example five to six slats 10 are rotated by a further 90 °, that is to say rotated by 180 ° with respect to the first slats 10. As a result, manufacturing-related, systematic thickness and shape errors of the slats 10 are compensated for. By systematic it is meant that the inaccuracy is present at the same point on each lamella 10. Such manufacturing inaccuracy can be, for example, a local difference in thickness or a local curvature of the lamella 10, which is present at the same location on each lamella 10. By rotating the fins 10 by 90 °, 180 °, 270 ° and 0 ° / 360 ° against each other, such systematic shape inaccuracies are compensated for.
Der erfindungsgemäße Rotor 16 weist vier Permanentmagnete 22 auf (Figur 3). Die Permanentmagnete 22 weisen einen D-förmigen Querschnitt („Brotlaibform") auf, d.h, sie weisen eine ebene Grundseite auf, mit der sie an der Außenseite 20 des Rotors 16 anliegen. Zum Rotor achsparaliele Längsseitenflächen 24 der Permanentmagnete 22 stehen senkrecht zur Grundfläche und sind niedrig im Verhältnis zu einer Breite der Grundfläche. Eine dem Ruckschluss 16 abgewandte Außenfläche 26 der Permanentmagnete 22 ist zylinderförmig gewölbt, wobei ein Zylinderradius mit einem Abstand der Außenfläche 26 von einer gedachten Rotorachse übereinstimmt.The rotor 16 according to the invention has four permanent magnets 22 (FIG. 3). The permanent magnets 22 have a D-shaped cross section (“loaf of bread”), that is to say they have a flat base side with which they rest on the outside 20 of the rotor 16. Longitudinal side surfaces 24 of the permanent magnets 22 that are axially parallel to the rotor are perpendicular to the base surface and are low in relation to a width of the base area, an outer surface 26 of the permanent magnets 22 facing away from the yoke 16 is curved in a cylindrical shape, a cylinder radius corresponding to a distance of the outer surface 26 from an imaginary rotor axis.
Anzahl und Form der Permanentmagnete 22 kann bei anderen Ausgestaltungen der Erfindung von den vorstehenden Angaben abweichen. Die Permanentmagnete 22 können beispielsweise zylinderschaien- anstatt D-förmig sein (nicht dargestellt), in diesem Fall weisen die Lamellen 10 vorzugsweise eine kreisförmige anstatt einer quadratischen Grundform auf und die Permanentmagnete liegen mit einer konkaven Innenfläche am konvex gekrümmten Umfangsrand der Lamellen an. Auch ist es nicht zwingend, dass der Zylinderradius der Außenfläche 26 der Permanentmagnete 22 mit einem Abstand von der gedachten Rotorachse übereinstimmt.The number and shape of the permanent magnets 22 can differ from the above information in other configurations of the invention. The permanent magnets 22 can be, for example, cylindrical shells instead of D-shaped (not shown), in this case the lamellae 10 preferably have a circular instead of a square basic shape, and the permanent magnets are convex with a concave inner surface curved peripheral edge of the slats. It is also not imperative that the cylinder radius of the outer surface 26 of the permanent magnets 22 coincides with a distance from the imaginary rotor axis.
Die Permanentmagnete 22 sind zwischen die Federelement-Paare 14 eingesetzt, wobei die Federelemente 14 federelastisch gegen die Längsseitenflächen 24 der Permanentmagnete 22 drücken und die Permanentmagnete 22 auf diese Weise zwischen sich und damit am Ruckschluss 16 festklemmen. Da die Federelemente 14 gleichmäßig von beiden Seiten gegen die Permanentmagnete 22 drücken, positionieren die Federelemente 14 die Permanentmagnete 22 in seitlicher (tangentialer oder Umfangs-) Richtung und gleichen Fertigungstoleranzen der Permanentmagnete 22 aus. Die Federelemente 14 halten die Permanentmagnete 22 während eines Verbindens der Permanentmagnete 22 mit dem Ruckschluss 16 durch beispielsweise Kleben, Vergießen mit einem Kunstharz oder Umspritzen mit Kunststoff. Der Ruckschluss 16 mit den Permanentmagneten 22 kann beispielsweise auch in ein nicht dargestelltes, sog. Schutzrohr eingesetzt werden, in das Loch 12 wird zur Herstellung des erfindungsgemäßen Rotors eine nicht dargestellte Rotorwelle eingepresst oder in anderer Weise verdrehsicher eingesetzt.The permanent magnets 22 are inserted between the spring element pairs 14, the spring elements 14 resiliently pressing against the longitudinal side surfaces 24 of the permanent magnets 22 and in this way clamping the permanent magnets 22 between them and thus at the yoke 16. Since the spring elements 14 press uniformly against the permanent magnets 22 from both sides, the spring elements 14 position the permanent magnets 22 in the lateral (tangential or circumferential) direction and the same manufacturing tolerances of the permanent magnets 22. The spring elements 14 hold the permanent magnets 22 during a connection of the permanent magnets 22 to the yoke 16 by, for example, gluing, casting with a synthetic resin or overmolding with plastic. The yoke 16 with the permanent magnets 22 can, for example, also be inserted into a so-called protective tube (not shown). A rotor shaft (not shown) is pressed into the hole 12 for the manufacture of the rotor according to the invention or is used in another manner to prevent rotation.
Wie in Figuren 1 und 2 zu sehen weist der Ruckschluss 16 zwei identische Blechpakete 18 mit jeweils eigenen Permanentmagneten 22 auf. Die Blechpakete 18 sind um einen Winkel von beispielsweise 15° gegeneinander verdreht, so dass ein von den Permanentmagneten 22 des Rotors erzeugter Magnetpol eine quasi- Schrägung aufweist. Dadurch werden das Rastmoment und die Momentenweiügkeit des Rotors verkleinert. Der Rotor kann mehr als zwei gegeneinander verdrehte Blechpakete 18 aufweisen. As can be seen in FIGS. 1 and 2, the back yoke 16 has two identical laminated cores 18, each with its own permanent magnet 22. The laminated cores 18 are twisted at an angle of for example 15 ° to each other, so that a generated by the permanent magnets 22 of the rotor magnetic pole having a quasi- skew. This reduces the cogging torque and the torque wisdom of the rotor. The rotor can have more than two laminated cores 18 rotated relative to one another.

Claims

Patentansprüche claims
1. Rotor für eine elektrische Maschine, mit einem Ruckschluss, der ein Lamellen aufweisendes Blechpaket aufweist, und mit einer Anzahl1. Rotor for an electrical machine, with a back yoke, which has a laminated core with laminations, and with a number
Permanentmagnete, die am Ruckschluss angeordnet sind, dadtsrch gekennzeichnet, dass eine Lamelle (10) mindestens ein Fixierelement (14) aufweist, das mit der .Lamelle (10) einstückig ist, und dass ein Permanentmagnet (22) zwischen zwei Fixierelementen (14) einer oder mehrerer Lamellen (10) des Rotors gehalten ist.Permanent magnets which are arranged at the back yoke, characterized in that a lamella (10) has at least one fixing element (14) which is integral with the .lamella (10), and that a permanent magnet (22) between two fixing elements (14) one or several fins (10) of the rotor is held.
2. Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass eine Lamelle (10) mindestens ein Paar Fixierelemente (14) aufweist, zwischen denen ein Permanentmagnet (22) gehalten ist.2. Rotor according to claim 1, characterized in that a lamella (10) has at least one pair of fixing elements (14), between which a permanent magnet (22) is held.
3. Rotor nach Anspruch 1 , εladyrcli gekennzeichnet, dass der Ruckschluss (16) gegeneinander verdrehte Lamellen (10) aufweist, zwischen deren Fixiereiementen (14) verschiedene Permanentmagnete (22) gehalten sind.3. A rotor according to claim 1, εladyrcli characterized in that the yoke (16) has mutually rotated lamellae (10), between the fixing elements (14) of which different permanent magnets (22) are held.
4.' Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Permanentmagnete (22) an einem Umfang des Blechpakets (18) angeordnet sind und dass die Fixierelemente (14) gegen zum Rotor achsparallele Seiten (24) eines Permanentmagneten (22) drücken. 4. ' Rotor according to claim 1, characterized in that the permanent magnets (22) are arranged on a circumference of the laminated core (18) and that the fixing elements (14) press against the rotor axially parallel sides (24) of a permanent magnet (22).
5. Rotor nach Anspruch 4, dadurch gekennzeichnet, dass die Permanentmagnete (22) an einem Außenumfang des Blechpakets (18) angeordnet sind.5. Rotor according to claim 4, characterized in that the permanent magnets (22) are arranged on an outer circumference of the laminated core (18).
6. Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Lamelle (10) ein Federelement (14) als Fixierelement aufweist, und dass ein Permanentmagnet (22) zwischen zwei Federelementen (14) einer oder mehrerer Lamellen (10) festgeklemmt ist.6. Rotor according to claim 1, characterized in that the lamella (10) has a spring element (14) as a fixing element, and that a permanent magnet (22) is clamped between two spring elements (14) of one or more lamellae (10).
7. Rotor nach Anspruch 1 , dadurch gekennzeichnet, dass der Rotor gegeneinander verdrehte Blechpakete (18) mit jeweils eigenen Permanentmagneten (22) aufweist, wobei ein Verdrehwinke! der Blechpakete (18) gegeneinander von einem Verdrehwinke! gegeneinander verdrehter Lamellen (10) eines Blechpakets (18) abweicht. 7. Rotor according to claim 1, characterized in that the rotor has mutually rotated laminated cores (18), each with its own permanent magnet (22), wherein an angle of rotation! the laminated cores (18) against each other by an angle of rotation! slats (10) of a laminated core (18) which are rotated relative to one another.
EP02795016A 2002-04-12 2002-12-18 Magnetic return path and permanent-magnet fixing of a rotor Withdrawn EP1497901A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10216098 2002-04-12
DE10216098A DE10216098A1 (en) 2002-04-12 2002-04-12 Rotor for electrical machine, especially motor, has lamella with at least one fixing element made in one piece with lamella, and permanent magnet held between two fixing elements of one or more lamellas
PCT/DE2002/004629 WO2003088449A1 (en) 2002-04-12 2002-12-18 Magnetic return path and permanent-magnet fixing of a rotor

Publications (1)

Publication Number Publication Date
EP1497901A1 true EP1497901A1 (en) 2005-01-19

Family

ID=28458741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02795016A Withdrawn EP1497901A1 (en) 2002-04-12 2002-12-18 Magnetic return path and permanent-magnet fixing of a rotor

Country Status (7)

Country Link
US (1) US7154204B2 (en)
EP (1) EP1497901A1 (en)
JP (1) JP4373227B2 (en)
CN (1) CN1625826B (en)
DE (1) DE10216098A1 (en)
HU (1) HUP0500451A2 (en)
WO (1) WO2003088449A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
DE102005048546A1 (en) * 2005-10-11 2007-04-12 Robert Bosch Gmbh Rotor for an electric machine
US7546674B2 (en) * 2005-10-31 2009-06-16 Gm Global Technology Operations, Inc. Method of rotor assembly without the hub
JP5260825B2 (en) * 2005-12-01 2013-08-14 日本電産テクノモータ株式会社 motor
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
DE102007029719A1 (en) 2007-02-01 2008-08-07 Robert Bosch Gmbh Electric machine
DE102007012076A1 (en) * 2007-03-13 2008-09-25 Siemens Ag Runner and electric motor
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
TWI408868B (en) * 2008-12-19 2013-09-11 Ind Tech Res Inst A rotating electric machine with complementary permanent magnet structure to minimize cogging torque
GB2468718A (en) * 2009-03-20 2010-09-22 Control Tech Dynamics Ltd Securing permanent magnets to a laminated rotor
DE202009007544U1 (en) * 2009-05-27 2010-10-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Laminated core, in particular for the rotor of an electric motor
KR101638090B1 (en) * 2009-09-09 2016-07-11 신에쓰 가가꾸 고교 가부시끼가이샤 Rotor for permanent magnet type rotary machine
DE202010018010U1 (en) * 2010-05-26 2013-08-30 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Laminated core, in particular for the rotor of an electric motor
EP2523320A1 (en) * 2011-05-13 2012-11-14 Siemens Aktiengesellschaft Combination drive for rotating and lifting and linear motor with reduced inertia
FR2979495A1 (en) * 2011-08-30 2013-03-01 Leroy Somer Moteurs ROTORIC CARCASS.
US9431834B2 (en) 2012-03-20 2016-08-30 Qualcomm Incorporated Wireless power transfer apparatus and method of manufacture
US9583259B2 (en) 2012-03-20 2017-02-28 Qualcomm Incorporated Wireless power transfer device and method of manufacture
US9160205B2 (en) 2012-03-20 2015-10-13 Qualcomm Incorporated Magnetically permeable structures
US9653206B2 (en) 2012-03-20 2017-05-16 Qualcomm Incorporated Wireless power charging pad and method of construction
DE102012212561A1 (en) 2012-07-18 2014-01-23 Robert Bosch Gmbh Rotor for brushless direct current motor, has form-fit recess provided in long side of permanent magnets, and radially outwardly aligned form-fit projection projecting into form-fit recess and arranged at rotor body
JP6136718B2 (en) * 2013-07-31 2017-05-31 日産自動車株式会社 Rotating electrical machine rotor and method of manufacturing the same
US9287742B2 (en) * 2013-08-05 2016-03-15 General Electric Company Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
DE102013020662A1 (en) * 2013-12-06 2015-06-11 Kienle + Spiess Gmbh Method for the production of lamellae for a disk set, in particular for electrical machines and generators, device with at least one punching press as well as lamella and lamella packet produced by the method.
EP3076520B1 (en) * 2015-03-31 2017-11-01 Siemens Aktiengesellschaft Rotor for an electric machine and production method
DE102018003345A1 (en) * 2018-04-23 2019-10-24 Kienle + Spiess Gmbh Method for the production of lamella packages and application device for an adhesive for carrying out the method
US11264850B2 (en) * 2019-09-05 2022-03-01 Nidec Motor Corporation Laminated rotor having deflecting magnet retaining prongs and support posts for the prongs
US11201341B2 (en) 2019-10-22 2021-12-14 Ford Global Technologies, Llc Thermal management system for fuel cell vehicle having multiple fuel-cell stacks
US11646616B2 (en) 2020-02-04 2023-05-09 Nidec Motor Corporation Laminated spoked rotor with mechanical magnet retention
DE102022128844A1 (en) 2022-10-31 2024-05-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Rotor core for the centered mounting of permanent magnets and rotor unit for an electric motor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556484U (en) * 1978-10-13 1980-04-16
HU199637B (en) 1987-04-21 1990-02-28 Gamma Muevek Rotor for electromotors
GB2217924B (en) * 1988-04-25 1992-10-07 Matsushita Electric Works Ltd Permanent magnet rotor
JPH0284032A (en) * 1988-04-25 1990-03-26 Matsushita Electric Works Ltd Permanent magnet rotor
GB9112059D0 (en) * 1991-06-05 1991-07-24 Jestar Ltd Electrical machines
JP3493865B2 (en) * 1995-12-27 2004-02-03 アイシン・エィ・ダブリュ株式会社 motor
JP3638695B2 (en) * 1996-01-25 2005-04-13 山洋電気株式会社 Permanent magnet rotor
JP2000308286A (en) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd Rotating electric machine
JP2000312447A (en) * 1999-04-23 2000-11-07 Matsushita Electric Ind Co Ltd Permanent magnet rotor and motor
JP4397466B2 (en) * 1999-07-06 2010-01-13 東芝三菱電機産業システム株式会社 Permanent magnet rotating electric machine
DE10009151C2 (en) 2000-02-26 2002-02-07 Bosch Gmbh Robert Magnet holder or method for holding a magnet on a carrier element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03088449A1 *

Also Published As

Publication number Publication date
DE10216098A1 (en) 2003-10-23
US20050017587A1 (en) 2005-01-27
HUP0500451A2 (en) 2005-08-29
US7154204B2 (en) 2006-12-26
JP4373227B2 (en) 2009-11-25
CN1625826B (en) 2010-05-26
WO2003088449A1 (en) 2003-10-23
JP2005522976A (en) 2005-07-28
CN1625826A (en) 2005-06-08

Similar Documents

Publication Publication Date Title
EP1497901A1 (en) Magnetic return path and permanent-magnet fixing of a rotor
DE102008026648B4 (en) Rotor for an electronically commutated electric motor, method for producing such a rotor as well as usable in the manufacture of such a rotor intermediate
EP1941597B1 (en) Production method for rotor for an electrical machine
DE10115852A1 (en) Electric rotating system for DC motor, has iron sheet core with slots, and core insulator fitted with core, in which winding is wound in core slots via core insulator
EP2084806A1 (en) Electric motor and method for manufacturing an electric motor for a motor vehicle actuator drive
EP2556582B1 (en) Rotor
DE102010004887A1 (en) Spool for mounting on a magnetic core, magnetic core for reluctance resolver and method of manufacture
DE112008001226T5 (en) Rotor of a rotating electrical machine and manufacturing process for it
DE102011078054A1 (en) Disc set for rotor or stator of e.g. synchronous motor for electrical or hybrid propulsion system of vehicle, has spacing portion provided between protruding lugs so that permanent magnets are fixed into receiving spaces by lugs
DE102017218408A1 (en) Electric machine with a disk set for fixing a magnet and a disk pack for use in such a machine
DE102009047485A1 (en) Electric machine
DE102012022084A1 (en) Rotor assembly for electrical machine, has laminated plate stacks having positioning units positioned at axial end surfaces in juxtaposition at joining of two axially adjacent laminated plate stacks
EP0559666B1 (en) Pole core
DE102008043138A1 (en) Slat package of a rotor of an electric machine
DE102011084292A1 (en) Rotor or stator with radially mounted permanent magnet
DE112017003124T5 (en) Rotor for rotating permanent magnet electric machine and rotating permanent magnet electric machine
DE102008041555A1 (en) Rotor unit for permanently excited electric machine, has stop plate stacked with guide plates and provided with stop for axially form-fit securing permanent magnet, where stop overlaps with recesses of guide plates
WO2019171218A1 (en) Rotor unit and electric motor
EP2903139B1 (en) Rotor lamination stack, in particular for an electric motor
DE102014019218A1 (en) Sheet metal package for an electric machine
DE112018006990T5 (en) ROTOR, MOTOR AND METHOD OF MANUFACTURING A ROTOR
DE102021204845A1 (en) Disk pack for an electrical machine and method for manufacturing the disk pack
DE102017214508A1 (en) Rotor for an electric machine, in particular for an electric motor
DE102020214664A1 (en) ROTOR OF AN AXIAL FLOW MOTOR
DE102021002130A1 (en) Method for assembling a rotor of an electrical machine by means of twisted sheet metal layers, as well as a corresponding rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20101214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170701