EP1487566A1 - Capillary membrane and device for production thereof - Google Patents

Capillary membrane and device for production thereof

Info

Publication number
EP1487566A1
EP1487566A1 EP03708185A EP03708185A EP1487566A1 EP 1487566 A1 EP1487566 A1 EP 1487566A1 EP 03708185 A EP03708185 A EP 03708185A EP 03708185 A EP03708185 A EP 03708185A EP 1487566 A1 EP1487566 A1 EP 1487566A1
Authority
EP
European Patent Office
Prior art keywords
capillary membrane
layers
membrane according
hollow fiber
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03708185A
Other languages
German (de)
French (fr)
Inventor
Klaus Heilmann
Torsten Keller
Jens-Holger Stahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fresenius Medical Care Deutschland GmbH
Original Assignee
Fresenius Medical Care Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Medical Care Deutschland GmbH filed Critical Fresenius Medical Care Deutschland GmbH
Publication of EP1487566A1 publication Critical patent/EP1487566A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor

Definitions

  • the invention relates to a capillary membrane.
  • Capillary membranes of various compositions are already well known. They are used extensively in dialysis. In order to be able to build dialyzers that are as compact as possible while ensuring a large exchange area, the capillary membranes should have the smallest possible diameter.
  • hollow fiber nozzles are used for the large-scale production of capillary membranes.
  • the hollow fiber membrane is produced in a precipitation spinning process.
  • the polymers to be precipitated emerge from an annular gap in a nozzle arrangement, while the corresponding precipitant flows out of a central precipitant bore.
  • the already known hollow fiber spinnerets usually consist of a base body made of metal, into which several bores are made. A tube is fitted into one of the bores in which a precipitant channel is formed for introducing the precipitant. Other holes form mass feed channels for a polymer that is above the previously mentioned gap emerges. In the manufacture of the previously known hollow fiber spinnerets, methods of conventional metal working are used.
  • the nozzle structure is created by the assembly of both nozzle parts, whereby an inaccuracy, for example the geometry of the annulus, adds up from the manufacturing errors when manufacturing the base body and the tube. There are also possible assembly errors that can also lead to an inaccuracy of the geometry.
  • these previously known hollow fiber spinnerets do not only have the inaccuracies mentioned. Rather, due to their manufacturing process, they also have a minimum size that prevents any reduction in the size of the capillary membrane.
  • the capillary membranes used in previous dialysis are generally made from a specific polymer or a polymer mixture. Such membranes, each made from a polymer or a polymer mixture, have certain properties that are important for special use. Often, however, there are disadvantages associated with the choice of material, which are accepted due to the selected properties.
  • the object of the invention is to provide capillary membranes that combine several positive properties and still provide a large exchange surface due to the small diameter in comparatively small dialyzers.
  • capillary membranes which consist of at least two coextruded layers, wherein they have an outer diameter of less than 1 mm, preferably less than or equal to 0.45 mm. Due to the coextrusion of different layers, several outstanding properties of different polymers can be combined with each other. Due to the very small diameter, a large specific exchange area is created, which leads to small and light dialyzers.
  • the capillary Membranes consist of one or more of the following materials: polysulfone (PS), polysulfone with polyvinylpyrollidone (PS / PVP), polyether sulfone (PES), polyether sulfone with polyvinylpyrollidone (PES / PVP), polyetherimide (PEI), polyetherimide with polyvinylpyrollidone (PE / PVP), polyamide (PA), polycarbonate (PC), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide (Pl) and / or polyurethane (PU).
  • PS polysulfone
  • PS / PVP polyether sulfone with polyvinylpyrollidone
  • PES polyether sulfone with polyvinylpyrollidone
  • PEI polyetherimide
  • PEI polyetherimide with polyvinylpyrolli
  • the inner layer can consist of a combination of polysulfone and polyvinylpyrollidone, while the outer layer consists of polysulfone.
  • the inner layer could also consist of a combined polysulfone-polyvinylpyrollidone with a high polymer concentration, while the outer layer consisted of a combined polysulfone-polyvinylpyrollidone with a low polymer concentration.
  • the membrane consists of a small-pore separation layer and a large-pore carrier layer.
  • the permeability of such a coextruded capillary membrane made of several layers is significantly improved with the same separation limit.
  • One of the layers can advantageously also consist of a biocompatible material, while a second layer serves as a support or actual membrane.
  • Another particularly preferred embodiment of the invention consists in that one of the layers serves as a membrane, while a second layer consists of an adsorbent material. This second layer then only comes into contact with the filtrate. From these non-exhaustive examples it becomes clear that the combination of the properties of two polymers enables a multifunctional capillary membrane to be tailored to the specific needs.
  • the production of the capillary membrane according to the invention is made possible by a device according to claim 6.
  • Capillary membrane has a hollow fiber spinneret with a coextrusion die, the outer diameter of which is less than 1 mm.
  • the hollow fiber spinneret can consist of a three-layered base body, the individual layers being plate-shaped bodies structured by means of microstructure technology, which are combined to form the base body.
  • the first plate can be used as a pre-structured plate to which the second plate, which has not yet been structured, is bonded.
  • the bonded second plate is then structured.
  • the third plate which in turn is not structured, is then bonded onto this structured plate, which is then also subsequently structured.
  • the base body advantageously consists of single-crystal silicon, gallium arsenide (GaAs) or germanium.
  • the hollow fiber spinneret particularly advantageously has a central feed channel for the precipitant, mass feed channels for the polymeric material, a mass flow equalization zone and an annular gap for the first polymer, and mass feed channels for the second polymeric material, a mass flow equalization zone for these further mass feed channels and a mass ring gap for the second polymer.
  • Figure 1 is a partially sectioned three-dimensional representation of a hollow fiber spinneret according to a first embodiment of the invention and Figure 2 is a schematic sectional view of the hollow fiber spinneret of Figure 1, showing three variants of the arrangement of the mass supply channels for the second polymer.
  • FIGS. 1 and 2 An embodiment of the invention is explained with reference to FIGS. 1 and 2.
  • a hollow fiber spinneret 10 for producing a hollow fiber coextruded from two layers is shown.
  • a hollow fiber spinneret 10 with a base body 100 consisting of three individual plates 102, 104 and 106 is shown.
  • the individual plates consist of single-crystal silicon.
  • a feed channel 108 for the precipitant is recessed in the first plate 102.
  • feed channels 110, 112 are provided for a first polymer, which open into an associated equalization zone 114.
  • the equalization zone 114 surrounds a corresponding needle stump 116.
  • a precipitant hole 118 is also excluded, which is surrounded by another needle stump 120 and an annular space 122. Furthermore, additional feed channels 124 with subsequent equalization zone 126 in the second plate 104 are excluded. Finally, the third plate 106 has two annular gaps 128 and 130 for the respective polymeric materials that are to be coextruded, and a needle 132 with a precipitant hole 134.
  • the feed channels 124 are each different designed. While the supply channel 124 for the second polymer is only provided in the second plate 104 in the embodiment variant according to FIG. 2a, the one in the variant according to FIG. 2b runs both through the second plate 104 and through the third plate 106. In the embodiment variant According to FIG. 2c, the feed channel 124 for the second polymer runs through the second plate 104 and the first plate 102, as shown here in FIG. 2c.
  • the representation according to FIG. 1 corresponds to the section according to FIG. 2a, it being clear here that 8 feed channels 112 are arranged in a star shape, while 4 feed channels 124 are arranged in a cross shape.
  • 3 round wafer disks with a diameter of 100 to 300 mm are assumed. Many spinneret structures are produced from these wafers at the same time.
  • the individual hollow fiber spinnerets 10 are then obtained by dividing the finished wafers.
  • the separated split spinnerets can each contain a single nozzle structure, as shown here, but can also contain several nozzle structures in a nozzle structure assembly. This is achieved by not separating all of the nozzle structures that have been formed on the wafer, but rather that several nozzle structures together form a multiple nozzle unit that is cut out of the wafer along its outer contour.
  • the production of the spinnerets begins with the structuring of the first wafer on both sides, which receives the elements of the first plate 102 of the spinnerets.
  • the structures are produced using a series of standard lithography processes, for example masks made of photoresist, SiO, Si-N or the like, and standard etching processes.
  • the standard etching methods include reactive ion etching (RIE), reactive ion deep etching (D-RIE) and cryo-etching. Special deep etching processes such as D-RIE and cryo-etching are particularly suitable.
  • RIE reactive ion etching
  • D-RIE reactive ion deep etching
  • cryo-etching Special deep etching processes such as D-RIE and cryo-etching are particularly suitable.
  • the lithography masks for the front and back must be aligned visually. Then the second wafer is bonded to this structured wafer.
  • the feed channels, the equalization zone and the needle stump 120 are structured on the second plate 104 bonded to the first plate.
  • the lithography mask must be optically aligned with the structures on the first plate.
  • the third wafer is bonded. All of the bonding methods can be used again, as shown above.
  • the nozzle structure consisting of the annular gaps and the central hole is worked out in a two-stage etching process.
  • the first step is to advance the deeper central bore and the inner annular gap, in the second all structures are etched. Again, the aforementioned lithography and etching processes are used, with the use of deep etching processes being even more advisable than when processing the first wafer.
  • the individual spinnerets are then cut out of the wafer using suitable separation processes, such as wafer sawing and laser processing. Three-stage or multi-stage etching processes are also conceivable.
  • coextruded hollow fibers can be produced from two materials with very small diameters with high precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a capillary membrane which, according to the invention, comprises at least two co-extruded layers with an external diameter of < 1mm. The invention further relates to a device for production of the co-extruded multi-layer capillary membrane produced by microstructure technology.

Description

Kapillarmembran und Vorrichtung zur Herstellung derselben Capillary membrane and device for producing the same
Die Erfindung betrifft eine Kapillarmembran.The invention relates to a capillary membrane.
Kapillarmembranen unterschiedlichster Zusammensetzung sind bereits hinlänglich bekannt. Sie werden in großem Umfang in der Dialyse eingesetzt. Um möglichst kompakte Dialysatoren unter Gewährleistung einer großen Austauschfläche bauen zu können, sollten die Kapillarmembranen einen möglichst kleinen Durchmesser aufweisen.Capillary membranes of various compositions are already well known. They are used extensively in dialysis. In order to be able to build dialyzers that are as compact as possible while ensuring a large exchange area, the capillary membranes should have the smallest possible diameter.
Zur großindustriellen Herstellung von Kapillarmembranen werden beispielsweise Hohlfaserdüsen verwendet. Hier wird die Hohlfaser-Membran in einem Fällungs- spinnprozess hergestellt. Die auszufällenden Polymere treten aus einem Ringspalt einer Düsenanordnung aus, während das entsprechende Fällmittel aus einer zentralen Fällmittelbohrung ausströmt. Die bereits bekannten Hohlfaser-Spinndüsen bestehen üblicherweise aus einem Grundkörper aus Metall, in welche mehrere Bohrungen eingebracht sind. In eine der Bohrungen ist ein Röhrchen eingepasst, in welchem ein Fällmittelkanal zum Einbringen des Fällmittels ausgebildet ist. Andere Bohrungen bilden Massezuführkanäle für ein Polymer, das über den zuvor er- wähnten Ringspalt austritt. Bei der Herstellung der bisher bekannten Hohlfaser- Spinndüsen werden Verfahren der üblichen Metallbearbeitung angewandt. Hier entsteht also die Düsenstruktur durch den Zusammenbau beider Düsenteile, wobei sich eine Ungenauigkeit, beispielsweise der Geometrie des Ringraums aufsummiert aus den Fertigungsfehlern beim Fertigen des Grundkörpers und des Röhrchens. Es treten darüber hinaus mögliche Montagefehler hinzu, die ebenfalls zu einer Ungenauigkeit der Geometrie führen können. Aufgrund der Fertigungsverfahren weisen diese vorbekannten Hohlfaser-Spinndüsen nicht nur die erwähnten Ungenauigkei- ten auf. Vielmehr haben sie auf Grund ihres Herstellverfahrens auch eine Mindestgröße, die einer beliebigen Verkleinerung der Kapillarmembran entgegensteht. Weiterhin sind die bei der bisherigen Dialyse eingesetzten Kapillarmembranen in der Regel aus einem bestimmten Polymer, bzw. einer Polymermischung hergestellt. Derartige aus jeweils einem Polymer bzw. einem Polymermischung hergestellte Membranen weisen bestimmte Eigenschaften auf, auf die beim speziellen Einsatz Wert gelegt wird. Häufig gehen aber mit der Materialwahl auch Nachteile einher, die auf Grund der ausgewählten Eigenschaften in Kauf genommen werden.For example, hollow fiber nozzles are used for the large-scale production of capillary membranes. Here the hollow fiber membrane is produced in a precipitation spinning process. The polymers to be precipitated emerge from an annular gap in a nozzle arrangement, while the corresponding precipitant flows out of a central precipitant bore. The already known hollow fiber spinnerets usually consist of a base body made of metal, into which several bores are made. A tube is fitted into one of the bores in which a precipitant channel is formed for introducing the precipitant. Other holes form mass feed channels for a polymer that is above the previously mentioned gap emerges. In the manufacture of the previously known hollow fiber spinnerets, methods of conventional metal working are used. So here the nozzle structure is created by the assembly of both nozzle parts, whereby an inaccuracy, for example the geometry of the annulus, adds up from the manufacturing errors when manufacturing the base body and the tube. There are also possible assembly errors that can also lead to an inaccuracy of the geometry. Because of the manufacturing processes, these previously known hollow fiber spinnerets do not only have the inaccuracies mentioned. Rather, due to their manufacturing process, they also have a minimum size that prevents any reduction in the size of the capillary membrane. Furthermore, the capillary membranes used in previous dialysis are generally made from a specific polymer or a polymer mixture. Such membranes, each made from a polymer or a polymer mixture, have certain properties that are important for special use. Often, however, there are disadvantages associated with the choice of material, which are accepted due to the selected properties.
Aufgabe der Erfindung ist es, Kapillarmembranen an die Hand zu geben, die mehrere positive Eigenschaften in sich vereinigen und dennoch auf Grund des kleinen Durchmessers in vergleichsweise kleinen Dialysatoren eine große Austauschfläche zur Verfügung stellen.The object of the invention is to provide capillary membranes that combine several positive properties and still provide a large exchange surface due to the small diameter in comparatively small dialyzers.
Erfindungsgemäß wird die Aufgabe durch Kapillarmembranen gelöst, die aus mindestens zwei koextrudierten Lagen bestehen, wobei sie einen Außendurchmesser von kleiner als 1 mm, vorzugsweise kleiner oder gleich 0,45mm aufweisen. Auf Grund der Koextrusion unterschiedlicher Schichten können hier mehrere herausragende Eigenschaften unterschiedlicher Polymere miteinander kombiniert werden. Auf Grund des sehr kleinen Durchmessers wird eine große spezifische Austauschfläche geschaffen, die zu kleinen und leichten Dialysatoren führt.According to the invention, the object is achieved by capillary membranes which consist of at least two coextruded layers, wherein they have an outer diameter of less than 1 mm, preferably less than or equal to 0.45 mm. Due to the coextrusion of different layers, several outstanding properties of different polymers can be combined with each other. Due to the very small diameter, a large specific exchange area is created, which leads to small and light dialyzers.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den sich an den Hauptanspruch anschließenden Unteransprüchen. Bevorzugt können die Kapillar- membranen aus einem oder mehreren der folgenden Materialien bestehen: Polysulfon (PS), Polysulfon mit Poiyvinylpyrollidon (PS/PVP), Polyethersulfon (PES), Polyethersulfon mit Poiyvinylpyrollidon (PES/PVP), Polyetherimid (PEI), Polyethe- rimid mit Poiyvinylpyrollidon (PEI/PVP), Polyamid (PA), Polycarbonat (PC), Polystyrol (PS), Polymethylmethacrylat (PMMA), Polyvinylidenfluorid (PVDF), Polyacryl- nitril (PAN), Polyimid (Pl) und/oder Polyurethan (PU). So kann beispielsweise die innere Lage aus einer Kombination von Polysulfon und Poiyvinylpyrollidon bestehen, während die äußere Lage aus Polysulfon besteht. Andererseits könnte aber auch die innere Lage aus einem kombinierten Polysulfon-Polyvinylpyrollidon mit hoher Polymerkonzentration bestehen, während die äußere Lage aus einem kombinierten Polysulfon-Polyvinylpyrollidon mit niedriger Polymerkonzentration besteht.Advantageous embodiments of the invention result from the subclaims following the main claim. The capillary Membranes consist of one or more of the following materials: polysulfone (PS), polysulfone with polyvinylpyrollidone (PS / PVP), polyether sulfone (PES), polyether sulfone with polyvinylpyrollidone (PES / PVP), polyetherimide (PEI), polyetherimide with polyvinylpyrollidone (PE / PVP), polyamide (PA), polycarbonate (PC), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide (Pl) and / or polyurethane (PU). For example, the inner layer can consist of a combination of polysulfone and polyvinylpyrollidone, while the outer layer consists of polysulfone. On the other hand, the inner layer could also consist of a combined polysulfone-polyvinylpyrollidone with a high polymer concentration, while the outer layer consisted of a combined polysulfone-polyvinylpyrollidone with a low polymer concentration.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung besteht die Membran aus einer kleinporigen Separationsschicht und einer großporigen Trägerschicht. Gegenüber einer einlagigen asymmetrischen oder symmetrischen Membran ist die Permeabilität einer derartigen koextrudierten Kapillarmembran aus mehreren Schichten bei gleicher Trenngrenze wesentlich verbessert.According to an advantageous embodiment of the invention, the membrane consists of a small-pore separation layer and a large-pore carrier layer. Compared to a single-layer asymmetrical or symmetrical membrane, the permeability of such a coextruded capillary membrane made of several layers is significantly improved with the same separation limit.
Vorteilhaft kann auch eine der Lagen aus einem biokompatiblen Material bestehen, während eine zweite Lage als Träger oder eigentliche Membran dient.One of the layers can advantageously also consist of a biocompatible material, while a second layer serves as a support or actual membrane.
Eine weitere besonders bevorzugte Ausgestaltung der Erfindung besteht darin, dass eine der Lagen als Membran dient, während eine zweite aus einem Adsor- bermaterial besteht. Diese zweite Schicht kommt dann nur mit dem Filtrat in Berührung. Anhand dieser nicht abschließenden Beispiele wird deutlich, dass durch die Kombination der Eigenschaften zweier Polymere eine multifunktionale Kapillarmembran auf die jeweiligen konkreten Bedürfnisse zugeschnitten werden kann.Another particularly preferred embodiment of the invention consists in that one of the layers serves as a membrane, while a second layer consists of an adsorbent material. This second layer then only comes into contact with the filtrate. From these non-exhaustive examples it becomes clear that the combination of the properties of two polymers enables a multifunctional capillary membrane to be tailored to the specific needs.
Die Herstellung der erfindungsgemäßen Kapillarmembran wird durch eine Vorrichtung gemäß Anspruch 6 ermöglicht. Diese erfindungsgemäße Vorrichtung zur Herstellung einer aus zwei der gegebenenfalls auch mehr Schichten koextrudierten Kapillarmembran weist eine Hohlfaser-Spinndüse mit einer Koextrusionsdüse auf, deren Außendurchmesser kleiner als 1 mm ist.The production of the capillary membrane according to the invention is made possible by a device according to claim 6. This device according to the invention for the production of a co-extruded from two or possibly more layers Capillary membrane has a hollow fiber spinneret with a coextrusion die, the outer diameter of which is less than 1 mm.
Bevorzugte Ausgestaltungen der erfindungsgemäßen Vorrichtung ergeben sich aus den sich an den Anspruch 6 anschließenden Unteransprüchen 7 bis 9.Preferred refinements of the device according to the invention result from the subclaims 7 to 9 following claim 6.
Demnach kann die Hohlfaser-Spinndüse aus einem dreischichtig aufgebauten Grundkörper bestehen, wobei die einzelnen Schichten mittels Mikrostrukturtechnik strukturierte plattenförmige Körper sind, die zu dem Grundkörper zusammengefügt sind. Dabei kann die erste Platte als vorstrukturierte Platte eingesetzt werden, auf die die zweite noch nicht strukturierte Platte gebonded wird. Die gebondete zweite Platte wird anschließend strukturiert. Auf diese strukturierte Platte wird dann die wiederrum nicht strukturierte dritte Platte aufgebondet, die dann ebenfalls anschließend strukturiert wird.Accordingly, the hollow fiber spinneret can consist of a three-layered base body, the individual layers being plate-shaped bodies structured by means of microstructure technology, which are combined to form the base body. The first plate can be used as a pre-structured plate to which the second plate, which has not yet been structured, is bonded. The bonded second plate is then structured. The third plate, which in turn is not structured, is then bonded onto this structured plate, which is then also subsequently structured.
Der Grundkörper besteht vorteilhaft aus einkristallinem Silizium, Galliumarsenid (GaAs) oder Germanium.The base body advantageously consists of single-crystal silicon, gallium arsenide (GaAs) or germanium.
Besonders vorteilhaft weist die Hohlfaser-Spinndüse einen zentralen Zuführkanal für das Fällmittel, Massezuführungskanäle für das polymere Material, eine Masse- strom-Vergleichmäßigungszone und einen Ringspalt für das erste Polymer, sowie Massezuführkanäle für das zweite polymere Material, eine Massestrom- Vergleichmäßigungszone für diese weiteren Massezuführkanäle und einen Masse- Ringspalt für das zweite Polymer auf.The hollow fiber spinneret particularly advantageously has a central feed channel for the precipitant, mass feed channels for the polymeric material, a mass flow equalization zone and an annular gap for the first polymer, and mass feed channels for the second polymeric material, a mass flow equalization zone for these further mass feed channels and a mass ring gap for the second polymer.
Weitere Einzelheiten und Vorteile der Erfindung werden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:Further details and advantages of the invention will be explained in more detail with reference to an embodiment shown in the drawing. Show it:
Figur 1 : eine teilweise geschnittene dreidimensionale Darstellung einer Hohlfaser-Spinndüse gemäß einer ersten Ausführungsform der Erfindung und Figur 2: eine schematische Schnittdarstellung der Hohlfaser-Spinndüse gemäß Figur 1 , wobei drei Varianten der Anordnung der Massezuführkanäle für das zweite Polymer gezeigt sind.Figure 1 is a partially sectioned three-dimensional representation of a hollow fiber spinneret according to a first embodiment of the invention and Figure 2 is a schematic sectional view of the hollow fiber spinneret of Figure 1, showing three variants of the arrangement of the mass supply channels for the second polymer.
Anhand der Figuren 1 und 2 wird eine Ausgestaltung der Erfindung erläutert. Hier ist eine Hohlfaser-Spinndüse 10 zur Herstellung einer aus zwei Schichten koextrudierten Hohlfaser gezeigt. Dabei ist eine Hohlfaser-Spinndüse 10 mit einem Grundkörper 100 bestehend aus drei einzelnen Platten 102, 104 und 106 gezeigt. Die einzelnen Platten bestehen aus einkristallinem Silizium. In der ersten Platte 102 ist ein Zuführkanal 108 für das Fällmittel ausgenommen. Zusätzlich sind Zuführkanäle, 110, 112 für ein erstes Polymer vorgesehen, die in eine zugehörige Vergleichmäßigungszone 114 einmünden. Die Vergleichmäßigungszone 114 umgibt einen entsprechenden Nadelstumpf 116.An embodiment of the invention is explained with reference to FIGS. 1 and 2. Here, a hollow fiber spinneret 10 for producing a hollow fiber coextruded from two layers is shown. A hollow fiber spinneret 10 with a base body 100 consisting of three individual plates 102, 104 and 106 is shown. The individual plates consist of single-crystal silicon. A feed channel 108 for the precipitant is recessed in the first plate 102. In addition, feed channels 110, 112 are provided for a first polymer, which open into an associated equalization zone 114. The equalization zone 114 surrounds a corresponding needle stump 116.
In der zweiten Platte 104 ist ebenfalls eine Fällmittelbohrung 118 ausgenommen, die von einen weiteren Nadelstumpf 120 und einem Ringraum 122 umgeben ist. Weiterhin sind weitere Zuführkanäle 124 mit anschließender Vergleichmäßigungszone 126 in der zweiten Platte 104 ausgenommen. Schließlich weist die dritte Platte 106 zwei Ringspalten 128 und 130 für die jeweiligen polymeren Materialien, die koextrudiert werden sollen, auf, sowie eine Nadel 132 mit Fällmittelbohrung 134. Bei den Varianten der Figur 2a, Figur 2b und Figur 2c sind die Zuführkanäle 124 jeweils anders ausgestaltet. Während in der Ausführungsvariante gemäß der Figur 2a der Zuführungskanal 124 für das zweite Polymer lediglich in der zweiten Platte 104 vorgesehen ist, verläuft der in der Variante gemäß der Figur 2b sowohl durch die zweite Platte 104 wie auch durch die dritte Platte 106. In der Ausführungsvariante gemäß der Figur 2c verläuft der Zuführkanal 124 für das zweite Polymer durch die zweite Platte 104 und die erste Platte 102, wie hier in der Figur 2c dargestellt.In the second plate 104, a precipitant hole 118 is also excluded, which is surrounded by another needle stump 120 and an annular space 122. Furthermore, additional feed channels 124 with subsequent equalization zone 126 in the second plate 104 are excluded. Finally, the third plate 106 has two annular gaps 128 and 130 for the respective polymeric materials that are to be coextruded, and a needle 132 with a precipitant hole 134. In the variants in FIGS. 2a, 2b and 2c, the feed channels 124 are each different designed. While the supply channel 124 for the second polymer is only provided in the second plate 104 in the embodiment variant according to FIG. 2a, the one in the variant according to FIG. 2b runs both through the second plate 104 and through the third plate 106. In the embodiment variant According to FIG. 2c, the feed channel 124 for the second polymer runs through the second plate 104 and the first plate 102, as shown here in FIG. 2c.
Die Darstellung gemäß Figur 1 entspricht dem Schnitt gemäß Figur 2a, wobei hier deutlich wird, dass 8 Zuführkanäle 112 sternförmig angeordnet sind, während 4 Zuführkanäie 124 kreuzförmig angeordnet sind. Bei der Herstellung von Hohlfaser-Spinndüsen mittels Mikrostrukturtechnik wird von drei runden Wafer-Scheiben mit 100 bis 300 mm Durchmesser ausgegangen. Aus diesen Wafern werden gleichzeitig viele Spinndüsenstrukturen hergestellt. Die einzelnen Hohlfaser-Spinndüsen 10 erhält man dann durch Zerteilen der fertig bearbeiteten Wafer. Die vereinzelten geteilten Spinndüsen können jeweils eine einzige Düsenstruktur, wie hier dargestellt, aber auch mehrere Düsenstrukturen in einem Düsenstrukturverband enthalten. Dies erreicht man dadurch, dass nicht alle Düsenstrukturen, die auf dem Wafer gebildet wurden, voneinander trennt, sondern dass mehrere Düsenstrukturen zusammen eine Mehrfach-Düseneinheit bilden, die entlang ihrer Außenkontur vom Wafer ausgeschnitten wird.The representation according to FIG. 1 corresponds to the section according to FIG. 2a, it being clear here that 8 feed channels 112 are arranged in a star shape, while 4 feed channels 124 are arranged in a cross shape. When manufacturing hollow fiber spinnerets using microstructure technology, three round wafer disks with a diameter of 100 to 300 mm are assumed. Many spinneret structures are produced from these wafers at the same time. The individual hollow fiber spinnerets 10 are then obtained by dividing the finished wafers. The separated split spinnerets can each contain a single nozzle structure, as shown here, but can also contain several nozzle structures in a nozzle structure assembly. This is achieved by not separating all of the nozzle structures that have been formed on the wafer, but rather that several nozzle structures together form a multiple nozzle unit that is cut out of the wafer along its outer contour.
Die Herstellung der Spinndüsen beginnt mit der beidseitigen Strukturierung des ersten Wafers, der die Elemente der ersten Platte 102 der Spinndüsen aufnimmt. Die Strukturen werden mit einer Folge von Standard-Lithographieverfahren, beispielsweise Masken aus Photoresist, SiO, Si-N oder ähnlichem und Standard- Ätzverfahren gefertigt. Bei den Standard-Ätzverfahren sind insbesondere das reaktive Ionen-Ätzen (RIE), das reaktive Ionen Tiefenätzen (D-RIE) und das Kryo-Ätzen zu nennen. Besonders geeignet sind spezielle Tiefenätzverfahren wie das D-RIE und das Kryo-Ätzen. Die Lithographie-Masken für die Vorder- und Rückseite müssen optisch zueinander ausgerichtet werden. Dann wird der zweite Wafer, auf diesen strukturierten Wafer gebondet. Dazu können alle Bondverfahren eingesetzt werden, wie Anodisches Bonden, Direktbonden oder ähnliches. Besonders geeignet ist aber das Direktbonden, da die höchsten Festigkeiten erreicht werden und damit ein guter Halt der Nadel auf dem Grundkörper gewährleistet ist. Im nächsten Schritt werden die Zuführkanäle, die Vergleichmäßigungszone und der Nadelstumpf 120 auf der mit der ersten Platte gebondeten zweiten Platte 104 strukturiert. Die Lithographie-Maske dafür muss dabei optisch zu den Strukturen auf der ersten Platte ausgerichtet werden. Dann wird der dritte Wafer aufgebondet. Dazu können wieder alle Bondverfahren eingesetzt werden, wie zuvor dargestellt. Im nächsten Schritt wird die Düsenstruktur, bestehend aus den Ringspalten und der zentralen Bohrung in einem zweistufigen Ätzverfahren herausgearbeitet. Dabei werden im ersten Schritt die tiefere zentrale Bohrung und der innere Ringspalt vorangetrieben, im zweiten werden alle Strukturen fertiggeätzt. Zur Anwendung kommen dabei wieder die genannten Lithographie- und Ätzverfahren, wobei hier die Verwendung der Tiefenätzverfahren noch ratsamer ist als bei der Bearbeitung des ersten Wafers. Im letzten Schritt werden dann die einzelnen Spinndüsen durch geeignete Trennverfahren, wie Wafer-Sägen und Laserbearbeitung aus dem Wafer herausgeschnitten. Denkbar sind auch drei- oder mehrstufige Ätzverfahren.The production of the spinnerets begins with the structuring of the first wafer on both sides, which receives the elements of the first plate 102 of the spinnerets. The structures are produced using a series of standard lithography processes, for example masks made of photoresist, SiO, Si-N or the like, and standard etching processes. The standard etching methods include reactive ion etching (RIE), reactive ion deep etching (D-RIE) and cryo-etching. Special deep etching processes such as D-RIE and cryo-etching are particularly suitable. The lithography masks for the front and back must be aligned visually. Then the second wafer is bonded to this structured wafer. All bonding methods can be used for this, such as anodic bonding, direct bonding or the like. However, direct bonding is particularly suitable because the highest strengths are achieved and thus a good hold of the needle on the base body is guaranteed. In the next step, the feed channels, the equalization zone and the needle stump 120 are structured on the second plate 104 bonded to the first plate. The lithography mask must be optically aligned with the structures on the first plate. Then the third wafer is bonded. All of the bonding methods can be used again, as shown above. In the next step, the nozzle structure consisting of the annular gaps and the central hole is worked out in a two-stage etching process. Thereby in The first step is to advance the deeper central bore and the inner annular gap, in the second all structures are etched. Again, the aforementioned lithography and etching processes are used, with the use of deep etching processes being even more advisable than when processing the first wafer. In the last step, the individual spinnerets are then cut out of the wafer using suitable separation processes, such as wafer sawing and laser processing. Three-stage or multi-stage etching processes are also conceivable.
Mit der zuvor beschriebenen Hohlfaser-Spinndüse 10 lassen sich koextrudierte Hohlfasern aus zwei Materialien mit sehr kleinen Durchmessern mit hoher Präzision herstellen. With the previously described hollow fiber spinneret 10, coextruded hollow fibers can be produced from two materials with very small diameters with high precision.

Claims

Kapillarmembran und Vorrichtung zur Herstellung derselbenPatentansprüche Capillary membrane and device for producing the same patent claims
Kapillarmembran, dadurch gekennzeichnet, dass sie aus mindestens zwei koextrudierten Lagen besteht und dass sie einen Außendurchmesser von kleiner als 1 mm aufweist.Capillary membrane, characterized in that it consists of at least two coextruded layers and that it has an outer diameter of less than 1 mm.
Kapillarmembran nach Anspruch 1 , dadurch gekennzeichnet, dass sie einen Außendurchmesser von kleiner oder gleich 0,45 mm aufweist.Capillary membrane according to claim 1, characterized in that it has an outer diameter of less than or equal to 0.45 mm.
Kapillarmembran nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie aus ein bzw. mehreren der folgenden Materialien besteht: Polysulfon (PS), Polysulfon mit Poiyvinylpyrollidon (PS/PVP), Polyethersulfon (PES), Polyethersulfon mit Poiyvinylpyrollidon (PES/PVP), Polyetherimid (PEI), Polyetherimid mit Poiyvinylpyrollidon (PEI/PVP), Polyamid (PA), Polycarbonat (PC), Polystyrol (PS), Polymethylmethacrylat (PMMA), Polyvinylidenfluorid (PVDF), Polyacrylnitril (PAN), Polyimid (Pl) und/oder Polyurethan (PU). Capillary membrane according to claim 1 or 2, characterized in that it consists of one or more of the following materials: polysulfone (PS), polysulfone with polyvinylpyrollidone (PS / PVP), polyether sulfone (PES), polyether sulfone with polyvinylpyrollidone (PES / PVP), Polyetherimide (PEI), polyetherimide with polyvinylpyrollidone (PEI / PVP), polyamide (PA), polycarbonate (PC), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide (Pl) and / or polyurethane (PU).
4. Kapillarmembran nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass sie aus einer kleinporigen Separationsschicht und einer großporigen Trägerschicht besteht.4. capillary membrane according to claim 1, 2 or 3, characterized in that it consists of a small-pore separation layer and a large-pore carrier layer.
5. Kapillarmembran nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass eine der Lagen aus einem biokompatiblen Material besteht, während eine zweite Lage als Träger oder eigentliche Membran dient.5. capillary membrane according to claim 1, 2 or 3, characterized in that one of the layers consists of a biocompatible material, while a second layer serves as a carrier or actual membrane.
6. Kapillarmembran nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine der Lagen als Membran ausgebildet ist und dass eine zweite Lage aus einem Adsorbermaterial besteht.6. capillary membrane according to one of claims 1 or 2, characterized in that one of the layers is designed as a membrane and that a second layer consists of an adsorber material.
7. Vorrichtung zur Herstellung einer Kapillarmembran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese eine Hohlfaserspinndüse mit einer Koextrusionsdüse aufweist, deren Außendurchmesser kleiner als 1 mm ist.7. Device for producing a capillary membrane according to one of the preceding claims, characterized in that it has a hollow fiber spinneret with a coextrusion nozzle, the outer diameter of which is less than 1 mm.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Hohlfaserspinndüse aus einem dreischichtig aufgebauten Grundkörper besteht, wobei die einzelnen Schichten mittels Mikorstrukturtechnik strukturierte plattenförmige Körper sind, die zu dem Grundkörper zusammengefügt sind.8. The device according to claim 6, characterized in that the hollow fiber spinning nozzle consists of a three-layered base body, wherein the individual layers are structured by means of microstructure plate-shaped body, which are joined together to form the base body.
9. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Grundplatte aus einkristallinem Silizium, Galliumarsenid (GaAs) oder Germanium besteht.9. The device according to claim 6 or 7, characterized in that the base plate consists of single-crystal silicon, gallium arsenide (GaAs) or germanium.
10. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Hohlfaserspinndüse einen zentralen Zuführkanal für das Fällmittel, Massezuführungskanäle, eine Massestromvergleichmäßigungszone und einen Ringspalt für das erste Polymer, sowie Massezuführkanäle, eine Massestromvergleichmäßigungszone und einen Masseringspalt für das zweite Polymer aufweist.10. The device according to one of claims 6 to 8, characterized in that the hollow fiber spinneret has a central feed channel for the precipitant, mass feed channels, a mass flow equalization zone and an annular gap for the first polymer, and mass feed channels, a Mass flow equalization zone and a mass ring gap for the second polymer.
11. Kapillarmembran nach einem der Ansprüche 1-6, dadurch gekennzeichnet daß sie aus drei, vier oder mehr koextrudierten Lagen besteht. 11. capillary membrane according to any one of claims 1-6, characterized in that it consists of three, four or more coextruded layers.
EP03708185A 2002-03-13 2003-03-06 Capillary membrane and device for production thereof Withdrawn EP1487566A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10211051 2002-03-13
DE10211051A DE10211051A1 (en) 2002-03-13 2002-03-13 Capillary membrane and device for producing the same
PCT/EP2003/002313 WO2003076056A1 (en) 2002-03-13 2003-03-06 Capillary membrane and device for production thereof

Publications (1)

Publication Number Publication Date
EP1487566A1 true EP1487566A1 (en) 2004-12-22

Family

ID=27797744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03708185A Withdrawn EP1487566A1 (en) 2002-03-13 2003-03-06 Capillary membrane and device for production thereof

Country Status (10)

Country Link
US (1) US20050274665A1 (en)
EP (1) EP1487566A1 (en)
JP (1) JP2005519734A (en)
KR (1) KR20040095246A (en)
AU (1) AU2003212311A1 (en)
BR (1) BR0308318A (en)
CA (1) CA2478831A1 (en)
DE (1) DE10211051A1 (en)
HR (1) HRP20040808A2 (en)
WO (1) WO2003076056A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
JP4708342B2 (en) 2003-07-25 2011-06-22 デックスコム・インコーポレーテッド Oxygen augmentation membrane system for use in implantable devices
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
WO2006063426A1 (en) * 2004-12-15 2006-06-22 Zenon Environmental Inc. Reinforced hollow fibre membrane
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
DE102007019051B3 (en) 2007-04-23 2008-10-09 Fresenius Medical Care Deutschland Gmbh Hollow fiber capillary membrane and process for its preparation
DE102008003090A1 (en) 2008-01-03 2009-07-16 Fresenius Medical Care Deutschland Gmbh Hollow fiber membrane
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
ATE545440T1 (en) * 2008-09-25 2012-03-15 Gambro Lundia Ab HYBRID BIOLOGICAL ARTIFICIAL KIDNEY
EP2168666A1 (en) 2008-09-25 2010-03-31 Gambro Lundia AB Irradiated membrane for cell expansion
EP2168668A1 (en) 2008-09-25 2010-03-31 Gambro Lundia AB Membrane for cell expansion
BRPI1006414A2 (en) 2009-03-26 2016-02-10 Bl Technologies Inc reinforcement structure for a hollow fiber membrane, hollow fiber membrane, method for producing a reinforcement structure and method for producing a hollow fiber reinforcement membrane
EP2448658B1 (en) 2009-06-26 2014-10-01 BL Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
ES2459191T3 (en) * 2009-10-29 2014-05-08 Basf Se Procedure for the preparation of hyperbranched hollow fibers
EP2616167B1 (en) 2010-09-15 2022-11-02 BL Technologies, Inc. Method to make yarn-reinforced hollow fibre membranes around a soluble core
US8529814B2 (en) 2010-12-15 2013-09-10 General Electric Company Supported hollow fiber membrane
CN103269781B (en) * 2010-12-22 2016-05-25 德国弗雷泽纽斯医疗保健股份有限公司 Without the film of delamination
US9321014B2 (en) 2011-12-16 2016-04-26 Bl Technologies, Inc. Hollow fiber membrane with compatible reinforcements
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9022229B2 (en) 2012-03-09 2015-05-05 General Electric Company Composite membrane with compatible support filaments
US8999454B2 (en) 2012-03-22 2015-04-07 General Electric Company Device and process for producing a reinforced hollow fibre membrane
US9227362B2 (en) 2012-08-23 2016-01-05 General Electric Company Braid welding
WO2019070507A1 (en) 2017-10-05 2019-04-11 Fresenius Medical Care Holdings, Inc. Polysulfone-urethane copolymer, membranes and products incorporating same, and methods for making and using same
DE102020206867A1 (en) 2020-06-02 2021-12-02 Fresenius Medical Care Deutschland Gmbh HOLLOW FIBER MEMBRANE FOR THE SEPARATION OF BLOOD PLASMA FROM BLOOD

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2705734C3 (en) * 1977-02-11 1982-04-22 Akzo Gmbh, 5600 Wuppertal Dialysis membrane for hemodialysis
JPS5891805A (en) * 1981-11-25 1983-05-31 Teijin Ltd Spinning spinneret device
WO1987000213A1 (en) * 1985-06-27 1987-01-15 Mitsubishi Rayon Co., Ltd. Composite hollow yarn and a process for producing the same
US4861661A (en) * 1986-06-27 1989-08-29 E. I. Du Pont De Nemours And Company Co-spun filament within a hollow filament and spinneret for production thereof
JPH0673616B2 (en) * 1987-10-09 1994-09-21 宇部興産株式会社 Method for producing polyimide two-layer hollow fiber membrane
JP2728549B2 (en) * 1990-07-04 1998-03-18 帝人株式会社 Method for producing composite hollow fiber
US5085676A (en) * 1990-12-04 1992-02-04 E. I. Du Pont De Nemours And Company Novel multicomponent fluid separation membranes
EP0649676A1 (en) * 1993-10-20 1995-04-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluoropolymer posttreatment of gas separation membranes
US5733657A (en) * 1994-10-11 1998-03-31 Praxair Technology, Inc. Method of preparing membranes from blends of polymers
NL1010458C2 (en) * 1998-11-03 2000-05-04 Search B V S Longitudinally reinforced self-supporting capillary membranes and their use.
US6921482B1 (en) * 1999-01-29 2005-07-26 Mykrolis Corporation Skinned hollow fiber membrane and method of manufacture
AU2003209410A1 (en) * 2002-01-29 2003-09-02 Amersham Biosciences Membrane Separations Corp. Convoluted surface hollow fiber membranes
US6797212B2 (en) * 2002-04-18 2004-09-28 Medarray, Inc. Method for forming hollow fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03076056A1 *

Also Published As

Publication number Publication date
KR20040095246A (en) 2004-11-12
DE10211051A1 (en) 2003-10-02
CA2478831A1 (en) 2003-09-18
US20050274665A1 (en) 2005-12-15
AU2003212311A1 (en) 2003-09-22
JP2005519734A (en) 2005-07-07
BR0308318A (en) 2004-12-28
HRP20040808A2 (en) 2005-10-31
WO2003076056A1 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
EP1487566A1 (en) Capillary membrane and device for production thereof
EP1483435B1 (en) Hollow-fiber spinning nozzle
DE60320240T2 (en) Lightened bicycle rim and method of making such a rim
DE2605546C3 (en) Blow mold for the production of plastic bellows
DE1290696B (en) Hollow component made of elastic material for walls, ceilings or the like.
DE69311850T2 (en) Multi-part extrusion mouthpiece
DE4203418B4 (en) Method and apparatus for forming an outer layer in honeycomb structures
EP3300792A2 (en) Method for producing a ceramic filtration panel
EP2147904A2 (en) Method for sintering a moulded part in a dimensionally accurate fashion
EP2608873B1 (en) A spinneret unit, a method for producing a multi-channel membrane with the spinneret unit and use of the spinneret unit
DE68913467T2 (en) Spinneret for the production of membranes from an organic material with at least one longitudinal channel.
DE3726869A1 (en) MOUTHPIECES FOR EXTRUDING HONEYCOMB BODIES AND METHOD FOR THE PRODUCTION THEREOF
DE69926256T2 (en) MONOLITICAL, POROUS SUPPORT FOR FILTER ELEMENT AND FILTER ELEMENT
EP1233827B1 (en) Method for producing a membrane module
DE2826790C2 (en) Spinning head for the production of multi-component threads
WO2006012920A1 (en) Filtration membrane and method for producing the same
DE2628675A1 (en) Communication cable coupling inlet seal - has disc with concentric rings linked by radial arms to outer ring to allow adjustment for different cable sizes
DE4413574C1 (en) Membrane for micro-filtration of fluid suspensions or gases
DE68921043T2 (en) Spinneret.
EP0498236A2 (en) Method of producing gyrolaser resonator-blocks
DE102021100591B3 (en) Manufacturing process for a piece of jewelery and a piece of jewellery
DE10054591A1 (en) Device for producing a polymer membrane
EP2050524B1 (en) Method for producing slits in the bottom wall of a pot-shaped sleeve assembly
EP3702496A1 (en) Mould and method for manufacturing a mould for extruding cellulose moulded bodies
DE102022210893A1 (en) Method for producing a filter molding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051214