EP1485928A1 - Electrolyte solution and use thereof - Google Patents

Electrolyte solution and use thereof

Info

Publication number
EP1485928A1
EP1485928A1 EP03720166A EP03720166A EP1485928A1 EP 1485928 A1 EP1485928 A1 EP 1485928A1 EP 03720166 A EP03720166 A EP 03720166A EP 03720166 A EP03720166 A EP 03720166A EP 1485928 A1 EP1485928 A1 EP 1485928A1
Authority
EP
European Patent Office
Prior art keywords
component
electrolyte solution
solution according
solvent
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03720166A
Other languages
German (de)
French (fr)
Inventor
Andree Schwake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1485928A1 publication Critical patent/EP1485928A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Electrolyte solutions containing acetonitrile as a solvent are often used in electrochemical cells, for example capacitors or batteries.
  • An electrolyte consisting, for example, of 0.9 M tetraethylammonium tetrafluoroborate in 100% acetonitrile as a solvent has a conductivity of 55.1 mS / cm at 25 ° C. Electrolytes without acetonitrile as a solvent have a much lower conductivity.
  • an electrolyte solution consisting of 0.9 M tetraethylammonium tetrafluoroborate in 100% propylene carbonate has a conductivity of only 13.7 mS / cm at 25 ° C.
  • the disadvantage of electrolyte solutions that use acetonitrile as a solvent is the relatively low boiling point of acetonitrile (81.6 ° C at 1 bar). This boiling point is only slightly increased by the addition of the conductive salt, so that boiling points of about 84 ° C. result in electrolyte solutions containing acetonitrile. Due to these low boiling points, the upper operating temperature of electrochemical cells containing the acetonitrile-containing electrolytes is limited to a maximum of 70 ° C, since at higher temperatures the internal pressure of the electrochemical cells rises so much that it may cause the housing to deform and the pressure relief valve to respond or Predetermined breaking point can come. If the housing is deformed, the functionality of the electrochemical cell can no longer be guaranteed.
  • molten salts which do not require a solvent in electrochemical cells which are to be used at temperatures above 70.degree.
  • These molten salts for example 1-ethyl-3-methylimidazolium tetrafluoroborate, have high boiling points of, for example, 200 ° C., but also have only low conductivities, which in the case of the above-mentioned molten salt are about 13 mS / cm at 25 ° C. (Journal of the Electrochemical Society (1999), 146 (5), 1687-1695).
  • the object of the present invention is to provide an electrolyte solution with high conductivity and at the same time a high boiling point which avoids the disadvantages mentioned of known electrolyte solutions and has an operating temperature> 85 ° C.
  • An electrolyte solution according to the invention has a boiling point of greater than 86 ° C. at 1 bar pressure and a conductivity of greater than 40 mS / cm at 25 ° C. and comprises as component A) acetonitrile with a proportion of 40-90% by weight of the solvent weight as the first solvent and as component B) at least one second, electrochemically stable solvent with a boiling point> 120 ° C. at 1 bar pressure, a dielectric constant> 10 at 25 ° C. and a viscosity ⁇ 6 mPas at 25 ° C. At least one conductive salt is added as component C).
  • the inventor has recognized that, surprisingly, electrolyte solutions with high conductivity and at the same time a high boiling point can be achieved by combining acetonitrile as component A) with at least one further solvent as component B) which has a boiling point of greater than 120 ° C. 1 bar. Because of the increased boiling point of this component B), the boiling point of the entire electrolyte solution is raised, so that a boiling point of greater than 86 ° C. results for the entire electrolyte solution.
  • component B) Apart from the high boiling point greater than 120 ° C, component B) must also have a certain viscosity ⁇ 6 mPas at 25 ° C and a dielectric constant> 10 at 25 ° C. Component B) thus has a higher viscosity than acetonitrile, so that a person skilled in the art would expect that electrolyte solutions with this solvent
  • component B) in the electrolyte solutions according to the invention has a dissociating effect on the conducting salt due to its sufficient polarity and, at the same time, ensures that the ions formed remain mobile due to its relatively low viscosity the electrolyte solution, so that a surprisingly high conductivity of the electrolyte solutions according to the invention results.
  • Electrolyte solutions according to the invention have a high conductivity, which is roughly in the range of electrolyte solutions that use acetonitrile as the sole solvent, but at the same time have a high boiling point, which until now could not be achieved with electrolyte solutions containing acetonitrile.
  • the solvent of component B) must be electrochemically stable, so that it is neither oxidatively nor reductively decomposed on the charged surfaces of the electrodes during the operation of the electrochemical cells.
  • the electrochemical stability of electrolytes and their solvents can be determined, for example, by recording cyclovoltammograms. The precise determination of the electrochemical stability of electrolytes and solvents is described, for example, in the publication in the Journal Electrochemica Acta (2001), 46, 1823-1827, to which reference is hereby made in full.
  • the dielectric constant of a solvent can be determined in a decameter using methods known to the person skilled in the art. They are presented, for example, in the Römpp chemistry lexicon (9th edition) under the term "dielectric constant" (page 955-956), to which reference is also made here in full.
  • the viscosity of a solvent can be determined, for example, in a manner familiar to those skilled in the art using an Ubbeloh- Determine the de-viscometer.
  • the boiling points of solvents can also be determined in a simple manner by determining the temperature of the boiling liquid.
  • Component B) is advantageously selected from the following solvents: ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, butylene carbonate, sulfolane, 3-methylsulfolane, dimethyl sulfoxide, glutaronitrile, succinonitrile, 3-methoxypropionitrile, diethyl carbonate, ethyl methyl phosphate, trimethyl N-methylpyrrolidinone, N-
  • Methyloxazolidinone N, N-dimethylimidazolidinone, dimethylformamide and dimethylacetamide.
  • the proportion of component B) in the solvent weight is advantageously about 10 to 60% by weight, preferably 10 to 50% by weight (without conductive salt). This means that acetonitrile is present at the same time with a preferred proportion of 50 to 90% by weight. This can ensure that electrolyte solutions according to the invention on the one hand have high conductivity due to a sufficiently high proportion of acetonitrile, but at the same time also have a high boiling point due to a high proportion of component B).
  • the conductive salts as component C) are selected from combinations of certain anions and cations.
  • Anions include borate, for example tetrafluoroborate, fluroalkylphosphate, PF 6 ⁇ , AsF 6 " , SbF 6 -, fluoroalkylarsenate, fluoroalkylantimonate, trifluoromethylsulfonate, bis (trifluoromethanesulfon) imide, tris (trifluoromethanesulfonyl) methide, perchlorate, tetrachloro, tetrachloride, and OR) 4 ⁇ , for example oxalatoborate, where R is an alkyl group which can also be bridged with other OR groups.
  • the cations are generally the ammonium cation, for example tetraalkyammonium cation, the phosphonium Cation and its tetraalkyl cations, the pyridinium cation, morpholinium, lithium,
  • Imidazolium and pyrrolidinium cations used.
  • the salts can also be melted at room temperature.
  • tetraethylammonium tetrafluoroborate is often used as component C), that is to say as the conductive salt, since it is particularly readily soluble in the solvents of the electrolyte solutions according to the invention, is readily available and guarantees high conductivity.
  • AC acetonitrile
  • PC propylene carbonate
  • EC ethylene carbonate
  • ⁇ -B. ⁇ -butyrolactone
  • DMSO dimethyl sulfoxide
  • MPN 3-methoxy propionitrile
  • GN glutaronitrile
  • TEATFB tetraethylammonium tetrafluoroborate.
  • the electrolyte solutions according to the invention in the exemplary embodiments comprise, as component B), a whole series of solvents, for example ⁇ -butyrolactone, propylene carbo- nat, ethylene carbonate, glutaronitrile, dimethyl sulfoxide, 3-methoxy propionitrile, or a mixture of ⁇ -butyrolactone and 3-methoxy propionitrile or a mixture of ⁇ -butyrolactone and ethylene carbonate.
  • solvents for example ⁇ -butyrolactone, propylene carbo- nat, ethylene carbonate, glutaronitrile, dimethyl sulfoxide, 3-methoxy propionitrile, or a mixture of ⁇ -butyrolactone and 3-methoxy propionitrile or a mixture of ⁇ -butyrolactone and ethylene carbonate.
  • a particularly high boiling point of 101 ° C combined with a high conductivity of 42.9 mS / cm at 25 ° C can be achieved with approximately equal proportions by weight of acetonitrile and ⁇ -butyrolactone as component B) and tetraethylammonium tetrafluoroborate in a concentration of about 0. 9 to 1.2
  • the proportion of acetonitrile can vary between 50 to 60 percent by weight and the proportion of ⁇ -butyrolactone between 40 to 50 percent by weight.
  • capacitors with electrolyte solutions according to the invention still have an acceptable series resistance (ESR) with high capacitance at the same time, which are comparable to values of conventional capacitors.
  • ESR series resistance
  • capacitors with the electrolyte solutions according to the invention have significantly higher operating temperatures.
  • the electrolyte solutions according to the invention can also be used in primary and secondary Li batteries or Li-ion batteries. These then also have higher operating temperatures due to the electrolyte solutions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

The invention relates to an electrolyte solution for electrochemical cells with a high boiling point > 86 DEG C at 1 bar and a high degree of conductivity > 40 mS/cm at 25 DEG C. Said solution contains acetonitrile as the first solvent, (component A), in a proportion of 40 - 90 wt % of the average weight of the solvent, in addition to at least one additional electrochemically stable solvent with a boiling point > 120 DEG C at 1 bar, a dielectricity constant > 10 at 25 DEG C and a viscosity < 6 mPas at 25 DEG C and additionally at least one support electrolyte as component C). Inventive electrolyte solutions of this type have a high degree of conductivity, which is comparable to electrolyte solutions that use acetonitrile as the sole solvent, whilst at the same time exhibiting an increased boiling point as a result of component B).

Description

Elektrolytlösung und deren VerwendungElectrolyte solution and its use
In elektrochemischen Zellen, beispielsweise Kondensatoren oder Batterien werden häufig Elektrolytlosungen verwendet, die Acetonitril als Lösungsmittel aufweisen. Acetonitril weist eine hohe Polarität (Dielektrizitätskonstante DK =37,5 bei 25 °C) bei einer sehr niedrigen Viskosität (0,325 mPas bei 25 °C) auf. Aufgrund der hohen Polarität des Acetonitrils unterstützt dieses besonders gut die Dissoziation der Leitsalze, die gleichzeitig aufgrund der niedrigen Viskosität des Acetonitrils eine hohe Beweglichkeit in der Elektrolytlösung aufweisen, so daß Elektrolytlosungen mit Acetonitril als alleinigem Lösungsmittel eine sehr hohe Leitfähigkeit erreichen. Ein Elektrolyt, der beispielsweise aus 0,9 M Tetraethy- lammoniumtetrafluoroborat in 100% Acetonitril als Lösungsmittel besteht, hat eine Leitfähigkeit von 55,1 mS/cm bei 25°C. Elektrolyte ohne Acetonitril als Lösungsmittel weisen eine sehr viel geringere Leitf higkeit auf. Eine Elektrolytlösung bestehend aus 0 , 9 M Tetraethylammoniumtetrafluoroborat in 100% Propylencarbonat hat beispielsweise eine Leitfähigkeit von nur 13,7 mS/cm bei 25°C.Electrolyte solutions containing acetonitrile as a solvent are often used in electrochemical cells, for example capacitors or batteries. Acetonitrile has a high polarity (dielectric constant DK = 37.5 at 25 ° C) with a very low viscosity (0.325 mPas at 25 ° C). Due to the high polarity of the acetonitrile, this supports the dissociation of the conductive salts, which at the same time have a high mobility in the electrolyte solution due to the low viscosity of the acetonitrile, so that electrolyte solutions with acetonitrile as the sole solvent achieve a very high conductivity. An electrolyte consisting, for example, of 0.9 M tetraethylammonium tetrafluoroborate in 100% acetonitrile as a solvent has a conductivity of 55.1 mS / cm at 25 ° C. Electrolytes without acetonitrile as a solvent have a much lower conductivity. For example, an electrolyte solution consisting of 0.9 M tetraethylammonium tetrafluoroborate in 100% propylene carbonate has a conductivity of only 13.7 mS / cm at 25 ° C.
Der Nachteil von Elektrolytlosungen, die Acetonitril als Lösungsmittel verwenden, liegt in dem relativ niedrigen Siede- punkt des Acetonitrils (81,6°C bei 1 bar). Dieser Siedepunkt wird durch die Zugabe des Leitsalzes nur geringfügig erhöht, so daß bei acetonitrilhaltigen Elektrolytlosungen Siedepunkte von etwa 84°C resultieren. Aufgrund dieser geringen Siedepunkte ist die obere Einsatztemperatur von elektrochemischen Zellen die acetonitrilhaltige Elektrolyte beinhalten auf maximal 70°C begrenzt, da bei höherem Temperaturen der Innendruck der elektrochemischen Zellen so stark ansteigt, daß es evtl. zur Deformation des Gehäuses und zum Ansprechen des Überdruckventils oder der Sollbruchstelle kommen kann. Bei einer Deformation des Gehäuses kann die Funktionstüchtigkeit der elektrochemischen Zelle nicht mehr gewährleistet werden. Sprechen das Überdruckventil oder die Sollbruchstelle an, so gelangen Acetonitrildämpfe in die Atmosphäre, die aufgrund potentieller Brand- und Explosionsgefahr ein hohes Sicherheitsrisiko darstellen. Heutzutage werden weiterhin elektrochemische Zellen benötigt, die eine Einsatztemperatur von > 85 °C aufweisen.The disadvantage of electrolyte solutions that use acetonitrile as a solvent is the relatively low boiling point of acetonitrile (81.6 ° C at 1 bar). This boiling point is only slightly increased by the addition of the conductive salt, so that boiling points of about 84 ° C. result in electrolyte solutions containing acetonitrile. Due to these low boiling points, the upper operating temperature of electrochemical cells containing the acetonitrile-containing electrolytes is limited to a maximum of 70 ° C, since at higher temperatures the internal pressure of the electrochemical cells rises so much that it may cause the housing to deform and the pressure relief valve to respond or Predetermined breaking point can come. If the housing is deformed, the functionality of the electrochemical cell can no longer be guaranteed. If the pressure relief valve or the predetermined breaking point address, so acetonitrile vapors enter the atmosphere, which pose a high safety risk due to the potential fire and explosion hazard. Nowadays, electrochemical cells with an operating temperature of> 85 ° C are still required.
In der Patentschrift US 5 418 682 werden Elektrolytlosungen mit Einsatztemperaturen bis zu 150° beschrieben, die als Lösungsmittel Glutaronitril gemischt mit einem anderen Dinitril enthalten. Glutaronitril sowie auch andere Dinitrile weisen zwar hohe Dielektrizitätskonstanten auf, gleichzeitig aber auch eine hohe Viskosität aufgrund ihrer hohen Siedepunkte. Aus diesem Grunde weisen derartige Elektrolytlosungen nur geringe Leitfähigkeiten auf. So hat beispielsweise ein Elektro- lyt bestehend aus 1 M Tetraethylammoniumtetrafluoroborat mit Glutaronitril und Succinonitril als Lösungsmittel nur eine geringe Leitfähigkeit von 7,19 mS/cm bei Raumtemperatur.US Pat. No. 5,418,682 describes electrolyte solutions with operating temperatures up to 150 ° which contain glutaronitrile mixed with another dinitrile as the solvent. Although glutaronitrile and other dinitriles have high dielectric constants, they also have a high viscosity due to their high boiling points. For this reason, such electrolyte solutions have only low conductivities. For example, an electrolyte consisting of 1 M tetraethylammonium tetrafluoroborate with glutaronitrile and succinonitrile as a solvent has only a low conductivity of 7.19 mS / cm at room temperature.
Weiterhin ist es möglich, in elektrochemischen Zellen, die bei Temperaturen größer 70°C eingesetzt werden sollen, bei Raumtemperatur geschmolzene Salze zu verwenden, welche kein Lösungsmittel benötigen. Diese geschmolzenen Salze, beispielsweise 1-Ethyl -3 -Methylimidazoliumtetrafluoroborat, weisen hohe Siedepunkte von beispielsweise 200°C auf, haben al- lerdings auch nur geringe Leitfähigkeiten, die beim oben genannten geschmolzenen Salz etwa 13 mS/cm bei 25 °C betragen (Journal of the Electrochemical Society (1999) , 146 (5) , 1687-1695) .It is also possible to use molten salts which do not require a solvent in electrochemical cells which are to be used at temperatures above 70.degree. These molten salts, for example 1-ethyl-3-methylimidazolium tetrafluoroborate, have high boiling points of, for example, 200 ° C., but also have only low conductivities, which in the case of the above-mentioned molten salt are about 13 mS / cm at 25 ° C. (Journal of the Electrochemical Society (1999), 146 (5), 1687-1695).
Aufgabe der vorliegenden Erfindung ist es, eine Elektrolytlösung mit hoher Leitf higkeit bei gleichzeitig hohem Siedepunkt anzugeben, die die genannten Nachteile bekannter Elektrolytlosungen vermeidet und eine Einsatztemperatur > 85 °C aufweist .The object of the present invention is to provide an electrolyte solution with high conductivity and at the same time a high boiling point which avoids the disadvantages mentioned of known electrolyte solutions and has an operating temperature> 85 ° C.
Diese Aufgabe wird erfindungsgemäß durch eine Elektrolytlösung mit den Merkmalen von Anspruch 1 gelöst . Vorteilhafte Ausgestaltungen der Elektrolytlösung sowie deren Verwendung sind Gegenstand von weiteren Ansprüchen.According to the invention, this object is achieved by an electrolyte solution having the features of claim 1. advantageous Embodiments of the electrolyte solution and their use are the subject of further claims.
Eine erfindungsgemäße Elektrolytlösung weist einen Siedepunkt von größer 86°C bei 1 bar Druck sowie eine Leitfähigkeit von größer 40 mS/cm bei 25°C auf und umfaßt als Komponente A) Acetonitril mit einem Anteil von 40 - 90 Gew% am Lösungsmittelgewicht als erstes Lösungsmittel und als Komponente B) zumindest ein zweites, elektrochemisch stabiles Lösungsmittel mit einem Siedepunkt > 120°C bei 1 bar Druck, einer Dielektrizitätskonstante > 10 bei 25 °C und einer Viskosität < 6mPas bei 25 °C. Als Komponente C) ist zumindest ein Leitsalz zugesetzt .An electrolyte solution according to the invention has a boiling point of greater than 86 ° C. at 1 bar pressure and a conductivity of greater than 40 mS / cm at 25 ° C. and comprises as component A) acetonitrile with a proportion of 40-90% by weight of the solvent weight as the first solvent and as component B) at least one second, electrochemically stable solvent with a boiling point> 120 ° C. at 1 bar pressure, a dielectric constant> 10 at 25 ° C. and a viscosity <6 mPas at 25 ° C. At least one conductive salt is added as component C).
Der Erfinder hat erkannt, daß sich überraschenderweise Elektrolytlosungen mit hoher Leitf higkeit bei gleichzeitig hohem Siedepunkt dadurch realisieren lassen, daß Acetonitril als Komponente A) mit zumindest einem weiteren Lösungsmittel als Komponente B) kombiniert wird, das einem Siedepunkt von grö- ßer 120°C bei 1 bar aufweist. Aufgrund des erhöhten Siedepunktes dieser Komponente B) wird damit der Siedepunkt der gesamten Elektrolytlösung angehoben, so daß ein Siedepunkt von größer 86°C für die gesamte Elektrolytlösung resultiert.The inventor has recognized that, surprisingly, electrolyte solutions with high conductivity and at the same time a high boiling point can be achieved by combining acetonitrile as component A) with at least one further solvent as component B) which has a boiling point of greater than 120 ° C. 1 bar. Because of the increased boiling point of this component B), the boiling point of the entire electrolyte solution is raised, so that a boiling point of greater than 86 ° C. results for the entire electrolyte solution.
Abgesehen von dem hohen Siedepunkt größer 120°C muß Komponente B) darüber hinaus noch eine bestimmte Viskosität < 6 mPas bei 25 °C und eine Dielektrizitätskonstante > 10 bei 25 °C aufweisen. Somit weist Komponente B) eine höhere Viskosität im Vergleich zu Acetonitril auf, so daß ein Fachmann erwarten würde, daß Elektrolytlosungen mit dieser Lösungsmittel-Apart from the high boiling point greater than 120 ° C, component B) must also have a certain viscosity <6 mPas at 25 ° C and a dielectric constant> 10 at 25 ° C. Component B) thus has a higher viscosity than acetonitrile, so that a person skilled in the art would expect that electrolyte solutions with this solvent
Komponente erheblich niedrigere Leitfähigkeiten aufweisen, als Elektrolytlosungen mit Acetonitril als alleinigem Lösungsmittel. Dennoch wirkt Komponente B) in den erfindungsgemäßen Elektrolytlosungen aufgrund seiner ausreichenden Pola- rität dissoziierend auf das Leitsalz und gewährleistet gleichzeitig aufgrund seiner relativ niedrigen Viskosität eine nach wie vor gute Beweglichkeit der gebildeten Ionen in der Elektrolytlösung, so daß eine überraschend hohe Leitfähigkeit der erfindungsgemäßen Elektrolytlosungen resultiert. Überraschenderweise ist es dem Erfinder damit also gelungen, Elektrolytlosungen zu erhalten, die jeweils nur die gewünsch- ten positiven Merkmale des Acetonitrils (hohe Leitfähigkeit) und der Komponente B) (hoher Siedepunkt) zeigen, ohne daß umgekehrt die nicht erwünschten Eigenschaften der beiden Komponenten (Acetonitril = niedriger Siedepunkt; Komponente B) = geringe Leitfähigkeit) zu sehr zum Tragen kommen. Erfindungs- gemäße Elektrolytlosungen weisen dabei eine hohe Leitfähigkeit auf, die in etwa im Bereich von Elektrolytlosungen liegt, die Acetonitril als alleiniges Lösungsmittel verwenden, haben gleichzeitig aber einen hohen Siedepunkt, der bis jetzt mit acetonitrilhaltigen Elektrolytlosungen nicht zu er- reichen war.Component have significantly lower conductivities than electrolyte solutions with acetonitrile as the sole solvent. Nevertheless, component B) in the electrolyte solutions according to the invention has a dissociating effect on the conducting salt due to its sufficient polarity and, at the same time, ensures that the ions formed remain mobile due to its relatively low viscosity the electrolyte solution, so that a surprisingly high conductivity of the electrolyte solutions according to the invention results. Surprisingly, the inventor has thus succeeded in obtaining electrolyte solutions which only show the desired positive characteristics of acetonitrile (high conductivity) and component B) (high boiling point), without, conversely, the undesired properties of the two components ( Acetonitrile = low boiling point; component B) = low conductivity) come into play too much. Electrolyte solutions according to the invention have a high conductivity, which is roughly in the range of electrolyte solutions that use acetonitrile as the sole solvent, but at the same time have a high boiling point, which until now could not be achieved with electrolyte solutions containing acetonitrile.
Weiterhin muß das Lösungsmittel der Komponente B) elektrochemisch stabil sein, so daß es weder oxidativ noch reduktiv an den geladenen Oberflächen der Elektroden während des Betriebs der elektrochemischen Zellen zersetzt wird. Die elektrochemische Stabilität von Elektrolyten und ihren Lösungsmitteln läßt sich beispielsweise mittels der Aufnahme von Cyclovol- tammogrammen bestimmen. Die genaue Bestimmung der elektrochemischen Stabilität von Elektrolyten und Lösungsmitteln ist beispielsweise in der Veröffentlichung im Journal Electrochi- mica Acta (2001) , 46, 1823-1827 beschrieben, auf die hiermit vollinhaltlich Bezug genommen wird.Furthermore, the solvent of component B) must be electrochemically stable, so that it is neither oxidatively nor reductively decomposed on the charged surfaces of the electrodes during the operation of the electrochemical cells. The electrochemical stability of electrolytes and their solvents can be determined, for example, by recording cyclovoltammograms. The precise determination of the electrochemical stability of electrolytes and solvents is described, for example, in the publication in the Journal Electrochemica Acta (2001), 46, 1823-1827, to which reference is hereby made in full.
Die Dielektrizitätskonstante eines Lösungsmittels läßt sich in einem Dekameter mittels Methoden bestimmen, die dem Fachmann bekannt sind. Sie werden beispielsweise im Römpp- Chemielexikon (9. Auflage) unter dem Begriff "Dielektrizitätskonstante" (Seite 955-956) dargestellt, worauf hier ebenfalls vollinhaltlich Bezug genommen wird.The dielectric constant of a solvent can be determined in a decameter using methods known to the person skilled in the art. They are presented, for example, in the Römpp chemistry lexicon (9th edition) under the term "dielectric constant" (page 955-956), to which reference is also made here in full.
Die Viskosität eines Lösungsmittels läßt sich beispielsweise in einer dem Fachmann geläufigen Weise mittels eines Ubbeloh- de-Viskosimeters bestimmen. Die Siedepunkte von Lösungsmitteln lassen sich ebenfalls in einfacher Weise durch Bestimmung der Temperatur der siedenden Flüssigkeit bestimmen.The viscosity of a solvent can be determined, for example, in a manner familiar to those skilled in the art using an Ubbeloh- Determine the de-viscometer. The boiling points of solvents can also be determined in a simple manner by determining the temperature of the boiling liquid.
Komponente B) ist vorteilhafterweise aus folgenden Lösungsmitteln ausgewählt: Ethylencarbonat , Propylencarbonat , γ- Butyrolacton, γ-Valerolacton, Butylencarbonat , Sulfolan, 3- Methylsulfolan, Dimethylsulfoxid, Glutaronitril, Succinoni- tril, 3-Methoxyproprionitril, Diethylcarbonat , Ethylmethyl- carbonat, Trimethylphosphat , N-Methylpyrrolidinon, N-Component B) is advantageously selected from the following solvents: ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, butylene carbonate, sulfolane, 3-methylsulfolane, dimethyl sulfoxide, glutaronitrile, succinonitrile, 3-methoxypropionitrile, diethyl carbonate, ethyl methyl phosphate, trimethyl N-methylpyrrolidinone, N-
Methyloxazolidinon, N,N-Dimethylimidazolidinon, Dimethylfor- mamid und Dimethylacetamid.Methyloxazolidinone, N, N-dimethylimidazolidinone, dimethylformamide and dimethylacetamide.
Der Anteil der Komponente B) am Lösungsmittelgewicht beträgt vorteilhafterweise etwa 10 bis 60 Gew.% , bevorzugt 10 bis 50 Gew.% (ohne Leitsalz). Dies bedeutet, daß gleichzeitig Acetonitril mit einem bevorzugten Anteil von 50 bis 90 Gew.% vorhanden ist. Dadurch kann gewährleistet werden, daß erfindungsgemäße Elektrolytlosungen einerseits eine hohe Leitfä- higkeit aufgrund eines genügend hohen Anteils an Acetonitril, gleichzeitig aber auch einen hohen Siedepunkt aufgrund eines hohen Anteils der Komponente B) aufweisen.The proportion of component B) in the solvent weight is advantageously about 10 to 60% by weight, preferably 10 to 50% by weight (without conductive salt). This means that acetonitrile is present at the same time with a preferred proportion of 50 to 90% by weight. This can ensure that electrolyte solutions according to the invention on the one hand have high conductivity due to a sufficiently high proportion of acetonitrile, but at the same time also have a high boiling point due to a high proportion of component B).
Die Leitsalze als Komponente C) sind aus Kombinationen be- stimmter Anionen und Kationen ausgewählt. Als Anionen kommen Borat, beispielsweise Tetrafluoroborat , Fluroalkylphosphat , PF6 ~, AsF6 ", SbF6-, Fluoralkylarsenat , Fluoralkylantimonat , Trifluormethylsulfonat, Bis (trifluoromethansulfon) imid, Tris (trifluoromethansulfonyl) methid, Perchlorat, Tetrachlo- roaluminat und Anionen mit B(OR)4 ~, beispielsweise Oxalatobo- rat in Betracht, wobei R eine Alkylgruppe ist, die auch mit weiteren OR-Gruppen verbrückt sein kann. Als Kationen werden in der Regel das Ammonium-Kation, beispielsweise Tetraalky- lammonium-Kation, das Phosphonium-Kation uns seine Tetraal- kyl -Kationen, das Pyridinium-Kation, Morpholinium, Lithium,The conductive salts as component C) are selected from combinations of certain anions and cations. Anions include borate, for example tetrafluoroborate, fluroalkylphosphate, PF 6 ~ , AsF 6 " , SbF 6 -, fluoroalkylarsenate, fluoroalkylantimonate, trifluoromethylsulfonate, bis (trifluoromethanesulfon) imide, tris (trifluoromethanesulfonyl) methide, perchlorate, tetrachloro, tetrachloride, and OR) 4 ~ , for example oxalatoborate, where R is an alkyl group which can also be bridged with other OR groups. The cations are generally the ammonium cation, for example tetraalkyammonium cation, the phosphonium Cation and its tetraalkyl cations, the pyridinium cation, morpholinium, lithium,
Imidazolium- und Pyrrolidinium-Kationen eingesetzt. Die Salze können auch bei Raumtemperatur geschmolzen sein. Bei erfindungsgemäßen Elektrolyten wird häufig Tetraethylammoniumtetrafluoroborat als Komponente C) , also als Leitsalz eingesetzt, da es besonders gut in den Lösungsmitteln der er- findungsgemäßen Elektrolytlosungen löslich ist, gut verfügbar ist und eine hohe Leitfähigkeit garantiert.Imidazolium and pyrrolidinium cations used. The salts can also be melted at room temperature. In the electrolytes according to the invention, tetraethylammonium tetrafluoroborate is often used as component C), that is to say as the conductive salt, since it is particularly readily soluble in the solvents of the electrolyte solutions according to the invention, is readily available and guarantees high conductivity.
Im folgenden soll die Erfindung anhand von Ausführungsbeispielen noch näher erläutert werden. In der dazugehörigen Ta- belle 1 werden die Zusammensetzung von 21 erfindungsgemäßen Elektrolytlosungen zusammen mit ihren jeweiligen Siedetemperaturen bei 1 bar und ihrer Leitfähigkeit bei 25 °C angegeben und mit einer herkömmlichen Elektrolytlösung verglichen. Für die beiden Lösungsmittel-Komponenten A) und B) sind jeweils nach dem Doppelpunkt die Gew.% angegeben, wobei das Gewicht des Leitsalzes nicht berücksichtigt wird. Als Vergleichsbeispiel 1 dient eine herkömmliche Elektrolytlösung, die als alleiniges Lösungsmittel Acetonitril enthält. Bei allen Ausführungsbeispielen der Erfindung sowie auch bei der herkömmli- chen Elektrolytlösung wird als Leitsalz Tetraethylammoniumtetrafluoroborat in einer Konzentration von l,2Mol je Liter verwendet. Das Leitsalz ist dabei ohne große Veränderungen der Leitfähigkeit auch gegen die oben genannten anderen Leitsalze austauschbar:In the following, the invention will be explained in more detail by means of exemplary embodiments. In the associated table 1, the composition of 21 electrolyte solutions according to the invention are given together with their respective boiling temperatures at 1 bar and their conductivity at 25 ° C. and compared with a conventional electrolyte solution. For the two solvent components A) and B), the% by weight are given after the colon, the weight of the conductive salt being disregarded. A conventional electrolyte solution which contains acetonitrile as the sole solvent serves as comparative example 1. In all of the exemplary embodiments of the invention and also in the case of the conventional electrolyte solution, tetraethylammonium tetrafluoroborate is used as the conductive salt in a concentration of 1.2 moles per liter. The conductive salt can also be exchanged for the other conductive salts mentioned above without major changes in conductivity:
Abkürzungen :Abbreviations:
AC = Acetonitril, PC = Propylencarbonat , EC = Ethylencarbo- nat, γ-B. = γ-Butyrolacton, DMSO = Dimethylsulfoxid, MPN = 3- Methoxyproprionitril, GN = Glutaronitril, TEATFB = Tetraethy- lammoniumtetrafluoroborat . Tabelle 1 :AC = acetonitrile, PC = propylene carbonate, EC = ethylene carbonate, γ-B. = γ-butyrolactone, DMSO = dimethyl sulfoxide, MPN = 3-methoxy propionitrile, GN = glutaronitrile, TEATFB = tetraethylammonium tetrafluoroborate. Table 1 :
Die erfindungsgemäßen Elektrolytlosungen in den Ausführungs- beispielen umfassen als Komponente B) eine ganze Reihe von Lösungsmitteln, beispielsweise γ-Butyrolacton, Propylencarbo- nat, Ethylencarbonat , Glutaronitril, Dimethylsulfoxid, 3- Methoxyproprionitril , oder ein Gemisch aus γ-Butyrolacton und 3 -Methoxyproprionitril oder ein Gemisch aus γ-Butyrolacton und Ethylencarbonat .The electrolyte solutions according to the invention in the exemplary embodiments comprise, as component B), a whole series of solvents, for example γ-butyrolactone, propylene carbo- nat, ethylene carbonate, glutaronitrile, dimethyl sulfoxide, 3-methoxy propionitrile, or a mixture of γ-butyrolactone and 3-methoxy propionitrile or a mixture of γ-butyrolactone and ethylene carbonate.
Einen besonders hohen Siedepunkt von 101°C bei gleichzeitig hoher Leitfähigkeit von 42,9 mS/cm bei 25 °C lassen sich bei annähernd gleichen Gewichtsanteilen von Acetonitril und γ- Butyrolacton als Komponente B) sowie Tetraethylammoniumte- trafluoroborat in einer Konzentration von etwa 0,9 bis 1,2A particularly high boiling point of 101 ° C combined with a high conductivity of 42.9 mS / cm at 25 ° C can be achieved with approximately equal proportions by weight of acetonitrile and γ-butyrolactone as component B) and tetraethylammonium tetrafluoroborate in a concentration of about 0. 9 to 1.2
Mol je Liter als Komponente C) erreichen. Der Anteil des Acetonitrils kann dabei zwischen 50 bis 60 Gewichtsprozent und der Anteil des γ-Butyrolactons zwischen 40 bis 50 Gewichtsprozent schwanken.Reach mol per liter as component C). The proportion of acetonitrile can vary between 50 to 60 percent by weight and the proportion of γ-butyrolactone between 40 to 50 percent by weight.
Zur Bestimmung der elektrischen Daten von Doppelschichtkon- densatoren mit erfindungsgemäßen Elektrolytlosungen wurden elektrochemische Doppelschichtkondensatoren mit einer erfindungsgemäßen Elektrolytlösung nach Beispiel 6 imprägniert, deren elektrische Daten bestimmt und mit denen der bekannten Vergleichselektrolytlosung Nr. 1 verglichen. Die entsprechenden Daten sind in der Tabelle 2 wiedergegeben:To determine the electrical data of double-layer capacitors with electrolyte solutions according to the invention, electrochemical double-layer capacitors were impregnated with an electrolyte solution according to Example 6, the electrical data of which were determined and compared with those of the known comparative electrolyte solution No. 1. The corresponding data are shown in Table 2:
Tabelle 2 :Table 2:
Es zeigt sich, daß Kondensatoren mit erfindungsgemäßen Elektrolytlosungen nach wie vor einen akzeptablen Serienwiderstand (ESR) bei gleichzeitig hoher Kapazität aufweisen, die vergleichbar sind mit Werten von herkömmlichen Kondensatoren. Im Gegensatz zu den herkömmlichen Kondensatoren weisen Kondensatoren mit den erfindungsgemäßen Elektrolytlosungen allerdings wesentlich höhere Einsatztemperaturen auf. Die erfindungsgemäßen Elektrolytlosungen lassen sich auch in primären und sekundären Li-Batterien bzw. Li-Ionenbatterien einsetzen. Diese weisen dann aufgrund der Elektrolytlosungen ebenfalls höhere Einsatztemperaturen auf.It can be seen that capacitors with electrolyte solutions according to the invention still have an acceptable series resistance (ESR) with high capacitance at the same time, which are comparable to values of conventional capacitors. In contrast to the conventional capacitors, capacitors with the electrolyte solutions according to the invention, however, have significantly higher operating temperatures. The electrolyte solutions according to the invention can also be used in primary and secondary Li batteries or Li-ion batteries. These then also have higher operating temperatures due to the electrolyte solutions.
Die Erfindung ist nicht auf die hier dargestellten Ausführungsbeispiele beschränkt. Im Rahmen der Erfindung liegen auch andere Ξlektrolytzusammensetzungen mit anderen Komponenten B) und anderen Leitsalzen in unterschiedlichen Mischungs- Verhältnissen. The invention is not restricted to the exemplary embodiments shown here. Other electrolyte compositions with other components B) and other conductive salts in different mixing ratios are also within the scope of the invention.

Claims

Patentansprüche claims
1. Elektrolytlösung für elektrochemische Zellen mit einem Siedepunkt > 86°C bei 1 bar und einer Leitfähigkeit von > 40 mS/cm bei 25 °C, die folgende Komponenten umfaßt:1. Electrolyte solution for electrochemical cells with a boiling point> 86 ° C at 1 bar and a conductivity of> 40 mS / cm at 25 ° C, which comprises the following components:
A) Acetonitril mit einem Anteil von 40 - 90 Gew% am Lösungs- mittelgewicht als erstes Lösungsmittel,A) acetonitrile with a proportion of 40-90% by weight of the solvent weight as the first solvent,
B) Zumindest ein zweites elektrochemisch stabiles Lösungsmit- tel mit einem Siedepunkt > 120°C bei 1 bar, einer DK > 10 bei 25°C und einer Viskosität < 6 mPas bei 25 °C,B) At least one second electrochemically stable solvent with a boiling point> 120 ° C at 1 bar, a DK> 10 at 25 ° C and a viscosity <6 mPas at 25 ° C,
C) Zumindest ein Leitsalz.C) At least one conductive salt.
2. Elektrolytlösung nach dem vorhergehenden Anspruch, - bei der Komponente B) aus den folgenden Lösungsmitteln ausgewählt ist:2. Electrolyte solution according to the preceding claim, - in component B) is selected from the following solvents:
Ethylencarbonat, Propylencarbonat , γ-Butyrolacton, γ- Valerolacton, Butylencarbonat , Sulfolan, 3 -Methylsulfolan, Dimethylsulfoxid, Glutaronitril, Succinonitril , 3- Methoxyproprionitril, Diethylcarbonat , Ethylmethyl- carbonat , Trimethylphosphat , N-Methylpyrrolidinon, N- Methyloxazolidinon, N,N-Dimethylimidazolidinon, Dimethyl- formamid und Dimethylacetamid.Ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, butylene carbonate, sulfolane, 3-methylsulfolane, dimethyl sulfoxide, glutaronitrile, succinonitrile, 3-methoxyproprionitrile, diethyl carbonate, ethyl methyl carbonate, trimethyl phosphate, N-methyl pyrrolidinone, Dimethylimidazolidinone, dimethylformamide and dimethylacetamide.
3. Elektrolytlösung nach einem der vorhergehenden Ansprüche, bei dem Komponente B) mit einem Anteil von etwa 10-60 Gew.% am Lösungsmittelgewicht vorhanden ist.3. Electrolyte solution according to one of the preceding claims, in which component B) is present in a proportion of about 10-60% by weight of the solvent weight.
4. Elektrolytlösung nach einem der vorhergehenden Ansprüche, - bei der Komponente C) ein Leitsalz ist, das aus paarweisen Kombinationen folgender Anionen und Kationen ausgewählt ist :4. Electrolyte solution according to one of the preceding claims, - in which component C) is a conductive salt, which is selected from pairs of combinations of the following anions and cations:
- Anionen: Borat, Tetrafluoroborat , Fluoralkylphosphat , PF6 ", AsF6 ", SbFs-, Fluoralkylarsenat , Fluoralkylantimo- nat , Trifluormethylsulfonat , Bis (trifluoromethansulfon) imid, Tris (trifluoromethansulfonyl) methid, Perchlorat, Te- trachloroaluminat , Oxalatoborat und Anionen mit B(OR)4 ", wobei R eine Alkylgruppe ist, die auch mit weiteren OR- Gruppen verbrückt sein kann,Anions: borate, tetrafluoroborate, fluoroalkyl phosphate, PF 6 " , AsF 6 " , SbF s -, fluoroalkyl arsenate, fluoroalkyl antimonate, Trifluoromethyl sulfonate, bis (trifluoromethanesulfon) imide, tris (trifluoromethanesulfonyl) methide, perchlorate, tetrachloroaluminate, oxalatoborate and anions with B (OR) 4 " , where R is an alkyl group which can also be bridged with other OR groups,
Kationen: Ammonium-Kation, Tetraalkylammonium-Kation, Phosphonium-Kation, Tetraalkylphosphonium-Kation, Pyridinium-Kation, Morpholinium-Kation, Lithium-Kation, Imidazo- lium und Pyrrolidinium.Cations: ammonium cation, tetraalkylammonium cation, phosphonium cation, tetraalkylphosphonium cation, pyridinium cation, morpholinium cation, lithium cation, imidazolium and pyrrolidinium.
5. Elektrolytlösung nach einem der vorherigen Ansprüche, bei der Komponente C) Tetraethylammoniumtetrafluoroborat ist .5. Electrolyte solution according to one of the preceding claims, in which component C) is tetraethylammonium tetrafluoroborate.
6. Elektrolytlösung nach einem der vorhergehenden Ansprüche, bei der Komponente B) γ-Butyrolacton ist.6. Electrolytic solution according to one of the preceding claims, in which component B) is γ-butyrolactone.
7. Elektrolytlösung nach einem der Ansprüche 1 bis 5, - bei der Komponente B) Propylencarbonat ist.7. Electrolyte solution according to one of claims 1 to 5, - in component B) is propylene carbonate.
8. Elektrolytlöung nach einem der Ansprüche 1 bis 5, bei der Komponente B) Ethylencarbonat ist.8. Electrolyte solution according to one of claims 1 to 5, in which component B) is ethylene carbonate.
9. Elektrolytlösung nach einem der Ansprüche 1 bis 5, bei der Komponente B) Glutaronitril ist.9. Electrolytic solution according to one of claims 1 to 5, in which component B) is glutaronitrile.
10. Elektrolytlöung nach einem der Ansprüche 1 bis 5, bei der Komponente B) Dimethylsulfoxid ist.10. Electrolyte solution according to one of claims 1 to 5, in which component B) is dimethyl sulfoxide.
11. Elektrolytlöung nach einem der Ansprüche 1 bis 5, bei der Komponente B) 3 -Methoxyproprionitril ist.11. Electrolyte solution according to one of claims 1 to 5, in which component B) is 3-methoxy propionitrile.
12. Elektrolytlöung nach einem der Ansprüche 1 bis 5, - bei der Komponente B) ein Gemisch aus γ-Butyrolacton und 3 -Methoxyproprionitril ist. 12. Electrolyte solution according to one of claims 1 to 5, - in component B) is a mixture of γ-butyrolactone and 3-methoxy propionitrile.
13. Elektrolytlöung nach einem der Ansprüche 1 bis 5, bei der Komponente B) ein Gemisch aus γ-Butyrolacton und Ethylencarbonat ist.13. Electrolyte solution according to one of claims 1 to 5, in which component B) is a mixture of γ-butyrolactone and ethylene carbonate.
14. Elektrolytlöung nach einem der Ansprüche 1 bis 6, bei der Acetonitril als Komponente A) mit einem Anteil von etwa 50-60 Gew.% vorliegt, bei der Komponente B) γ-Butyrolacton mit einem Anteil von etwa 40-50 Gew.% ist, - bei der Komponente C) Tetraethylammoniumtetrafluoroborat mit einer Konzentration von etwa 0,9 bis 1,2 mol/1 ist.14. Electrolyte solution according to one of claims 1 to 6, in which acetonitrile is present as component A) in a proportion of approximately 50-60% by weight, in component B) γ-butyrolactone in a proportion of approximately 40-50% by weight is - in component C) is tetraethylammonium tetrafluoroborate with a concentration of about 0.9 to 1.2 mol / 1.
15. Verwendung einer Elektrolytlösung nach einer der vorhergehenden Ansprüche in Kondensatoren.15. Use of an electrolytic solution according to one of the preceding claims in capacitors.
16. Verwendung einer Elektrolytlösung nach einer der Ansprüche 1 bis 14 in elektrochemischen Doppelschichtkondensatoren.16. Use of an electrolyte solution according to one of claims 1 to 14 in electrochemical double-layer capacitors.
17. Verwendung einer Elektrolytlösung nach einer der Ansprüche 1 bis 14 in primären und sekundären Li-Batterien bzw. Li-Ionenbatterien. 17. Use of an electrolyte solution according to one of claims 1 to 14 in primary and secondary Li batteries or Li-ion batteries.
EP03720166A 2002-03-21 2003-03-13 Electrolyte solution and use thereof Withdrawn EP1485928A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10212609 2002-03-21
DE10212609.7A DE10212609B4 (en) 2002-03-21 2002-03-21 Electrolytic solution and its use
PCT/DE2003/000815 WO2003081620A1 (en) 2002-03-21 2003-03-13 Electrolyte solution and use thereof

Publications (1)

Publication Number Publication Date
EP1485928A1 true EP1485928A1 (en) 2004-12-15

Family

ID=27815843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03720166A Withdrawn EP1485928A1 (en) 2002-03-21 2003-03-13 Electrolyte solution and use thereof

Country Status (5)

Country Link
US (1) US20060024577A1 (en)
EP (1) EP1485928A1 (en)
JP (1) JP2005521257A (en)
DE (1) DE10212609B4 (en)
WO (1) WO2003081620A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302119A1 (en) * 2003-01-21 2004-07-29 Epcos Ag Electrodes for use in electrochemical cells are produced in continuous strip form of coated aluminum
JP4812067B2 (en) * 2004-03-16 2011-11-09 日立マクセルエナジー株式会社 Organic electrolyte and organic electrolyte battery using the same
KR101191636B1 (en) 2005-02-28 2012-10-18 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP2007194311A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
TWI341603B (en) * 2006-02-15 2011-05-01 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device with an improved safety
TWI341605B (en) 2006-02-15 2011-05-01 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device with an improved safety
US20070202416A1 (en) * 2006-02-28 2007-08-30 Kaimin Chen Electrochemical cells having an electrolyte with swelling reducing additives
US9099756B2 (en) * 2009-02-17 2015-08-04 Samsung Sdi Co., Ltd. Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
EP2634854B1 (en) * 2010-10-29 2018-09-19 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
US8636916B2 (en) * 2011-08-30 2014-01-28 Corning Incorporated Electrolyte synthesis for ultracapacitors
DE102011054122A1 (en) * 2011-09-30 2013-04-04 Westfälische Wilhelms Universität Münster Electrochemical cell
US10644353B2 (en) * 2011-10-28 2020-05-05 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery
RS64862B1 (en) 2012-03-19 2023-12-29 Cidara Therapeutics Inc Dosing regimens for echinocandin class compounds
JP5977573B2 (en) * 2012-04-27 2016-08-24 旭化成株式会社 Non-aqueous secondary battery
US9947484B2 (en) * 2013-06-26 2018-04-17 Daikin Industries, Ltd. Electrolyte solution and electrochemical device
CN103474255B (en) * 2013-09-18 2017-08-01 中国科学院过程工程研究所 A kind of preparation method of super capacitor high-voltage electrolyte
US9034517B1 (en) 2013-11-06 2015-05-19 Retriev Technologies Incorporated Capacitors having conditioned carbon for electrodes
US8785057B1 (en) 2013-11-06 2014-07-22 Retriev Technologies Incorporated Electrolyte solution for capacitors and batteries
US9666906B2 (en) * 2014-05-15 2017-05-30 Nano And Advanced Materials Institute Limited High voltage electrolyte and lithium ion battery
US20160099115A1 (en) * 2014-10-07 2016-04-07 Corning Incorporated Electrolytes for high temperature edlc
WO2017173323A1 (en) 2016-04-01 2017-10-05 NOHMs Technologies, Inc. Modified ionic liquids containing phosphorus
DE102016221256A1 (en) 2016-10-28 2018-05-03 Robert Bosch Gmbh Secondary battery and method for producing such
CN110915037B (en) 2017-07-17 2023-11-07 诺姆斯科技公司 Electrolyte containing phosphorus
DE102018201548A1 (en) * 2018-02-01 2019-08-01 Robert Bosch Gmbh Electrolytic composition for electrochemical cell for high temperature applications
DE102018116475B4 (en) 2018-07-06 2020-11-05 Forschungszentrum Jülich GmbH Electrolyte comprising at least one lithium salt and lithium secondary battery
WO2023117488A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrolyte compositions for energy storage cells with fast charge and discharge capabilites

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1306904C (en) * 1985-10-09 1992-09-01 Tetsumi Suzuki Electrically conductive material and secondary battery using the electrically conductive material
KR0122882B1 (en) * 1987-03-12 1997-11-21 사또오 도시아끼 Liquid electrolyte for use in electrolytic capacitor
CA2052317C (en) * 1990-09-28 1995-09-26 Norio Takami Nonaqueous electrolyte secondary battery
CA2083001C (en) * 1991-12-17 1996-12-17 Yuzuru Takahashi Lithium secondary battery using a non-aqueous solvent
JPH0737577A (en) * 1993-07-26 1995-02-07 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
US5418682A (en) * 1994-06-16 1995-05-23 Rockwell International Corporation Capacitor having an electrolyte containing a mixture of dinitriles
US5953204A (en) * 1994-12-27 1999-09-14 Asahi Glass Company Ltd. Electric double layer capacitor
US5783333A (en) * 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
FR2773267B1 (en) * 1997-12-30 2001-05-04 Alsthom Cge Alkatel NON-AQUEOUS ELECTROLYTE SUPERCAPACITOR AND ACTIVE CARBON ELECTRODE
JPH11283874A (en) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd Electrolytic capacitor
US6304426B1 (en) * 1998-09-29 2001-10-16 General Electric Company Method of making an ultracapacitor electrode
IL155790A0 (en) * 2000-11-09 2003-12-23 Foc Frankenburg Oil Company Es A supercapacitor and a method of manufacturing such a supercapacitor
DE10103994B4 (en) * 2001-01-30 2005-04-28 Epcos Ag Electrolytic solution for electrochemical double-layer capacitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03081620A1 *

Also Published As

Publication number Publication date
DE10212609A1 (en) 2003-10-09
US20060024577A1 (en) 2006-02-02
JP2005521257A (en) 2005-07-14
WO2003081620A1 (en) 2003-10-02
DE10212609B4 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
DE10212609B4 (en) Electrolytic solution and its use
DE10128581B4 (en) Electrolytic solution for electrochemical capacitors
EP1356483B1 (en) Electrolyte solution for electrochemical cells
EP2023434A1 (en) Electrolyte preparations for energy storage devices based on ionic fluids
DE102016103776B4 (en) Lithium ion secondary battery
DE102017218950A1 (en) ELECTROLYTIC CAPACITOR
EP3155686B1 (en) Electrolyte, cell and battery comprising the electrolyte, and use of the electrolyte
DE60116033T2 (en) Process for producing a polymer battery
EP0416243B1 (en) Ionic conductor or electrolyte for galvanic element
EP0405181B1 (en) Electrolytic capacitor
DE60128346T2 (en) ELECTROLYTIC SOLUTION FOR ELECTROLYTE CONDENSER AND THEREOF USING ELECTROLYTE CONDENSER
DE102018112638B4 (en) Electrochemical secondary cell and electrolyte composition
DE3634987A1 (en) CONDENSER WITH FIXED ELECTROLYTE
EP3673531B1 (en) Solid state battery based on an ion-conducting matrix made of camphor or 2-adamantanone
EP3635807A1 (en) Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte
DE2508904C3 (en) Electrolyte for electrolytic capacitors
WO2019122230A1 (en) Acetalic electrolyte
DE10104714C1 (en) Electrolyte for aluminum electrolytic capacitor, comprises p-nitrobenzoic acid, ammonium hypophosphite and pentaborate, polyethylene glycol and diammonium dicarboxylates in ethylene glycol, comprises ammonium methylbenzoate
DE102022134673A1 (en) ELECTROLYTE FOR LITHIUM SECONDARY BATTERIES WITH IONIC LIQUID AND CO-SOLVENT AND LITHIUM SECONDARY BATTERY WITH THIS ELECTROLYTE
DE102007031477A1 (en) Electrolytes for electrochemical devices
DE102018114146A1 (en) Hybrid electrolyte for aqueous lithium-ion batteries
WO2008040698A1 (en) Electrolyte for lithium ion batteries
DE10251640B3 (en) Electrolyte used in aluminum electrolyte capacitors comprises high boiling solvent selected from glycol, gamma-butyrolactone and N-methylpyrrolidone, conducting salt, and alkylphosphoric acid ester
DE977159C (en) Electrolytic capacitor
DE1564005C3 (en) Electrolytic capacitor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090904

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100115