EP1482846A1 - Procede de visualisation et de controle de l'equilibre d'une colone vertebrale - Google Patents

Procede de visualisation et de controle de l'equilibre d'une colone vertebrale

Info

Publication number
EP1482846A1
EP1482846A1 EP03727566A EP03727566A EP1482846A1 EP 1482846 A1 EP1482846 A1 EP 1482846A1 EP 03727566 A EP03727566 A EP 03727566A EP 03727566 A EP03727566 A EP 03727566A EP 1482846 A1 EP1482846 A1 EP 1482846A1
Authority
EP
European Patent Office
Prior art keywords
vli
limit
vertebrae
vls
radiographs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03727566A
Other languages
German (de)
English (en)
Inventor
Guy Viart
Emeric Gallard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surgiview SA
Original Assignee
Eurosurgical SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurosurgical SA filed Critical Eurosurgical SA
Publication of EP1482846A1 publication Critical patent/EP1482846A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/564Methods for bone or joint treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to a method for viewing and controlling the balance of the spine of a patient.
  • the visualization and control method according to the present invention is more particularly intended for visualizing and controlling the balance of the spine of a patient during an operation relating to a spinal segment corrected by means of known spinal instrumentation in itself.
  • the osteosynthesis instrumentations or materials known to date consist generally of bone anchoring screws, connectors fixed by the screws on the vertebral bodies of each vertebra and connecting rods connecting the connectors together. Sometimes, the connecting rods are deformed by the surgeon to be able to restore the curvatures of the spinal segment to be corrected.
  • the frontal balance of the patient's spine is obtained from the moment when the first thoracic vertebra (T1) is centered relative to the sacrum.
  • T1 first thoracic vertebra
  • the sagittal equilibrium it can be considered that it is obtained from the moment when the external auditory canals are located vertically from the femoral heads.
  • the surgeon's objective is obviously firstly to reduce the curvatures of the spine in the case of a spinal deformation and / or to fix an area which will be called instrumented.
  • the surgeon must ensure that the instrumented area allows the patient to find or regain his balance after the operation, when he adopts the standing position.
  • surgeons therefore seek during the operation to assess a possible balance or imbalance post-operation in the patient.
  • Radiographic means two X-rays face + profile
  • the problem is that the patient is lying on the operating table, and only the vertebrae that will be fused are released by a conventional posterior approach.
  • VLS instrumented limit vertebra
  • VLI lower instrumented limit vertebra
  • VLS first instrumented vertebra
  • VLI last instrumented vertebra
  • the object of the process according to the present invention is to determine the balance of the spine by looking at the two extreme vertebrae of the instrumentation (VLS and VLI).
  • the method according to the present invention makes it possible to see on a control screen the virtual column of the patient in a standing position after operation.
  • VLS and VLI instrumented limit vertebrae
  • the present invention provides a process for visualizing and controlling the balance of the spine, a spinal segment of which is corrected by means of spinal instrumentation known per se, characterized in that it consists:
  • VLS upper
  • VLI lower
  • VLS upper
  • VLI lower
  • the three-dimensional relative position of the upper (VLS) and lower (VLI) instrumented limit vertebrae of the corrected spinal segment is obtained from a first reconstruction in a three-dimensional visual space of the geometry of the 'envelope or external contour of the upper (VLS) and lower (VLI) limit vertebrae and of a second reconstruction in a three-dimensional visual space of the posterior arch surface of the upper (VLS) and lower (VLI) limit vertebrae.
  • the first and second stages of reconstruction in a three-dimensional visual space make it possible to determine, in a three-dimensional visual space, the relative position of the upper (VLS) and lower (VLI) instrumented limit vertebrae of the segment. spinal column corrected.
  • the visualization and control method consists in that the upper (VLS) and lower (VLI) instrumented limit vertebrae of the corrected spinal segment are projected onto the front and profile radiographs of the patient. treat.
  • the visualization and control method consists in that the front and profile projection of the upper (VLS) and lower (VLI) instrumented limit vertebrae of the corrected spinal segment makes it possible to determine the position on the front and profile radiographs of the spinal segments above and below the corrected spinal segment, and to visualize on the front and profile radiographs the appearance of the reconstructed spine.
  • the visualization and control method consists in identifying or digitizing for each vertebra of the spinal column, at least four points delimiting a rectangle reproducing the vertebral body.
  • the visualization and control method consists in identifying or digitizing the points which correspond to the radiological landmarks used, to define the balance of the patient's head relative to the pelvis.
  • the display and control method consists in identifying or digitizing for the head at least ten points making it possible to identify the external contour of the head.
  • the display and control method consists in identifying or digitizing for the pelvis at least the anatomical points defining the center of each femoral head and the sacred plateau.
  • the display and control method consists in identifying or digitizing for the pelvis, at least five points, one of which for the femoral head and at least three for the sacrum, in order to form a triangle.
  • the display and control method consists in embedding digital points on the patient's radiographs.
  • the visualization and control method consists, from sagittal and frontal radiographs of the patient, in reconstructing in three dimensions the geometric shape of the upper (VLS) and lower (VLI) limit vertebrae.
  • the visualization and control method consists in determining the linear and angular geometric position of the lower limit vertebra (VLI), reconstructed with respect to the front and profile radiographs.
  • the visualization and control method consists in projecting the upper limit (VLS) and lower limit (VLI) vertebrae on the front and profile radiographs.
  • the visualization and control method consists in embedding in radiographs, the projection of the upper (VLS) and lower (VLI) limit vertebrae relative to each other, by performing a registration of the projection of the lower limit vertebra (VLI).
  • Figure 1 shows a sagittal x-ray of a standing patient, on which anatomical points are digitized to identify the pelvis and the femoral heads.
  • FIG. 2 illustrates a sagittal radiography of a patient standing in cervical flexion, on which anatomical points are digitized to identify the head, the vertebrae overlying the instrumentation and the instrumented upper limit vertebra (VLS).
  • VLS instrumented upper limit vertebra
  • Figure 3 shows a sagittal radiograph of a standing patient in cervical extension, on which anatomical points are digitized to identify the head, the vertebrae overlying the instrumentation and the instrumented upper limit vertebra (VLS).
  • FIG. 4 represents a sagittal radiography of a patient seated in lumbar flexion, on which anatomical points are digitized to identify the pelvis, the vertebrae underlying the instrumentation and the instrumented lower limit vertebra (VLI).
  • VLI instrumented lower limit vertebra
  • FIG. 5 represents a sagittal radiography of a patient seated in lumbar extension, on which anatomical points are digitized to identify the pelvis, the vertebrae underlying the instrumentation and the instrumented lower limit vertebra (VLI).
  • VLI instrumented lower limit vertebra
  • Figure 6 illustrates a frontal x-ray of a standing patient, on which anatomical points are digitized to identify the pelvis and the femoral heads.
  • Figure 7 shows a frontal x-ray of a patient lying in a lateral inflection to the left, on which anatomical points are digitized to identify the head, the vertebrae above and below the instrumentation, the upper limit (VLS) and lower vertebrae (VLI) instrumented, pelvis and femoral heads.
  • VLS upper limit
  • VLI lower vertebrae
  • FIG. 8 represents a frontal X-ray of a patient lying in lateral inflexion on the right, on which anatomical points are digitized to identify the head, the vertebrae above and below the instrumentation, the upper limit (VLS) and lower vertebrae (VLI) instrumented, pelvis and femoral heads.
  • VLS upper limit
  • VLI lower vertebrae
  • FIG. 9 illustrates the radiography of FIG. 1 in which the digitalized anatomical points have been embedded in the radiographs of FIGS. 4 and 5, this after matching the scales and adjustment relative to the pelvis.
  • FIG. 10 shows the radiograph of FIG. 6 in which the anatomical points digitized in the radiographs of FIGS. 7 and 8 have been embedded (only those representing the pelvis, the vertebrae underlying the instrumentation, and the lower limit vertebra ( VLI) (instrumented), this after matching scales and adjusting to the pelvis.
  • VLI lower limit vertebra
  • FIG. 11 illustrates the radiography of FIG. 9 in which the projection of the upper (VLS) and lower (VLI) limit vertebrae has been embedded by performing a registration of the instrumented lower limit vertebra (VLI).
  • FIG. 12 shows the radiography of FIG. 10 in which the projection of the upper (VLS) and lower (VLI) limit vertebrae has been embedded by performing a registration of the instrumented lower limit vertebra (VLI).
  • FIG. 13 represents the radiography of FIG. 11 in which the digitalized points have been embedded on the radiography of FIGS. 2 and 3 (head, overlying vertebrae and instrumented upper limit vertebrae (VLS)), by performing a registration of the limit vertebra instrumented upper (VLS).
  • FIG. 14 illustrates the radiography of FIG. 12 in which the digitized points have been embedded on the radiography of FIGS. 7 and 8 (head, overlying vertebrae and instrumented upper limit vertebrae (VLS)), by performing a registration of the limit vertebra instrumented upper (VLS).
  • the first step of the process consists in identifying or digitizing anatomical points or contours on the radiographs of the patient to be treated. So for each vertebra 2 of the spine 1, it is necessary to identify at least four points. The latter delimit a rectangle reproducing the vertebral body. For head 3, it is necessary to identify the anatomical points which usually correspond to the radiological landmarks used to define the balance of the patient's head 3 in relation to his pelvis 4.
  • the head 3 it may be necessary to identify, but not limited to, at least ten points which make it possible to identify the external contour of the head.
  • the second step of the process consists of embedding the digital points on the radiographs of Figures 4 and 5 in the radiography of Figure 1.
  • the digital points are encrusted on the radiographs of FIGS. 7 and 8 in the radiography of FIG. 6.
  • the digital points or contours relate more particularly to those representing the pelvis 4, the vertebrae 2 underlying the instrumentation, and the lower limit vertebra (VLI) instrumented. Provision is made in this step of the method for the scales to be matched and for the points or contour to be adjusted or readjusted relative to the basin 4 (FIG. 10).
  • This step consists, from the sagittal ( Figure 1) and frontal radiographs ( Figure 6), in a three-dimensional reconstruction of the geometric shape of the vertebrae 2 and more particularly of the instrumented limit vertebrae, namely:
  • VLS the upper limit vertebra
  • This step also consists in determining the linear and angular geometrical position of the reconstructed lower limit vertebra (VLI) with respect to the front and profile radiographs (positioning of the patient relative to the films (Rx) when taking radiographic images).
  • VLS upper limit vertebra
  • VLI upper limit vertebra
  • a two-dimensional coordinate system is associated with the projection of the geometric shape of the upper limit vertebra (VLI) on the profile radiography ( Figure 1).
  • a two-dimensional coordinate system is associated with the projection of the geometric shape of the upper limit vertebra (VLI) on the face radiography ( Figure 6).
  • This stage consists in reconstructing in a three-dimensional visual space the geometry of the envelope or the external contour of the upper (VLS) and lower (VLI) limit vertebrae.
  • a second reconstruction is planned in a three-dimensional visual space of the posterior arch surface of the upper (VLS) and lower (VLI) limit vertebrae.
  • This step consists in projecting the upper (VLS) and lower (VLI) limit vertebrae on the front and profile radiographs thanks to the relationships established between the three-dimensional and two-dimensional landmarks defined during the third step.
  • This step also consists in embedding in the radiographs of FIGS. 9 and 10 the projection of the upper (VLS) and lower (VLI) limit vertebrae relative to one another by performing a registration of the projection of the lower limit vertebra ( VLI) on the two positions occupied by this vertebra in the radiographs of Figures 9 and 10.
  • FIG. 11 and 12 illustrate this step.
  • This step consists of embedding in the radiography of FIG. 11 the points or contours digitized on the radiographs of FIGS. 2 and 3 by adjusting the scale between the radiographs and performing a registration with respect to the limit vertebra. higher (VLS).
  • VLS limit vertebra
  • FIG. 13 and 14 illustrate this step.
  • VLS upper
  • VLI lower
  • the latter can be, for example, carried out using a three-dimensional transmitter / sensor provided with a feeler pen allowing reconstruction in a three-dimensional visual space of the external contour and of the surface. of the posterior arch of the upper (VLS) and lower (VLI) limit vertebrae.
  • This implementation is carried out from an image processing system to allow the visualization of the results and the relative position in front and profile projection of the upper (VLS) and lower (VLI) instrumented limit vertebrae of the segment. spinal correction through spinal instrumentation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Le procede de visualisation et de controle de l'equilibre de la colonne vertebrale don’t un segment raachidien est corrige par l'intermédiaire d'une instrumentation rachidienne connue en soi, caracterisé en ce qu'il consiste: - à déterminer et calculer la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VSL) et inférieures (VLI) du segment rachidien corrige, - à déterminer et calculer, en fonction de la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI), la position des segments rachidiens se trouvant au-dessus et au-dessous du segment rachidien corrigé par l'instrumentation rachidienne, - et à visualiser l'équilibre ou le déséquilibre de la colonne vertébrale en projection de face et de profil.

Description

PROCEDE DE VISUALISATION ET DE
CONTROLE DE L'EQUILIBRE D'UNE
COLONNE VERTEBRALE
La présente invention est relative à un procédé de visualisation et de contrôle de l'équilibre de la colonne vertébrale d'un patient. Le procédé de visualisation et de contrôle suivant la présente invention est plus particulièrement destiné à la visualisation et au contrôle de l'équilibre de la colonne vertébrale d'un patient pendant une opération portant sur un segment rachidien corrigé au moyen d'une instrumentation rachidienne connue en soi. Les instrumentations ou matériels d'ostéosynthèse connus à ce jour sont généralement constitués de vis d'ancrage osseux, de connecteurs fixés par les -vis sur les corps vertébraux de chaque vertèbre et de tiges de liaison reliant les connecteurs entre eux. Parfois, les tiges de liaison sont déformées par le chirurgien pour pouvoir rétablir les courbures du segment rachidien à corriger.
La notion d'équilibre de la colonne vertébrale est assez complexe et est caractérisée par différents paramètres suivant les approches cliniques.
La plupart du temps les chirurgiens évaluent l'équilibre rachidien à la fois cliniquement et par prises de vues radiologiques.
Dans ce dernier cas, deux clichés radiographiques de grande taille (30cm x 90cm) sont effectués, l'un permettant de visualiser le profil de la colonne vertébrale du patient et l'autre la face.
Globalement, on considère que l'équilibre frontal de la colonne vertébrale du patient est obtenu à partir du moment où la première vertèbre thoracique (T1 ) est centrée par rapport au sacrum. Quant à l'équilibre sagittal, on peut considérer qu'il est obtenu à partir du moment où les conduits auditifs externes se situent à la verticale des têtes fémorales.
Lorsque l'intervention chirurgicale sur la colonne vertébrale est nécessaire, le simple fait de fusionner des vertèbres entre-elles par l'intermédiaire d'une instrumentation peut engendrer chez le patient des troubles de l'équilibre postopératoires.
L'objectif du chirurgien est bien évidemment dans un premier temps de réduire les courbures du rachis dans le cas d'une déformation rachidienne et/ou de fixer une zone qui sera dite instrumentée. Dans un deuxième temps, le chirurgien doit faire en sorte que la zone instrumentée permette au patient de trouver ou retrouver son équilibre après l'opération, lorsque qu'il adoptera la position debout.
Les chirurgiens cherchent donc pendant l'opération à évaluer un éventuel équilibre ou déséquilibre post-opératoire chez le patient.
Actuellement, les chirurgiens ne disposent pas de systèmes leur permettant de savoir si le niveau instrumenté va permettre l'équilibre post-opératoire du patient.
Les chirurgiens recourent donc à la seule appréciation visuelle du segment instrumenté dans le champ opératoire. Certains utilisent un moyen radiographique (deux clichés Rx face + profil) leur permettant de visualiser de façon plus " large " la colonne vertébrale (des têtes fémorales jusqu'aux vertèbres cervicales).
Les chirurgiens peuvent alors apprécier non seulement le segment instrumenté mais également les segments sus et sous-jacents à l'instrumentation, et ce dans les plans frontaux et sagittaux. Malheureusement, ces radiographies sont effectuées sur le patient en position couchée, sur la table d'opération, et par conséquent ne peuvent prédire de façon systématique le comportement de la colonne vertébrale opérée lorsque le patient retrouvera la position debout post-opératoire.
Le problème consiste en ce que le patient est allongé sur la table d'opération, et seules les vertèbres qui seront fusionnées sont dégagées par une voie d'abord classique postérieure.
Le chirurgien instrumente ces vertèbres, les fusionne mais ne peut apprécier la conséquence de cet acte chirurgical sur les segments sus et sous jacents qui bien évidemment s'adaptent à la nouvelle géométrie que le chirurgien donne au segment qu'il instrumente.
On constate que dans chaque instrumentation, il existe une vertèbre limite instrumentée supérieure (VLS) et une vertèbre limite instrumentée inférieure (VLI) qui sont respectivement liées naturellement aux vertèbres de la colonne vertébrale non instrumentée, qui se trouvent au dessus et au dessous de l'instrumentation.
C'est l'orientation du plateau supérieur de la première vertèbre instrumentée (VLS) par rapport au plateau inférieur de la dernière vertèbre instrumentée (VLI) qui va définir le comportement d'adaptation du segment sus-jacent et du segment sous-jacent. C'est par conséquent la position relative des deux vertèbres limites instrumentées qui va conditionner la géométrie des segments sus et sous-jacent. Le segment instrumenté se transforme en une grande vertèbre dont les "frontières" détermineront le comportement d'adaptation des segments sus et sous-jacents et donc conditionneront l'équilibre ou le déséquilibre post-opératoire du patient en position debout.
Le procédé suivant la présente invention a pour objet de déterminer l'équilibre de la colonne vertébrale en s'intéressant aux deux vertèbres extrêmes de l'instrumentation (VLS et VLI).
Le procédé suivant la présente invention permet de voir sur un écran de contrôle la colonne virtuelle du patient en position debout après opération.
Pour cela, il faut effectuer des mesures sur les vertèbres limites instrumentées (VLS et VLI).
Les mesures effectuées uniquement sur ces vertèbres permettront de limiter le temps de mesure, toujours trop long dans ces opérations souvent fastidieuses.
A partir des mesures effectuées sur les vertèbres limites instrumentées, des algorithmes de calcul permettent de projeter sur les radiographies préopératoires du patient les possibilités d'équilibre du patient debout en post-opératoire.
Ainsi, la présente invention prévoit un procédé de visualisation et de contrôle de l'équilibre de la colonne vertébrale dont un segment rachidien est corrigé par l'intermédiaire d'une instrumentation rachidienne connue en soi, caractérisé en ce qu'il consiste :
- à déterminer et calculer la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé par l'intermédiaire de points ou contours anatomiques identifiés ou digitalisés sur les radiographies du patient à traiter,
- à déterminer et calculer en fonction de la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI), la position des segments rachidiens se trouvant au dessus et au dessous du segment rachidien corrigé par l'instrumentation rachidienne, par l'intermédiaire de points ou contours anatomiques identifiés ou digitalisés sur les radiographies du patient à traiter,
- et à visualiser l'équilibre ou le déséquilibre de la colonne vertébrale (1 ) en position verticale et en projection de face et de profil.
Selon un mode de réalisation de la présente invention, la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé est obtenue à partir d'une première reconstruction dans un espace visuel tridimensionnel de la géométrie de l'enveloppe ou le contour externe des vertèbres limites supérieures (VLS) et inférieures (VLI) et d'une seconde reconstruction dans un espace visuel tridimensionnel de la surface de l'arc postérieur des vertèbres limites supérieures (VLS) et inférieures (VLI). Selon un mode de réalisation de la présente invention, les premières et secondes étapes de reconstruction dans un espace visuel tridimensionnel permettent de déterminer, dans un espace visuel tridimensionnel, la position relative des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste en ce que les vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé sont projetées sur les radiographies de face et de profil du patient à traiter.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste en ce que la projection de face et de profil des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé permet de déterminer la position sur les radiographies de face et de profil des segments rachidiens se trouvant au dessus et au dessous du segment rachidien corrigé, et de visualiser sur les radiographies de face et de profil l'allure de la colonne vertébrale reconstituée. Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à identifier ou digitaliser pour chaque vertèbre de la colonne vertébrale, au moins quatre points délimitant un rectangle reproduisant le corps vertébral. Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à identifier ou digitaliser les points qui correspondent aux repères radiologiques utilisés, pour définir l'équilibre de la tête du patient par rapport au bassin. Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à identifier ou digitaliser pour la tête au moins, dix points permettant de repérer le contour externe de la tête.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à identifier ou digitaliser pour le bassin au moins les points anatomiques définissant le centre de chaque tête fémorale et le plateau sacré.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à identifier ou digitaliser pour le bassin, au moins cinq points dont un pour la tête fémorale et au moins trois pour le sacrum, afin de former un triangle.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à incruster des points digitalisés sur les radiographies du patient. Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste, à partir des radiographies sagittales et frontales du patient, à reconstruire en trois dimensions la forme géométrique des vertèbres limites supérieures (VLS) et inférieures (VLI).
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à déterminer la position géométrique linéaire et angulaire de la vertèbre limite inférieure (VLI), reconstruite par rapport aux radiographies de face et de profil.
Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à projeter les vertèbres limites supérieures (VLS) et inférieures (VLI) sur les radiographies de face et de profil. Selon un mode de réalisation de la présente invention, le procédé de visualisation et de contrôle consiste à incruster dans les radiographies, la projection des vertèbres limites supérieures (VLS) et inférieures (VLI) l'une par rapport à l'autre, en effectuant un recalage de la projection de la vertèbre limite inférieure (VLI). Les caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivant des modes de réalisation particuliers faits à titre non limitatif en relation avec les figures annexées.
La figure 1 représente une radiographie sagittale d'un patient debout, sur laquelle des points anatomiques sont digitalisés pour identifier le bassin et les têtes fémorales.
La figure 2 illustre une radiographie sagittale d'un patient debout en flexion cervicale, sur laquelle des points anatomiques sont digitalisés pour identifier la tête, les vertèbres sus jacentes à l'instrumentation et la vertèbre limite supérieure instrumentée (VLS).
La figure 3 montre une radiographie sagittale d'un patient debout en extension cervicale, sur laquelle des points anatomiques sont digitalisés pour identifier la tête, les vertèbres sus jacentes à l'instrumentation et la vertèbre limite supérieure instrumentée (VLS).
La figure 4 représente une radiographie sagittale d'un patient assis en flexion lombaire, sur laquelle des points anatomiques sont digitalisés pour identifier le bassin, les vertèbres sous jacentes à l'instrumentation et la vertèbre limite inférieure (VLI) instrumentée.
La figure 5 représente une radiographie sagittale d'un patient assis en extension lombaire, sur laquelle des points anatomiques sont digitalisés pour identifier le bassin, les vertèbres sous jacentes à l'instrumentation et la vertèbre limite inférieure (VLI) instrumentée.
La figure 6 illustre une radiographie frontale d'un patient debout, sur laquelle des points anatomiques sont digitalisés pour identifier le bassin et les têtes fémorales. La figure 7 montre une radiographie frontale d'un patient couché en inflexion latérale à gauche, sur laquelle des points anatomiques sont digitalisés pour identifier la tête, les vertèbres sus et sous jacentes à l'instrumentation, les vertèbres limites supérieures (VLS) et inférieures (VLI) instrumentées, le bassin et les têtes fémorales.
La figure 8 représente une radiographie frontale d'un patient couché en inflexion latérale à droite, sur laquelle des points anatomiques sont digitalisés pour identifier la tête, les vertèbres sus et sous jacentes à l'instrumentation, les vertèbres limites supérieures (VLS) et inférieures (VLI) instrumentées, le bassin et les têtes fémorales.
La figure 9 illustre la radiographie de la figure 1 dans laquelle ont été incrustés les points anatomiques digitalisés dans les radiographies des figures 4 et 5, ceci après mise en correspondance des échelles et ajustement par rapport au bassin.
La figure 10 montre la radiographie de la figure 6 dans laquelle ont été incrustés les points anatomiques digitalisés dans les radiographies des figures 7 et 8, (uniquement ceux représentant le bassin, les vertèbres sous jacentes à l'instrumentation, et la vertèbre limite inférieure (VLI) instrumentée), ceci après mise en correspondance des échelles et ajustement par rapport au bassin.
La figure 11 illustre la radiographie de la figure 9 dans laquelle a été incrustée la projection des vertèbres limites supérieures (VLS) et inférieures (VLI) en effectuant un recalage de la vertèbre limite inférieure (VLI) instrumentée.
La figure 12 montre la radiographie de la figure 10 dans laquelle a été incrustée la projection des vertèbres limites supérieures (VLS) et inférieures (VLI) en effectuant un recalage de la vertèbre limite inférieure (VLI) instrumentée.
La figure 13 représente la radiographie de la figure 11 dans laquelle ont été incrustés les points digitalisés sur la radiographie des figures 2 et 3 (tête, vertèbres sus jacentes et vertèbres limites supérieures (VLS) instrumentées), en effectuant un recalage de la vertèbre limite supérieure (VLS) instrumentée.
La figure 14 illustre la radiographie de la figure 12 dans laquelle ont été incrustés les points digitalisés sur la radiographie des figures 7 et 8 (tête, vertèbres sus jacentes et vertèbres limites supérieures (VLS) instrumentées), en effectuant un recalage de la vertèbre limite supérieure (VLS) instrumentée.
* PREMIERE ETAPE DU PROCEDE La première étape du procédé consiste à identifier ou digitaliser des points ou contours anatomiques sur les radiographies du patient à traiter. Ainsi pour chaque vertèbre 2 de la colonne vertébrale 1 , il est nécessaire d'identifier au moins quatre points. Ces derniers délimitent un rectangle reproduisant le corps vertébral. Pour la tête 3, il est nécessaire d'identifier les points anatomiques qui correspondent habituellement aux repères radiologiques utilisés pour définir l'équilibre de la tête 3 du patient par rapport à son bassin 4.
Pour la tête 3, il peut être nécessaire d'identifier, mais de manière non limitative, au moins dix points qui permettent de repérer le contour externe de la tête.
Pour le bassin 4, il est nécessaire d'identifier au moins les points anatomiques définissant le centre de chaque tête fémorale 5 et le sacrum 6. Pour le bassin 4, il est nécessaire d'identifier au moins cinq points dont un par tête fémorale 5 et au moins trois pour le sacrum 6 afin de former un triangle.
On note que les coordonnées en deux dimensions (x, y) de chaque point sont connues dans le repère lié à la radiographie numérisée.
Cette première étape est illustrée sur chacune des figures 1 à 8.
* DEUXIEME ETAPE DU PROCEDE La seconde étape du procédé consiste à incruster les points digitalisés sur les radiographies des figures 4 et 5 dans la radiographie de la figure 1.
Lors de cette incrustation des points ou contours digitalisés, il est nécessaire d'ajuster l'échelle entre les radiographies et de superposer les points définissant le bassin 4 par recalage (figure 9).
Egalement, il est procédé à l'incrustation des points digitalisés sur les radiographies des figures 7 et 8 dans la radiographie de la figure 6. Les points ou contours digitalisés concernent plus particulièrement ceux représentant le bassin 4, les vertèbres 2 sous jacentes à l'instrumentation, et la vertèbre limite inférieure (VLI) instrumentée. Il est prévu dans cette étape du procédé une mise en correspondance des échelles et un ajustement ou recalage des points ou contour par rapport au bassin 4 (figure 10).
TROISIEME ETAPE DU PROCEDE
Cette étape consiste, à partir des radiographies sagittales (figure 1 ) et frontales (figure 6), en une reconstruction en trois dimensions de la forme géométrique des vertèbres 2 et plus particulièrement des vertèbres limites instrumentées à savoir :
- la vertèbre limite supérieure (VLS),
- et la vertèbre limite inférieure(VLI). Cette étape consiste également à déterminer la position géométrique linéaire et angulaire de la vertèbre limite inférieure (VLI) reconstruite par rapport aux radiographies de face et de profil (positionnement du patient par rapport aux films (Rx) lors de la prise des clichés radiographiques).
Lors de cette étape il est nécessaire de matérialiser des repères géométriques à savoir :
- un repère trois dimensions est associé à la géométrie trois dimensions de la vertèbre limite supérieure (VLS).
- un repère trois dimensions est associé à la géométrie trois dimensions de la vertèbre limite supérieure (VLI).
- un repère deux dimensions est associé à la projection de la forme géométrique de la vertèbre limite supérieure (VLI) sur la radiographie de profil (figure 1 ). - un repère deux dimensions est associé à la projection de la forme géométrique de la vertèbre limite supérieure (VLI) sur la radiographie de face (figure 6).
* QUATRIEME ETAPE DU PROCEDE Cette étape consiste à reconstruire dans un espace visuel tridimensionnel la géométrie de l'enveloppe ou le contour externe des vertèbres limites supérieures (VLS) et inférieures (VLI).
Lors de cette étape, il est prévu une seconde reconstruction dans un espace visuel tridimensionnel de la surface de l'arc postérieur des vertèbres limites supérieures (VLS) et inférieures (VLI).
* CINQUIEME ETAPE DU PROCEDE Cette étape consiste à projeter les vertèbres limites supérieures (VLS) et inférieures (VLI) sur les radiographies de face et de profil grâce aux relations établies entre les repères trois dimensions et deux dimensions définis lors de la troisième étape. Cette étape consiste également à incruster dans les radiographies des figures 9 et 10 la projection des vertèbres limites supérieures (VLS) et inférieures (VLI) l'une par rapport à l'autre en effectuant un recalage de la projection de la vertèbre limite inférieure (VLI) sur les deux positions qu'occupe cette vertèbre dans les radiographies des figures 9 et 10.
Les figures 11 et 12 illustrent cette étape.
*> SIXIEME ETAPE DU PROCEDE Cette étape consiste à incruster dans la radiographie de la figure 11 les points ou contours digitalisés sur les radiographies des figures 2 et 3 en ajustant l'échelle entre les radiographies et en effectuant un recalage par rapport à la vertèbre limite supérieure (VLS). De la même manière, les points ou contours digitalisés sur les radiographies des figures 7 et 8 sont incrustés dans la radiographie de la figure 12, en ajustant l'échelle entre les radiographies et en effectuant un recalage par rapport à la vertèbre limite supérieure (VLS).
Les figures 13 et 14 illustrent cette étape.
SEPTIEME ETAPE DU PROCEDE Cette étape consiste, à partir des résultats obtenus lors des étapes précédentes :
- à déterminer et calculer la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé ,
- à déterminer et calculer en fonction de la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) la position des segments rachidiens se trouvant au dessus et au dessous du segment rachidien corrigé par l'instrumentation rachidienne,
- et à visualiser l'équilibre ou le déséquilibre de la colonne vertébrale 1 en projection de face et de profil.
On note que pour la réalisation de la quatrième étape, cette dernière peut être, par exemple, réalisée à partir d'émetteur / capteur trois dimensions pourvus d'un stylo palpeur permettant la reconstruction dans un espace visuel tridimensionnel du contour externe et de la surface de l'arc postérieur des vertèbres limites supérieures (VLS) et inférieures (VLI).
En outre, la mise en œuvre du procédé de l'invention fait appel à des techniques de traitement numérique d'images dont la réalisation pratique est à la portée de l'homme du métier.
Cette mise en oeuvre est réalisée à partir d'un système de traitement d'images pour permettre la visualisation des résultats et de la position relative en projection de face et de profil des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé par l'intermédiaire de l'instrumentation rachidienne.

Claims

REVENDICATIONS
1. Procédé de visualisation et de contrôle de l'équilibre de la colonne vertébrale dont un segment rachidien est corrigé par l'intermédiaire d'une instrumentation rachidienne connue en soi, caractérisé en ce qu'il consiste :
- à déterminer et calculer la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé par l'intermédiaire de points ou contours anatomiques identifiés ou digitalisés sur les radiographies du patient à traiter,
- à déterminer et calculer en fonction de la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI), la position des segments rachidiens se trouvant au dessus et au dessous du segment rachidien corrigé par l'instrumentation rachidienne, par l'intermédiaire de points ou contours anatomiques identifiés ou digitalisés sur les radiographies du patient à traiter,
- et à visualiser l'équilibre ou le déséquilibre de la colonne vertébrale (1) en position verticale et en projection de face et de profil.
2. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce que la position relative tridimensionnelle des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé est obtenue à partir d'une première reconstruction dans un espace visuel tridimensionnel de la géométrie de l'enveloppe ou le contour externe des vertèbres limites supérieures (VLS) et inférieures (VLI) et d'une seconde reconstruction dans un espace visuel tridimensionnel de la surface de l'arc postérieur des vertèbres limites supérieures (VLS) et inférieures (VLI).
3. Procédé de visualisation et de contrôle suivant la revendication 2, caractérisé en ce que les premières et secondes étapes de reconstruction dans un espace visuel tridimensionnel permettent de déterminer dans un espace visuel tridimensionnel la position relative des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé.
Procédé de visualisation et de contrôle suivant la revendication 3, caractérisé en ce que les vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé sont projetées sur les radiographies de face et de profil du patient à traiter.
5. Procédé de visualisation et de contrôle suivant la revendication 3, caractérisé en ce que la projection de face et de profil des vertèbres limites instrumentées supérieures (VLS) et inférieures (VLI) du segment rachidien corrigé permet de déterminer la position sur les radiographies de face et de profil des segments rachidiens se trouvant au dessus et au dessous du segment rachidien corrigé, et de visualiser sur les radiographies de face et de profil l'allure de la colonne vertébrale reconstituée.
6. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à identifier ou digitaliser pour chaque vertèbre de la colonne vertébrale, au moins quatre points délimitant un rectangle reproduisant le corps vertébral.
7. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à identifier ou digitaliser les points qui correspondent aux repères radiologiques utilisés pour définir l'équilibre de la tête du patient par rapport au bassin.
8. Procédé de visualisation et de contrôle suivant la revendication 7, caractérisé en ce qu'il consiste à identifier ou digitaliser pour la tête au moins dix points permettant de repérer le contour externe de la tête.
9. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à identifier ou digitaliser pour le bassin au moins les points anatomiques définissant le centre de chaque tête fémorale et le plateau sacré.
10. Procédé de visualisation et de contrôle suivant la revendication 9, caractérisé en ce qu'il consiste à identifier ou digitaliser pour le bassin, au moins cinq points dont un par tête fémorale et au moins trois pour le sacrum afin de former un triangle.
11. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à incruster des points digitalisés sur les radiographies du patient.
12. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste, à partir des radiographies sagittales et frontales du patient, à reconstruire en trois dimensions la forme géométrique des vertèbres limites supérieures (VLS) et inférieures (VLI).
13. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à déterminer la position géométrique linéaire et angulaire de la vertèbre limite inférieure (VLI) reconstruite par rapport aux radiographies de face et de profil.
14. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à projeter les vertèbres limites supérieures (VLS) et inférieures (VLI) sur les radiographies de face et de profil.
15. Procédé de visualisation et de contrôle suivant la revendication 1 , caractérisé en ce qu'il consiste à incruster dans les radiographies la projection des vertèbres limites supérieures (VLS) et inférieures (VLI) l'une par rapport à l'autre en effectuant un recalage de la projection de la vertèbre limite inférieure
(VLI).
EP03727566A 2002-03-05 2003-03-04 Procede de visualisation et de controle de l'equilibre d'une colone vertebrale Withdrawn EP1482846A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0202754A FR2836818B1 (fr) 2002-03-05 2002-03-05 Procede de visualisation et de controle de l'equilibre d'une colonne vertebrale
FR0202754 2002-03-05
PCT/FR2003/000694 WO2003073946A1 (fr) 2002-03-05 2003-03-04 Procédé de visualisation et de contrôle de l'équilibre d'une colonne vertébrale

Publications (1)

Publication Number Publication Date
EP1482846A1 true EP1482846A1 (fr) 2004-12-08

Family

ID=27763538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03727566A Withdrawn EP1482846A1 (fr) 2002-03-05 2003-03-04 Procede de visualisation et de controle de l'equilibre d'une colone vertebrale

Country Status (5)

Country Link
US (1) US20050119593A1 (fr)
EP (1) EP1482846A1 (fr)
AU (1) AU2003233358A1 (fr)
FR (1) FR2836818B1 (fr)
WO (1) WO2003073946A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161680A1 (en) * 2006-12-29 2008-07-03 General Electric Company System and method for surgical navigation of motion preservation prosthesis
US8549888B2 (en) 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
EP2164042B1 (fr) * 2008-09-10 2017-11-08 Brainlab AG Procédé de vérification de la position relative de structures osseuses
CA2788445C (fr) * 2010-01-28 2017-11-21 Pecsi Tudomanyegyetem Procede et systeme pour la visualisation multidimensionnelle de la colonne vertebrale par des vecteurs de vertebres, le vecteur du sacrum et des vecteurs du bassin
US11207132B2 (en) 2012-03-12 2021-12-28 Nuvasive, Inc. Systems and methods for performing spinal surgery
US9848922B2 (en) 2013-10-09 2017-12-26 Nuvasive, Inc. Systems and methods for performing spine surgery
DE102014102398A1 (de) * 2014-02-25 2015-08-27 Aesculap Ag Medizinisches Instrumentarium und Verfahren
US10524723B2 (en) 2014-07-23 2020-01-07 Alphatec Spine, Inc. Method for measuring the displacements of a vertebral column
US10433893B1 (en) 2014-10-17 2019-10-08 Nuvasive, Inc. Systems and methods for performing spine surgery
EP3361958B1 (fr) 2015-10-13 2023-01-25 Mazor Robotics Ltd. Procédé de planification d'alignement vertébral global
US11141221B2 (en) * 2015-11-19 2021-10-12 Eos Imaging Method of preoperative planning to correct spine misalignment of a patient
ES2877761T3 (es) 2016-03-02 2021-11-17 Nuvasive Inc Sistemas y procedimientos para la planificación quirúrgica de corrección de la columna
JP6744614B1 (ja) * 2018-09-10 2020-08-19 京セラ株式会社 推定装置、推定システム及び推定プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228068A (en) * 1992-09-14 1993-07-13 Lunar Corporation Device and method for automated determination and analysis of bone density and vertebral morphology
US5582186A (en) * 1994-05-04 1996-12-10 Wiegand; Raymond A. Spinal analysis system
EP1046133B1 (fr) * 1998-10-09 2004-01-14 Koninklijke Philips Electronics N.V. Obtention de donnees geometriques d'une structure a partir d'une image
US6301495B1 (en) * 1999-04-27 2001-10-09 International Business Machines Corporation System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
JP2004509722A (ja) * 2000-09-29 2004-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 椎骨の椎弓根の位置を含む脊椎の正面幾何学データを抽出する方法及びシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03073946A1 *

Also Published As

Publication number Publication date
FR2836818B1 (fr) 2004-07-02
US20050119593A1 (en) 2005-06-02
WO2003073946A1 (fr) 2003-09-12
AU2003233358A1 (en) 2003-09-16
FR2836818A1 (fr) 2003-09-12

Similar Documents

Publication Publication Date Title
US11896455B2 (en) Method and system for braces removal from dentition mesh
US11058514B2 (en) Method and system for dentition mesh braces removal
Stokes et al. Three‐dimensional spinal curvature in idiopathic scoliosis
Kook et al. A comparison study of different facial soft tissue analysis methods
US8463004B2 (en) Determining shaft and femur neck axes and three-dimensional reconstruction
JP2003520081A (ja) 背骨の三次元幾何モデルの処理方法及びシステム
US9084629B1 (en) Image guided atlas correction
WO2003073946A1 (fr) Procédé de visualisation et de contrôle de l'équilibre d'une colonne vertébrale
Brown et al. Computer-assisted location of reference points in three dimensions for radiographic cephalometry
CN107510504A (zh) 一种辅助骨科手术的非放射线透视视觉导航方法及系统
EP4103089B1 (fr) Procédé de conception d'un couple de tiges d'union destiné à être implanté sur le rachis d'un patient, et procédé de fabrication d'une telle tige
US20110157230A1 (en) Method and apparatus for measuring spinal characteristics of a patient
Roy et al. A noninvasive 3D body scanner and software tool towards analysis of scoliosis
Kim et al. Three-dimensional natural head position reproduction using a single facial photograph based on the POSIT method
Bagheri et al. Reliability of three-dimensional spinal modeling of patients with idiopathic scoliosis using EOS system
Bifulco et al. Measurement of intervertebral cervical motion by means of dynamic x-ray image processing and data interpolation
US20210244447A1 (en) Systems And Methods For Forming Patient-Specific Spinal Rods
Ren et al. A knowledge-based automatic cephalometric analysis method
WO2020169515A1 (fr) Procédés et systèmes de traitement d'images
Toneva et al. Accuracy of linear measurements on polygonal models of dry mandibles generated from industrial CT data
Bastien et al. Augmented Reality in Spine Surgery. Critical Appraisal and Status of Development
Traisrisin et al. The accuracy of soft tissue prediction using Morpheus 3D simulation software for planning orthognathic surgery
CN112419475B (zh) 植入螺钉的椎骨与螺钉的位置关系的展示方法及装置
US20240173059A1 (en) Device for helping to bend surgical rods
RU2701760C2 (ru) Способ определения нестабильности позвоночно-двигательных сегментов в шейном отделе позвоночника

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GALLARD, EMERIC

Inventor name: VIART, GUY

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SURGIVIEW

17Q First examination report despatched

Effective date: 20070807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080219