EP1482179B1 - Compressor apparatus and method of its operation - Google Patents

Compressor apparatus and method of its operation Download PDF

Info

Publication number
EP1482179B1
EP1482179B1 EP04405421A EP04405421A EP1482179B1 EP 1482179 B1 EP1482179 B1 EP 1482179B1 EP 04405421 A EP04405421 A EP 04405421A EP 04405421 A EP04405421 A EP 04405421A EP 1482179 B1 EP1482179 B1 EP 1482179B1
Authority
EP
European Patent Office
Prior art keywords
pressure
compressor
accordance
encapsulated
inner space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04405421A
Other languages
German (de)
French (fr)
Other versions
EP1482179A1 (en
Inventor
Roger Suter
George Kleynhans
Peter Ortmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions Schweiz AG
Original Assignee
MAN Turbo AG Schweiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbo AG Schweiz filed Critical MAN Turbo AG Schweiz
Priority to EP04405421A priority Critical patent/EP1482179B1/en
Publication of EP1482179A1 publication Critical patent/EP1482179A1/en
Application granted granted Critical
Publication of EP1482179B1 publication Critical patent/EP1482179B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use

Definitions

  • the invention relates to a compressor device according to the preamble of claim 1.
  • the invention further relates to a method for operating a compressor device according to the preamble of claim 15.
  • a compressor device comprising a radial compressor and an electric motor driving this. If the compressor device is operated at a higher process pressure, it is known, for example from document WO 02/009286 A1, to arrange the compressor device within a pressure housing, in particular a common pressure housing, wherein the pressure housing is provided with gas inlet and gas outlet lines.
  • WO 02/009286 A1 discloses a compressor device with an electric motor, the stator of which is arranged in an encapsulation for protection against aggressive components.
  • a disadvantage of such, operated at a higher process pressure compressor device is the fact that they are less suitable for compressing contaminated gases or gases with corrosive fractions, because certain components of the compressor device, in particular the encapsulation, are subject to increased wear.
  • a compressor device comprising a radial compressor for compressing a gas and an electric motor for driving the centrifugal compressor, wherein the radial compressor and the electric motor are arranged in a pressure housing, which is provided with a gas inlet line and a gas outlet, and comprising one in the pressure housing arranged, encapsulated device whose interior fluid is conductively connected to a pressure reducing device.
  • the pressure reducing device is designed as a fluid-conducting connecting line to the space outside the gas-tight pressure housing.
  • the fluid is preferably a gas, but could also comprise or consist essentially of a liquid.
  • the inventive compressor device has an encapsulated device, within which sensitive components such as the stator of the electric motor from the extracted gases, such as acid gases with shares of H 2 S and / or CO 2 , are protected.
  • the encapsulated device includes encapsulation, also referred to as "can", and components disposed therein.
  • the encapsulation is preferably designed gas-tight or approximately gas-tight.
  • encapsulation for example, for the stator, preferably very thin, non-magnetizable sheets or fiber-reinforced plastics are used which have a thickness in the millimeter range, for example, a thickness in the range between 0.1 mm to 5 mm.
  • the encapsulated device In order to ensure safe operation of the compressor device, therefore, the encapsulated device must be protected at least mechanically. This is done by ensuring that the pressure of the process gas is at least equal, but preferably always higher, than the pressure within the encapsulated device.
  • the interior of the encapsulated device fluidly connected to a pressure reducing device, in particular via a fluid-conducting connecting line with the space outside the gas-tight pressure vessel.
  • this connecting line opens directly into the atmosphere, so that it is ensured that the pressure in the interior of the encapsulated device is equal to the atmospheric pressure or does not rise significantly above atmospheric pressure.
  • said connecting line opens into a controllable valve in order to control the pressure reduction, for example to the atmosphere, via the valve.
  • the pressure in the interior of the encapsulated device and the pressure in the interior of the pressure vessel can be measured, and the valve, for example, be operated such that the pressure in the interior of the encapsulated device is always lower than the pressure of the process gas in Interior of the pressure vessel and, for example, has a constant pressure difference.
  • the pressure in the interior of the encapsulated device it is possible for the pressure in the interior of the encapsulated device to be 100 bar without the risk of explosion of the encapsulated device if the process pressure is reduced.
  • a controlled decompression operation can be performed, for example, by relieving the process pressure at 20 bar / minute, and also relieving the pressure in the encapsulated device via the pressure reduction device at that rate is, or at least such that the pressure within the encapsulated device is constantly lower than the process pressure.
  • An increase in pressure in an encapsulated device can occur in addition to the penetration of gas by heating. For example, if a magnetic radial bearing disposed in an encapsulated device is heated during operation, the pressure in the encapsulated device increases. If there is still liquid, for example water, in the encapsulated device, the internal pressure can rise considerably as a result of the heating.
  • the compression device according to the invention comprising a pressure reducing device also in this case ensures that no mechanical damage of the encapsulated device occurs.
  • Figure 1 shows a compressor device comprising a radial compressor 35 and an electric motor 31, which are connected to each other via a common rotatable shaft 21 which are rotatably supported by radial magnetic bearings 32, and which are arranged within a common pressure housing 1 with interior 1a.
  • the pressure housing 1 is preferably gas-tight and has a gas inlet line 2 and a gas outlet line 3, through which flows the pumped gas.
  • a process pressure which lies between a gas inlet pressure in the gas inlet line 2 and a gas outlet pressure in the gas outlet line 3, arises in the interior 1a of the pressure housing 1.
  • a portion of the gas compressed by the compressor blades 34 is supplied to the compressor housing 1 for cooling the compressor device via the lines 33, and flows within the pressure housing 1 in the axial direction through the gas gap 22 of the magnetic bearing 32 and the electric motor 31.
  • the magnetic bearing 32 and on the stator 31a substantially the process pressure, which has the conveyed gas.
  • the encapsulated device 4 comprises the inner space 6 and a sealing encapsulation 5.
  • the inner space 6 of the encapsulated device 4 forms a pressure-stable support structure which is formed, for example, by the stator coils 6b themselves or by the stator coils 6b, for example are poured into a pressure-resistant medium. Electric cables 28 are provided via a cable feedthrough 29 for supplying power to the stator coils 6b.
  • the encapsulation 5, which preferably consists of a thin sheet.
  • the sheet extending along the air gap 22 is not magnetizable and has a thickness in the millimeter range.
  • the laterally arranged, radially outwardly extending sheets 5 may also have a greater thickness, for example more than 5 mm and be made more stable.
  • the interior 6 of the encapsulated device 4 is limited by the encapsulation 5 and the pressure housing 1 and gas-tight or substantially gas-tight with respect to the process gas.
  • the interior 6 is connected via a fluid-conducting connecting line 8 with the space outside the pressure housing 1. Should an internal pressure build up in the interior 6, in that the process gas located in the pressure chamber 1a penetrates into the interior 6 through scratches, defective locations or diffusion via the encapsulation 5, then this pressure can be reduced by virtue of the pressure being released via the pressure reduction device 34, designed in this embodiment as a connecting line 8, to the outside to the space outside the pressure housing 1 is passed.
  • encapsulated device 4 In addition to or instead of the electric motor 31, other components such as the magnetic bearings 32 can be arranged in the previously described encapsulated device 4, wherein in Figure 1, neither the electrical supply nor the example embedded in a medium electromagnetic coils of the radial magnetic bearing 32 are shown.
  • These encapsulated devices 4 also have a pressure reducing device 34, here shown as connecting line 8, in order to increase the pressure in the encapsulated device 4 limit.
  • the connecting lines 8 shown in Figure 1 for example, open into the atmosphere.
  • the pressure housing 1 shown schematically in Figure 2 includes different embodiments of pressure reducing devices 37 for limiting the pressure in the interior 6 of the encapsulated device 4.
  • the pressure reducing device 37 includes a controllable, actuatable valve 9 to reduce the pressure in the interior 6 controllably.
  • a simple way to detect penetration of process gas into the interior 6 of the encapsulated device 4 is to arrange a gas sensor 15 in the interior 6, the signal is fed via an electrical line 13 to a control device 14. As soon as the gas sensor 15 detects the process gas, it is to be expected that an increase in pressure took place in the interior 6.
  • the control device 14 could, for example, trigger an alarm signal to manually open the valve 9, or automatically open the valve 9, and release the pressure applied to the connecting line 8 via the line 10.
  • the conduit 10 could also be followed by a vent or flair to release the pressurized gas into the atmosphere.
  • Another way to determine the penetration of process gas into the interior 6 of the encapsulated device 4 is to measure the pressure in the interior 6 with a sensor 11.
  • the process pressure could additionally also be measured with a sensor 12 and / or the ambient pressure could be measured with a sensor 26 and supplied to the regulating device 14.
  • the valve 9 is actuated by the control device 14, for example, such that the pressure in the interior 6 of the encapsulated device 4 is always below that in the interior of the 1a Pressure housing 1 adjacent process pressure is, or that the pressure in the interior 6 is deeper than in the interior 1a.
  • Another way to reduce the pressure in the interior 6 of the encapsulated device 4 is to provide a buffer tank 16, which is fluidly connected via the pressure reducing device 37 with the interior 6.
  • the buffer tank 16 could be arranged inside or outside the pressure housing 1.
  • the pressure reducing device 37 could comprise the connecting lines 8 and 10, the valve 9 as well as the line 20 and the buffer container 16, which can be fluidly connected to be fluid.
  • the buffer container 16 also has a flexible and sealed membrane 17, and is connected via a line 19 and an opening 18 with the interior 1a of the pressure housing 1.
  • the valve 9 or the entire pressure reducing device 37 may be disposed within the pressure housing 1, or as shown in Figure 2, be arranged substantially outside the pressure housing 1.
  • the conduit 19 of the buffer tank 16 could also, instead of the connection in the pressure vessel 1, form an outlet into the environment, for example into the atmosphere or into the water surrounding the pressure vessel 1.
  • the pressure vessel 1 and the components arranged therein are particularly suitable for operation under water.
  • FIG. 3 shows an encapsulated device 4 which essentially comprises a radial magnetic bearing 32, which is arranged in the interior 6 and is surrounded by the encapsulation 5.
  • the interior 6 is connected via the designed as a connecting line 8 pressure reducing device 37 and the opening 7 with the space outside of the pressure housing 1.
  • the rotatable shaft 21 is held without contact by the radial magnetic bearing 32 with the formation of a gas gap 22.
  • FIG. 4 shows the radial magnetic bearing 32 described in FIG. 3 in a cross section along the section line A-A.
  • Figure 5 shows an encapsulated device 4 with a pressure reducing device 37 comprising two separate connecting lines 8.
  • a spewing gas for example nitrogen
  • the interior 6 is supplied via the connecting line 8, and withdrawn via the second connecting line 8 again and for example released to the environment.
  • the interior 6 has not shown Fluidleitkanäle, which are preferably arranged and configured such that the inner space 6 is flowed through homogeneously. This scavenging is used to remove harmful chemical substances from the interior 6, for example, to protect the located in the interior 6 electrical coils and magnets from chemical agents.
  • FIG. 6 shows schematically a thrust bearing located in the pressure housing 1 with a disk 36 which is arranged between two encapsulated devices 4 containing electromagnets around which rotatable shaft 21 to keep in a predetermined position.
  • the encapsulated device 4 is arranged completely inside the pressurized space 1a, ie exposed to the process gas, whereby this encapsulated device 4 is also fluidly connected to the space outside the pressure housing 1 via pressure reducing devices 37 designed as connecting lines 8.
  • pressure reducing devices 37 illustrated in FIGS. 1 and 3 to 6 could also be formed in the different embodiments illustrated in FIG.
  • the inventive method for operating a compression device with a centrifugal compressor 35 for compressing a gas, an electric motor 31 for driving the centrifugal compressor 35 and an encapsulated device 4 is performed such that the pressure in the interior space 6 of the encapsulated device 4 is influenced such that this in all operating states of the compression device is kept smaller than or equal to the voltage applied within the pressure housing 1 process pressure of the compression device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Kompressorvorrichtung gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter ein Verfahren zum Betrieb einer Kompressorvorrichtung gemäss dem Oberbegriff von Anspruch 15.The invention relates to a compressor device according to the preamble of claim 1. The invention further relates to a method for operating a compressor device according to the preamble of claim 15.

Es ist bekannt zum Fördern und/oder Verdichten von Gasen eine Kompressorvorrichtung umfassend einen Radialverdichter sowie einen diesen antreibenden Elektromotor zu verwenden. Wird die Kompressorvorrichtung bei einem höheren Prozessdruck betrieben, so ist beispielsweise aus der Druckschrift WO 02/009286 A1 bekannt, die Kompressorvorrichtung innerhalb eines Druckgehäuses, insbesondere eines gemeinsamen Druckgehäuses anzuordnen, wobei das Druckgehäuse mit Gaseinlass- und Gasauslassleitungen versehen ist.It is known for conveying and / or compressing gases to use a compressor device comprising a radial compressor and an electric motor driving this. If the compressor device is operated at a higher process pressure, it is known, for example from document WO 02/009286 A1, to arrange the compressor device within a pressure housing, in particular a common pressure housing, wherein the pressure housing is provided with gas inlet and gas outlet lines.

Die Druckschrift WO 02/009286 A1 offenbart eine Kompressorvorrichtung mit einem Elektromotor, dessen Stator zum Schutz vor aggressiven Bestandteilen in einer Kapselung angeordnet ist. Nachteilig an einer derartigen, bei einem höheren Prozessdruck betriebenen Kompressorvorrichtung ist die Tatsache, dass diese zum Verdichten von kontaminierten Gasen oder Gasen mit korrosiven Anteilen weniger geeignet sind, weil gewisse Komponenten der Kompressorvorrichtung, insbesondere auch die Kapselung, einer erhöhten Abnützung unterliegen.The document WO 02/009286 A1 discloses a compressor device with an electric motor, the stator of which is arranged in an encapsulation for protection against aggressive components. A disadvantage of such, operated at a higher process pressure compressor device is the fact that they are less suitable for compressing contaminated gases or gases with corrosive fractions, because certain components of the compressor device, in particular the encapsulation, are subject to increased wear.

Es ist Aufgabe der vorliegenden Erfindung eine Kompressorvorrichtung sowie ein Verfahren zum Betrieb einer Kompressorvorrichtung zu schaffen, die insbesondere zum Fördern von kontaminierten und/oder korrosiven Gasen geeignet ist.It is an object of the present invention to provide a compressor device and a method for operating a compressor device, which is particularly suitable for conveying contaminated and / or corrosive gases.

Diese Aufgabe wird gelöst mit einer Kompressorvorrichtung aufweisen die Merkmale von Anspruch 1. Die Unteransprüche 2 bis 14 betreffen weitere, vorteilhafte Ausgestaltungen. Die Aufgabe wird weiter gelöst mit einem Verfahren zum Betrieb einer Kompressorvorrichtung aufweisend die Merkmale von Anspruch 15. Die Unteransprüche 16 und 18 betreffen weitere, vorteilhafte Verfahrensschritte.This object is achieved with a compressor device having the features of claim 1. The dependent claims 2 to 14 relate to further advantageous embodiments. The object is further achieved with a method for operating a compressor device comprising the features of claim 15. The subclaims 16 and 18 relate to further, advantageous method steps.

Die Aufgabe wird insbesondere gelöst mit einer Kompressorvorrichtung umfassend einen Radialverdichter zum Komprimieren eines Gases sowie einen Elektromotor zum Antrieb des Radialverdichters, wobei der Radialverdichter und der Elektromotor in einem Druckgehäuse angeordnet sind, welches mit einer Gaseinlassleitung sowie eine Gasauslassleitung versehen ist, sowie umfassend eine im Druckgehäuse angeordnete, gekapselte Vorrichtung, deren Innenraum Fluid leitend mit einer Druckminderungsvorrichtung verbunden ist.The object is achieved in particular with a compressor device comprising a radial compressor for compressing a gas and an electric motor for driving the centrifugal compressor, wherein the radial compressor and the electric motor are arranged in a pressure housing, which is provided with a gas inlet line and a gas outlet, and comprising one in the pressure housing arranged, encapsulated device whose interior fluid is conductively connected to a pressure reducing device.

In einer einfachen Ausführungsform ist die Druckminderungsvorrichtung als eine Fluid leitende Verbindungsleitung zum Raum ausserhalb des gasdichten Druckgehäuses ausgestaltet. Das Fluid ist vorzugsweise ein Gas, könnte jedoch auch eine Flüssigkeit umfassen oder im wesentlichen aus einer Flüssigkeit bestehen.In a simple embodiment, the pressure reducing device is designed as a fluid-conducting connecting line to the space outside the gas-tight pressure housing. The fluid is preferably a gas, but could also comprise or consist essentially of a liquid.

Die erfindungsgemässe Kompressorvorrichtung weist eine gekapselte Vorrichtung auf, innerhalb welcher empfindliche Komponenten wie beispielweise der Stator des Elektromotors von den geförderten Gasen, beispielsweise Sauergase mit Anteilen an H2S und/oder CO2, geschützt sind. Die gekapselte Vorrichtung umfass eine Kapselung, im Englischen auch als "can" bezeichnet, sowie darin angeordnete Komponenten. Die Kapselung ist vorzugsweise gasdicht oder annähernd gasdicht ausgestaltet. Als Kapselung werden, beispielweise für den Stator, vorzugsweise sehr dünne, nichtmagnetisierbare Bleche oder faserverstärkte Kunststoffe verwendet, welche eine Dicke im Millimeterbereich, beispielsweise eine Dicke im Bereich zwischen 0,1 mm bis 5 mm aufweisen. Es hat sich überraschenderweise gezeigt, dass sich während dem Betrieb der Kompressorvorrichtung unter einem höheren Prozessdruck, beispielsweise beim Fördern eines Gases im Bereich zwischen 1 und 150 Bar, innerhalb der gekapselten Vorrichtung ein Druck aufbauen kann, da das Prozessgas durch Ritzen, Spalten oder Diffusion in die gekapselte Vorrichtung hineindringt bzw. hineinströmt. Aus diesem schleichenden Druckaufbau in der gekapselten Vorrichtung kann ein äusserst gefährlicher Betriebszustand entstehen, dann nämlich, wenn der Druck des Prozessgases sehr schnell reduziert wird, beispielsweise wenn die Kompressorvorrichtung abgeschaltet werden muss. Dabei könnte es vorkommen, dass der Druck in der gekapselten Vorrichtung den Druck des Prozessgases übersteigt, was zur Folge hätte, dass die Kapselung beschädigt oder zerstört wird, indem sich die beispielsweise äusserst dünnen Bleche verbiegen, was die Kompressorvorrichtung beschädigen oder zerstören könnte. Um einen sicheren Betrieb der Kompressorvorrichtung zu gewährleisten muss daher die gekapselte Vorrichtung zumindest mechanisch geschützt werden. Dies geschieht dadurch, dass sichergestellt wird, dass der Druck des Prozessgases zumindest gleich ist, vorzugsweise jedoch immer höher ist, als der Druck innerhalb der gekapselten Vorrichtung. Hierzu wird der Innenraum der gekapselten Vorrichtung Fluid leitend mit einer Druckminderungsvorrichtung verbunden, insbesondere über eine Fluid leitende Verbindungsleitung mit dem Raum ausserhalb des gasdichten Druckbehälters. In einer einfachen Ausführungsform mündet diese Verbindungsleitung direkt in die Atmosphäre, sodass sichergestellt ist, dass der Druck im Innenraum der gekapselten Vorrichtung gleich dem Atmosphärendruck ist oder nicht wesentlich über Atmosphärendruck ansteigt. In einer weiteren vorteilhaften Ausführungsform mündet die genannte Verbindungsleitung in ein ansteuerbares Ventil, um den Druckabbau, beispielsweise zur Atmosphäre, über das Ventil zu steuern. Mit Hilfe von Sensoren und einer Regelvorrichtung kann der Druck im Innenraum der gekapselten Vorrichtung und der Druck im Innenraum des Druckbehälters gemessen werden, und das Ventil beispielsweise derart betätigt werden, dass der Druck im Innenraum der gekapselten Vorrichtung immer tiefer liegt als der Druck des Prozessgases im Innenraum des Druckbehälters und beispielsweise eine konstante Druckdifferenz aufweist. In diesem Betriebsmodus ist es beispielsweise möglich, dass der Druck im Innenraum der gekapselten Vorrichtung 100 Bar beträgt, ohne dass bei einer Reduktion des Prozessdrucks das Risiko einer Explosion der gekapselten Vorrichtung besteht. Falls beispielsweise die Kompressorvorrichtung abgeschaltet werden muss, kann ein gesteuerter Dekompressionsvorgang durchgeführt werden, indem beispielsweise der Prozessdruck mit 20 Bar / Minute entlastet wird, und der Druck in der gekapselten Vorrichtung über die Druckminderungsvorrichtung ebenfalls mit dieser Rate entlastet wird, oder zumindest derart, dass der Druck innerhalb der gekapselten Vorrichtung ständig geringer ist als der Prozessdruck.The inventive compressor device has an encapsulated device, within which sensitive components such as the stator of the electric motor from the extracted gases, such as acid gases with shares of H 2 S and / or CO 2 , are protected. The encapsulated device includes encapsulation, also referred to as "can", and components disposed therein. The encapsulation is preferably designed gas-tight or approximately gas-tight. As encapsulation, for example, for the stator, preferably very thin, non-magnetizable sheets or fiber-reinforced plastics are used which have a thickness in the millimeter range, for example, a thickness in the range between 0.1 mm to 5 mm. It has surprisingly been found that during operation of the compressor device under a higher process pressure, for example when conveying a gas in the range between 1 and 150 bar, within the encapsulated device pressure can build up because the process gas by scribing, splitting or diffusion in the encapsulated device penetrates or flows in. From this creeping pressure build-up in the encapsulated device, an extremely dangerous operating condition can arise, namely when the pressure of the process gas is reduced very rapidly, for example when the compressor device has to be switched off. It could happen that the pressure in the encapsulated device exceeds the pressure of the process gas, with the result that the encapsulation is damaged or destroyed, for example, by bending the extremely thin sheets, which could damage or destroy the compressor device. In order to ensure safe operation of the compressor device, therefore, the encapsulated device must be protected at least mechanically. This is done by ensuring that the pressure of the process gas is at least equal, but preferably always higher, than the pressure within the encapsulated device. For this purpose, the interior of the encapsulated device fluidly connected to a pressure reducing device, in particular via a fluid-conducting connecting line with the space outside the gas-tight pressure vessel. In a simple embodiment, this connecting line opens directly into the atmosphere, so that it is ensured that the pressure in the interior of the encapsulated device is equal to the atmospheric pressure or does not rise significantly above atmospheric pressure. In a further advantageous embodiment, said connecting line opens into a controllable valve in order to control the pressure reduction, for example to the atmosphere, via the valve. With the help of sensors and a control device, the pressure in the interior of the encapsulated device and the pressure in the interior of the pressure vessel can be measured, and the valve, for example, be operated such that the pressure in the interior of the encapsulated device is always lower than the pressure of the process gas in Interior of the pressure vessel and, for example, has a constant pressure difference. For example, in this mode of operation, it is possible for the pressure in the interior of the encapsulated device to be 100 bar without the risk of explosion of the encapsulated device if the process pressure is reduced. For example, if the compressor device needs to be shut down, a controlled decompression operation can be performed, for example, by relieving the process pressure at 20 bar / minute, and also relieving the pressure in the encapsulated device via the pressure reduction device at that rate is, or at least such that the pressure within the encapsulated device is constantly lower than the process pressure.

Eine Druckerhöhung in einer gekapselten Vorrichtung kann nebst dem Eindringen von Gas auch durch eine Erwärmung entstehen.
Wird beispielsweise ein magnetisches Radiallager, das in einer gekapselten Vorrichtung angeordnet ist, während dem Betrieb erwärmt, so steigt der Druck in der gekapselten Vorrichtung an. Sollte sich noch Flüssigkeit, z.B. Wasser, in der gekapselten Vorrichtung befinden, so kann der Innendruck durch die Erwärmung beträchtlich ansteigen. Die erfindungsgemässe Kompressionsvorrichtung umfassend eine Druckminderungsvorrichtung sorgt auch in diesem Falle dafür, dass keine mechanische Beschädigung der gekapselten Vorrichtung auftritt.
An increase in pressure in an encapsulated device can occur in addition to the penetration of gas by heating.
For example, if a magnetic radial bearing disposed in an encapsulated device is heated during operation, the pressure in the encapsulated device increases. If there is still liquid, for example water, in the encapsulated device, the internal pressure can rise considerably as a result of the heating. The compression device according to the invention comprising a pressure reducing device also in this case ensures that no mechanical damage of the encapsulated device occurs.

Die Erfindung wird nachfolgend anhand mehrerer Ausführungbeispiele im Detail erläutert. Es zeigen schematisiert:

Fig. 1
einen Längsschnitt durch eine Kompressorvorrichtung, welche in einem Druckgehäuse angeordnet ist;
Fig. 2
einen Längsschnitt durch ein weiteres Druckgehäuse mit einer gekapselten Vorrichtung;
Fig. 3
einen Längsschnitt durch ein elektromagnetisches Radiallager;
Fig. 4
einen Querschnitt durch das in Fig. 3 dargestellte Radiallager entlang der Schnittlinie A-A;
Fig. 5
einen Längsschnitt durch eine gekapselte Vorrichtung;
Fig. 6
einen Längsschnitt mit einem Detailaspekt eines Axiallagers.
The invention is explained below with reference to several embodiments in detail. Shown schematically:
Fig. 1
a longitudinal section through a compressor device, which is arranged in a pressure housing;
Fig. 2
a longitudinal section through another pressure housing with an encapsulated device;
Fig. 3
a longitudinal section through an electromagnetic radial bearing;
Fig. 4
a cross section through the radial bearing shown in Figure 3 along the section line AA.
Fig. 5
a longitudinal section through an encapsulated device;
Fig. 6
a longitudinal section with a detail aspect of a thrust bearing.

Figur 1 zeigt eine Kompressorvorrichtung umfassend einen Radialverdichter 35 sowie eine Elektromotor 31, welche über eine gemeinsame rotierbare Welle 21 miteinander verbunden sind, welche durch Radialmagnetlager 32 drehbar gelagert sind, und welche innerhalb eines gemeinsamen Druckgehäuses 1 mit Innenraum 1a angeordnet sind. Das Druckgehäuse 1 ist vorzugsweise gasdicht und weist eine Gaseinlassleitung 2 sowie eine Gasauslassleitung 3 auf, durch welche das geförderte Gas fliesst. Im Innenraum 1a des Druckgehäuses 1 entsteht während dem Betrieb ein Prozessdruck, welcher zwischen einem Gaseinlassdruck in der Gaseinlassleitung 2 und einem Gasauslassdruck in der Gasauslassleitung 3 liegt. Ein Teil des von den Kompressorschaufeln 34 verdichteten Gases wird zur Kühlung der Kompressorvorrichtung über die Leitungen 33 dem Druckgehäuse 1 seitlich zugeleitet, und strömt innerhalb des Druckgehäuses 1 in axialer Richtung durch den Gasspalt 22 des Magnetlagers 32 bzw. des Elektromotors 31. Somit liegt am Magnetlager 32 und am Stator 31a im wesentlichen der Prozessdruck an, welcher das geförderte Gas aufweist. Zum Schutz des Stators 31a bzw. dessen schematisch dargestellten Statorspulen 6b vor einem aggressiven Gas ist dieser in einem Innenraum 6 einer gekapselten Vorrichtung 4 angeordnet. Die gekapselte Vorrichtung 4 umfasst den Innenraum 6 sowie eine dichtende Kapselung 5. Der Innenraum 6 der gekapselten Vorrichtung 4 bildet eine druckstabile Trägerstruktur, welche beispielsweise durch die Statorspulen 6b selbst ausgebildet ist, oder indem die Statorspulen 6b beispielsweise in ein druckfestes Medium eingegossen sind. Elektrokabel 28 sind über eine Kabeldurchführung 29 zur Energieversorgung der Statorspulen 6b vorgesehen. An der Oberfläche der druckstabilen Trägerstruktur liegt die Kapselung 5 auf, welche vorzugsweise aus einem dünnen Blech besteht. Das entlang des Luftspaltes 22 verlaufende Blech ist nicht magnetisierbar und weist eine Dicke im Millimeterbereich auf. Die seitlich angeordneten, radial nach aussen verlaufenden Bleche 5 können auch einen grössere Dicke, z.B. mehr als 5 mm aufweisen und stabiler ausgebildet sein. Der Innenraum 6 der gekapselten Vorrichtung 4 ist durch die Kapselung 5 sowie das Druckgehäuse 1 begrenzt und bezüglich dem Prozessgas gasdicht oder im wesentlichen gasdicht. Der Innenraum 6 ist über eine Fluid leitende Verbindungsleitung 8 mit dem Raum ausserhalb des Druckgehäuses 1 verbunden. Sollte sich im Innenraum 6 ein Innendruck aufbauen, indem das sich im Druckraum 1a befindliche Prozessgas durch Ritzen, schadhafte Stellen oder Diffusion über die Kapselung 5 in den Innenraum 6 eindringt, so kann dieser Druck dadurch abgebaut werden, dass das Gas über die Druckminderungsvorrichtung 34, in dieser Ausführung ausgestaltet als eine Verbindungsleitung 8, nach aussen zum Raum ausserhalb des Druckgehäuses 1 geleitet wird.
Nebst oder an Stelle des Elektromotors 31 können auch andere Komponenten wie die Magnetlager 32 in der bereits erläuterten gekapselten Vorrichtung 4 angeordnet sein, wobei in Figur 1 weder die elektrische Zuleitung noch die beispielsweise in ein Medium eingegossenen elektromagnetischen Spulen der Radialmagnetlager 32 dargestellt sind. Auch diese gekapselten Vorrichtungen 4 weisen eine Druckminderungsvorrichtung 34, hier als Verbindungsleitung 8 dargestellt, auf, um den Druck in der gekapselten Vorrichtung 4 zu begrenzen. Die in Figur 1 dargestellten Verbindungsleitungen 8 münden beispielsweise in die Atmosphäre.
Figure 1 shows a compressor device comprising a radial compressor 35 and an electric motor 31, which are connected to each other via a common rotatable shaft 21 which are rotatably supported by radial magnetic bearings 32, and which are arranged within a common pressure housing 1 with interior 1a. The pressure housing 1 is preferably gas-tight and has a gas inlet line 2 and a gas outlet line 3, through which flows the pumped gas. During operation, a process pressure, which lies between a gas inlet pressure in the gas inlet line 2 and a gas outlet pressure in the gas outlet line 3, arises in the interior 1a of the pressure housing 1. A portion of the gas compressed by the compressor blades 34 is supplied to the compressor housing 1 for cooling the compressor device via the lines 33, and flows within the pressure housing 1 in the axial direction through the gas gap 22 of the magnetic bearing 32 and the electric motor 31. Thus lies the magnetic bearing 32 and on the stator 31a substantially the process pressure, which has the conveyed gas. To protect the stator 31a or its stator coils 6b, shown schematically, from an aggressive gas, it is arranged in an interior 6 of an encapsulated device 4. The encapsulated device 4 comprises the inner space 6 and a sealing encapsulation 5. The inner space 6 of the encapsulated device 4 forms a pressure-stable support structure which is formed, for example, by the stator coils 6b themselves or by the stator coils 6b, for example are poured into a pressure-resistant medium. Electric cables 28 are provided via a cable feedthrough 29 for supplying power to the stator coils 6b. On the surface of the pressure-stable support structure is the encapsulation 5, which preferably consists of a thin sheet. The sheet extending along the air gap 22 is not magnetizable and has a thickness in the millimeter range. The laterally arranged, radially outwardly extending sheets 5 may also have a greater thickness, for example more than 5 mm and be made more stable. The interior 6 of the encapsulated device 4 is limited by the encapsulation 5 and the pressure housing 1 and gas-tight or substantially gas-tight with respect to the process gas. The interior 6 is connected via a fluid-conducting connecting line 8 with the space outside the pressure housing 1. Should an internal pressure build up in the interior 6, in that the process gas located in the pressure chamber 1a penetrates into the interior 6 through scratches, defective locations or diffusion via the encapsulation 5, then this pressure can be reduced by virtue of the pressure being released via the pressure reduction device 34, designed in this embodiment as a connecting line 8, to the outside to the space outside the pressure housing 1 is passed.
In addition to or instead of the electric motor 31, other components such as the magnetic bearings 32 can be arranged in the previously described encapsulated device 4, wherein in Figure 1, neither the electrical supply nor the example embedded in a medium electromagnetic coils of the radial magnetic bearing 32 are shown. These encapsulated devices 4 also have a pressure reducing device 34, here shown as connecting line 8, in order to increase the pressure in the encapsulated device 4 limit. The connecting lines 8 shown in Figure 1, for example, open into the atmosphere.

Das in Figur 2 schematisch dargestellte Druckgehäuse 1 umfasst unterschiedliche Ausführungsformen von Druckminderungsvorrichtungen 37 zur Begrenzung des Druckes im Innenraum 6 der gekapselten Vorrichtung 4. Die Druckminderungsvorrichtung 37 umfasst ein ansteuerbares, betätigbares Ventil 9, um den Druck im Innenraum 6 ansteuerbar zu reduzieren. Eine einfache Möglichkeit ein Eindringen von Prozessgas in den Innenraum 6 der gekapselten Vorrichtung 4 festzustellen besteht darin, im Innenraum 6 einen Gassensor 15 anzuordnen, dessen Signal über eine elektrische Leitung 13 einer Regelvorrichtung 14 zugeführt ist. Sobald der Gassensor 15 das Prozessgas detektiert, ist zu erwarten, dass im Innenraum 6 ein Druckanstieg erfolgte. Die Regelvorrichtung 14 könnte beispielsweise ein Alarmsignal auslösen um das Ventil 9 manuell zu öffnen, oder das Ventil 9 automatisch öffnen, und den an der Verbindungsleitung 8 anstehenden Druck über die Leitung 10 abzulassen. Der Leitung 10 könnte auch ein Vent oder Flair nachgeordnet sein, um das unter Druck stehende Gas in die Atmosphäre abzugeben.
Eine weitere Möglichkeit ein Eindringen von Prozessgas in den Innenraum 6 der gekapselten Vorrichtung 4 festzustellen besteht darin, im Innenraum 6 den Druck mit einem Sensor 11 zu messen.
In einer weiteren Ausführungsform könnte zusätzlich noch mit einem Sensor 12 der Prozessdruck und/oder mit einem Sensor 26 der Umgebungsdruck gemessen und der Regelvorrichtung 14 zugeführt werden. Das Ventil 9 wird von der Regelvorrichtung 14 beispielsweise derart betätigt, dass der Druck im Innenraum 6 der gekapselten Vorrichtung 4 immer unterhalb dem im Innenraum 1a des Druckgehäuses 1 anliegenden Prozessdruck liegt, bzw. dass der Druck im Innenraum 6 tiefer ist als im Innenraum 1a.
Eine weitere Möglichkeit den Druck im Innenraum 6 der gekapselten Vorrichtung 4 zu reduzieren besteht darin, einen Pufferbehälter 16 vorzusehen, welcher über die Druckminderungsvorrichtung 37 Fluid leitend mit dem Innenraum 6 verbindbar ist. Der Pufferbehälter 16 könnte innerhalb oder ausserhalb des Druckgehäuses 1 angeordnet sein. Im Beispiel gemäss Figur 2 könnte die Druckminderungsvorrichtung 37 die Verbindungsleitungen 8 und 10, das Ventil 9 sowie die Leitung 20 und den Pufferbehälter 16 umfassen, welche Fluid leitend verbindbar sind. Der Pufferbehälter 16 weist zudem eine flexible und dichte Membran 17 auf, und ist über eine Leitung 19 und eine Durchbrechung 18 mit dem Innenraum 1a des Druckgehäuses 1 verbunden ist. Mit dieser Druckminderungsvorrichtung 37 kann durch eine entsprechende Ansteuerung des Ventils 9 sichergestellt werden, dass der Druck innerhalb des Innenraumes 6 nicht über den Druck im Innenraum 1a ansteigt sondern maximal den gleichen Wert wie im Innenraum 1a aufweist. Dies ist insbesondere wichtig, wenn der Druck im Innenraum 1a sinkt.
Das Ventil 9 oder auch die gesamte Druckminderungsvorrichtung 37 kann innerhalb des Druckgehäuses 1 angeordnet sein, oder wie in Figur 2 dargestellt, im wesentlichen ausserhalb des Druckgehäuses 1 angeordnet sein.
Die Leitung 19 des Pufferbehälters 16 könnte auch, an Stelle der Verbindung in den Druckbehälter 1, einen Auslass in die Umgebung bilden, beispielsweise in die Atmosphäre oder in das den Druckbehälter 1 umgebende Wasser. Der Druckbehälter 1 sowie die darin angeordneten Komponeten sind insbesondere auch zum Betrieb unter Wasser geeignet.
The pressure housing 1 shown schematically in Figure 2 includes different embodiments of pressure reducing devices 37 for limiting the pressure in the interior 6 of the encapsulated device 4. The pressure reducing device 37 includes a controllable, actuatable valve 9 to reduce the pressure in the interior 6 controllably. A simple way to detect penetration of process gas into the interior 6 of the encapsulated device 4 is to arrange a gas sensor 15 in the interior 6, the signal is fed via an electrical line 13 to a control device 14. As soon as the gas sensor 15 detects the process gas, it is to be expected that an increase in pressure took place in the interior 6. The control device 14 could, for example, trigger an alarm signal to manually open the valve 9, or automatically open the valve 9, and release the pressure applied to the connecting line 8 via the line 10. The conduit 10 could also be followed by a vent or flair to release the pressurized gas into the atmosphere.
Another way to determine the penetration of process gas into the interior 6 of the encapsulated device 4 is to measure the pressure in the interior 6 with a sensor 11.
In a further embodiment, the process pressure could additionally also be measured with a sensor 12 and / or the ambient pressure could be measured with a sensor 26 and supplied to the regulating device 14. The valve 9 is actuated by the control device 14, for example, such that the pressure in the interior 6 of the encapsulated device 4 is always below that in the interior of the 1a Pressure housing 1 adjacent process pressure is, or that the pressure in the interior 6 is deeper than in the interior 1a.
Another way to reduce the pressure in the interior 6 of the encapsulated device 4 is to provide a buffer tank 16, which is fluidly connected via the pressure reducing device 37 with the interior 6. The buffer tank 16 could be arranged inside or outside the pressure housing 1. In the example according to FIG. 2, the pressure reducing device 37 could comprise the connecting lines 8 and 10, the valve 9 as well as the line 20 and the buffer container 16, which can be fluidly connected to be fluid. The buffer container 16 also has a flexible and sealed membrane 17, and is connected via a line 19 and an opening 18 with the interior 1a of the pressure housing 1. With this pressure reducing device 37 can be ensured by a corresponding control of the valve 9, that the pressure within the inner space 6 does not rise above the pressure in the interior 1a and maximally has the same value as in the interior 1a. This is particularly important when the pressure in the interior 1a decreases.
The valve 9 or the entire pressure reducing device 37 may be disposed within the pressure housing 1, or as shown in Figure 2, be arranged substantially outside the pressure housing 1.
The conduit 19 of the buffer tank 16 could also, instead of the connection in the pressure vessel 1, form an outlet into the environment, for example into the atmosphere or into the water surrounding the pressure vessel 1. The pressure vessel 1 and the components arranged therein are particularly suitable for operation under water.

Figur 3 zeigt eine gekapselte Vorrichtung 4 welche im wesentlichen ein Radialmagnetlager 32 umfasst, welches im Innenraum 6 angeordnet ist und von der Kapselung 5 umgeben ist. Der Innenraum 6 ist über die als Verbindungsleitung 8 ausgestaltete Druckminderungsvorrichtung 37 und die Durchbrechung 7 mit dem Raum ausserhalb des Druckgehäuses 1 verbunden. Die rotierbare Welle 21 ist unter Ausbildung eines Gasspaltes 22 berührungslos vom Radialmagnetlager 32 gehalten.FIG. 3 shows an encapsulated device 4 which essentially comprises a radial magnetic bearing 32, which is arranged in the interior 6 and is surrounded by the encapsulation 5. The interior 6 is connected via the designed as a connecting line 8 pressure reducing device 37 and the opening 7 with the space outside of the pressure housing 1. The rotatable shaft 21 is held without contact by the radial magnetic bearing 32 with the formation of a gas gap 22.

Figur 4 zeigt das mit Figur 3 beschriebene Radialmagnetlager 32 in einem Querschnitt entlang der Schnittlinie A-A.FIG. 4 shows the radial magnetic bearing 32 described in FIG. 3 in a cross section along the section line A-A.

Figur 5 zeigt eine gekapselte Vorrichtung 4 mit einer Druckminderungsvorrichtung 37 umfassend zwei getrennten Verbindungsleitungen 8. Mit Hilfe eines Vorratsbehälters 27 wird über die eine Verbindungsleitung 8 ein Spühlgas, zum Beispiel Stickstoff, dem Innenraum 6 zugeleitet, und über die zweite Verbindungsleitung 8 wieder abgezogen und beispielsweise an die Umgebung entlassen. Der Innenraum 6 weist nicht dargestellte Fluidleitkanäle auf, welche vorzugsweise derart angeordnet und ausgestaltet sind, dass der Innenraum 6 homogen durchströmt wird. Dieses Spühlen dient dazu schädliche chemische Substanzen aus dem Innenraum 6 zu entfernen, um beispielsweise die sich im Innenraum 6 befindlichen elektrischen Spulen und Magnete vor chemischen Einwirkungen zu schützen.Figure 5 shows an encapsulated device 4 with a pressure reducing device 37 comprising two separate connecting lines 8. With the help of a reservoir 27, a spewing gas, for example nitrogen, the interior 6 is supplied via the connecting line 8, and withdrawn via the second connecting line 8 again and for example released to the environment. The interior 6 has not shown Fluidleitkanäle, which are preferably arranged and configured such that the inner space 6 is flowed through homogeneously. This scavenging is used to remove harmful chemical substances from the interior 6, for example, to protect the located in the interior 6 electrical coils and magnets from chemical agents.

Figur 6 zeigt schematisch ein sich im Druckgehäuse 1 befindliches Axiallager mit einer Scheibe 36, welches zwischen zwei gekapselten Vorrichtungen 4 enthaltend Elektromagnete angeordnet ist, um die rotierbare Welle 21 in einer vorgebbaren Position zu halten. Die gekapselte Vorrichtung 4 ist vollständig innerhalb des druckbeaufschlagten Raumes 1a angeordnet, d.h. dem Prozessgas ausgesetzt, wobei auch diese gekapselte Vorrichtung 4 über als Verbindungsleitungen 8 ausgestaltete Druckminderungsvorrichtungen 37 Fluid leitend mit dem Raum ausserhalb des Druckgehäuses 1 verbunden ist.FIG. 6 shows schematically a thrust bearing located in the pressure housing 1 with a disk 36 which is arranged between two encapsulated devices 4 containing electromagnets around which rotatable shaft 21 to keep in a predetermined position. The encapsulated device 4 is arranged completely inside the pressurized space 1a, ie exposed to the process gas, whereby this encapsulated device 4 is also fluidly connected to the space outside the pressure housing 1 via pressure reducing devices 37 designed as connecting lines 8.

Die in den Figuren 1 und 3 bis 6 dargestellten Druckminderungsvorrichtungen 37 könnten natürlich auch in den unterschiedlichen, in Figur 2 dargestellten Ausführungsformen ausgebildet sein.Of course, the pressure reducing devices 37 illustrated in FIGS. 1 and 3 to 6 could also be formed in the different embodiments illustrated in FIG.

Das erfindungsgemässe Verfahren zum Betrieb einer Kompressionsvorrichtung mit einem Radialverdichter 35 zum Komprimieren eines Gases, einem Elektromotor 31 zum Antrieb des Radialverdichters 35 sowie einer gekapselten Vorrichtung 4 wird derart durchgeführt, dass der Druck im Innenraum 6 der gekapselten Vorrichtung 4 derart beeinflusst wird, dass dieser in allen Betriebszuständen der Kompressionsvorrichtung kleiner oder gleich des innerhalb des Druckgehäuses 1 anliegenden Prozessdruckes der Kompressionsvorrichtung gehalten wird.The inventive method for operating a compression device with a centrifugal compressor 35 for compressing a gas, an electric motor 31 for driving the centrifugal compressor 35 and an encapsulated device 4 is performed such that the pressure in the interior space 6 of the encapsulated device 4 is influenced such that this in all operating states of the compression device is kept smaller than or equal to the voltage applied within the pressure housing 1 process pressure of the compression device.

Claims (18)

  1. Compressor apparatus comprising a radial compressor (35) for the compression of a gas and also an electric motor (31) for driving the radial compressor (35) wherein the radial compressor (35) and the electric motor (31) are arranged in a pressure housing (1) which is provided with a gas inlet duct (2) and also a gas outlet duct (3) and also comprising an encapsulated apparatus (4) with an inner space (6) arranged in the pressure housing (1), characterized in that the inner space (6) being fluid conductingly connected to a pressure reducing apparatus (37), and that the pressure reducing apparatus (37) is built to be able to let off fluid from the inner space (6) in order to cause a pressure reduction within the inner space (6).
  2. Compressor apparatus in accordance with claim 1, characterized in that the pressure reducing apparatus (37) consists at least of a connection line (8) to the space outside of the pressure housing (1).
  3. Compressor apparatus in accordance with claim 1 or 2, characterized in that the pressure reduction apparatus (37) has a fluid conducting connection which opens into the atmosphere.
  4. Compressor apparatus in accordance with one of the proceeding claims, characterized in that the pressure reducing apparatus (37) contains a buffer container (16) which is fluid conductingly connectable to the inner space (6).
  5. Compressor apparatus in accordance with one of the proceeding claims, characterized in that the pressure reducing apparatus (37) includes an actuatable valve (9) in order to controllably reduce the pressure in the inner space (6).
  6. Compressor apparatus in accordance with claim 5, characterized in that the pressure reducing apparatus (37) includes a sensor (11, 13) for the determination of the pressure in the encapsulated apparatus (4) and also a regulating apparatus (14), with the regulating apparatus (14) detecting a sensor value, comparing this with a desired value and if required actuating the valve (9) and/or activating an alarm.
  7. Compressor apparatus in accordance with claim 6, characterized in that a sensor (12) is additionally provided for the measurement of a process pressure and/or that a sensor (26) is provided for the measurement of an environmental pressure, and in that the sensor (12,26) is connected to the regulating apparatus (14).
  8. Compressor apparatus in accordance with one of the proceeding claims, characterized in that the encapsulated apparatus (4) has a pressure stable support structure on which an encapsulation (5) lies.
  9. Compressor apparatus in accordance with one of the proceeding claims, characterized in that a stator (31a) of the electric motor (31) or a stator of a magnetic bearing (32) is arranged in the encapsulated apparatus (4).
  10. Compressor apparatus in accordance with claim 1, characterized in that the encapsulated apparatus (4) is partly bounded by the inner wall of the pressure housing (1).
  11. Compressor apparatus in accordance with one of claims 1 to 9, characterized in that the encapsulated apparatus (4) is completely arranged within a pressure loaded space (1a).
  12. Compressor apparatus in accordance with claim 4, characterized in that the buffer container (16) is arranged outside of the pressure housing (1).
  13. Compressor apparatus in accordance with claim 4, characterized in that the buffer container (16) is fluid conductingly connected to the inner space (1a) of the pressure housing (1).
  14. Compressor apparatus in accordance with one of the proceeding claims, characterized in that the pressure reducing apparatus (37) has at least two separate connection lines (8) which open to the space outside of the gas-tight pressure housing (11) in order to direct a flushing gas through the encapsulated apparatus (4).
  15. Method for the operation of a compression apparatus including a radial compressor (35) for the compression of a gas and also an electric motor (31) for the driving of the radial compressor (35), wherein the radial compressor (35) and the electric motor (31) are arranged in a pressure housing (1), with the pressure housing (1) being provided with a gas inlet duct (2) and also a gas outlet duct (3) and with an encapsulated apparatus (4) with an inner space (6) being arranged within the pressure housing (1), characterized in that the pressure in the inner space (6) of the encapsulated apparatus (4) is influenced in such a way that it is kept smaller or equal to the process pressure of the compression apparatus applied within the pressure housing (1) in all operating states of the compression apparatus.
  16. Method in accordance with claim 15, characterized in that the pressure in the encapsulated apparatus (4) is kept to a smaller value than the applied process pressure.
  17. Method in accordance with claim 15 or 16, characterized in that the pressure in the inner space of the encapsulated apparatus (4) and also the process pressure is measured and the pressure in the inner space of the encapsulated apparatus (4) is regulated in a predeterminable relation to the process pressure by appropriate controlling of a valve (9).
  18. Method in accordance with one of claims 15 to 17, characterized in that a flushing gas is supplied to the encapsulated apparatus (4) in order to clean its inner space from chemical contaminations.
EP04405421A 2003-07-05 2004-07-05 Compressor apparatus and method of its operation Expired - Lifetime EP1482179B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04405421A EP1482179B1 (en) 2003-07-05 2004-07-05 Compressor apparatus and method of its operation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405502 2003-07-05
EP03405502 2003-07-05
EP04405421A EP1482179B1 (en) 2003-07-05 2004-07-05 Compressor apparatus and method of its operation

Publications (2)

Publication Number Publication Date
EP1482179A1 EP1482179A1 (en) 2004-12-01
EP1482179B1 true EP1482179B1 (en) 2006-12-13

Family

ID=33133025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04405421A Expired - Lifetime EP1482179B1 (en) 2003-07-05 2004-07-05 Compressor apparatus and method of its operation

Country Status (1)

Country Link
EP (1) EP1482179B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508101B2 (en) 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
WO2009068407A1 (en) 2007-11-30 2009-06-04 Siemens Aktiengesellschaft Method for operating a compressor device and associated compressor device
EP2113671A1 (en) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
EP2290241A1 (en) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
EP2295811A1 (en) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
EP2315946A1 (en) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluid energy machine
EP2462350A1 (en) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turbocompressor system
EP2469100A1 (en) 2010-12-22 2012-06-27 Thermodyn Motorcompressor unit with torsionally flexible coupling placed in a hollow shaft of the compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2410572C2 (en) * 2006-03-24 2011-01-27 Сименс Акциенгезелльшафт Compressor air unit
DE102006049326A1 (en) * 2006-10-19 2008-04-30 Siemens Ag Encapsulated electric machine with liquid-cooled stator
WO2012166325A1 (en) * 2011-05-31 2012-12-06 Carrier Corporation Compressor windage mitigation
DE102013214911A1 (en) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Underwater compressor for compressing a gas under water and using the underwater compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698917A (en) * 1995-09-25 1997-12-16 Glacier Rpb Inc. Electromagnetic bearing with a stationary armature canning arrangement
EP1074746B1 (en) * 1999-07-16 2005-05-18 Man Turbo Ag Turbo compressor
NL1018212C2 (en) * 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressor unit comprising a centrifugal compressor and an electric motor.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508101B2 (en) 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
WO2009068407A1 (en) 2007-11-30 2009-06-04 Siemens Aktiengesellschaft Method for operating a compressor device and associated compressor device
EP2113671A1 (en) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
EP2315946A1 (en) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluid energy machine
EP2295811A1 (en) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
US8632320B2 (en) 2009-07-10 2014-01-21 Nuovo Pignone S.P.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
EP2290241A1 (en) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
US8801398B2 (en) 2009-07-13 2014-08-12 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
EP2462350A1 (en) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turbocompressor system
US9470238B2 (en) 2009-08-03 2016-10-18 Atlas Copco Airpower, Naamloze Vennootschap Electric motor having segmented stator windings
EP2469100A1 (en) 2010-12-22 2012-06-27 Thermodyn Motorcompressor unit with torsionally flexible coupling placed in a hollow shaft of the compressor

Also Published As

Publication number Publication date
EP1482179A1 (en) 2004-12-01

Similar Documents

Publication Publication Date Title
EP1482179B1 (en) Compressor apparatus and method of its operation
US7244111B2 (en) Compressor apparatus and method for the operation of the same
DE1811100A1 (en) Device for lubricating a bearing for use in an enclosed motor pump or an enclosed motor agitator
EP3539911A1 (en) Installation for conveying pasty material
EP3363600B1 (en) Device and method for receiving an adhesive application unit
EP1087144B1 (en) Tandem mechanical seal for cryogenic pumps
EP1634029A1 (en) Rotating heat exchanger and method for sealing the same
DE69209746T2 (en) Method and device for controlling a pump system and detection element for such a system
DE3545713A1 (en) Split-cage pump for delivering high-strength acids, especially 98% nitric acid
DE29521615U1 (en) Pipeline for sewage systems
DE2736116A1 (en) SELF-PRIMING CENTRIFUGAL PUMP
EP0964739A1 (en) Process and devices for enriching a liquid with a gas, preferably for enriching water with oxygen
DE69010311T2 (en) Device for discharging into the atmosphere of a warm liquid flow released by an aircraft pressure relief valve.
EP2820247B1 (en) Sealing arrangement, a conveying device having a sealing arrangement and a method for operating the sealing arrangement
DE102015206744A1 (en) Method for drying a gas space and arrangement comprising a protective gas-filled gas space
EP0990798A1 (en) Turbo compressor
EP0587147B1 (en) Installation and method for the biological treatment of organic substances
DE10007960C2 (en) Water-cooled roller press for powdery material
DE102007059257A1 (en) Arrangement with vacuum pump
DE3814276C2 (en)
DE10214025A1 (en) Method for manufacturing sealed locking device, in particular electronic key for motor vehicles
EP1654097A1 (en) Cutting and transport cylinder in a winding device for winding material webs
DE3719041C2 (en)
DE19814728A1 (en) Peristaltic pump and use for a transport hose with safety channel
AT410060B (en) Slicer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17Q First examination report despatched

Effective date: 20050124

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG SCHWEIZ

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004002264

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070324

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

BERE Be: lapsed

Owner name: MAN TURBO A.G. SCHWEIZ

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070710

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070705

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070731

Year of fee payment: 4