EP1482153B1 - Moteur à combustion et méthode de commande de la quantité d'air et d'EGR - Google Patents

Moteur à combustion et méthode de commande de la quantité d'air et d'EGR Download PDF

Info

Publication number
EP1482153B1
EP1482153B1 EP03011893A EP03011893A EP1482153B1 EP 1482153 B1 EP1482153 B1 EP 1482153B1 EP 03011893 A EP03011893 A EP 03011893A EP 03011893 A EP03011893 A EP 03011893A EP 1482153 B1 EP1482153 B1 EP 1482153B1
Authority
EP
European Patent Office
Prior art keywords
intake
air
dem
mass flow
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03011893A
Other languages
German (de)
English (en)
Other versions
EP1482153A1 (fr
Inventor
Hans Bernler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE60311235T priority Critical patent/DE60311235T2/de
Priority to EP03011893A priority patent/EP1482153B1/fr
Publication of EP1482153A1 publication Critical patent/EP1482153A1/fr
Application granted granted Critical
Publication of EP1482153B1 publication Critical patent/EP1482153B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a combustion engine according to the preamble of claim 1.
  • the invention relates to a combustion engine provided with means for controlling the rate of exhaust feed back (EGR) into said intake conduit of the combustion engine.
  • the means for controlling the exhaust feed back includes a regulator unit.
  • the invention relates to a combustion engine further provided with means for controlling the air mass flowing into an intake conduit of a combustion engine.
  • the means for controlling the air mass flow includes a second regulator unit
  • the invention relates to a method for controlling a combustion engine according to the preamble of claim 12.
  • the invention relates to a method for controlling the rate of exhaust feed back (EGR) into said intake conduit of the combustion engine.
  • the method includes control of exhaust feed back by an EGR regulator unit.
  • the invention relates to a method for controlling a combustion engine in which in addition to control of the EGR rate, the air mass flowing into an intake conduit of a combustion engine is controlled by control of an intake air-regulating valve by a second regulator unit.
  • exhaust feed back is provided.
  • Exhaust feedback is arranged by leading a portion of the exhaust generated in the combustion process in a combustion chamber of the engine back into the intake conduit of the engine.
  • an exhaust feed back valve can be arranged in an exhaust gas feed back line connecting the intake conduit with an exhaust conduit connected to the engine.
  • US 6109249 describes a system for determining the air mass flow and the EGR mass flow into a combustion chamber.
  • the system operates by performing calculations of the mass flow through a throttle valve and the mass flow through an EGR valve.
  • the mass flow through the EGR valve is determined inter alia from a signal indicating the position for the EGR valve. It has shown that the suggested system does not provide a system which controls the intake air mass flow and the EGR rate in a stable way.
  • An object of the invention is to provide a method for controlling a combustion engine, which provides stable control of the intake air mass flow and the EGR rate and which does not require excessive calculations.
  • a general problem of controlling air mass flow and EGR is that the air mass flow and EGR are different in different working points and are going to be changed at the same time.
  • a mass flow sensor measures the air supplied into the engine, whereas the intake pressure depends on the EGR rate, when the mass flow is known. Measuring of the intake conduit pressure therefore provides indirectly the corresponding EGR rate.
  • the air mass flow and the EGR rate are both controlled by the EGR-valve and the intake throttle valve.
  • the object of the invention is to control these two variables with a short response time and in a stable manner.
  • an EGR regulator unit is arranged to control the amount of exhaust gas feedback by controlling the pressure in the intake conduit, said EGR regulator unit is arranged to control the exhaust feedback valve in dependence of an input signal representing the pressure measured by said intake pressure meter and a set point signal representing the desired intake pressure.
  • the intake throttle is controlled by a second regulator unit, which is arranged to control the intake throttle in dependence of an input signal representing an air mass flow measured by an air mass flow meter positioned in the intake conduit and a set point signal representing a requested air mass flow.
  • the invention contemplates the use of a desired intake pressure which is dependent on said requested air mass flow and an amount of exhaust gas corresponding to a steady state amount of exhaust gas present at a requested intake pressure.
  • the second regulator unit ensures that the air mass flow into the intake conduit corresponds to a requested amount being dependent upon engine operating conditions while the EGR regulator unit makes sure that the EGR rate as well as possible corresponds to a requested exhaust gas feed back level.
  • the EGR regulator unit is arranged to control the exhaust feedback valve in dependence of an input signal representing the pressure measured by said intake pressure meter and a set point signal representing the desired intake pressure, where the desired intake pressure is dependent on said measured air mass flow and an amount of exhaust gas corresponding to a steady state amount of exhaust gas present at a requested intake pressure.
  • the intake conduit has a control volume V man , a temperature T man and an intake pressure P man .
  • a mass m in is flowing into the control volume V man , which corresponds to at least the part of the intake conduit positioned downstream of an opening leading into an exhaust return line.
  • the mass m in includes the mass generated from the air flow m air and the exhaust gas m egr .
  • a mass m out is flowing out from the control volume V man .
  • the analysis is performed under the assumption that the control process is a batch process rather than a continuous process. Therefore a mass difference can be used instead of the time derivative of the mass in a control volume. Since the operation of a piston engine rather resembles a batch process than a continuous process, it has shown that use of a batch process model provides more accurate estimation of the condition in the intake conduit.
  • the final state corresponds to requested values of air mass flow, intake pressure and EGR from an engine control unit, which is arranged to provide operating conditions for the engine such that requested engine output power at a given engine speed can be obtained.
  • the final state is defined by the following variables:
  • the object of the invention is to provide a set point signal representing a desired intake pressure P intake,DynDem , which provides an EGR target value m EGR,taget .
  • the EGR target value m EGR,target is not the same as the stationary EGR mass flow m EGR,Stat at the requested operating point, instead the EGR target value m EGR,target is a function of the measured intake air mass flow m air and the stationary EGR mass flow m EGR,stat at the requested operating point.
  • the mass m in includes the mass generated from the air flow, m air , and the exhaust gas m EGR .
  • the EGR target value m EGR,target is used.
  • the mass m out flowing out from the control volume V man is set to be a function of the intake pressure P intake and the requested intake mass flow m air,Dem .
  • FIG. 1 shows a simplified schematic diagram of a compression ignition engine system 10 equipped with an exhaust gas recirculation (EGR) system 12 and a turbocharger 14.
  • EGR exhaust gas recirculation
  • the invention may also be used in other types of combustion engines such as engines being loaded from a compressor or naturally aspirating combustion engines.
  • a representative engine block 16 is shown having four combustion chambers 18. Each of the combustion chambers 18 includes a direct-injection fuel injector 20.
  • the duty cycle of the fuel injectors 20 is determined by the engine control unit (ECU) 24 and transmitted along signal line 22. Air enters the combustion chambers 18 through the intake conduit 26, which is in the form of an intake manifold, and combustion gases are exhausted through the exhaust manifold 28 in the direction of arrow 30.
  • the engine is equipped with an EGR system 12.
  • the EGR system 12 comprises a conduit 32 forming an exhaust gas feedback line and connecting the exhaust manifold 28 to the intake conduit 26. This allows a portion of the exhaust gases to be circulated from the exhaust manifold 28 to the intake conduit 26 in the direction of arrow 31.
  • the EGR system further includes means 12A for controlling exhaust gas feedback.
  • the means for controlling exhaust gas feedback includes an exhaust feedback flow control device 34 arranged in the exhaust gas feedback line and an EGR regulator unit 56.
  • the exhaust feedback flow control device such as an EGR valve 34 regulates the amount of exhaust gas recirculated from the exhaust manifold 28.
  • the recirculated exhaust gas acts as an inert gas, thus lowering the flame and in-cylinder gas temperature and decreasing the formation of NOx.
  • the recirculated exhaust gas displaces fresh air and reduces the air-to-fuel ratio of the in-cylinder mixture.
  • the turbocharger 14 uses exhaust gas energy to increase the mass flow of the air charge delivered to the engine combustion chambers 18.
  • the exhaust gas flowing in the direction of arrow 30 drives the turbocharger 14. This larger mass of air can be burned with a larger quantity of fuel, resulting in more torque and power as compared to naturally aspirated, non-turbocharged engines.
  • the turbocharger 14 consists of a compressor 36 and a turbine 38 coupled by a common shaft 40.
  • the exhaust gas 30 drives the turbine 38 which drives the compressor 36 which, in turn, compresses ambient air 42 and directs it (arrow 43) into the intake conduit 26.
  • an intake air regulating means 44 for example an intake air regulating valve is provided in the intake manifold 26 at a position downstream of the compressor 36.
  • the intake air regulating valve 44 is controlled by a second regulator unit 46 which is arranged to control the intake air regulating valve 44 in dependence upon an input signal 48 representing an air mass flow measured by an air mass flow meter 50 provided in the intake conduit upstream of the compressor 36.
  • the second regulator unit receives a set point signal 52 representing a requested air mass flow from a set of maps 54 provided in the engine control unit 24.
  • the set of maps 54 are arranged to provide operating conditions for the engine such that requested engine output power at a given engine speed can be obtained.
  • the EGR regulator unit 56 is arranged to control the position of the exhaust feedback valve 34.
  • the EGR regulator unit 56 receives an input signal 58 representing the pressure measured by an intake pressure meter 60 arranged in the intake conduit 26 at a position downstream of an orifice 62 where the exhaust feedback line 32 is connected to the intake conduit 26.
  • the EGR regulator unit 56 receives a set point signal 63 representing the desired intake pressure.
  • the desired intake pressure is calculated in a function block 64, which uses information from the set of maps 54 provided in the engine control unit. The calculation is performed according to what has been previously presented in the application.
  • the function block is provided with an input signal 66 representing the temperature measured by a temperature sensor 68 in the intake conduit 26.
  • Additional sensory inputs are also be received by the ECU along signal line 70 such as engine coolant temperature, engine speed, and throttle position. Additional operator inputs 72 are received along signal 74 such as the accelerator pedal position.
  • Figure 2 shows a flowchart for controlling the intake air regulating valve 44.
  • the second regulator unit 46 receives an input signal from an air mass flow meter 50.
  • the second regulator unit 46 receives a set point signal corresponding to a requested air flow.
  • the difference between the actual air flow and the requested airflow is calculated and in a fourth method step 106 a set point signal 76 for the valve position is generated and transmitted to a valve actuator 78 arranged in the valve.
  • the regulator and valve actuator are of conventional type and several types of arrangements are known to a person skilled in the art.
  • FIG. 3 shows a flowchart for controlling the EGR valve 34.
  • the EGR regulator unit 56 receives an input signal from a pressure sensor 60.
  • the EGR regulator unit 56 receives a set point signal corresponding to a desired intake pressure.
  • the desired intake pressure is calculated in the first function block 64.
  • the difference between the actual pressure and the desired pressure is calculated and in a fifth method step 116 a set point signal 57 for the valve position is generated and transmitted to a valve actuator 59 arranged in the valve.
  • the regulator and valve actuator are of conventional type and several types of arrangements are known to a person skilled in the art.
  • the two control routines described in relation to figure 2 and 3 are simultaneously running.
  • the air mass flow is thereby regulated by a second regulator unit which is controls the intake air regulating valve in dependence upon an input signal representing an air mass flow measured by an air mass flow meter and a set point signal representing a requested air mass flow.
  • an EGR regulator unit controls the pressure in the intake conduit at a position downstream of the air mass flow regulating valve.
  • the EGR regulator unit regulates the pressure, and thereby the amount of EGR, using an input signal representing the pressure measured by an intake pressure meter and set point signal representing the desired intake pressure.
  • the pressure in the intake conduit is thus controlled by controlling exhaust gas feed back by regulating an exhaust feedback valve arranged in an exhaust gas feed back line in dependence upon an input signal representing the pressure measured by an intake pressure meter and set point signal representing the desired intake pressure.
  • the desired intake pressure is dependent on said measured air mass flow and an amount of exhaust gas corresponding to a steady state amount of exhaust gas present at a requested intake pressure.
  • the invention shall not be restricted to the embodiments described herein, but can be varied within the scope of the claim.
  • the invention can be used also on naturally aspirating engines, on combustion engines of the Otto type having ignition means provided in the combustion chambers and port injection can be used instead of direct injection.
  • the intake air regulating means can be provided in the form of variable geometry turbo charger instead of a throttle valve as suggested above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (22)

  1. Moteur à combustion (10) comprenant au moins une chambre de combustion (18) reliée à un conduit d'admission (26) pour délivrer de l'air à ladite au moins une chambre de combustion (18) ;
    - une ligne d'alimentation en retour des gaz d'échappement (32) reliée au dit conduit d'admission (26) pour l'alimentation en retour des gaz d'échappement ; et
    - des moyens pour commander l'alimentation en retour des gaz d'échappement comprenant : un dispositif de contrôle de débit d'alimentation en retour des gaz d'échappement (34) agencé dans la ligne d'alimentation en retour des gaz d'échappement (32) et une unité de régulation (56),
    dans lequel ladite unité de régulation (56) est agencée pour commander ledit dispositif de contrôle de débit d'alimentation en retour des gaz d'échappement (34) en fonction d'une pression d'admission (Pman) dans ledit conduit d'admission (26) en aval de ladite ligne d'alimentation en retour des gaz d'échappement (32) et d'un signal de point de consigne représentant une pression d'admission désirée à un point de fonctionnement donné dans des conditions dynamiques (Padmission, DynDem),
    caractérisé en ce que ladite pression d'admission désirée (Padmission,DynDem) est dépendante d'un débit d'air massique (mair) dans ledit moteur et d'une quantité (mEGR,Stat) d'alimentation en retour des gaz d'échappement correspondant à une quantité de régime permanent d'alimentation en retour des gaz d'échappement à une pression d'admission demandée au même point de fonctionnement mais dans des conditions stationnaires (Padmission, Dem).
  2. Moteur à combustion selon la revendication 1, caractérisé en ce que le moteur comprend en outre :
    - des moyens pour commander le débit d'air massique d'admission comprenant : un moyen de régulation d'air d'admission (44) agencé dans le conduit d'admission (26), un dispositif de mesure de débit d'air massique (50) positionné dans le conduit d'admission (26), une deuxième unité de régulateur (46) qui est agencée pour commander les moyens de régulation d'air d'admission (44) en fonction d'un signal d'entrée représentant un débit d'air massique (mair) mesuré par ledit dispositif de mesure de débit d'air massique (50) et d'un signal de point de consigne représentant un débit d'air massique demandé (mair,Dem).
  3. Moteur à combustion selon la revendication 1 ou 2, caractérisé en ce que la pression d'admission désirée (Padmission,DynDem) est la pression d'admission (Pman) qui fournit une quantité cible d'alimentation en retour des gaz d'échappement (mEGR,cible) dans une condition dynamique.
  4. Moteur à combustion selon la revendication 1, 2 ou 3, caractérisé en ce que la pression d'admission désirée (Padmission,Dem) est la pression d'admission (Pman) qui fournit une quantité cible d'alimentation en retour des gaz d'échappement dans un régime permanent.
  5. Moteur à combustion selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits moyens pour commander l'alimentation en retour des gaz d'échappement comprennent un bloc de fonction (64) dans lequel ladite pression d'admission désirée (Padmission, DynDem) est calculée comme une fonction dudit débit d'air massique mesuré (mair), d'une quantité de gaz d'échappement (mEGR,Stat) correspondant à une quantité de régime permanent des gaz d'échappement présents à une pression d'admission demandée (Padmission,Dem) et du débit d'air massique demandé (mair,Dem).
  6. Moteur à combustion selon la revendication 5,
    caractérisé en ce que ledit bloc de fonction (64) est agencé pour calculer la pression d'admission désirée (Padmission,Dyn dem) à partir de l'équation suivante : P admission , Dyn dem = P admission - ζΔm ,
    Figure imgb0015

    où ζ est une constante, qui est fixée comme ζ = TmanR/ (VmanMair) et Δm est égale à la différence de masse de l'air circulant dans min et hors mout du conduit d'admission, ainsi Δm = min - mout
  7. Moteur à combustion selon la revendication 6, caractérisé en ce que ledit bloc de fonction (64) est agencé pour calculer la différence de masse par course du moteur.
  8. Moteur à combustion selon la revendication 6 ou 7, caractérisé en ce que la masse de l'air circulant hors (mout) du conduit d'admission est fixée pour être linéaire et dépendante de pression demandée (Padmission,dem) et du débit d'air massique demandé (mair,dem) ainsi m out = P admission  m air , dem / P admission , dem
    Figure imgb0016
  9. Moteur à combustion selon la revendication 6, 7 ou 8, caractérisé en ce que la masse de l'air min s'écoulant dans l'admission est égale à la somme du débit d'air massique (mair) mesuré par ledit dispositif de mesure de débit d'air massique (50) et du débit d'air massique d'alimentation en retour d'échappement (megr) dans ledit conduit d'admission (26).
  10. Moteur à combustion selon la revendication 9, caractérisé en ce que un rapport entre le débit d'air massique et le débit massique d'alimentation en retour d'échappement est supposé être constant, ainsi megr = mair.megr,stat/mair,dem
  11. Moteur à combustion selon l'une quelconque des revendications 6 à 10, caractérisé en ce que la pression d'admission désirée (Padmission,Dyn dem) est calculée selon la formule suivante : P admission , Dyn dem = P admission + ζ [ m air ( 1 + m EGR , stat / m air , dem ) - P admission m air , dem + m EGR , stat / P admission , dem ]
    Figure imgb0017
  12. Procédé pour commander un moteur à combustion (10) comprenant au moins une chambre de combustion (18) reliée à un conduit d'admission (26) pour délivrer de l'air à ladite au moins une chambre de combustion (18), et une ligne d'alimentation en retour des gaz d'échappement (32) reliée au dit conduit d'admission (26) pour l'alimentation en retour des gaz d'échappement, ledit procédé comprenant les étapes consistant à :
    réguler un dispositif de contrôle de débit d'alimentation en retour des gaz d'échappement (34) agencé dans la ligne d'alimentation en retour des gaz d'échappement (32) en fonction d'une pression d'admission (Pman) dans ledit conduit d'admission (26) en aval de ladite ligne d'alimentation en retour des gaz d'échappement (32) et d'un signal de point de consigne représentant une pression d'admission désirée à un point de fonctionnement donné dans des conditions dynamiques (Padmission,DynDem) caractérisé en ce que ladite pression d'admission désirée (Padmission, DynDem) est dépendante d'un débit d'air massique (mair) dans ledit moteur (10) et d'une quantité (mEGR,Stat) d'alimentation en retour des gaz d'échappement correspondant à une quantité de régime permanent d'alimentation en retour des gaz d'échappement à une pression d'admission demandée au même point de fonctionnement mais dans des conditions stationnaires (Padmission,Dem).
  13. Procédé pour commander un moteur à combustion selon la revendication 12, caractérisé en ce que le procédé comprend en outre l'étape consistant à réguler le débit d'air massique d'admission par une deuxième unité de régulateur (46) qui commande les moyens de régulation d'air d'admission (44) en fonction d'un signal d'entrée représentant un débit d'air massique (mair) mesuré par un dispositif de mesure de débit d'air massique (50) et d'un signal de point de consigne représentant un débit d'air massique demandé (mair,Dem) .
  14. Procédé selon la revendication 12 ou 13, caractérisé en ce que la pression d'admission désirée (Padmission,DynDem) est la pression d'admission (Pman) qui fournit une quantité cible d'alimentation en retour des gaz d'échappement (mEGR,cible) dans une condition dynamique.
  15. Procédé selon l'une quelconque des revendications 12 à 14, caractérisé en ce que la pression d'admission désirée (Padmission, Dem) est la pression d'admission qui fournit une quantité cible d'alimentation en retour des gaz d'échappement dans un régime permanent.
  16. Procédé selon l'une quelconque des revendications 12 à 15, caractérisé en ce que ladite pression d'admission désirée (Padmission,DynDem) est calculée comme une fonction dudit débit d'air massique mesuré (mair), d'une quantité de gaz d'échappement correspondant à une quantité de régime permanent des gaz d'échappement (mEGR,Stat) présents à une pression d'admission demandée (Padmission,Dem) et du débit d'air massique demandé (mair,Dem).
  17. Procédé selon la revendication 16, caractérisé en ce que la pression d'admission désirée (Padmission,Dyn dem) est calculée à partir de l'équation suivante : P admission , Dyn dem = P admission - ζΔm ,
    Figure imgb0018

    où ζ est une constante, qui est fixée comme ζ = TmanR/(VmanMair) et Δm est égale à la différence de masse de l'air circulant dans min et hors mout du conduit d'admission, ainsi ΔM = min - mout
  18. Procédé selon la revendication 17, caractérisé en ce que la différence de masse est calculée par course du moteur.
  19. Procédé selon la revendication 17 ou 18, caractérisé en ce que la masse de l'air circulant hors (mout) du conduit d'admission (26) est fixée pour être linéaire et dépendante de pression demandée (Padmission,dem) et du débit d'air massique demandé (mair,dem), ainsi mout = Padmission mair,dem/Padmission,dem
  20. Procédé selon l'une quelconque des revendications 17 à 19, caractérisé en ce que la masse de l'air (min) s'écoulant dans le conduit d'admission est égale à la somme du débit d'air massique mesuré par ledit dispositif de mesure de débit d'air massique (mair) et du débit d'air massique d'alimentation en retour d'échappement (megr) dans ledit conduit d'admission (26).
  21. Procédé selon la revendication 20, caractérisé en ce que un rapport entre le débit d'air massique (mair) et le débit massique d'alimentation en retour d'échappement (megr) est supposé être constant , ainsi megr = mair . mEGR, stat/mair, dem
  22. Procédé selon l'une quelconque des revendications 17 à 20, caractérisé en ce que la pression d'admission désirée (Padmission,Dyn dem) est calculée selon la formule suivante : P admission , Dyn dem = P admission - ζ [ m air 1 + m EGR , stat / m air , dem - P admission m air , dem - m EGR , stat / P admission , dem ]
    Figure imgb0019
EP03011893A 2003-05-27 2003-05-27 Moteur à combustion et méthode de commande de la quantité d'air et d'EGR Expired - Lifetime EP1482153B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60311235T DE60311235T2 (de) 2003-05-27 2003-05-27 Brennkraftmaschine und Verfahren zur Steuerung des Ladeluftmassenstroms und der Abgasrückführungsrate
EP03011893A EP1482153B1 (fr) 2003-05-27 2003-05-27 Moteur à combustion et méthode de commande de la quantité d'air et d'EGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03011893A EP1482153B1 (fr) 2003-05-27 2003-05-27 Moteur à combustion et méthode de commande de la quantité d'air et d'EGR

Publications (2)

Publication Number Publication Date
EP1482153A1 EP1482153A1 (fr) 2004-12-01
EP1482153B1 true EP1482153B1 (fr) 2007-01-17

Family

ID=33104081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03011893A Expired - Lifetime EP1482153B1 (fr) 2003-05-27 2003-05-27 Moteur à combustion et méthode de commande de la quantité d'air et d'EGR

Country Status (2)

Country Link
EP (1) EP1482153B1 (fr)
DE (1) DE60311235T2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917126B1 (fr) * 2007-06-08 2009-08-21 Renault Sas Systeme et procede de controle et de diagnostic d'un systeme de recirculation de gaz d'echappement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615545C1 (de) * 1996-04-19 1997-06-12 Daimler Benz Ag Einrichtung zur Dieselmotorbetriebsregelung mit Abgasrückführung und Ansaugluftdrosselung
DE19620039A1 (de) * 1996-05-17 1997-11-20 Bosch Gmbh Robert System zur Steuerung einer Brennkraftmaschine
US6178749B1 (en) * 1999-01-26 2001-01-30 Ford Motor Company Method of reducing turbo lag in diesel engines having exhaust gas recirculation
US6311679B1 (en) * 2000-05-02 2001-11-06 Ford Global Technologies, Inc. System and method of controlling air-charge in direct injection lean-burn engines
DE10041076B4 (de) * 2000-08-22 2014-03-06 Robert Bosch Gmbh Verfahren zur Erkennung von fehlerhaften Veränderungen des Gasdurchflusses durch eine Abgasrückführleitung einer Brennkraftmaschine
US6481423B2 (en) * 2000-10-12 2002-11-19 Delphi Technologies, Inc. Dynamic EGR concentration estimation method for a motor vehicle engine
DE10114049A1 (de) * 2001-03-15 2002-09-19 Volkswagen Ag Verfahren und Vorrichtung zur Regelung einer externen Abgasrückführrate und/oder eines Luft-Kraftstoff-Verhältnisses

Also Published As

Publication number Publication date
DE60311235T2 (de) 2007-10-18
DE60311235D1 (de) 2007-03-08
EP1482153A1 (fr) 2004-12-01

Similar Documents

Publication Publication Date Title
US10190516B2 (en) Method of feedforward turbocharger control for boosted engines with multi-route EGR
EP1024263B1 (fr) Méthode de contrôle d'un moteur diesel turbochargé avec recirculation de gaz d'échappement
EP1607606B1 (fr) Procédé et appareil pour determiner le débit d'air d'admission d'un moteur à combustion interne fondé sur le mesure de la teneur d'oxygène dans un mélange à gaz admis par le moteur
US10393038B2 (en) Method and apparatus for controlling a two-stage air charging system with mixed EGR
EP2198141B1 (fr) Appareil de recirculation de gaz d'échappement et procédé d'estimation de débit de recirculation de gaz d'échappement pour moteurs à combustion interne
EP1024272B1 (fr) Méthode de contrôle d'un moteur diesel turbochargé avec recirculation de gaz d'échappement
US7150264B2 (en) Control device for internal combustion engine
EP1024262B1 (fr) Méthode d'estimation de débit massique d'air d'un moteur diesel turbochargé avec recirculation de gaz d'échappement
CN101903636B (zh) 用于监控内燃机中的再循环废气的方法和装置
US6981492B2 (en) Method for determining an exhaust gas recirculation amount
US9261031B2 (en) Control device for internal combustion engine and method for controlling internal combustion engine
CN101965447B (zh) 用于柴油发动机的燃料控制系统
EP1024275A2 (fr) Mèthode de limitation du carburant pour un moteur à combustion diesel à recyclage des gas d'échappement
US20030140629A1 (en) Combustion control of diesel engine
US7174250B2 (en) Method for determining an exhaust gas recirculation quantity for an internal combustion engine provided with exhaust gas recirculation
EP1358399B1 (fr) Appareil et procede de controle du rapport air-combustible
EP2414659B1 (fr) Contrôle des gaz de recirculation dans un moteur à combustion
US8024106B2 (en) Method for regulating a combustion process of an internal combustion engine with exhaust-gas recirculation
CN112412637A (zh) 一种发动机单缸egr控制系统及方法
GB2482323A (en) A method and system for controlling an engine based on determination of rotational speed of a compressor
GB2328294A (en) Controlling exhaust gas return rate in an internal combustion engine
JP4228953B2 (ja) 内燃機関の制御装置
CN114635804B (zh) 控制内燃发动机系统
EP1482153B1 (fr) Moteur à combustion et méthode de commande de la quantité d'air et d'EGR
US20190368436A1 (en) Systems and methods for controlling egr flow rate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERNLER, HANS

17P Request for examination filed

Effective date: 20050531

AKX Designation fees paid

Designated state(s): DE GB SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORD GLOBAL TECHNOLOGIES, LLC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60311235

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090529

Year of fee payment: 7

Ref country code: SE

Payment date: 20090507

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090407

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100527

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100527