EP1479973B1 - Method and device for controlling the tightness of a gas fired radiant tube - Google Patents

Method and device for controlling the tightness of a gas fired radiant tube Download PDF

Info

Publication number
EP1479973B1
EP1479973B1 EP04011332A EP04011332A EP1479973B1 EP 1479973 B1 EP1479973 B1 EP 1479973B1 EP 04011332 A EP04011332 A EP 04011332A EP 04011332 A EP04011332 A EP 04011332A EP 1479973 B1 EP1479973 B1 EP 1479973B1
Authority
EP
European Patent Office
Prior art keywords
burner
signal
exhaust gas
flow
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04011332A
Other languages
German (de)
French (fr)
Other versions
EP1479973A3 (en
EP1479973A2 (en
Inventor
Wolfgang Dr. Harbeck
Jürgen Noack
René Lohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noxmat GmbH
Original Assignee
NOXMAT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOXMAT GmbH filed Critical NOXMAT GmbH
Priority to PL04011332T priority Critical patent/PL1479973T3/en
Publication of EP1479973A2 publication Critical patent/EP1479973A2/en
Publication of EP1479973A3 publication Critical patent/EP1479973A3/en
Application granted granted Critical
Publication of EP1479973B1 publication Critical patent/EP1479973B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/245Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/18Detecting fluid leaks

Definitions

  • the invention relates to a method and a device for monitoring the tightness of a jet pipe fired by a gas burner.
  • Gas-fired ceramic jet pipes are becoming increasingly popular, especially in industrial furnaces because of their long service life.
  • a disadvantage of the use of ceramic radiant tubes is that in case of damage, the jet breaks and immediately a large free cross-section of the furnace chamber is available. A damage of the jet pipe is not readily apparent so far and can lead to significant disadvantages in the process, since the furnace atmosphere is changed accordingly. Also, there are significant safety problems.
  • the invention is therefore an object of the invention to provide a method and an apparatus for monitoring the tightness of a jet burner fired from a gas burner, which results in a simple and inexpensive construction and a fast response in case of failure.
  • This object is achieved by a method for monitoring the tightness of a jet pipe fired by a gas burner dissolved, is monitored in the on state of the burner and an indicative of the on-state burner signal is generated, which can occupy at least the conditions BURNER OFF with the burner off and BURNER ON with the burner on, in which also the exhaust gas flow of the burner is monitored and thereof an exhaust gas signal which is capable of assuming at least the exhaust gas out with insufficient volumetric flow and exhaust gas with the exhaust flowing properly, and wherein the combustor signal and the exhaust gas signal are combined to provide an error signal if the combination of the burner signal and the exhaust signal is not allowed issue.
  • the object of the invention is further achieved by a device for monitoring the tightness of a jet burner fired by a gas burner, with a sensor for monitoring the exhaust gas flow of the burner, which outputs a characteristic exhaust gas signal when a predetermined threshold value is exceeded, and with a monitoring circuit, the exhaust signal and indicative of a burner signal indicative of the on-state of the burner, and outputting an error signal upon improper combination of the burner signal and the exhaust gas signal, the sensor being configured as a sensor for monitoring exhaust gas volumetric flow.
  • the exhaust gas flowing out of the jet pipe must flow with a characteristic exhaust gas volume flow characteristic for the burner. If this waste gas flow volume does not reach or does not reach the required size, then there is a leak to go out the beam pipe.
  • the exhaust gas signal which indicates a sufficient volume flow of the exhaust gas, with the burner signal can be easily detect in this way a leakage of the jet pipe.
  • the burner signal can be derived for example from the on / off switch of the burner, provided that it should only indicate the switch-on state.
  • a derivative of a control of the burner which usually not only indicates a turn-on state of the burner, but also at the same time monitors a correct operation of the burner, which is indicated by a signal BURNER ON.
  • a separate monitoring device in the form of a sensor, e.g. a flame sensor to provide.
  • the monitoring of the exhaust gas flow can be monitored, for example, by a volumetric measurement, by a differential pressure measurement, by a flow velocity measurement using an inductive or ultrasound method or by a pressure probe measurement.
  • a particularly simple embodiment results when the exhaust gas flow is monitored by means of a differential pressure method by constriction of the flow cross section by means of a throttle device, in particular by means of a differential pressure diaphragm. It can then be carried out a differential pressure measurement between the input and the output of the throttle device. If the measured differential pressure is below a predetermined threshold value, the obtained exhaust gas signal is set to exhaust gas OFF. If the differential pressure is higher than this, the exhaust gas signal ABGAS ON results.
  • a threshold value for example, a value of 10 mbar, preferably of 5 mbar, more preferably of 3 mbar, in particular of 2 mbar, between input and output of the differential pressure diaphragm can be used.
  • an error signal is output even when the combination BURNER OFF and exhaust gas ON.
  • a monitoring can be performed when the burner is turned off and works in the cooling air mode for the jet pipe for cooling the furnace chamber, wherein the cooling air is preferably that which serves as a combustion air during burner operation.
  • the cooling air is preferably that which serves as a combustion air during burner operation.
  • a fan running even when the burner is switched off can supply the cooling air.
  • a separate cooling air duct can be mounted on the burner, via which additional cooling air is fed into the jet pipe, in order to achieve greater furnace cooling.
  • the function of the cooling air and possibly the additional cooling air can be monitored and a cooling air signal derived therefrom and possibly additional cooling air signal can be linked to the exhaust gas signal in order to output an error signal in the event of an impermissible combination.
  • Fig. 1 is an industrial furnace, which is heated with a gas-fired jet pipe and is equipped with a monitoring device according to the invention for monitoring the tightness of the jet pipe, shown schematically and generally designated by the numeral 10.
  • the industrial furnace 10 has an only schematically indicated by a dot-dash line furnace chamber 11 which is heated by a gas burner 12.
  • the gas burner 12 has a projecting into the oven chamber 11 jet pipe 14 in the form of a jacket tube.
  • the recirculated via the jet pipe 14 exhaust gases via a purely schematic indicated output of the jet pipe 14 in an exhaust pipe 18 and are passed into an exhaust passage 20.
  • the exhaust gas volumetric flow flowing via the exhaust gas line 18 is monitored to monitor the tightness of the jet pipe 14 and linked to a burner signal derived from the burner control 28, which indicates proper functioning of the burner. If the burner is working properly and there is no exhaust gas volume flow which has the characteristic size for the burner type used, then it can be assumed that there is a leakage in the jet pipe.
  • a differential pressure diaphragm 22 is inserted into the exhaust pipe 18.
  • a pressure measuring device 24 is connected via measuring lines 26. If the burner 12 is operating properly, a differential pressure ⁇ p of sufficient magnitude, e.g. 2 mbar, it can be assumed that there is no leakage of the jet pipe 14. Otherwise, an error signal is generated.
  • a monitoring circuit is provided, which is indicated only schematically with the numeral 38.
  • the monitoring circuit 38 is supplied with the exhaust gas signal 34 obtained from the pressure measuring device 24 and the burner signal 32 obtained from the burner control device 28.
  • the monitoring circuit 38 generates an output signal 36 which, in the simplest case, can only assume the states OK or ERROR.
  • the exhaust gas signal 34 obtained from the pressure measuring device 24 can only be the states EXHAUST EXHAUST ON or EXHAUST OFF.
  • the burner signal 32 is preferably configured as a binary signal that can only accept the BURNER ON and BURNER OFF states.
  • connections of the exhaust signal 34 and the burner signal 32 by the monitoring circuit 38 can be done either by a conventional hard-wired circuit or by a digital switching logic, which is executed in the simplest case, for example.
  • a digital switching logic which is executed in the simplest case, for example.
  • the output 36 obtained in response to the various possible combinations of the burner signal 32 and the exhaust signal 34 could then be represented by a truth table, for example, as shown in Table 1 below.
  • Table 1 Brenner signal exhaust signal output Status 0 0 0 0 1 0 (1) 1 0 1 1 1 0
  • the input signals have a "0" for the state OFF or LOW, ie BURNER OFF or EXHAUST OFF and a "1" for the state ON or HIGH, ie BURNER ON or EXHAUST ON.
  • the output signal has a "0" for the condition OK or OK, while a "1" indicates an error.
  • an error signal is generated only at the combination of BURNER IN and OFF GAS OFF, i. issued a logical "1".
  • an error signal will also be output for the combination BURNER OFF and DISCHARGE ON, which is indicated in brackets by the logical "1" for this combination.
  • burners are also used for cooling furnace chambers via the associated jet pipe, which can take place with the cooling air (combustion air) and / or by additional cooling air via a cooling air duct attached separately to the burner, then monitoring can also take place in this case.
  • cooling air flow combustion air volume flow
  • combustion air volume flow can be used, which also runs when the burner is not switched on.
  • This in turn, can be monitored with a differential pressure measurement to produce a COOLING ON or COOLING OFF signal indicating the flow of cooling air or the absence of cooling air flow.
  • the flow of additional cooling air may be monitored to provide an ENTIRE COOLING AIR ON or OFF signal.
  • EXTERNAL COOLING AIR to produce, indicating a flow of additional cooling air or a lack of flow of additional cooling air.
  • Table 2 shows possible states that may result when the burner is switched off in cooling mode.
  • a "1"("0") means the signal COOLING AIR ON (COOLING AIR OFF) and, for the auxiliary cooling air signal, a "1"("0") the signal AUC.
  • COOLING AIR ON (ADDITIONAL COOLING AIR OFF).
  • Table 1 Brenner signal Cooling air signal Additional cooling air signal exhaust signal output 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1
  • Fig. 1 and Tables 1 and 2 can be used to monitor the tightness of a radiant tube not only in a single jet tube furnace but also in multi-jet tube furnaces.
  • a pressure monitoring can be carried out at each jet pipe and the resulting exhaust gas signals can be linked by means of individual monitoring circuits or by means of a single monitoring circuit with the relevant burner signals.
  • the method according to the invention and the device according to the invention can be used for monitoring any jet pipes. So it can, for example, mantle jet pipes, P-beam tubes and double P-beam tubes are monitored. But even with through and U-beam tubes, the principle of the invention can be used. In this case, the exhaust gas flow is monitored at the outlet of the passage of the U-tube by means of the differential pressure diaphragm and the pressure measuring device.
  • FIG Fig. 2 One possible embodiment for the monitoring circuit 38 with conventional components is shown in FIG Fig. 2 shown. With this monitoring circuit 38, an error signal is output only when the combination BURNER ON and OFF GAS OFF is obtained. In addition, however, a light button for displaying and acknowledging the error message is provided here.
  • the monitoring circuit 38 may, for example, be accommodated in a separate housing, which is additionally accommodated in each case on the associated burner.
  • the monitoring circuit 38 has an input 56 for the burner signal (220 V signal) received from the burner controller 28, which can assume the conditions BURNER ON or BURNER OFF.
  • This input 56 is connected to a relay K1, which is connected with its control circuit 40 at the other end to the neutral conductor N via the terminal 64.
  • a relay K2 is connected to its control circuit 42, which is in series with the make contact 41 of the relay K1 and in series with the pressure measuring device 24, which is connected via the terminals 58 and 60 and via a line 50 with the 220 received from the burner control 28 V-phase connected via the terminal 62 is connected.
  • the pressure measuring device 24 opens the in Fig. 2 schematically indicated NC contact when the differential pressure exceeds the preset threshold of eg 2 mbar.
  • an indicator lamp 44 is connected, which lies with its one end to the neutral and with its other end via the control circuit 43 of the relay K2 and a button 46 with the line 50 and the terminal 62, ie with the 220V Phase is connected.
  • a line 48 between the control circuit 42 and the circuit 43 of the relay the indicator lamp 44 is connected in parallel to the control circuit 42 of the relay K2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung der Dichtheit eines von einem Gasbrenner befeuerten Strahlrohres.The invention relates to a method and a device for monitoring the tightness of a jet pipe fired by a gas burner.

Gasbefeuerte keramische Strahlrohre finden insbesondere in Industrieöfen wegen der langen Lebensdauer eine ständig steigende Verbreitung.Gas-fired ceramic jet pipes are becoming increasingly popular, especially in industrial furnaces because of their long service life.

Ein Nachteil beim Einsatz von keramischen Strahlrohren ist, dass im Falle eines Schadens das Strahlrohr bricht und sofort ein großer freier Querschnitt zum Ofenraum hin vorhanden ist. Ein Schaden des Strahlrohres ist bislang nicht ohne weiteres erkennbar und kann zu erheblichen Nachteilen im Prozess führen, da die Ofenatmosphäre entsprechend verändert wird. Auch ergeben sich erhebliche sicherheitstechnische Probleme.A disadvantage of the use of ceramic radiant tubes is that in case of damage, the jet breaks and immediately a large free cross-section of the furnace chamber is available. A damage of the jet pipe is not readily apparent so far and can lead to significant disadvantages in the process, since the furnace atmosphere is changed accordingly. Also, there are significant safety problems.

Hat ein Industrieofen mehrere Strahlrohre und tritt ein Bruch auf, so wird dies nicht sofort erkannt. Der Ofeninnenraum ist meist durch den Einlauf und Auslauf nicht dicht gegenüber der äußeren Umgebung abgeschlossen, so dass kein Druckanstieg auftritt. Ist der Ofen mit Schutzgas befüllt, so wird die Atmosphäre im Falle eines Strahlrohrbruches verändert, was sich schleichend entwickeln kann und nur durch ständige Analysen oder sonstige Messverfahren feststellbar ist. Außerdem ist nicht unmittelbar feststellbar, welches Strahlrohr gebrochen ist. Nur durch Abschalten des dem Strahlrohr zugeordneten Brenners kann eine Eingrenzung erfolgen. Dies kostet Zeit, da erst auf eine Reaktion der Ofenatmosphäre bzw. eine Auswirkung davon gewartet werden muss. Auch können Analysen von Schutzgaskomponenten des Strahlrohres sehr zeitaufwändig sein. Befindet sich im Ofenraum nur Luft, so ist ein Strahlrohrbruch im Produktionsprozess kaum feststellbar.If an industrial furnace has several jet pipes and a break occurs, this will not be recognized immediately. The interior of the oven is usually closed by the inlet and outlet not close to the outside environment, so that no pressure increase occurs. If the furnace is filled with protective gas, the atmosphere is changed in the event of a jet pipe break, which can develop creeping and can only be determined by constant analysis or other measuring methods. In addition, it is not immediately apparent which jet pipe is broken. Only by switching off the jet pipe associated burner can be made a limitation. This takes time, since only a reaction of the furnace atmosphere or an effect of it must be maintained. Also analyzes of protective gas components of the jet pipe can be very time consuming. If there is only air in the furnace chamber, a jet pipe break in the production process is barely noticeable.

All diese Probleme sind nachteilig bei der Verwendung von keramischen Strahlrohren. Dagegen sind Strahlrohre aus Stahl einer stärkeren Korrosion ausgesetzt und weniger temperaturbeständig. Auch entwickeln sich Schäden an Strahlrohren aus Stahl meist schleichend.All of these problems are detrimental to the use of ceramic radiant tubes. In contrast, steel nozzles are exposed to greater corrosion and less temperature resistant. Damage to jet pipes made of steel usually develops creepingly.

Aus der US-A-4 219 324 ist es bekannt, mittels eines Flammendetektors die Funktionsweise eines Brenners zu überwachen. Ferner wird hierbei die Zusammensetzung des Abgasstroms überwacht, um einen Fehlerzustand bei Abweichung von vorgegebenen Sollwerten festzustellen.From the US-A-4,219,324 It is known to monitor the operation of a burner by means of a flame detector. Furthermore, in this case the composition of the exhaust gas flow is monitored in order to determine an error state in the event of deviation from predetermined nominal values.

Aus der US-A-4 508 501 ist ferner ein zur Überwachung der Dichtheit eines von einem Gasbrenner befeuerten Strahlrohres bekannt, bei dem von einer Steuerung des Brenners der Sauerstoffgehalt im Abgasstrom des Brenners überwacht wird. Bei Abweichung von einem vorgegebenen Sollwert wird ein Fehlersignal ausgegeben.From the US-A-4 508 501 In addition, it is known to monitor the tightness of a jet pipe fired by a gas burner, in which the control of the burner monitors the oxygen content in the exhaust gas stream of the burner. If there is a deviation from a specified setpoint, an error signal is output.

Schließlich ist es aus der JP-A-55066729 (Patent Abstracts of Japan) bekannt, bei dem gleichfalls der Abgasstrom des Brenners überwacht wird und hieraus ein Signal zur Überwachung abgeleitet wird. Auch hierbei wird die Abgaszusammensetzung überwacht.Finally it is off the JP-A-55066729 (Patent Abstracts of Japan), in which also the exhaust gas flow of the burner is monitored and from this a signal for monitoring is derived. Again, the exhaust gas composition is monitored.

Im Stand der Technik erfordert die Überwachung der Dichtheit des Strahlrohres eine aufwändige Überwachung der Gaszusammensetzung, was kompliziert und teuer ist und zudem das Problem der Alterung von Sensoren beinhaltet.In the prior art, monitoring the leakproofness of the radiant tube requires elaborate monitoring of the gas composition, which is complicated and expensive and also involves the problem of aging of sensors.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Überwachung der Dichtheit eines von einem Gasbrenner befeuerten Strahlrohres zu schaffen, womit sich ein einfacher und kostengünstiger Aufbau und ein schnelles Ansprechen im Fehlerfall ergibt.The invention is therefore an object of the invention to provide a method and an apparatus for monitoring the tightness of a jet burner fired from a gas burner, which results in a simple and inexpensive construction and a fast response in case of failure.

Diese Aufgabe wird durch ein Verfahren zur Überwachung der Dichtheit eines von einem Gasbrenner befeuerten Strahlrohres gelöst, bei der Einschaltzustand des Brenners überwacht wird und ein für den Einschaltzustand indikatives Brennersignal erzeugt wird, das mindestens die Zustände BRENNER AUS bei ausgeschaltetem Brenner und BRENNER EIN bei eingeschaltetem Brenner einnehmen kann, bei dem ferner der Abgasstrom des Brenners überwacht wird und hiervon ein Abgassignal abgeleitet wird, das mindestens die Zustände ABGAS AUS bei nicht mit ausreichendem Volumenstrom strömenden Abgas und ABGAS EIN bei ordnungsgemäß abströmendem Abgas annehmen kann, und wobei das Brennersignal und das Abgassignal miteinander verknüpft werden, um bei einer nicht zulässigen Kombination des Brennersignals und des Abgassignals ein Fehlersignal auszugeben.This object is achieved by a method for monitoring the tightness of a jet pipe fired by a gas burner dissolved, is monitored in the on state of the burner and an indicative of the on-state burner signal is generated, which can occupy at least the conditions BURNER OFF with the burner off and BURNER ON with the burner on, in which also the exhaust gas flow of the burner is monitored and thereof an exhaust gas signal which is capable of assuming at least the exhaust gas out with insufficient volumetric flow and exhaust gas with the exhaust flowing properly, and wherein the combustor signal and the exhaust gas signal are combined to provide an error signal if the combination of the burner signal and the exhaust signal is not allowed issue.

Die Aufgabe der Erfindung wird ferner durch eine Vorrichtung zur Überwachung der Dichtheit eines von einem Gasbrenner befeuerten Strahlrohres gelöst, mit einem Sensor zur Überwachung des Abgasstromes des Brenners, der bei Überschreiten eines vorgegebenen Schwellwertes ein dafür charakteristisches Abgassignal ausgibt und mit einer Überwachungsschaltung, der das Abgassignal und ein für den Einschaltzustand des Brenners indikatives Brennersignal zugeführt sind, und die bei einer nicht ordnungsgemäßen Kombination von Brennersignal und Abgassignal ein Fehlersignal ausgibt, wobei der Sensor als Sensor zur Überwachung des Abgasvolumenstroms ausgebildet ist.The object of the invention is further achieved by a device for monitoring the tightness of a jet burner fired by a gas burner, with a sensor for monitoring the exhaust gas flow of the burner, which outputs a characteristic exhaust gas signal when a predetermined threshold value is exceeded, and with a monitoring circuit, the exhaust signal and indicative of a burner signal indicative of the on-state of the burner, and outputting an error signal upon improper combination of the burner signal and the exhaust gas signal, the sensor being configured as a sensor for monitoring exhaust gas volumetric flow.

Die Erfindung wird auf diese Weise vollkommen gelöst.The invention is completely solved in this way.

Ist der Brenner eingeschaltet, was durch das Brennersignal angezeigt wird, so muss das aus dem Strahlrohr abströmende Abgas mit einem für den Brenner charakteristischen Abgasvolumenstrom strömen. Bleibt dieser Abgasvolumenstrom aus oder erreicht nicht die notwendige Größe, so ist von einer Undicht-heit des Strahlrohres auszugehen. Durch die Verknüpfung des Abgassignals, das einen ausreichenden Volumenstrom des Abgases anzeigt, mit dem Brennersignal lässt sich auf diese Weise eine Undichtheit des Strahlrohres leicht erkennen.If the burner is switched on, as indicated by the burner signal, then the exhaust gas flowing out of the jet pipe must flow with a characteristic exhaust gas volume flow characteristic for the burner. If this waste gas flow volume does not reach or does not reach the required size, then there is a leak to go out the beam pipe. By linking the exhaust gas signal, which indicates a sufficient volume flow of the exhaust gas, with the burner signal can be easily detect in this way a leakage of the jet pipe.

Das Brennersignal kann etwa vom Ein-/Ausschalter des Brenners abgeleitet werden, sofern es nur den Einschaltzustand anzeigen soll. Bevorzugt ist jedoch eine Ableitung von einer Steuerung des Brenners, die in der Regel nicht nur einen Einschaltzustand des Brenners anzeigt, sondern auch gleichzeitig ein korrektes Arbeiten des Brenners überwacht, was durch ein Signal BRENNER EIN angezeigt wird. Alternativ ist es denkbar, zur Erzeugung des Brennersignals eine gesonderte Überwachungseinrichtung in Form eines Sensors, z.B. eines Flammensensors, vorzusehen.The burner signal can be derived for example from the on / off switch of the burner, provided that it should only indicate the switch-on state. However, preferred is a derivative of a control of the burner, which usually not only indicates a turn-on state of the burner, but also at the same time monitors a correct operation of the burner, which is indicated by a signal BURNER ON. Alternatively, it is conceivable, for generating the burner signal, a separate monitoring device in the form of a sensor, e.g. a flame sensor to provide.

Die Überwachung des Abgasstroms kann etwa durch eine volumetrische Messung, durch eine Wirkdruckmessung, durch eine Strömungsgeschwindigkeitsmessung mit einem induktiven oder Ultraschall-Verfahren oder durch eine Drucksondenmessung überwacht werden.The monitoring of the exhaust gas flow can be monitored, for example, by a volumetric measurement, by a differential pressure measurement, by a flow velocity measurement using an inductive or ultrasound method or by a pressure probe measurement.

Eine besonders einfache Ausführung ergibt sich, wenn der Abgasstrom mittels eines Wirkdruckverfahrens durch Einschnürung des Strömungsquerschnitts mittels einer Drosseleinrichtung, insbesondere mittels einer Differenzdruckblende, überwacht wird. Es kann dann eine Differenzdruckmessung zwischen dem Eingang und dem Ausgang der Drosseleinrichtung durchgeführt werden. Liegt der gemessene Differenzdruck unterhalb eines vorgegebenen Schwellwertes, so wird das erhaltene Abgassignal auf ABGAS AUS gesetzt. Liegt der Differenzdruck darüber, so ergibt sich das Abgassignal ABGAS EIN.A particularly simple embodiment results when the exhaust gas flow is monitored by means of a differential pressure method by constriction of the flow cross section by means of a throttle device, in particular by means of a differential pressure diaphragm. It can then be carried out a differential pressure measurement between the input and the output of the throttle device. If the measured differential pressure is below a predetermined threshold value, the obtained exhaust gas signal is set to exhaust gas OFF. If the differential pressure is higher than this, the exhaust gas signal ABGAS ON results.

Als Schwellwert kann hierbei bspw. ein Wert von 10 mbar, vorzugsweise von 5 mbar, weiter bevorzugt von 3 mbar, insbesondere von 2 mbar, zwischen Eingang und Ausgang der Differenzdruckblende verwendet werden.As a threshold value, for example, a value of 10 mbar, preferably of 5 mbar, more preferably of 3 mbar, in particular of 2 mbar, between input and output of the differential pressure diaphragm can be used.

In zusätzlicher Weiterbildung der Erfindung wird auch bei der Kombination BRENNER AUS und ABGAS EIN ein Fehlersignal ausgegeben.In an additional development of the invention, an error signal is output even when the combination BURNER OFF and exhaust gas ON.

Wird nämlich ein Abgassignal ausreichender Größe gemessen, ohne dass das für das Einschalten des Brenners charakteristische Signal BRENNER EIN anliegt, so ist davon auszugehen, dass bei einem gebrochenen Strahlrohr durch einen Abgasventilator ein so hoher Volumenstrom über das undichte Strahlrohr aus dem Ofen abgesaugt wird, dass das Signal ABGAS EIN erzeugt wird.If, for example, an exhaust gas signal of sufficient magnitude is measured without the BRENNER ON signal characteristic for switching on the burner being present, it can be assumed that such a high volume flow will be sucked out of the furnace via a leaking jet pipe in the case of a broken jet pipe through an exhaust fan the signal EGR ON is generated.

Zusätzlich kann auch eine Überwachung durchgeführt werden, wenn der Brenner ausgeschaltet ist und im Kühlluftbetrieb für das Strahlrohr zur Kühlung des Ofenraumes arbeitet, wobei die Kühlluft vorzugsweise die ist, die beim Brennerbetrieb als Verbrennungsluft dient. Hierzu kann ein auch im Ausschaltzustand des Brenners laufender Ventilator die Kühlluft liefern. Gegebenfalls kann am Brenner eine gesonderte Kühlluftleitung montiert sein, über die zusätzlich Kühlluft in das Strahlrohr geführt wird, um eine stärkere Ofenkühlung zu erreichen.In addition, a monitoring can be performed when the burner is turned off and works in the cooling air mode for the jet pipe for cooling the furnace chamber, wherein the cooling air is preferably that which serves as a combustion air during burner operation. For this purpose, a fan running even when the burner is switched off can supply the cooling air. Optionally, a separate cooling air duct can be mounted on the burner, via which additional cooling air is fed into the jet pipe, in order to achieve greater furnace cooling.

Die Funktion der Kühlluft und ggf. der Zusatzkühlluft kann überwacht werden und ein hieraus abgeleitetes Kühlluftsignal und ggf. Zusatzkühlluftsignal mit dem Abgassignal verknüpft werden, um bei einer unzulässigen Kombination ein Fehlersignal auszugeben.The function of the cooling air and possibly the additional cooling air can be monitored and a cooling air signal derived therefrom and possibly additional cooling air signal can be linked to the exhaust gas signal in order to output an error signal in the event of an impermissible combination.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugsnahme auf die Zeichnung. Es zeigen:

Fig. 1
eine vereinfachte Darstellung eines Industrieofens mit einem Brenner und einem Strahlrohr in Form eines Mantelstrahlrohres und einer zugeordneten Einrichtung zur Überwachung der Dichtheit des Strahlrohres; und
Fig. 2
eine mögliche Ausführung einer Schaltung mit Leuchttaster zur Anzeige und Quittierung einer Meldung, die eine Undichtheit des Strahlrohres anzeigt.
Further features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the drawings. Show it:
Fig. 1
a simplified representation of an industrial furnace with a burner and a jet pipe in the form of a radiant tube and an associated means for monitoring the tightness of the jet pipe; and
Fig. 2
a possible embodiment of a circuit with illuminated button for displaying and acknowledging a message indicating a leakage of the jet pipe.

In Fig. 1 ist ein Industrieofen, der mit einem gasbefeuerten Strahlrohr beheizt ist und mit einer erfindungsgemäßen Überwachungseinrichtung zur Überwachung der Dichtheit des Strahlrohrs ausgestattet ist, schematisch dargestellt und insgesamt mit der Ziffer 10 bezeichnet.In Fig. 1 is an industrial furnace, which is heated with a gas-fired jet pipe and is equipped with a monitoring device according to the invention for monitoring the tightness of the jet pipe, shown schematically and generally designated by the numeral 10.

Der Industrieofen 10 weist eine lediglich schematisch mit einer strichpunktierten Linie angedeutete Ofenkammer 11 auf, die mittels eines Gasbrenners 12 beheizt ist. Der Gasbrenner 12 weist ein in die Ofenkammer 11 hineinragendes Strahlrohr 14 in Form eines Mantelrohres auf. Die über das Strahlrohr 14 zurückgeführten Abgase gelangen über einen lediglich schematisch angedeuteten Ausgang des Strahlrohrs 14 in eine Abgasleitung 18 und werden in einen Abgaskanal 20 geleitet.The industrial furnace 10 has an only schematically indicated by a dot-dash line furnace chamber 11 which is heated by a gas burner 12. The gas burner 12 has a projecting into the oven chamber 11 jet pipe 14 in the form of a jacket tube. The recirculated via the jet pipe 14 exhaust gases via a purely schematic indicated output of the jet pipe 14 in an exhaust pipe 18 and are passed into an exhaust passage 20.

Erfindungsgemäß wird nun zur Überwachung der Dichtheit des Strahlrohres 14 der über die Abgasleitung 18 strömende Abgasvolumenstrom überwacht und mit einem von der Brennersteuerung 28 abgeleiteten Brennersignal, das ein ordnungsgemäßes Arbeiten des Brenners anzeigt, verknüpft. Arbeitet der Brenner ordnungsgemäß und ergibt sich kein Abgasvolumenstrom, der die charakteristische Größe für den verwendeten Brennertyp aufweist, so ist davon auszugehen, dass eine Undichtheit des Strahlrohres vorliegt.According to the invention, the exhaust gas volumetric flow flowing via the exhaust gas line 18 is monitored to monitor the tightness of the jet pipe 14 and linked to a burner signal derived from the burner control 28, which indicates proper functioning of the burner. If the burner is working properly and there is no exhaust gas volume flow which has the characteristic size for the burner type used, then it can be assumed that there is a leakage in the jet pipe.

Hierzu ist in die Abgasleitung 18 eine Differenzdruckblende 22 eingefügt. Am Eingang und am Ausgang der Differenzdruckblende, d.h. unmittelbar davor und dahinter, ist eine Druckmesseinrichtung 24 über Messleitungen 26 angeschlossen. Ergibt sich bei ordnungsgemäß arbeitendem Brenner 12 ein Differenzdruck Δp ausreichender Größe von z.B. 2 mbar, so ist davon auszugehen, dass keine Undichtheit des Strahlrohres 14 vorliegt. Anderenfalls wird ein Fehlersignal erzeugt. Hierzu ist eine Überwachungsschaltung vorgesehen, die lediglich schematisch mit der Ziffer 38 angedeutet ist. Der Überwachungsschaltung 38 wird das von der Druckmesseinrichtung 24 erhaltene Abgassignal 34 und das von der Brennersteuerung 28 erhaltene Brennersignal 32 zugeführt. Von der Überwachungsschaltung 38 wird ein Ausgangssignal 36 erzeugt, das im einfachsten Fall lediglich die Zustände OK bzw. FEHLER annehmen kann.For this purpose, a differential pressure diaphragm 22 is inserted into the exhaust pipe 18. At the input and output of the differential pressure shutter, i. immediately before and behind, a pressure measuring device 24 is connected via measuring lines 26. If the burner 12 is operating properly, a differential pressure Δp of sufficient magnitude, e.g. 2 mbar, it can be assumed that there is no leakage of the jet pipe 14. Otherwise, an error signal is generated. For this purpose, a monitoring circuit is provided, which is indicated only schematically with the numeral 38. The monitoring circuit 38 is supplied with the exhaust gas signal 34 obtained from the pressure measuring device 24 and the burner signal 32 obtained from the burner control device 28. The monitoring circuit 38 generates an output signal 36 which, in the simplest case, can only assume the states OK or ERROR.

Das von der Druckmesseinrichtung 24 erhaltene Abgassignal 34 kann gleichfalls im einfachsten Fall lediglich die Zustände ABGAS EIN oder ABGAS AUS einnehmen. Gleichfalls ist das Brennersignal 32 vorzugsweise als binäres Signal gestaltet, das lediglich die Zustände BRENNER EIN und BRENNER AUS annehmen kann.Also, in the simplest case, the exhaust gas signal 34 obtained from the pressure measuring device 24 can only be the states EXHAUST EXHAUST ON or EXHAUST OFF. Likewise, the burner signal 32 is preferably configured as a binary signal that can only accept the BURNER ON and BURNER OFF states.

Es versteht sich, dass die Verknüpfungen des Abgassignals 34 und des Brennersignals 32 durch die Überwachungsschaltung 38 entweder durch eine herkömmliche, festverdrahtete Schaltung oder durch eine digitale Schaltlogik erfolgen können, die im einfachsten Fall bspw. mittels TTL-Logik-Bausteinen ausgeführt ist.It is understood that the connections of the exhaust signal 34 and the burner signal 32 by the monitoring circuit 38 can be done either by a conventional hard-wired circuit or by a digital switching logic, which is executed in the simplest case, for example. By means of TTL logic devices.

Das in Abhängigkeit von den verschiedenen möglichen Kombinationen des Brennersignals 32 und des Abgassignals 34 erhaltene Ausgangssignal 36 könnte dann etwa durch eine Wahrheitstabelle dargestellt werden, wie dies nachfolgend in Tabelle 1 wiedergegeben ist. Tabelle 1 Brennersignal Abgassignal Ausgangssignal Zustand 0 0 0 0 1 0(1) 1 0 1 1 1 0 The output 36 obtained in response to the various possible combinations of the burner signal 32 and the exhaust signal 34 could then be represented by a truth table, for example, as shown in Table 1 below. Table 1 Brenner signal exhaust signal output Status 0 0 0 0 1 0 (1) 1 0 1 1 1 0

Dabei steht bei den Eingangssignalen eine "0" für den Zustand AUS bzw. LOW, also BRENNER AUS bzw. ABGAS AUS und eine "1" für den Zustand EIN bzw. HIGH, also BRENNER EIN bzw. ABGAS EIN.The input signals have a "0" for the state OFF or LOW, ie BURNER OFF or EXHAUST OFF and a "1" for the state ON or HIGH, ie BURNER ON or EXHAUST ON.

Beim Ausgangssignal steht eine "0" für den Zustand IN ORDNUNG oder OK, während eine "1" einen Fehler anzeigt.The output signal has a "0" for the condition OK or OK, while a "1" indicates an error.

Bei der einfachsten Ausführung der Schaltung wird lediglich bei der Kombination BRENNER EIN und ABGAS AUS ein Fehlersignal erzeugt, d.h. eine logische "1" ausgegeben. Bei einer alternativen Ausführung wird zusätzlich auch für die Kombination BRENNER AUS und ABGAS EIN ein Fehlersignal ausgeben, was durch die logische "1" bei dieser Kombination in Klammern angezeigt ist.In the simplest embodiment of the circuit, an error signal is generated only at the combination of BURNER IN and OFF GAS OFF, i. issued a logical "1". In an alternative embodiment, an error signal will also be output for the combination BURNER OFF and DISCHARGE ON, which is indicated in brackets by the logical "1" for this combination.

Im letzteren Fall muss nämlich davon ausgegangen werden, dass bei einem gebrochenen Strahlrohr durch einen Abgasventilator ein solch hoher Volumenstrom aus dem Ofenraum abgesaugt wird, dass das Signal ABGAS EIN erzeugt wird.In the latter case, it must be assumed that, in the case of a broken jet pipe, such a high volume flow is sucked out of the furnace chamber by means of an exhaust fan, that the signal EXHAUST ON is generated.

Werden Brenner über das zugehörige Strahlrohr auch zum Kühlen von Ofenräumen eingesetzt, was mit der Kühlluft (Verbrennungsluft) und/oder durch Zusatzkühlluft über eine separat am Brenner angebrachte Kühlluftleitung erfolgen kann, so kann eine Überwachung auch in diesem Fall erfolgen.If burners are also used for cooling furnace chambers via the associated jet pipe, which can take place with the cooling air (combustion air) and / or by additional cooling air via a cooling air duct attached separately to the burner, then monitoring can also take place in this case.

Zur Kühlung kann einfach der Kühlluftstrom (Verbrennungsluftvolumenstrom) verwendet werden, der auch bei nicht eingeschaltetem Brenner läuft. Dies kann wiederum mit einer Differenzdruckmessung überwacht werden, um ein Signal KÜHLLUFT EIN bzw. KÜHLLUFT AUS zu erzeugen, wodurch das Strömen der Kühlluft bzw. das fehlende Strömen der Kühlluft angezeigt wird. In entsprechender Weise kann das Strömen von zusätzlicher Kühlluft überwacht werden, um ein Signal ZUSATZKÜHLLUFT EIN bzw. ZUSATZKÜHLLUFT AUS zu erzeugen, das ein Strömen von Zusatzkühlluft bzw. ein fehlendes Strömen von Zusatzkühlluft anzeigt.For cooling, simply the cooling air flow (combustion air volume flow) can be used, which also runs when the burner is not switched on. This, in turn, can be monitored with a differential pressure measurement to produce a COOLING ON or COOLING OFF signal indicating the flow of cooling air or the absence of cooling air flow. Likewise, the flow of additional cooling air may be monitored to provide an ENTIRE COOLING AIR ON or OFF signal. EXTERNAL COOLING AIR to produce, indicating a flow of additional cooling air or a lack of flow of additional cooling air.

Tabelle 2 stellt ergänzend zu Tabelle 1 mögliche Zustände dar, die sich bei ausgeschaltetem Brenner im Kühlbetrieb ergeben können. In einer Tabelle 1 entsprechenden Weise bedeutet hierbei beim Kühlluftsignal eine "1" ("0") das Signal KÜHLLUFT EIN (KÜHLLUFT AUS) und beim Zusatzkühlluftsignal eine "1" ("0") das Signal ZUSATZKÜHLLUFT EIN (ZUSATZKÜHLLUFT AUS). Tabelle 1 Brennersignal Kühlluftsignal Zusatzkühlluftsignal Abgassignal Ausgangssignal 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 In addition to Table 1, Table 2 shows possible states that may result when the burner is switched off in cooling mode. In a manner corresponding to Table 1, in the case of the cooling air signal, a "1"("0") means the signal COOLING AIR ON (COOLING AIR OFF) and, for the auxiliary cooling air signal, a "1"("0") the signal AUC. COOLING AIR ON (ADDITIONAL COOLING AIR OFF). Table 1 Brenner signal Cooling air signal Additional cooling air signal exhaust signal output 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1

Es versteht sich, dass die lediglich beispielhaft anhand von Fig. 1 und Tabellen 1 und 2 dargestellte Überwachung der Dichtheit eines Strahlrohres nicht nur bei einem Ofen bei einem einzigen Strahlrohr, sondern auch bei Öfen mit mehreren Strahlrohren verwendet werden kann. Hierbei kann bei jedem Strahlrohr eine Drucküberwachung durchgeführt werden und die erhaltenen Abgassignale können mittels einzelner Überwachungsschaltungen oder mittels einer einzigen Überwachungsschaltung mit den betreffenden Brennersignalen verknüpft werden.It is understood that the purely exemplary by way of Fig. 1 and Tables 1 and 2 can be used to monitor the tightness of a radiant tube not only in a single jet tube furnace but also in multi-jet tube furnaces. In this case, a pressure monitoring can be carried out at each jet pipe and the resulting exhaust gas signals can be linked by means of individual monitoring circuits or by means of a single monitoring circuit with the relevant burner signals.

Es versteht sich ferner, dass das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zur Überwachung beliebiger Strahlrohre verwendet werden kann. Es können also bspw. Mantel-Strahlrohre, P-Strahlrohre und Doppel-P-Strahlrohre überwacht werden. Aber auch bei Durchgangs- und U-Strahlrohren kann das erfindungsgemäße Prinzip verwendet werden. Dabei wird der Abgassstrom am Ausgang des Durchgangs des U-Rohres mittels der Differenzdruckblende und der Druckmesseinrichtung überwacht.It is further understood that the method according to the invention and the device according to the invention can be used for monitoring any jet pipes. So it can, for example, mantle jet pipes, P-beam tubes and double P-beam tubes are monitored. But even with through and U-beam tubes, the principle of the invention can be used. In this case, the exhaust gas flow is monitored at the outlet of the passage of the U-tube by means of the differential pressure diaphragm and the pressure measuring device.

Eine mögliche Ausführung für die Überwachungsschaltung 38 mit herkömmlichen Bauelementen ist in Fig. 2 dargestellt. Mit dieser Überwachungsschaltung 38 wird lediglich dann ein Fehlersignal ausgegeben, wenn die Kombination BRENNER EIN und ABGAS AUS erhalten wird. Zusätzlich ist hierbei jedoch ein Leuchttaster zur Anzeige und Quittierung der Fehlermeldung vorgesehen.One possible embodiment for the monitoring circuit 38 with conventional components is shown in FIG Fig. 2 shown. With this monitoring circuit 38, an error signal is output only when the combination BURNER ON and OFF GAS OFF is obtained. In addition, however, a light button for displaying and acknowledging the error message is provided here.

Die Überwachungsschaltung 38 kann bspw. in einem separaten Gehäuse untergebracht sein, das zusätzlich jeweils am zugeordneten Brenner untergebracht ist.The monitoring circuit 38 may, for example, be accommodated in a separate housing, which is additionally accommodated in each case on the associated burner.

Die Überwachungsschaltung 38 weist einen Eingang 56 für das von der Brennersteuerung 28 erhaltene Brennersignal (220 V-Signal) auf, das die Zustände BRENNER EIN oder BRENNER AUS annehmen kann. Dieser Eingang 56 ist mit einem Relais K1 verbunden, das mit seinem Steuerkreis 40 am anderen Ende an den Nullleiter N über den Anschluss 64 angeschlossen ist. Gleichfalls an den Nullleiter N ist ein Relais K2 mit seinem Steuerkreis 42 angeschlossen, der in Reihe mit dem Schließkontakt 41 des Relais K1 und in Reihe mit der Druckmesseinrichtung 24 liegt, die über die Anschlüsse 58 und 60 angeschlossen ist und die über eine Leitung 50 mit der von der Brennersteuerung 28 erhaltenen 220 V-Phase verbunden ist, die über den Anschluss 62 angeschlossen ist. Die Druckmesseinrichtung 24 öffnet den in Fig. 2 schematisch angedeuteten Öffnerkontakt dann, wenn der Differenzdruck den voreingestellten Schwellwert von z.B. 2 mbar überschreitet.The monitoring circuit 38 has an input 56 for the burner signal (220 V signal) received from the burner controller 28, which can assume the conditions BURNER ON or BURNER OFF. This input 56 is connected to a relay K1, which is connected with its control circuit 40 at the other end to the neutral conductor N via the terminal 64. Likewise to the neutral conductor N, a relay K2 is connected to its control circuit 42, which is in series with the make contact 41 of the relay K1 and in series with the pressure measuring device 24, which is connected via the terminals 58 and 60 and via a line 50 with the 220 received from the burner control 28 V-phase connected via the terminal 62 is connected. The pressure measuring device 24 opens the in Fig. 2 schematically indicated NC contact when the differential pressure exceeds the preset threshold of eg 2 mbar.

Parallel zum Steuerkreis 42 des Relais K2 ist eine Indikatorlampe 44 angeschlossen, die mit ihrem einen Ende am Nullleiter liegt und mit ihrem anderen Ende über den Steuerkreis 43 des Relais K2 und einen Taster 46 mit der Leitung 50 und dem Anschluss 62, also mit der 220V-Phase verbunden ist. Durch eine Leitung 48 zwischen dem Steuerkreis 42 und dem Schaltkreis 43 des Relais ist die Indikatorlampe 44 parallel zum Steuerkreis 42 des Relais K2 geschaltet.Parallel to the control circuit 42 of the relay K2, an indicator lamp 44 is connected, which lies with its one end to the neutral and with its other end via the control circuit 43 of the relay K2 and a button 46 with the line 50 and the terminal 62, ie with the 220V Phase is connected. Through a line 48 between the control circuit 42 and the circuit 43 of the relay, the indicator lamp 44 is connected in parallel to the control circuit 42 of the relay K2.

Wird das Brennersignal BRENNER EIN erhalten und fehlt das Abgassignal, d.h. öffnet der Öffnerkontakt der Druckmesseinrichtung 24 die Verbindung zwischen dem Schaltkreis 41 des Relais K1 und der Leitung 50 nicht, so wird dies durch Aufleuchten der Indikatorlampe 44 angezeigt, und es wird ein Fehlersignal am Ausgang 66 ausgegeben. Das Fehlersignal kann durch den Taster 46 quittiert werden.When the burner signal BURNER ON is received and the exhaust signal, i. If the normally closed contact of the pressure measuring device 24 does not open the connection between the circuit 41 of the relay K1 and the line 50, this is indicated by the illumination of the indicator lamp 44, and an error signal is output at the output 66. The error signal can be acknowledged by the button 46.

Claims (13)

  1. A process for monitoring the imperviousness of a radiant tube (14) fired by a gas burner (12), wherein the operation of the gas burner (12) is monitored and a burner signal (32) is generated that comprises at least the states BURNER OFF when the burner (12) is switched off and BURNER ON when the burner (12) is switched on, wherein further the exhaust gas flow of the burner (12) is monitored and an exhaust gas signal (34) is generated that comprises at least the states EXHAUST GAS OFF, when there is no sufficient exhaust gas volume flow, and EXHAUST GAS ON, when there is a suitably flowing exhaust gas flow, and wherein the burner signal (32) and the exhaust gas signal (34) are coupled with each other for generating a failure signal (36) when there is a non admitted combination of the burner signal (32) and the exhaust gas signal (34).
  2. The process of claim 1, wherein the burner signal (32) is derived from a control (28) of said burner (12).
  3. The process of claim 1 or 2, wherein the failure signal (36) is generated when the signals BURNER ON and EXHAUST GAS OFF are received.
  4. The process of any of claims 1, 2 or 3, wherein coolant air is fed to said radiant tube (14) for cooling a furnace room heated by said radiant tube, the flow of said coolant air is monitored and a coolant air signal is generated that comprises the states COOLANT AIR ON and COOLANT AIR OFF, respectively, and wherein a failure signal (36) is generated when there is an inadmissible combination with said burner signal (32).
  5. The process of claim 4, wherein additional coolant air for cooling said furnace room is fed to said radiant tube, the flow of said additional coolant air is monitored and an additional coolant air signal ADDITIONAL COOLANT AIR ON or ADDITIONAL COOLANT AIR OFF, respectively, is generated there from, wherein a failure signal is generated when there is an inadmissible combination with said burner signal, said exhaust gas signal and said coolant air signal.
  6. The process of any of the preceding claims, wherein the monitoring of said flow is performed by a volumetric measuring, by an effective pressure measuring, by a flow velocity measuring using an inductive method or an ultrasonic method or a pressure probe method.
  7. The process of claim 6, wherein said flow is monitored by an effective pressure method using a flow constriction by a throttle device, in particular by a differential pressure disk (22).
  8. The process of claim 7, wherein the signal (34) is set to "OFF" when the detected pressure differential falls below a certain threshold.
  9. The process of claim 8, wherein a threshold of 10 mbar, preferably of 5 mbar, more preferably of 3 mbar, in particular of 2 mbar is selected as the pressure differential Ap between the pressure differential disk inlet and outlet.
  10. The process of any of the preceding claims, wherein a failure signal (36) is generated in case of the combination BURNER OFF and EXHAUST GAS ON.
  11. A device for monitoring the imperviousness of a radiant tube (14) fired by a gas burner (12), comprising a sensor (24) for monitoring the exhaust gas flow of said burner (12) and, when exceeding a certain threshold, for generating an exhaust gas signal (34) characteristic therefor, and further comprising a monitoring circuitry (38) into which said exhaust gas signal (34) and a burner signal (32) characteristic for the on/off state of said burner (12) are fed and which outputs a failure signal (36) when there is an inadmissible combination of said burner signal (32) and said exhaust gas signal (34), characterized in that said sensor (24) is configured as a sensor for monitoring the exhaust gas volume flow.
  12. The device of claim 11, characterized in that there is provided a throttle device, in particular a differential pressure disk (22) within the exhaust gas flow, wherein said sensor (24) is configured as a differential pressure detector for measuring the pressure differential between the inlet of said differential pressure disk (22) and the output of said differential pressure disk.
  13. The device of claim 11 or 12, characterized in that said monitoring circuitry (38) generates a failure signal (36) with the combination BURNER ON and EXHAUST GAS OFF.
EP04011332A 2003-05-21 2004-05-13 Method and device for controlling the tightness of a gas fired radiant tube Expired - Lifetime EP1479973B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04011332T PL1479973T3 (en) 2003-05-21 2004-05-13 Method and device for controlling the tightness of a gas fired radiant tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324299A DE10324299B3 (en) 2003-05-21 2003-05-21 Method and device for monitoring the tightness of a jet pipe fired by a gas burner
DE10324299 2003-05-21

Publications (3)

Publication Number Publication Date
EP1479973A2 EP1479973A2 (en) 2004-11-24
EP1479973A3 EP1479973A3 (en) 2008-03-05
EP1479973B1 true EP1479973B1 (en) 2013-03-27

Family

ID=33039336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04011332A Expired - Lifetime EP1479973B1 (en) 2003-05-21 2004-05-13 Method and device for controlling the tightness of a gas fired radiant tube

Country Status (4)

Country Link
US (1) US20040265759A1 (en)
EP (1) EP1479973B1 (en)
DE (1) DE10324299B3 (en)
PL (1) PL1479973T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029118A1 (en) * 2009-09-02 2011-03-03 Loi Thermprocess Gmbh radiant
US10508807B2 (en) * 2014-05-02 2019-12-17 Air Products And Chemicals, Inc. Remote burner monitoring system and method
US10113770B2 (en) * 2014-12-11 2018-10-30 Rinnai Corporation Warm air heater
CN110967147B (en) * 2018-09-28 2021-12-17 宝山钢铁股份有限公司 Online searching method for damaged radiant tube of annealing furnace
CN110672789A (en) * 2019-09-11 2020-01-10 唐山钢铁集团有限责任公司 Online detection method for leakage of W-shaped radiant tube of annealing furnace
CN113358299A (en) * 2021-05-13 2021-09-07 武汉钢铁有限公司 Rapid detection method for breakage of radiant tube of cold rolling continuous annealing furnace
CN114383160A (en) * 2021-12-23 2022-04-22 广东万和新电气股份有限公司 Gas leakage prevention method, controller and system
CN117030158B (en) * 2023-09-28 2023-12-26 江苏华业特钢制造有限公司 Radiant tube welding seam gas tightness detection device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219324A (en) * 1978-09-12 1980-08-26 The C. M. Kemp Manufacturing Company Process for treating metals using recycled gases
US4249324A (en) * 1979-04-25 1981-02-10 Deepsea Ventures, Inc. Steerable ocean floor dredge vehicle
US4334855A (en) * 1980-07-21 1982-06-15 Honeywell Inc. Furnace control using induced draft blower and exhaust gas differential pressure sensing
US4421268A (en) * 1980-10-17 1983-12-20 Honeywell Inc. Integrated control system using a microprocessor
US4752210A (en) * 1982-01-11 1988-06-21 Heil Quaker Corporation Power vent and control for furnace
DE3208765A1 (en) * 1982-03-11 1983-09-22 Ruhrgas Ag, 4300 Essen METHOD FOR MONITORING COMBUSTION PLANTS
FR2607905B1 (en) * 1986-12-05 1990-01-26 Pramata DEVICE FOR VERIFYING THE STATE OF THE SMOKE OF A FUEL BURNING HEAT OR FORCE
US5027789A (en) * 1990-02-09 1991-07-02 Inter-City Products Corporation (Usa) Fan control arrangement for a two stage furnace
FR2687212B1 (en) * 1992-02-06 1999-04-30 Chaffoteaux Et Maury IMPROVEMENTS IN SAFETY DEVICES FOR AIR-FORCE FLOW GAS BOILERS OR THE LIKE.
US5203313A (en) * 1992-06-19 1993-04-20 Bundy Corporation EGR venturi coupler
EP1243851A3 (en) * 1992-12-25 2002-11-06 Kawasaki Seitetsu Kabushiki Kaisha Heating apparatus including plurality of regenerative burner units and operating method thereof
US6332408B2 (en) * 2000-01-13 2001-12-25 Michael Howlett Pressure feedback signal to optimise combustion air control

Also Published As

Publication number Publication date
PL1479973T3 (en) 2013-08-30
EP1479973A3 (en) 2008-03-05
DE10324299B3 (en) 2004-12-23
US20040265759A1 (en) 2004-12-30
EP1479973A2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
EP2697572B1 (en) Automatic function diagnosis system and method
EP1479973B1 (en) Method and device for controlling the tightness of a gas fired radiant tube
EP1746345B1 (en) Method for operating a gas burner
DE102010056275A1 (en) Method of operating a gas burner for a heater
DE10247167A1 (en) Leak testing device for valves, especially gas safety valves, determines leakage rate of at least one valve within measurement step from at least two signals characterizing detected pressure
EP2312213A2 (en) Regulator for gas burner
DD209681A5 (en) METHOD FOR MONITORING FIRING SYSTEMS
EP2292976B1 (en) Radiant heater
DE69504541T2 (en) Fault detection of a sensor
EP1479984A1 (en) Method and apparatus for preventive failure detection by electronic controlled device
DE10159033B4 (en) Regulation procedure for heating appliances
EP2761241A1 (en) Monitoring method
DE10258187B4 (en) Method for monitoring and detecting an operating state of condensing boilers
EP3869102A1 (en) Method and device for diagnosing faults affecting a firing controller
DE102022122935A1 (en) Device for detecting backfire in a heater
WO2021165051A1 (en) Method for monitoring and controlling a process of a gas boiler, and gas boiler
EP4170235A1 (en) Method for evaluating a unsteady pressure difference detected by a sensor at a gas heater and corresponding gas heater
EP1503151B1 (en) Air treatment and heating system
EP4102136B1 (en) Method for the verification of a flame monitoring device for a heater, heater, computer program and storage medium
JPH08145341A (en) Combustion control device
EP4215813B1 (en) Method and arrangement for operating an optical sensor on a window to a combustion chamber of a heating device and corresponding computer program product
DE2950690A1 (en) Regulation of gas burner operation - has exhaust gas sampling to control setting of butterfly valves controlling through flow
DE102017104526A1 (en) Method for determining the cause of a misfire on the burner of a boiler
EP4148325A1 (en) Method and assembly for ensuring the presence of flames in a combustion chamber during the modulation of a heater
AT413300B (en) Controller for heat output from gas burner heating appliance, operates using the output from blower rotation speed sensor if an air pressure sensor fails

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOXMAT GMBH

17P Request for examination filed

Effective date: 20080520

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20111123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014078

Country of ref document: DE

Effective date: 20130523

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

BERE Be: lapsed

Owner name: NOXMAT G.M.B.H.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014078

Country of ref document: DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140520

Year of fee payment: 11

Ref country code: NL

Payment date: 20140521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140423

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040513

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150513

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190522

Year of fee payment: 16

Ref country code: DE

Payment date: 20190702

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014078

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 603645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200513