EP1474610B1 - Warning before pump limit or in case of blade failure on a turbomachine - Google Patents

Warning before pump limit or in case of blade failure on a turbomachine Download PDF

Info

Publication number
EP1474610B1
EP1474610B1 EP02769931A EP02769931A EP1474610B1 EP 1474610 B1 EP1474610 B1 EP 1474610B1 EP 02769931 A EP02769931 A EP 02769931A EP 02769931 A EP02769931 A EP 02769931A EP 1474610 B1 EP1474610 B1 EP 1474610B1
Authority
EP
European Patent Office
Prior art keywords
value
mean
alarm
measurement
turbocompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02769931A
Other languages
German (de)
French (fr)
Other versions
EP1474610A1 (en
Inventor
Frank Grauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1474610A1 publication Critical patent/EP1474610A1/en
Application granted granted Critical
Publication of EP1474610B1 publication Critical patent/EP1474610B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Definitions

  • the invention relates generally to the technical field of turbocompressors, as used for example in gas turbines (in particular as aircraft engines) or in power generation or in the chemical industry.
  • the invention relates to the field, in time to detect a compressor pumps emerging during operation of the turbocompressor, so that appropriate countermeasures can be taken.
  • the invention further relates to blade damage of a rotor of a turbomachine, such as a steam or gas turbine.
  • the gas turbine may be an aircraft engine or a stationary gas turbine, each having rotors in the compressor and turbine.
  • Turbo compressors generally have a stability limit depending on their performance characteristics. If, during operation of the turbocompressor, this stability limit is inadvertently exceeded (for example due to an entry disturbance or due to changes in temperature or soiling), then strong unsteady currents (rotating tearing, pumping) occur, which can quickly lead to destruction of the machine. It is therefore customary to provide for the design of the turbocompressor a sufficient distance between the working line and the stability limit, as a safety margin, all disturbances are taken into account, which could reduce the surge margin. By such a fixed safety distance, however, a considerable working range of the compressor is lost with good efficiency.
  • turbo compressors In order to further increase the efficiency and / or the power density in modern constructions, considerations have been made as to how turbo compressors can be safely operated in the vicinity of the stability limit. It is known that when the pumping state approaches (falling short of a predetermined minimum distance from the pumping limit), the operating line of the compressor can be lowered rapidly or the pumping limit can be shifted. This can be done, for example, by opening a blow-off valve and / or by adjusting vanes and / or by reducing the fuel supply. In order to determine the approach of the surge line, different approaches have already been pursued.
  • a method for monitoring and controlling a compressor is known in which pressure fluctuations within a compressor stage are measured and analyzed with regard to their frequency components. If at least one characteristic Peak occurs in a dependent of the speed and the number of blades frequency range, a warning signal is generated depending on the shape of the occurred at least one peak.
  • the warning signal can be used for control purposes, for example, by lowering the load or reducing the fuel injection rate to avoid the emerging critical state.
  • US Pat. No. 6,231,306 B1 shows a control system for preventing a stall in a turbocompressor.
  • a mean value of the squared amplitude of a relevant frequency range is calculated from a measurement signal determined by a pressure sensor. The mean is normalized and compared to a threshold. If the threshold is exceeded, either a drain valve is opened or the vane position is changed.
  • the invention accordingly has the task of proposing a calculation method in order to reliably detect an emerging pumping state in a turbocompressor in such a timely manner that suitable measures for pump avoidance can still be made.
  • a blade damage of a rotor of a turbomachine should be detected as early as possible.
  • An object of preferred embodiments of the invention is to achieve this goal with as few additional sensors as possible, that is to say with as few sensors as possible which are not already provided in the turbocompressor anyway.
  • a further object of preferred embodiments of the inventions is to avoid complex arithmetic operations in order thereby to achieve a high reaction speed (data processing in real time) with relatively low computing power.
  • the invention is based on the basic idea of identifying circumferential disturbances which occur during the approach to the stability limit of the compressor. In experiments in which the compressor was slowly throttled to the surge limit, such circumferential faults could be observed in advance of the compressor instability.
  • the circulation speed in the annulus of the compressor is dependent on the compressor and possibly also on the speed.
  • the disturbances can be both long-wave (modal) and short-wave (in the form of so-called spikes ).
  • a combined criterion for the warning is provided.
  • This criterion is composed, firstly, of the subcriterion that the characteristic, periodic interference patterns occur clearly in the measurement signal of a temperature, pressure or flow velocity sensor, and secondly, from the subcriterion that the measurement signal of the first sensor coincides with the measurement signal of a second sensor, which in Circumferential direction of the turbocompressor or turbomachine offset from the first sensor is correlated.
  • Other temperature, pressure or flow velocity sensors may be provided. The warning is given depending on the extent to which these two subcriteria are met.
  • the invention provides reliable early or early detection of pump damage based on the identification of said characteristic signal structures that occur as the operating point approaches the surge line or blade damage.
  • the instrumental effort is low because the required at least two sensors in conventional compressors either for other reasons already exist or they can be added at least without difficulty.
  • the calculation effort for determining the two sub-criteria mentioned above is not particularly high, because in particular no complex frequency analyzes are required.
  • a rapidly responding surge limit warning or a warning for a blade damage can be delivered with relatively low computing power.
  • the term “pumps” is to be construed in the broadest sense and includes in addition to the actual pumping ( surging ) and the rotating stall in the compressor. Accordingly, the term “pumping limit” is understood to mean any warning signal that indicates an impending stall or pumping condition in the compressor.
  • the inventively provided at least two temperature, pressure or flow velocity sensors are arranged offset in the circumferential direction of the turbocompressor or the turbomachine against each other. They may have a circumferential distance of 180 ° or even less, for example 90 °, 60 °, 45 ° or 30 °. Although more than two temperature, pressure or flow rate sensors are provided, they may not necessarily be arranged at a uniform circumferential distance.
  • the at least two sensors are preferably located in a common axial plane of the turbocompressor or turbomachine. This may be, for example, the plane in front of the first rotor; other levels are also possible.
  • the inventively determined at least two measurement signals correspond to the output signals of each one of the temperature, pressure or flow velocity sensors.
  • the term "correspond" does not necessarily mean an identity; Rather, the output signal of a sensor can, for example, be scaled (multiplication by a constant or variable factor) or shifted (addition of a constant or variable value, for example for averaging) or inverted (multiplication by -1 or inverse) to obtain the corresponding measurement signal from it receive.
  • the measurement signals are preferably digital value sequences which have been obtained by analog-to-digital conversion (and possibly further processing steps) from the analog sensor output signals.
  • a first or a second time offset is used according to the invention.
  • the first and / or the second time offset are constant (depending on the type of compressor, if applicable) or dependent on the respective rotational speed or other parameters (for example the compressor pressure).
  • the invention is not limited to calculating only one periodicity value and one correlation value each; Rather, embodiments are also provided in which a plurality of these values (typically with different time offset values or for different measurement signals) are always calculated and evaluated.
  • the steps of the method according to the invention are preferably carried out by a program-controlled device, for example a digital signal processor (DSP).
  • DSP digital signal processor
  • implementations with hard-wired digital logic or analog implementations are also conceivable.
  • the order of enumeration of the method steps in the claims should not be construed as limiting; rather, these process steps also be executed in a different order or in whole or in part in parallel or semi-parallel (interlocking).
  • the warning is issued when the product of the periodicity value and the correlation value exceeds a predetermined threshold.
  • a predetermined threshold instead of product formation, another function is used that links the two mentioned values such that large periodic signal changes and / or high signal correlation lead to the issuing of the warning.
  • the threshold value calculation can be carried out independently for the two values, wherein the warning is preferably output only when both threshold values are exceeded.
  • the required measurement signals are preferably evaluated in a sliding window of a predetermined window width (fixed or dependent on measured values).
  • the window width significantly determines the required computational effort and can therefore also be changed depending on the available computing power.
  • the sampling frequency of the sensors and the signal evaluation is in preferred embodiments in the order of 1 kHz to 2 kHz.
  • the periodicity value is calculated as an average value (scaled or non-scaled) of the quadratic deviation of two measurement points each shifted by the first time offset from one another.
  • the evaluated measurement signal is previously subjected to a mean value adjustment in some embodiments.
  • the quadratic deviation instead of the quadratic deviation, the amount difference or the cubic difference in amount is formed.
  • the mean value calculation a simple summation can also take place in execution alternatives (in particular if the window width and / or the first time offset is constant).
  • the periodicity value should indicate the extent to which structures with strong periodic signal changes occur in the measurement signal.
  • the mean value of the product is calculated from two measurement points of two different measurement signals staggered by the second time offset.
  • a summation instead of averaging done, and instead of the product calculation, another function can be used.
  • the correlation value should be indicate how exactly the two measured signals considered coincide when shifted by the second time offset.
  • the detected warning is displayed only to a pilot or other operator.
  • an operating parameter of the turbocompressor is changed in response to the surge limit warning in an automatically proceeding process step in order to avoid compressor pumping.
  • a blow-off valve can be opened or the stator vanes of the turbocompressor can be adjusted.
  • turbocompressor is part of a gas turbine
  • stabilization of the flow can also be achieved when the surge limit is approached by thrust nozzle adjustment, injection or blow-off, VGV adjustment or fuel modulation, before the compressor becomes aerodynamically unstable.
  • the said measures have the result that the gas turbine (for example, the aircraft engine) can be operated closer to the surge limit under many operating conditions than would be possible with a static surge margin. This leads to improved efficiency and improved fuel economy characteristics (lower thrust specific fuel consumption SFC). Even if this possibility is not exploited, the reliability of the gas turbine increases, because disturbances that would lead to instability without a control, are detected in advance and eliminated by a controlled increase in the surge margin.
  • the gas turbine for example, the aircraft engine
  • gas turbine in particular an aircraft engine
  • improvements achievable by the invention can be taken into account in order to design the new development, where appropriate, to a higher turbine stage load or to optimize the required surge margin as needed.
  • the turbomachine, the turbocompressor and the gas turbine are further developed with features that correspond to the features just described or the features mentioned in the dependent method claims.
  • the twin-shaft gas turbine 10 shown in FIG. 1 is known per se. It has a multi-stage low-pressure compressor 12 and a multi-stage high-pressure compressor 14. The flow direction is followed by a combustion chamber 16, a high-pressure turbine 18 and a low-pressure turbine 20.
  • the low-pressure compressor 12 and the low-pressure turbine 20 are connected by a common (inner) shaft, and likewise the high-pressure compressor 14 and the high-pressure turbine 18 are connected to a common (outer) shaft ,
  • the gas turbine 10 is configured in the present embodiment as an aircraft turbine.
  • the invention is also intended for single-shaft gas turbines, gas turbines with three or more shafts, stationary gas turbines (for example in power plant technology) and compressors for other applications (for example, process engineering, ventilation technology).
  • Two sensors 22, 24 are arranged in a common axial plane in the flow direction in front of the first rotor of the high-pressure compressor 14.
  • the sensors 22, 24 are circumferentially offset from each other, in the present embodiment by 180 °.
  • the sensors 22, 24 are piezoelectric pressure sensors known as such.
  • flow velocity sensors are provided instead.
  • Output signals s 1 , s 2 of the sensors 22, 24 are supplied to a control unit 26, which is designed as a digital signal processor (DSP) with the required additional circuit.
  • DSP digital signal processor
  • Two analog / digital converters 28, 30 convert the analogue sensor output signals s 1 , s 2 into digital measuring signals p 1 , p 2 at a sampling frequency of approximately 1 kHz to 2 kHz.
  • the measurement signals p 1 , p 2 are processed by a surge limit warning determination module 32 in a manner to be described below.
  • the surge limit warning determination module 32 When approaching a critical State, the surge limit warning determination module 32 outputs a surge limit warning W to an influencing module 34, which in turn alters the operating parameters of the gas turbine 10 by a plurality of control signals c 1 , c 2 , c x to stabilize the operating state of the gas turbine 10 and thus avoid pumping ,
  • these are, in particular, a first control signal c 1 which activates blow-off valves (not shown in FIG. 1), a second control signal c 2 , which briefly reduces the fuel supply, and further control signals c x , which effect, for example, a thrust nozzle adjustment or a vane adjustment ,
  • a first control signal c 1 which activates blow-off valves (not shown in FIG. 1)
  • a second control signal c 2 which briefly reduces the fuel supply
  • further control signals c x which effect
  • the surge limit warning determination module 32 and the influencing module 34 are designed as program modules of the digital signal processor (DSP) forming the control unit 26. In alternative embodiments, these modules may also be implemented by analog or digital circuitry. Because the evaluation method according to the invention requires only relatively low computing power, the digital signal processor of the control unit 26 can take on further tasks, which may be associated in particular with the regulation of the gas turbine 10.
  • DSP digital signal processor
  • a corresponding averaged signal p 1 or p 2 is respectively formed from the two measurement signals p 1 and p 2 .
  • moving average values p 1 and p 2 of the measuring signals p 1 and p 2 are calculated during a time window which is considerably longer (for example ten or a hundred times) than a fluctuation of the measuring signals p 1 and p 2 to be determined.
  • the mean value signals p 1 and p 2 are from the respective measurement signal p 1 and p 2 subtracted.
  • FIG. 3 An exemplary course of the two mean-value-adjusted measurement signals p 1 and p 2 is shown in FIG. 3. Obviously, these signals show significant periodic signal level changes (the maximum differences in the measurement signal p 1 are observed for the time offset t 1 of approximately 0.6 compressor revolutions indicated in FIG. 3). Furthermore, a clear correlation between the two measuring signals p 1 and p 2 can be identified if they are compared with a time offset t 2 of approximately one compressor revolution. The three oblique, dotted lines in FIG. 3 show this correlation for three signal maxima.
  • a periodicity value W 1 is determined, which indicates a measure of the occurrence of periodic signal level changes in the mean-value-adjusted measurement signal p 1 .
  • the periodicity value W 1 could also be calculated from the non-average-adjusted measurement signal p 1 or one of the measurement signals p 2 or p 2 , or two periodicity values could be calculated for the measurement signals p 1 and p 2 (or for the measurement values p 1 and p 2 ).
  • the mean value of the squared signal differences of every two measuring points of the measuring signal p 1 is calculated within a sliding time window of N measuring points, the respective measuring points p 1 (i + t 1 ) and p 1 (i) being in each case distinguish a given time offset t 1 .
  • the amount of periodicity W 1 is maximum when, as shown in FIG. 3, the time offset t 1 is approximately half the signal period.
  • the time offset t 1 is either fixed (for a specific compressor design) or dependent on operating parameters of the compressor (eg the instantaneous speed).
  • Calculation step 46 in FIG. 2 relates to the determination of the correlation value W 2 from the measurement signals p 1 and p 2 .
  • the correlation value W 2 indicates how well the two measurement signals p 1 and p 2 on the basis of a second time offset t 2 are correlated with each other. This calculation enables the targeted identification of circulating faults.
  • the original measurement signals p 1 and p 2 can be used instead of the mean-value-adjusted measurement signals p 1 and p 2 in alternative embodiments.
  • the second time offset t 2 can also be fixed or variable. While in the embodiment described here the window width N is identical for both calculation steps 44, 46, different (fixed or variable) window widths are provided in execution alternatives.
  • the periodicity value W 1 and the correlation value W 2 are scaled by reference to the inlet and / or outlet pressure of the compressor.
  • the pressure values used for this can either originate from further sensors or be derived from the abovementioned mean value signals p 1 and p 2 .
  • the results of the scaling result in a scaled periodicity value W 1 and a scaled correlation value W 2 , which are multiplied together in the following step 52.
  • the product W 1 -W 2 is subjected to a threshold value comparison in step 54. If the product W 1 -W 2 exceeds a predetermined threshold value, a surge limit warning W is triggered, which is supplied as an input signal to the influencing module 34 (FIG. 1).
  • step 52 the values W 1 and W 2 can be directly multiplied together.
  • the threshold used in step 54 may be fixed or variable; In particular, it is also possible to obtain the same result as with a scaling of the values W 1 and W 2 by a corresponding change of the threshold value.
  • step 52 not the product but another function is calculated, for example the sum or the sum of the squares.
  • blade damage to a rotor in the compressor or turbine section 12, 14 or 18, 20 of a turbomachine may be indicated as warning (W) by the method described above and further ill effects avoided , z. B. by switching off this turbomachine, the z. B. an aircraft engine and subsequent repair or replacement of the damaged blade or blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Turbines (AREA)

Description

Die Erfindung betrifft allgemein das technische Gebiet von Turboverdichtern, wie sie beispielsweise in Gasturbinen (insbesondere als Flugzeugtriebwerke) oder bei der Energieerzeugung oder in der chemischen Industrie Anwendung finden. Insbesondere betrifft die Erfindung das Gebiet, ein sich während des Betriebs des Turboverdichters abzeichnendes Verdichterpumpen rechtzeitig zu erkennen, so dass geeignete Gegenmaßnahmen ergriffen werden können. Die Erfindung bezieht sich ferner auf einen Schaufelschaden eines Rotors einer Turbomaschine, wie einer Dampf- oder Gasturbine. Bei der Gasturbine kann es sich um ein Flugtriebwerk oder eine stationäre Gasturbine handeln, die jeweils in Verdichter und Turbine Rotoren aufweisen.The invention relates generally to the technical field of turbocompressors, as used for example in gas turbines (in particular as aircraft engines) or in power generation or in the chemical industry. In particular, the invention relates to the field, in time to detect a compressor pumps emerging during operation of the turbocompressor, so that appropriate countermeasures can be taken. The invention further relates to blade damage of a rotor of a turbomachine, such as a steam or gas turbine. The gas turbine may be an aircraft engine or a stationary gas turbine, each having rotors in the compressor and turbine.

Turboverdichter weisen allgemein eine von ihrer Leistungscharakteristik abhängige Stabilitätsgrenze auf. Wird während des Betriebs des Turboverdichters diese Stabilitätsgrenze unbeabsichtigt überschritten (z.B. durch eine Eintrittsstörung oder durch Temperaturänderungen oder Verschmutzung), so setzen starke instationäre Strömungen (rotierendes Abreißen, Pumpen) ein, die schnell bis zur Zerstörung der Maschine führen können. Es ist daher üblich, bei der Auslegung des Turboverdichters einen hinreichenden Abstand zwischen der Arbeitslinie und der Stabilitätsgrenze vorzusehen, wobei als Sicherheitsreserve alle Störungen berücksichtigt werden, die den Pumpgrenzabstand herabsetzen könnten. Durch einen solchen festen Sicherheitsabstand geht jedoch ein erheblicher Arbeitsbereich des Verdichters mit gutem Wirkungsgrad verloren.Turbo compressors generally have a stability limit depending on their performance characteristics. If, during operation of the turbocompressor, this stability limit is inadvertently exceeded (for example due to an entry disturbance or due to changes in temperature or soiling), then strong unsteady currents (rotating tearing, pumping) occur, which can quickly lead to destruction of the machine. It is therefore customary to provide for the design of the turbocompressor a sufficient distance between the working line and the stability limit, as a safety margin, all disturbances are taken into account, which could reduce the surge margin. By such a fixed safety distance, however, a considerable working range of the compressor is lost with good efficiency.

Um bei modernen Konstruktionen den Wirkungsgrad und/oder die Leistungsdichte weiter zu steigern, sind Überlegungen angestellt worden, wie Turboverdichter in der Nähe der Stabilitätsgrenze sicher betrieben werden können. Es ist bekannt, bei einem herannahenden Pumpzustand (Unterschreiten eines vorgegebenen Mindestabstands zur Pumpgrenze) die Arbeitslinie des Verdichters schnell abzusenken oder die Pumpgrenze zu verschieben. Dies kann beispielsweise durch Öffnen eines Abblasventils und/oder durch Verstellung von Leit schaufeln und/oder durch Verringerung der Brennstoffzufuhr geschehen. Um das Herannahen der Pumpgrenze zu ermitteln, sind bereits unterschiedliche Ansätze verfolgt worden.In order to further increase the efficiency and / or the power density in modern constructions, considerations have been made as to how turbo compressors can be safely operated in the vicinity of the stability limit. It is known that when the pumping state approaches (falling short of a predetermined minimum distance from the pumping limit), the operating line of the compressor can be lowered rapidly or the pumping limit can be shifted. This can be done, for example, by opening a blow-off valve and / or by adjusting vanes and / or by reducing the fuel supply. In order to determine the approach of the surge line, different approaches have already been pursued.

Aus der DE 693 25 375 T2 ist ein Verfahren zur Überwachung und Steuerung eines Verdichters bekannt, bei dem Druckschwankungen innerhalb einer Verdichterstufe gemessen und hinsichtlich ihrer Frequenzkomponenten analysiert werden. Wenn mindestens eine charakteristische Spitze in einem von der Drehzahl und der Schaufelanzahl abhängigen Frequenzbereich auftritt, wird in Abhängigkeit von der Gestalt der aufgetretenen mindestens einen Spitze ein Warnsignal erzeugt. Das Warnsignal kann für Steuer- und Regelungszwecke verwendet werden, um beispielsweise durch Absenken der Last oder Verringern der Kraftstoff einspritzrate den sich abzeichnenden kritischen Zustand zu vermeiden.From DE 693 25 375 T2 a method for monitoring and controlling a compressor is known in which pressure fluctuations within a compressor stage are measured and analyzed with regard to their frequency components. If at least one characteristic Peak occurs in a dependent of the speed and the number of blades frequency range, a warning signal is generated depending on the shape of the occurred at least one peak. The warning signal can be used for control purposes, for example, by lowering the load or reducing the fuel injection rate to avoid the emerging critical state.

Das US-Patent US 6,231,306 B1 zeigt ein Steuersystem zur Verhinderung eines Strömungsabrisses bei einem Turboverdichter. Aus einem von einem Drucksensor ermittelten Messsignal wird ein Mittelwert der quadrierten Amplitude eines relevanten Frequenzbereichs berechnet. Der Mittelwert wird normalisiert und mit einem Schwellwert verglichen. Bei einer Schwellwertüberschreitung wird entweder ein Ablassventil geöffnet oder es wird die Leitschaufelstellung verändert.US Pat. No. 6,231,306 B1 shows a control system for preventing a stall in a turbocompressor. A mean value of the squared amplitude of a relevant frequency range is calculated from a measurement signal determined by a pressure sensor. The mean is normalized and compared to a threshold. If the threshold is exceeded, either a drain valve is opened or the vane position is changed.

Aus der DE 694 11 950 T2 ist ein Verfahren zur Erkennung eines Pumpzustands bekannt, bei dem die Triebwerksabgastemperatur und die Triebwerksverdichterdrehzahl ausgewertet werden.From DE 694 11 950 T2 a method for the detection of a pumping state is known in which the engine exhaust gas temperature and the engine compressor speed are evaluated.

Es besteht ein Bedürfnis, die bekannten Verfahren hinsichtlich ihrer Zuverlässigkeit und/oder des erforderlichen Aufwands für die Sensorik und Signalverarbeitung weiter zu verbessern.There is a need to further improve the known methods in terms of their reliability and / or the required effort for the sensor and signal processing.

Die Erfindung hat demgemäß die Aufgabe, ein Berechnungsverfahren vorzuschlagen, um einen sich abzeichnenden Pumpzustand bei einem Turboverdichter zuverlässig so rechtzeitig zu erkennen, dass noch geeignete Maßnahmen zur Pumpvermeidung getroffen werden können. Zudem soll ein Schaufelschaden eines Rotors einer Turbomaschine möglichst frühzeitig erkannt werden. Eine Aufgabe bevorzugter Ausführungsformen der Erfindung ist es, dieses Ziel mit möglichst wenigen zusätzlichen Sensoren zu erreichen, also mit möglichst wenigen Sensoren, die bei dem Turboverdichter nicht sowieso schon vorgesehen sind. Eine weitere Aufgabe bevorzugter Ausführungsformen der Erfindungen ist es, komplexe Rechenoperationen zu vermeiden, um dadurch mit relativ geringer Rechenleistung eine hohe Reaktionsgeschwindigkeit (Datenverarbeitung in Echtzeit) zu erzielen.The invention accordingly has the task of proposing a calculation method in order to reliably detect an emerging pumping state in a turbocompressor in such a timely manner that suitable measures for pump avoidance can still be made. In addition, a blade damage of a rotor of a turbomachine should be detected as early as possible. An object of preferred embodiments of the invention is to achieve this goal with as few additional sensors as possible, that is to say with as few sensors as possible which are not already provided in the turbocompressor anyway. A further object of preferred embodiments of the inventions is to avoid complex arithmetic operations in order thereby to achieve a high reaction speed (data processing in real time) with relatively low computing power.

Erfindungsgemäß werden diese Aufgaben durch ein Verfahren zur Ermittlung einer Warnung mit den Merkmalen des Anspruchs 1, ein Verfahren zum Betrieb einer Gasturbine bzw. einer Turbomaschine gemäß Anspruch 10 bzw. 14, einen Turboverdichter nach Anspruch 11 und eine Gasturbine nach Anspruch 13 gelöst. Die abhängigen Ansprüche betreffen bevorzugte Ausgestaltungen der Erfindung.These objects are achieved by a method for determining a warning with the features of claim 1, a method for operating a gas turbine or a turbomachine according to claim 10 or 14, a turbocompressor according to claim 11 and a gas turbine according to claim 13. The dependent claims relate to preferred embodiments of the invention.

Die Erfindung beruht auf der Grundidee, umlaufende Störungen zu identifizieren, die während der Annäherung an die Stabilitätsgrenze des Verdichters auftreten. In Experimenten, bei denen der Verdichter langsam bis an die Pumpgrenze gedrosselt wurde, ließen sich im Vorfeld der Verdichterinstabilität derartige umlaufende Störungen beobachten. Die Umlauf geschwindigkeit im Ringraum des Verdichters ist vom Verdichter und unter Umständen auch von der Drehzahl abhängig. Die Störungen können sowohl langwellig (modal) als auch kurzwellig (in Form von sogenannten spikes) sein.The invention is based on the basic idea of identifying circumferential disturbances which occur during the approach to the stability limit of the compressor. In experiments in which the compressor was slowly throttled to the surge limit, such circumferential faults could be observed in advance of the compressor instability. The circulation speed in the annulus of the compressor is dependent on the compressor and possibly also on the speed. The disturbances can be both long-wave (modal) and short-wave (in the form of so-called spikes ).

Erfindungsgemäß ist ein kombiniertes Kriterium für die Warnung vorgesehen. Dieses Kriterium setzt sich zusammen erstens aus dem Unterkriterium, dass die charakteristischen, periodischen Störungsmuster deutlich im Messsignal eines Temperatur-, Druck- oder Strömungsgeschwindigkeitssensors auftreten, und zweitens aus dem Unterkriterium, dass das Messsignal des ersten Sensors mit dem Messsignal eines zweiten Sensors, der in Umfangsrichtung des Turboverdichters oder der Turbomaschine zum ersten Sensor versetzt angeordnet ist, korreliert sind. Weitere Temperatur-, Druck- oder Strömungsgeschwindigkeitssensoren können vorgesehen sein. Die Warnung wird in Abhängigkeit davon abgegeben, in welchem Maße diese beiden Unterkriterien erfüllt sind.According to the invention, a combined criterion for the warning is provided. This criterion is composed, firstly, of the subcriterion that the characteristic, periodic interference patterns occur clearly in the measurement signal of a temperature, pressure or flow velocity sensor, and secondly, from the subcriterion that the measurement signal of the first sensor coincides with the measurement signal of a second sensor, which in Circumferential direction of the turbocompressor or turbomachine offset from the first sensor is correlated. Other temperature, pressure or flow velocity sensors may be provided. The warning is given depending on the extent to which these two subcriteria are met.

Die Erfindung liefert eine zuverlässige Pump- bzw. Schaufelschadensfrüherkennung basierend auf der Identifikation der genannten charakteristischen Signalstrukturen, die bei der Annäherung des Betriebspunkts an die Pumpgrenze bzw. bei einem Schaufelschaden auf treten. Der instrumentelle Aufwand ist gering, weil die benötigten mindestens zwei Sensoren bei üblichen Verdichtern entweder schon aus anderen Gründen vorhanden sind oder sie zumindest ohne Schwierigkeiten hinzugefügt werden können. Auch der Berechnungsaufwand zur Bestimmung der beiden oben genannten Unterkriterien ist nicht besonders hoch, weil insbesondere keine aufwendigen Frequenzanalysen erforderlich sind. Durch die Erfindung kann mit relativ geringer Rechenleistung eine rasch ansprechende Pumpgrenzwarnung bzw. eine Warnung für einen Schaufelschaden abgegeben werden.The invention provides reliable early or early detection of pump damage based on the identification of said characteristic signal structures that occur as the operating point approaches the surge line or blade damage. The instrumental effort is low because the required at least two sensors in conventional compressors either for other reasons already exist or they can be added at least without difficulty. Also, the calculation effort for determining the two sub-criteria mentioned above is not particularly high, because in particular no complex frequency analyzes are required. By virtue of the invention, a rapidly responding surge limit warning or a warning for a blade damage can be delivered with relatively low computing power.

In der im vorliegenden Dokument verwendeten Wortwahl ist der Begriff "Pumpen" im weitesten Sinne aufzufassen und umfasst neben dem eigentlichen Pumpen (surging) auch den rotierenden Strömungsabriss (rotating stall) im Verdichter. Unter dem Begriff "Pumpgrenzwamung" ist dementsprechend jedes Warnsignal zu verstehen, das auf einen sich anbahnenden Strömungsabriss oder Pumpzustand im Verdichter hinweist.In the wording used in this document, the term "pumps" is to be construed in the broadest sense and includes in addition to the actual pumping ( surging ) and the rotating stall in the compressor. Accordingly, the term "pumping limit" is understood to mean any warning signal that indicates an impending stall or pumping condition in the compressor.

Die erfindungsgemäß vorgesehenen mindestens zwei Temperatur-, Druck- oder Strömungsgeschwindigkeitssensoren sind in Umfangsrichtung des Turboverdichters oder der Turbomaschine gegeneinander versetzt angeordnet. Sie können einen Umfangsabstand von 180° oder auch weniger, beispielsweise 90°, 60°, 45° oder 30° aufweisen. Auch wenn mehr als zwei Temperatur-, Druck- oder Strömungsgeschwindigkeitssensoren vorgesehen sind, brauchen diese nicht unbedingt in einem einheitlichen Umfangsabstand angeordnet zu sein. Die mindestens zwei Sensoren befinden sich vorzugsweise in einer gemeinsamen Axialebene des Turboverdichters oder der Turbomaschine. Dies kann beispielsweise die Ebene vor dem ersten Rotor sein; andere Ebenen sind aber ebenfalls möglich.The inventively provided at least two temperature, pressure or flow velocity sensors are arranged offset in the circumferential direction of the turbocompressor or the turbomachine against each other. They may have a circumferential distance of 180 ° or even less, for example 90 °, 60 °, 45 ° or 30 °. Although more than two temperature, pressure or flow rate sensors are provided, they may not necessarily be arranged at a uniform circumferential distance. The at least two sensors are preferably located in a common axial plane of the turbocompressor or turbomachine. This may be, for example, the plane in front of the first rotor; other levels are also possible.

Die erfindungsgemäß ermittelten mindestens zwei Messsignale entsprechen den Ausgangssignalen je eines der Temperatur-, Druck- oder Strömungsgeschwindigkeitssensoren. Mit dem Begriff "entsprechen" ist nicht notwendigerweise eine Identität gemeint; vielmehr kann das Ausgangssignal eines Sensors beispielsweise skaliert (Multiplikation mit einem konstanten oder veränderlichen Faktor) oder verschoben (Addition eines konstanten oder veränderlichen Werts, beispielsweise zur Mittelwertbereinigung) oder invertiert (Multiplikation mit -1 oder Kehrwertbildung) werden, um aus ihm das entsprechende Messsignal zu erhalten. Femer sind die Messsignale vorzugsweise digitale Wertefolgen, die durch eine Analog/Digital-Wandlung (und gegebenenfalls weitere Verarbeitungsschritte) aus den analogen Sensor-Ausgangssignalen erhalten wurden.The inventively determined at least two measurement signals correspond to the output signals of each one of the temperature, pressure or flow velocity sensors. The term "correspond" does not necessarily mean an identity; Rather, the output signal of a sensor can, for example, be scaled (multiplication by a constant or variable factor) or shifted (addition of a constant or variable value, for example for averaging) or inverted (multiplication by -1 or inverse) to obtain the corresponding measurement signal from it receive. Furthermore, the measurement signals are preferably digital value sequences which have been obtained by analog-to-digital conversion (and possibly further processing steps) from the analog sensor output signals.

Bei der Bestimmung des Periodizitätswerts und des Korrelationswerts wird erfindungsgemäß ein erster bzw. ein zweiter Zeitversatz angewendet. In unterschiedlichen Ausführungsformen der Erfindung sind der erste und/oder der zweite Zeitversatz konstant vorgegeben (gegebenenfalls in Abhängigkeit vom Verdichtertyp) oder von der jeweiligen Umdrehungsgeschwindigkeit oder anderen Parametern (z.B. dem Verdichterdruck) abhängig. Die Erfindung ist auch nicht darauf beschränkt, nur jeweils einen Periodizitätswert und Korrelationswert zu berechnen; vielmehr sind auch Ausführungsformen vorgesehen, bei denen stets mehrere dieser Werte (typischerweise mit unterschiedlichen Zeitversatz-Werten oder für unterschiedliche Messsignale) berechnet und ausgewertet werden.When determining the periodicity value and the correlation value, a first or a second time offset is used according to the invention. In various embodiments of the invention, the first and / or the second time offset are constant (depending on the type of compressor, if applicable) or dependent on the respective rotational speed or other parameters (for example the compressor pressure). Also, the invention is not limited to calculating only one periodicity value and one correlation value each; Rather, embodiments are also provided in which a plurality of these values (typically with different time offset values or for different measurement signals) are always calculated and evaluated.

Die Schritte des erfindungsgemäßen Verfahrens werden vorzugsweise von einer programmgesteuerten Einrichtung, z.B. einem digitalen Signalprozessor (DSP) ausgeführt. Es sind jedoch auch Implementierungen mit einer festverdrahteten Digitallogik oder analoge Implementierungen denkbar. Die Aufzählungsreihenfolge der Verfahrensschritte in den Ansprüchen ist nicht als Einschränkung zu verstehen; vielmehr können diese Verfahrensschritte auch in anderer Reihenfolge oder ganz oder teilweise parallel oder semi-parallel (ineinander verzahnt) ausgeführt werden.The steps of the method according to the invention are preferably carried out by a program-controlled device, for example a digital signal processor (DSP). However, implementations with hard-wired digital logic or analog implementations are also conceivable. The order of enumeration of the method steps in the claims should not be construed as limiting; rather, these process steps also be executed in a different order or in whole or in part in parallel or semi-parallel (interlocking).

In bevorzugten Ausführungsformen wird die Warnung dann abgegeben, wenn das Produkt des Periodizitätswerts und des Korrelationswerts einen vorbestimmten Schwellwert übersteigt. In anderen Ausführungsformen wird statt der Produktbildung eine andere Funktion verwendet, die die beiden genannten Werte derart verknüpft, dass große periodische Signaländerungen und/oder eine hohe Signalkorrelation zur Ausgabe der Warnung führen. Die Schwellwertberechnung kann in weiteren Ausführungsformen unabhängig für die beiden Werte durchgeführt werden, wobei die Warnung vorzugsweise nur bei Überschreiten beider Schwellwerte abgegeben wird.In preferred embodiments, the warning is issued when the product of the periodicity value and the correlation value exceeds a predetermined threshold. In other embodiments, instead of product formation, another function is used that links the two mentioned values such that large periodic signal changes and / or high signal correlation lead to the issuing of the warning. In other embodiments, the threshold value calculation can be carried out independently for the two values, wherein the warning is preferably output only when both threshold values are exceeded.

Zur Berechnung des Periodizitätswerts und/oder des Korrelationswerts werden vorzugsweise die benötigten Messsignale in einem gleitenden Fenster einer vorgegebenen (festen oder von Messwerten abhängigen) Fensterbreite ausgewertet. Die Fensterbreite bestimmt maßgeblich den erforderlichen Rechenaufwand und kann deshalb auch je nach der zur Verfügung stehenden Rechenleistung verändert werden. Die Abtastfrequenz der Sensoren und der Signalauswertung liegt in bevorzugten Ausgestaltungen in der Größenordnung von 1 kHz bis 2 kHz.To calculate the periodicity value and / or the correlation value, the required measurement signals are preferably evaluated in a sliding window of a predetermined window width (fixed or dependent on measured values). The window width significantly determines the required computational effort and can therefore also be changed depending on the available computing power. The sampling frequency of the sensors and the signal evaluation is in preferred embodiments in the order of 1 kHz to 2 kHz.

Vorzugsweise ist vorgesehen, den Periodizitätswert als Durchschnittswert (skaliert oder nicht-skaliert) der quadratischen Abweichung von je zwei um den ersten Zeitversatz gegeneinander verschobenen Messpunkten eines der Messsignale zu berechnen. Das ausgewertete Messsignal wird in manchen Ausführungsformen zuvor einer Mittelwertbereinigung unterzogen. In Ausführungsalternativen wird statt der quadratischen Abweichung die Betragsdifferenz oder die kubische Betragsdifferenz gebildet. Statt der Mittelwertberechnung kann in Ausführungsalternativen (insbesondere dann, wenn die Fensterbreite und/oder der erste Zeitversatz konstant sind/ist) auch eine bloße Summenbildung erfolgen. Der Periodizitätswert soll insgesamt anzeigen, in welchen Maße Strukturen mit starken periodischen Signaländerungen im Messsignal auftreten.Preferably, it is provided to calculate the periodicity value as an average value (scaled or non-scaled) of the quadratic deviation of two measurement points each shifted by the first time offset from one another. The evaluated measurement signal is previously subjected to a mean value adjustment in some embodiments. In alternative embodiments, instead of the quadratic deviation, the amount difference or the cubic difference in amount is formed. Instead of the mean value calculation, a simple summation can also take place in execution alternatives (in particular if the window width and / or the first time offset is constant). Overall, the periodicity value should indicate the extent to which structures with strong periodic signal changes occur in the measurement signal.

Um den Korrelationswert zu berechnen, wird in bevorzugten Ausführungsformen der Mittelwert des Produkts von je zwei um den zweiten Zeitversatz gegeneinander versetzten Messpunkten zweier unterschiedlicher Messsignale berechnet. Auch hier kann in Ausführungsalternativen eine Summierung statt der Mittelwertbildung erfolgen, und statt der Produktberechnung kann eine andere Funktion herangezogen werden. Insgesamt soll der Korrelationswert angeben, wie genau die beiden betrachteten Messsignale, wenn sie um den zweiten Zeitversatz gegeneinander verschoben werden, übereinstimmen.In order to calculate the correlation value, in preferred embodiments the mean value of the product is calculated from two measurement points of two different measurement signals staggered by the second time offset. Again, in alternative embodiments, a summation instead of averaging done, and instead of the product calculation, another function can be used. Overall, the correlation value should be indicate how exactly the two measured signals considered coincide when shifted by the second time offset.

In manchen Ausführungsformen der Erfindung wird die ermittelte Warnung lediglich einem Piloten oder einer sonstigen Bedienperson angezeigt. Vorzugsweise wird jedoch in Reaktion auf die Pumpgrenzwarnung in einem automatisch ablaufenden Verfahrensschritt ein Betriebsparameter des Turboverdichters verändert, um ein Verdichterpumpen zu vermeiden. Beispielsweise kann ein Abblasventil geöffnet werden oder die Statorschaufeln des Turboverdichters können verstellt werden.In some embodiments of the invention, the detected warning is displayed only to a pilot or other operator. Preferably, however, an operating parameter of the turbocompressor is changed in response to the surge limit warning in an automatically proceeding process step in order to avoid compressor pumping. For example, a blow-off valve can be opened or the stator vanes of the turbocompressor can be adjusted.

Ist der Turboverdichter Bestandteil einer Gasturbine, so kann ferner bei erkannter Pumpgrenzannäherung durch Schubdüsenverstellung, Ein- oder Abblasung, VGV-Verstellung oder Brennstoffmodulation eine Stabilisierung der Strömung erreicht werden, bevor der Verdichter aerodynamisch instabil wird.If the turbocompressor is part of a gas turbine, stabilization of the flow can also be achieved when the surge limit is approached by thrust nozzle adjustment, injection or blow-off, VGV adjustment or fuel modulation, before the compressor becomes aerodynamically unstable.

Die genannten Maßnahmen haben zur Folge, dass die Gasturbine (beispielsweise das Flugzeugtriebwerk) bei vielen Betriebsbedingungen näher an der Pumpgrenze betrieben werden kann, als es mit einem statischen Pumpgrenzabstand möglich wäre. Dies führt zu einem verbesserten Wirkungsgrad und zu verbesserten Kraftstoffverbrauchseigenschaften (geringerer schubspezifischer Kraftstoffverbrauch SFC). Auch wenn diese Möglichkeit nicht ausgeschöpft wird, steigt die Betriebssicherheit der Gasturbine, weil Störungen, die ohne eine Regelung zur Instabilität führen würden, im Vorfeld erkannt und durch eine geregelte Vergrößerung des Pumpgrenzabstandes beseitigt werden.The said measures have the result that the gas turbine (for example, the aircraft engine) can be operated closer to the surge limit under many operating conditions than would be possible with a static surge margin. This leads to improved efficiency and improved fuel economy characteristics (lower thrust specific fuel consumption SFC). Even if this possibility is not exploited, the reliability of the gas turbine increases, because disturbances that would lead to instability without a control, are detected in advance and eliminated by a controlled increase in the surge margin.

Wird eine Gasturbine (insbesondere ein Flugzeugtriebwerk) unter Verwendung der Erfindung neu entwickelt, können die durch die Erfindung erzielbaren Verbesserungen berücksichtigt werden, um die Neuentwicklung gegebenenfalls auf eine höhere Turbinenstufenbelastung auszulegen beziehungsweise den nötigen Pumpgrenzabstand bedarfsabhängig zu optimieren.If a gas turbine (in particular an aircraft engine) is newly developed using the invention, the improvements achievable by the invention can be taken into account in order to design the new development, where appropriate, to a higher turbine stage load or to optimize the required surge margin as needed.

In bevorzugten Ausgestaltungen sind die Turbomaschine, der Turboverdichter und die Gasturbine mit Merkmalen weitergebildet, die den gerade beschriebenen Merkmalen oder den in den abhängigen Verfahrensansprüchen genannten Merkmalen entsprechen.In preferred embodiments, the turbomachine, the turbocompressor and the gas turbine are further developed with features that correspond to the features just described or the features mentioned in the dependent method claims.

Weitere Merkmale, Vorteile und Aufgaben der Erfindung gehen aus der folgenden detaillierten Beschreibung eines Ausführungsbeispiels und mehrerer Ausführungsalternativen hervor. Es wird auf die schematischen Zeichnungen verwiesen, in denen zeigen:

  • Fig. 1 eine schematische Schnittansicht durch eine als Flugzeugtriebwerk ausgestaltete Gasturbine mit einer daran angeschlossenen Steuereinheit,
  • Fig. 2 ein Datenflussdiagramm eines Auswertungsverfahrens bei dem beschriebenen Ausführungsbeispiel, und
  • Fig. 3 eine beispielhafte Darstellung des zeitlichen Verlaufs zweier mittelwertbereinigter Messsignale.
Other features, advantages and objects of the invention will be apparent from the following detailed description of an embodiment and several alternative embodiments. Reference is made to the schematic drawings in which:
  • 1 is a schematic sectional view through a designed as an aircraft engine gas turbine with a control unit connected thereto,
  • 2 is a data flow diagram of an evaluation method in the described embodiment, and
  • 3 shows an exemplary representation of the time profile of two mean-value-adjusted measurement signals.

Die in Fig. 1 gezeigte Zweiwellen-Gasturbine 10 ist an sich bekannt. Sie weist einen mehrstufigen Niederdruckverdichter 12 und einen mehrstufigen Hochdruckverdichter 14 auf. In Strömungsrichtung folgen ein Brennraum 16, eine Hochdruckturbine 18 und eine Niederdruckturbine 20. Der Niederdruckverdichter 12 und die Niederdruckturbine 20 sind durch eine gemeinsame (innere) Welle verbunden, und ebenso sind der Hochdruckverdichter 14 und die Hochdruckturbine 18 mit einer gemeinsamen (äußeren) Welle verbunden.The twin-shaft gas turbine 10 shown in FIG. 1 is known per se. It has a multi-stage low-pressure compressor 12 and a multi-stage high-pressure compressor 14. The flow direction is followed by a combustion chamber 16, a high-pressure turbine 18 and a low-pressure turbine 20. The low-pressure compressor 12 and the low-pressure turbine 20 are connected by a common (inner) shaft, and likewise the high-pressure compressor 14 and the high-pressure turbine 18 are connected to a common (outer) shaft ,

Die Gasturbine 10 ist im vorliegenden Ausführungsbeispiel als Flugzeugturbine ausgestaltet. In Ausführungsalternativen ist der Einsatz der Erfindung auch für Ein-Wellen-Gasturbinen, für Gasturbinen mit drei und mehr Wellen, für stationäre Gasturbinen (z.B. in der Kraftwerkstechnik) und bei Verdichtern für andere Einsatzzwecke (z.B. Verfahrenstechnik, Lüf tungstechnik) vorgesehen.The gas turbine 10 is configured in the present embodiment as an aircraft turbine. In alternative embodiments, the invention is also intended for single-shaft gas turbines, gas turbines with three or more shafts, stationary gas turbines (for example in power plant technology) and compressors for other applications (for example, process engineering, ventilation technology).

Zwei Sensoren 22, 24 sind in einer gemeinsamen Axialebene in Strömungsrichtung vor dem ersten Rotor des Hochdruckverdichters 14 angeordnet. Die Sensoren 22, 24 sind in Umfangsrichtung gegeneinander versetzt, und zwar im vorliegenden Ausführungsbeispiel um 180°. Im hier beschriebenen Ausführungsbeispiel sind die Sensoren 22, 24 piezoelektrische Drucksensoren, die als solche bekannt sind. In Ausführungsalternativen sind stattdessen Strömungsgeschwindigkeitssensoren vorgesehen.Two sensors 22, 24 are arranged in a common axial plane in the flow direction in front of the first rotor of the high-pressure compressor 14. The sensors 22, 24 are circumferentially offset from each other, in the present embodiment by 180 °. In the embodiment described herein, the sensors 22, 24 are piezoelectric pressure sensors known as such. In alternative embodiments, flow velocity sensors are provided instead.

Ausgangssignale s1, s2 der Sensoren 22, 24 werden einer Steuereinheit 26 zugeführt, die als digitaler Signalprozessor (DSP) mit der erforderlichen Zusatzbeschaltung ausgestaltet ist. Zwei Analog/Digital-Wandler 28, 30 setzen die analogen Sensor-Ausgangssignale s1, s2 mit einer Abtastfrequenz von ungefähr 1 kHz bis 2 kHz in digitale Messsignale p1, p2 um.Output signals s 1 , s 2 of the sensors 22, 24 are supplied to a control unit 26, which is designed as a digital signal processor (DSP) with the required additional circuit. Two analog / digital converters 28, 30 convert the analogue sensor output signals s 1 , s 2 into digital measuring signals p 1 , p 2 at a sampling frequency of approximately 1 kHz to 2 kHz.

Die Messsignale p1, p2 werden von einem Pumpgrenzwarnungs-Ermittlungsmodul 32 auf eine unten noch genauer beschriebene Weise verarbeitet. Bei Annäherung an einen kritischen Zustand gibt das Pumpgrenzwarnungs-Ermittlungsmodul 32 eine Pumpgrenzwarnung W an ein Beeinflussungsmodul 34 aus, das seinerseits die Betriebsparameter der Gasturbine 10 durch mehrere Steuersignale c1, c2, cx so verändert, dass der Betriebszustand der Gasturbine 10 stabilisiert und somit ein Pumpen vermieden wird. Im vorliegenden Ausführungsbeispiel sind dies insbesondere ein erstes Steuersignal c1, das Abblasventile (in Fig. 1 nicht gezeigt) aktiviert, ein zweites Steuersignal c2, das die Kraftstoffzufuhr kurzzeitig verringert, sowie weitere Steuersignale cx, die beispielsweise eine Schubdüsenverstellung oder eine Leitschaufelverstellung bewirken. Diese Maßnahmen sind an sich bekannt.The measurement signals p 1 , p 2 are processed by a surge limit warning determination module 32 in a manner to be described below. When approaching a critical State, the surge limit warning determination module 32 outputs a surge limit warning W to an influencing module 34, which in turn alters the operating parameters of the gas turbine 10 by a plurality of control signals c 1 , c 2 , c x to stabilize the operating state of the gas turbine 10 and thus avoid pumping , In the present exemplary embodiment, these are, in particular, a first control signal c 1 which activates blow-off valves (not shown in FIG. 1), a second control signal c 2 , which briefly reduces the fuel supply, and further control signals c x , which effect, for example, a thrust nozzle adjustment or a vane adjustment , These measures are known per se.

Im vorliegenden Ausführungsbeispiel sind das Pumpgrenzwarnungs-Ermittlungsmodul 32 und das Beeinflussungsmodul 34 als Programmmodule des die Steuereinheit 26 bildenden digitalen Signalprozessors (DSP) ausgestaltet. In Ausführungsalternativen können diese Module auch durch eine Analog- oder Digitalschaltung implementiert sein. Weil das erfindungsgemäße Auswerteverfahren nur relativ geringe Rechenleistung beansprucht, kann der digitale Signalprozessor der Steuereinheit 26 weitere Aufgaben übernehmen, die insbesondere mit der Regelung der Gasturbine 10 in Zusammenhang stehen können.In the present exemplary embodiment, the surge limit warning determination module 32 and the influencing module 34 are designed as program modules of the digital signal processor (DSP) forming the control unit 26. In alternative embodiments, these modules may also be implemented by analog or digital circuitry. Because the evaluation method according to the invention requires only relatively low computing power, the digital signal processor of the control unit 26 can take on further tasks, which may be associated in particular with the regulation of the gas turbine 10.

In dem Datenflussdiagramm von Fig. 2 ist die Funktion des Pumpgrenzwarnungs-Ermittlungsmoduls 32 genauer dargestellt. Zunächst wird, in den Verarbeitungsschritten 40 und 42, aus den beiden Messsignalen p1 und p2 je ein entsprechendes mittelwertbereinigtes Signal p̃1 bzw. p̃2 gebildet. Im vorliegenden Ausführungsbeispiel werden dazu gleitende Mittelwerte p̃1 bzw. p̃2 der Messsignale p1 und p2 während eines Zeitfensters errechnet, das deutlich länger (beispielsweise das zehn- oder hundertfache) als eine zu ermittelnde Fluktuation der Messsignale p1 und p2 ist. Die Mittelwertsignale p̃1 und p̃2 werden von dem jeweiligen Messsignal p1 bzw. p2 abgezogen. Insgesamt ergeben sich somit die mittelwertbereinigten Messsignale p̃1 und p̃2 gemäß den Gleichungen p̃1= p1 - p̃1 bzw. p̃2 = p2 - p̃2.In the data flow diagram of Fig. 2, the function of the surge limit warning determination module 32 is shown in greater detail. First, in the processing steps 40 and 42, a corresponding averaged signal p 1 or p 2 is respectively formed from the two measurement signals p 1 and p 2 . In the present exemplary embodiment, moving average values p 1 and p 2 of the measuring signals p 1 and p 2 are calculated during a time window which is considerably longer (for example ten or a hundred times) than a fluctuation of the measuring signals p 1 and p 2 to be determined. The mean value signals p 1 and p 2 are from the respective measurement signal p 1 and p 2 subtracted. Overall, the mean-value-corrected measurement signals p 1 and p 2 thus result according to the equations p 1 = p 1 -p 1 or p 2 = p 2 -p 2 .

Ein beispielhafter Verlauf der beiden mittelwertbereinigten Messsignalen p̃1 und p̃2 ist in Fig. 3 gezeigt. Offensichtlich weisen diese Signale deutliche periodische Signalpegeländerungen auf (die maximalen Unterschiede beim Messsignal p̃1 sind für den in Fig. 3 angegebenen Zeitversatz t1 von ungefähr 0,6 Verdichteruindrehungen festzustellen). Ferner ist eine deutliche Korrelation zwischen den beiden Messsignalen p̃1 und p̃2 auszumachen, wenn diese mit einem Zeitversatz t2 von ungefähr einer Verdichterumdrehung miteinander verglichen werden. Die drei schrägen, gepunkteten Linien in Fig. 3 zeigen diese Korrelation für drei Signalmaxima.An exemplary course of the two mean-value-adjusted measurement signals p 1 and p 2 is shown in FIG. 3. Obviously, these signals show significant periodic signal level changes (the maximum differences in the measurement signal p 1 are observed for the time offset t 1 of approximately 0.6 compressor revolutions indicated in FIG. 3). Furthermore, a clear correlation between the two measuring signals p 1 and p 2 can be identified if they are compared with a time offset t 2 of approximately one compressor revolution. The three oblique, dotted lines in FIG. 3 show this correlation for three signal maxima.

Zurückkehrend zu Fig. 2 wird in Berechnungsschritt 44 ein Periodizitätswert W1 bestimmt, der ein Maß für das Auftreten periodischer Signalpegeländerungen bei dem mittelwertbereinigten Messsignal p̃1 angibt. In Ausführungsalternativen könnte der Periodizitätswert W1 auch aus dem nicht-mittelwertbereinigten Messsignal p1 oder einem der Messsignale p2 oder p̃2 berechnet werden, oder es könnten zwei Periodizitätswerte für die Messsignale p̃1 und p̃2 (bzw. für die Messwerte p1 und p2) bestimmt werden.Returning to FIG. 2, in calculation step 44, a periodicity value W 1 is determined, which indicates a measure of the occurrence of periodic signal level changes in the mean-value-adjusted measurement signal p 1 . In alternative embodiments, the periodicity value W 1 could also be calculated from the non-average-adjusted measurement signal p 1 or one of the measurement signals p 2 or p 2 , or two periodicity values could be calculated for the measurement signals p 1 and p 2 (or for the measurement values p 1 and p 2 ).

Zur Berechnung des Periodizitätswerts W1 wird innerhalb eines gleitenden Zeitfensters von N Messpunkten der Mittelwert der quadrierten Signaldifferenzen von je zwei Messpunkten des Messsignals p̃1 berechnet, wobei sich die betrachteten Messpunkte p̃1(i+t1) und p̃1(i) jeweils um einen vorgegebenen Zeitversatz t1 unterscheiden. In Formelschreibweise lässt sich der Berechnungsschritt 44 wie folgt ausdrücken: W 1 = 1 N t 1 . i = 1 N t 1 [ p ˜ 1 ( i + t 1 ) p ˜ 1 ( i ) ] 2

Figure imgb0001
To calculate the periodicity value W 1 , the mean value of the squared signal differences of every two measuring points of the measuring signal p 1 is calculated within a sliding time window of N measuring points, the respective measuring points p 1 (i + t 1 ) and p 1 (i) being in each case distinguish a given time offset t 1 . In formula notation, the calculation step 44 can be expressed as follows: W 1 = 1 N - t 1 , Σ i = 1 N - t 1 [ p ~ 1 ( i + t 1 ) - p ~ 1 ( i ) ] 2
Figure imgb0001

Bei einem gegebenen Verlauf des Messsignals p̃1 hängt die Höhe des Periodizitätswerts W1 unter anderem von der Wahl des Zeitversatz-Wertes t1 ab. Der Periodizitätswert W1 ist dann maximal, wenn, wie dies in Fig. 3 gezeigt ist, der Zeitversatz t1 ungefähr die halbe Signalperiode beträgt. In unterschiedlichen Ausführungsformen ist der Zeitversatz t1 entweder (für eine bestimmte Verdichter-Bauform) fest vorgegeben oder von Betriebsparametern des Verdichters (z.B. der momentanen Drehzahl) abhängig.For a given profile of the measurement signal p 1 depends the amount of periodicity W 1, inter alia, on the choice of the time offset value from t 1. The periodicity value W 1 is maximum when, as shown in FIG. 3, the time offset t 1 is approximately half the signal period. In different embodiments, the time offset t 1 is either fixed (for a specific compressor design) or dependent on operating parameters of the compressor (eg the instantaneous speed).

Berechnungsschritt 46 in Fig. 2 betrifft die Bestimmung des Korrelationswerts W2 aus den Messsignalen p̃1 und p̃2. Der Korrelationswert W2 gibt an, wie gut die beiden Messsignale p̃1 und p̃2 unter Berücksichtigung eines zweiten Zeitversatzes t2 miteinander korreliert sind. Durch diese Berechnung wird die gezielte Identifikation umlaufender Störungen möglich. Auch hier können in Ausführungsalternativen statt der mittelwertbereinigten Messsignale p̃1 und p̃2 die ursprünglichen Messsignale p1 und p2 herangezogen werden.Calculation step 46 in FIG. 2 relates to the determination of the correlation value W 2 from the measurement signals p 1 and p 2 . The correlation value W 2 indicates how well the two measurement signals p 1 and p 2 on the basis of a second time offset t 2 are correlated with each other. This calculation enables the targeted identification of circulating faults. Here, too, the original measurement signals p 1 and p 2 can be used instead of the mean-value-adjusted measurement signals p 1 and p 2 in alternative embodiments.

Bei der Berechnung des Korrelationswerts W2 wird innerhalb des gleitenden Zeitfensters mit der Fensterbreite N der Mittelwert von Produkten berechnet, die sich aus je einem Messpunkt des ersten Messsignals p̃1 und einem Messpunkt des zweiten Messsignals p̃2 ergeben. Die je zwei multiplizierten Messpunkte p̃1(i+t2) und p̃2(i) unterscheiden sich um den Zeitversatz t2. In Formelschreibweise lässt sich dieser Berechnungsschritt 46 wie folgt ausdrücken: W 2 = 1 N t 2 . i = 1 N t 2 [ p ˜ 1 ( i + t 2 ) p ˜ 2 ( i ) ]

Figure imgb0002
In the calculation of the correlation value W 2 , the mean value of products is calculated within the sliding time window with the window width N, which results from a respective measurement point of the first measurement signal p 1 and a measurement point of the second measurement signal p 2 . The two multiplied measuring points p 1 (i + t 2 ) and p 2 (i) differ by the time offset t 2 . In formula notation, this calculation step 46 can be expressed as follows: W 2 = 1 N - t 2 , Σ i = 1 N - t 2 [ p ~ 1 ( i + t 2 ) p ~ 2 ( i ) ]
Figure imgb0002

Ähnlich wie der erste Zeitversatz t1 kann auch der zweite Zeitversatz t2 wahlweise fest oder variabel sein. Während im hier beschriebenen Ausführungsbeispiel die Fensterbreite N für beide Berechnungsschritte 44, 46 identisch ist, sind in Ausführungsalternativen unterschiedliche (feste oder variable) Fensterbreiten vorgesehen.Similar to the first time offset t 1 , the second time offset t 2 can also be fixed or variable. While in the embodiment described here the window width N is identical for both calculation steps 44, 46, different (fixed or variable) window widths are provided in execution alternatives.

In den nächsten, optionalen Schritten 48 und 50 werden der Periodizitätswert W1 und der Korrelationswert W2 durch Bezug auf den Ein- und/oder den Austrittsdruck des Verdichters skaliert. Die dazu herangezogenen Druckwerte können entweder von weiteren Sensoren stammen oder aus den oben genannten Mittelwertsignalen p̃1 und p̃2 abgeleitet sein. Als Ergebnisse der Skalierung ergeben sich ein skalierter Periodizitätswert W̃1 und ein skalierter Korrelationswert W̃2, die in dem folgenden Schritt 52 miteinander multipliziert werden. Das Produkt W̃1-W̃2 wird in Schritt 54 einem Schwellwertvergleich unterzogen. Übersteigt das Produkt W̃1-W̃2 einen vorgegebenen Schwellwert, so wird eine Pumpgrenzwarnung W ausgelöst, die als Eingangssignal dem Beeinflussungsmodul 34 (Fig. 1) zugeführt wird.In the next optional steps 48 and 50, the periodicity value W 1 and the correlation value W 2 are scaled by reference to the inlet and / or outlet pressure of the compressor. The pressure values used for this can either originate from further sensors or be derived from the abovementioned mean value signals p 1 and p 2 . The results of the scaling result in a scaled periodicity value W 1 and a scaled correlation value W 2 , which are multiplied together in the following step 52. The product W 1 -W 2 is subjected to a threshold value comparison in step 54. If the product W 1 -W 2 exceeds a predetermined threshold value, a surge limit warning W is triggered, which is supplied as an input signal to the influencing module 34 (FIG. 1).

Die Skalierungsschritte 48, 50 sind nicht unbedingt erforderlich; es können vielmehr in Schritt 52 auch die Werte W1 und W2 unmittelbar miteinander multipliziert werden. Der in Schritt 54 herangezogene Schwellwert kann fest oder variabel sein; insbesondere ist es auch möglich, dasselbe Ergebnis wie bei einer Skalierung der Werte W1 und W2 durch eine entsprechende Veränderung des Schwellwerts zu erhalten. In weiteren Ausführungsalternativen wird in Schritt 52 nicht das Produkt, sondern eine andere Funktion berechnet, beispielsweise die Summe oder die Summe der Quadrate.The scaling steps 48, 50 are not necessarily required; Rather, in step 52, the values W 1 and W 2 can be directly multiplied together. The threshold used in step 54 may be fixed or variable; In particular, it is also possible to obtain the same result as with a scaling of the values W 1 and W 2 by a corresponding change of the threshold value. In further alternative embodiments, in step 52, not the product but another function is calculated, for example the sum or the sum of the squares.

Durch das beschriebene Verfahren lassen sich insgesamt ein sicherer Verdichterbetrieb in einem wirtschaftlich interessanten Betriebsbereich nahe der Pumpgrenze (höherer Wirkungsgrad) und eine gesteigerte Störtoleranz des Verdichters, insbesondere im Hinblick auf Eintrittsstörungen, erreichen.By the method described can be achieved overall safe compressor operation in an economically interesting operating range near the surge limit (higher efficiency) and increased disturbance tolerance of the compressor, especially with regard to entry problems.

In vergleichbarer Weise kann ein Schaufelschaden an einem Rotor im Verdichter- oder Turbinenbereich 12,14 oder 18, 20 einer Turbomaschine, wie der Gasturbine 10 aus Fig.1, mit dem vorstehend beschriebenen Verfahren als Warnung (W) angezeigt und weitere schlimme Folgen vermieden werden, z. B. durch Abschalten dieser Turbomaschine, die z. B. ein Flugtriebwerk sein kann, und anschließende Reparatur oder Austausch der beschädigten Schaufel bzw. Schaufeln.Similarly, blade damage to a rotor in the compressor or turbine section 12, 14 or 18, 20 of a turbomachine, such as the gas turbine 10 of Fig. 1, may be indicated as warning (W) by the method described above and further ill effects avoided , z. B. by switching off this turbomachine, the z. B. an aircraft engine and subsequent repair or replacement of the damaged blade or blades.

Claims (15)

  1. Method for determining a surge limit alarm (W) in a turbocompressor (12, 14) or an alarm (W) in the event of blade damage to a rotor (12, 14) of a turbomachine, comprising the steps:
    - determination of at least two measurement signals (p1, p2; p̃1, p̃2), which correspond each to the output signals (s1, s2) of one of at least two pressure, flow-rate or temperature sensors (22, 24) arranged offset relative to one another in the circumferential direction of the turbocompressor or rotor (12, 14),
    - calculation of a periodicity value (W1; W̃1) from at least one of the measurement signals (p1, p2; p̃1, p̃2), which indicates a measure for the occurrence of periodic signal level variations of the at least one measurement signal (p1, p2; p̃1, p̃2) at a predetermined first time interval (t1),
    - calculation of a correlation value (W2; W̃p2) from the at least two measurement signals (p1, p2; p̃1, p̃2), which indicates a measure for the similarity of the at least two measurement signals (p1, p2; p̃1, p̃2) to one another at a predetermined second time interval (t2), and
    - determination of the alarm (W) from the periodicity value (W1; W̃1) and the correlation value (W2; W̃2).
  2. Method according to Claim 1, in which the alarm (W) is emitted when the product of the periodicity value (W1; W̃1) and the correlation value (W2, W̃2) exceeds a predetermined threshold value.
  3. Method according to Claims 1 or 2, in which at least one of the measurement signals (p1, p2) is a mean-value-cleared measurement signal (p̃1, p̃2).
  4. Method according to any of Claims 1 to 3, in which the periodicity value (W1, W̃1) is calculated from at least one of the measurement signals (p1, p2; p̃1, p̃2) within a sliding time window of predetermined window width (N).
  5. Method according to any of Claims 1 to 4, in which the periodicity value (W1; W̃1) is calculated as a mean value, if necessary scaled, of the squared deviation of in each case two measurement points of one of the measurement signals (p1, p2; p̃1, p̃2) offset with respect to one another by the first time interval (t1).
  6. Method according to Claims 4 and 5 in which, to calculate the periodicity value (W1, W̃1), an unscaled periodicity value (W1) is determined in accordance with one of the following equations: W 1 = 1 N t 1 i = 1 N t 1 [ p 1 ( i + t 1 ) p 1 ( i ) ] 2
    Figure imgb0007
    or W 1 = 1 N t 1 i = 1 N t 1 [ p ˜ 1 ( i + t 1 ) p ˜ 1 ( i ) ] 2
    Figure imgb0008

    in which p1 is the evaluated measurement signal without mean-value clearing and p̃1 is the evaluated measurement signal with mean-value clearing, respectively, N is the window width of the sliding evaluation time window, and t1 is the first time interval.
  7. Method according to any of Claims 1 to 6, in which the correlation value (W2; W̃2) is calculated from the at least two measurement signals (p1, p2; p̃1, p̃2) within a sliding time window of predetermined window width (N).
  8. Method according to any of Claims 1 to 7, in which the correlation value (W22) is calculated as a mean value, if necessary scaled, of the product of in each case two measurement points of two different measurement signals (p1, p2; p̃1, p̃2) offset with respect to one another by the second time interval (t2).
  9. Method according to Claims 7 and 8 in which, to calculate the correlation value (W2; W̃2), an unscaled correlation value (W2) is determined in accordance with one of the following equations: W 2 = 1 N t 2 i = 1 N t 2 [ p 1 ( i + t 2 ) p 2 ( i ) ]
    Figure imgb0009
    or W 2 = 1 N t 2 i = 1 N t 2 [ p ˜ 1 ( i + t 2 ) p ˜ 2 ( i ) ]
    Figure imgb0010

    in which p1 is the first evaluated measurement signal without mean-value clearing and p̃1 is the first evaluated measurement signal with mean-value clearing, respectively, p2 is the second evaluated measurement signal without mean-value clearing and p̃2 is the second evaluated measurement signal with mean-value clearing, respectively, N is the window width of the sliding evaluation time window, and t2 is the second time interval.
  10. Method for the operation of a gas turbine (10), comprising the steps:
    - determination of a surge limit alarm (W) by a method according to any of Claims 1 to 9, and
    - alteration of at least one operating parameter of the gas turbine (10) in reaction to the surge limit alarm (W), to avoid compressor surging.
  11. Turbocompressor (12, 14) with a control unit (26) and at least two pressure, flow-rate or temperature sensors (22, 24) arranged offset relative to one another in the circumferential direction of the turbocompressor (12, 14), such that the control unit (26) is designed to implement the steps of a method according to any of Claims 1 to 9 in order to determine a surge limit alarm (W).
  12. Turbocompressor (12, 14) according to Claim 11, in which the control unit (26) comprises a surge limit alarm determination module (32) and an influencing module (34), such that the surge limit alarm determination module (32) serves to determine the surge limit alarm (W) and the influencing module (34) is designed, by emitting at least one control signal (c1, c2, cx), to influence at least one operating parameter of the gas turbine (10) in reaction to the surge limit alarm (W) in order to avoid compressor surging.
  13. Gas turbine with a turbocompressor according to Claims 11 or 12.
  14. Method for operating a turbomachine (10), comprising the steps:
    - determination of an alarm (W) in the event of blade damage to a rotor, by a method according to any of Claims 1 to 9, and
    - detection and storage of the alarm (W) with a view to repair or replacement.
  15. Method according to Claim 14, in which conclusions about the extent of the damage are drawn from the type of the alarm (W).
EP02769931A 2001-10-23 2002-09-07 Warning before pump limit or in case of blade failure on a turbomachine Expired - Lifetime EP1474610B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10152026A DE10152026A1 (en) 2001-10-23 2001-10-23 Warning of surge limit or blade damage on a turbomachine
DE10152026 2001-10-23
PCT/DE2002/003325 WO2003038282A1 (en) 2001-10-23 2002-09-07 Warning before pump limit or in case of blade failure on a turbomachine

Publications (2)

Publication Number Publication Date
EP1474610A1 EP1474610A1 (en) 2004-11-10
EP1474610B1 true EP1474610B1 (en) 2006-05-10

Family

ID=7703276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769931A Expired - Lifetime EP1474610B1 (en) 2001-10-23 2002-09-07 Warning before pump limit or in case of blade failure on a turbomachine

Country Status (5)

Country Link
US (1) US7108477B2 (en)
EP (1) EP1474610B1 (en)
JP (1) JP4174031B2 (en)
DE (2) DE10152026A1 (en)
WO (1) WO2003038282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939704B2 (en) 2008-11-24 2015-01-27 Siemens Aktiengesellschaft Method for operating a multistage compressor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827803B1 (en) 2006-09-27 2010-11-09 General Electric Company Method and apparatus for an aerodynamic stability management system
KR100954157B1 (en) * 2007-12-21 2010-04-20 한국항공우주연구원 Tubomachinery blade breakage monitoring unit
US8282336B2 (en) 2007-12-28 2012-10-09 General Electric Company Instability mitigation system
US20100205928A1 (en) * 2007-12-28 2010-08-19 Moeckel Curtis W Rotor stall sensor system
US8348592B2 (en) * 2007-12-28 2013-01-08 General Electric Company Instability mitigation system using rotor plasma actuators
US8317457B2 (en) 2007-12-28 2012-11-27 General Electric Company Method of operating a compressor
US8282337B2 (en) 2007-12-28 2012-10-09 General Electric Company Instability mitigation system using stator plasma actuators
GB0811073D0 (en) * 2008-06-18 2008-07-23 Rolls Royce Plc Timing analysis
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
EP2626569A1 (en) * 2012-02-09 2013-08-14 Siemens Aktiengesellschaft Method for reducing pumps in a compressor
US10570909B2 (en) * 2016-10-13 2020-02-25 Deere & Company Surge wear predictor for a turbocharger
DE102017104414B3 (en) 2017-03-02 2018-07-19 Technische Universität Berlin Method and apparatus for determining an indicator for predicting instability in a compressor and use
JP7140323B2 (en) * 2018-04-17 2022-09-21 国立研究開発法人宇宙航空研究開発機構 Observation device, observation method and program
GB201908494D0 (en) 2019-06-13 2019-07-31 Rolls Royce Plc Computer-implemented methods for training a machine learning algorithm
GB201908497D0 (en) * 2019-06-13 2019-07-31 Rolls Royce Plc Computer-implemented methods for controlling a gas turbine engine
CN110329235B (en) * 2019-07-09 2021-05-14 浙江吉利控股集团有限公司 Method, device and system for monitoring vehicle-mounted electric air compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017448A1 (en) * 1989-06-05 1990-12-06 Siemens Ag Diagnosing mechanical properties of machines from vibration signals - compared in frequency domain with pattern signals after fast fourier transformation
US5275528A (en) * 1990-08-28 1994-01-04 Rolls-Royce Plc Flow control method and means
US5448881A (en) * 1993-06-09 1995-09-12 United Technologies Corporation Gas turbine engine control based on inlet pressure distortion
US5767780A (en) * 1993-09-22 1998-06-16 Lockheed Martin Energy Research Corporation Detector for flow abnormalities in gaseous diffusion plant compressors
JP2997319B2 (en) * 1994-12-14 2000-01-11 ユナイテッド テクノロジーズ コーポレイション Stall and surge control using asymmetric compressor airflow.
US6231306B1 (en) 1998-11-23 2001-05-15 United Technologies Corporation Control system for preventing compressor stall
US6506010B1 (en) * 2001-04-17 2003-01-14 General Electric Company Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939704B2 (en) 2008-11-24 2015-01-27 Siemens Aktiengesellschaft Method for operating a multistage compressor
CN102224346B (en) * 2008-11-24 2015-11-25 西门子公司 For running the method for multistage compressor

Also Published As

Publication number Publication date
JP4174031B2 (en) 2008-10-29
EP1474610A1 (en) 2004-11-10
JP2005507056A (en) 2005-03-10
DE10152026A1 (en) 2004-02-19
US20050038570A1 (en) 2005-02-17
US7108477B2 (en) 2006-09-19
WO2003038282A1 (en) 2003-05-08
DE50206768D1 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
EP1474610B1 (en) Warning before pump limit or in case of blade failure on a turbomachine
DE60037300T2 (en) Method and device for model-based diagnosis
EP1134422B1 (en) Turbo compressor surge control method
DE112008003400T5 (en) Brass stall alarm system
DE102008011645A1 (en) Turbomachine with rotors with low rotor outlet angles
DE112008003526T5 (en) Instability protection system using rotor plasma actuators
DE112008003483T5 (en) Compressor and gas turbine engine with a plasma actuator
DE112008003472T5 (en) Compressor and gas turbine engine with an instability protection system
DE112008003531T5 (en) Compressor and gas turbine engine with a plasma actuator
DE112008003466T5 (en) Instability protection system for a rotor
CH700888A2 (en) Systems and methods for providing surge protection for a turbine component.
EP3428396A1 (en) Method for generating and selecting a detuning pattern of an impeller of a turbomachine having a plurality of rotor blades
EP2805058B1 (en) Method for reducing pumps in a compressor
DE60105737T2 (en) Turbine blade arrangement
DE102009033591A1 (en) Turbine working machine with paddle row group
EP1865148B1 (en) Flow machine with rotors with a high specific energy transfer
DE60124167T2 (en) A method for the early detection of aerodynamic instabilities in a turbo compressor
DE10163649B4 (en) Turbo compressor and gas turbine with intake vibration warning at axial vibration of the air column in the inlet and evaluation method for this
EP3715627B1 (en) Method for determining a flow situation of at least one rotor blade affecting dynamic lift
EP1792242B1 (en) Method and device for determining an error state in a rotating compressor
EP1847715A1 (en) Method for operation of a turbocompressor and turbocompressor
DE112020001492T5 (en) compressor system
DE102018108831A1 (en) Method for determining an operating state of a compressor
EP2619461B1 (en) Device and method for reliably operating a compressor at the pump threshold
WO2017186492A1 (en) Method for profiling blades of an axial turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060510

REF Corresponds to:

Ref document number: 50206768

Country of ref document: DE

Date of ref document: 20060614

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180921

Year of fee payment: 17

Ref country code: DE

Payment date: 20180924

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180924

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206768

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190907