EP1461858A2 - Opto-microwave transducer with suppression of local oscillator signal, and system using same - Google Patents

Opto-microwave transducer with suppression of local oscillator signal, and system using same

Info

Publication number
EP1461858A2
EP1461858A2 EP02806326A EP02806326A EP1461858A2 EP 1461858 A2 EP1461858 A2 EP 1461858A2 EP 02806326 A EP02806326 A EP 02806326A EP 02806326 A EP02806326 A EP 02806326A EP 1461858 A2 EP1461858 A2 EP 1461858A2
Authority
EP
European Patent Office
Prior art keywords
signal
frequency
microwave
phototransistor
phototransistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02806326A
Other languages
German (de)
French (fr)
Inventor
Christian Rumelhard
Laurent Paszkiewicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNAM Conservatoire National des Arts et Metiers
Original Assignee
CNAM Conservatoire National des Arts et Metiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNAM Conservatoire National des Arts et Metiers filed Critical CNAM Conservatoire National des Arts et Metiers
Publication of EP1461858A2 publication Critical patent/EP1461858A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0658Transference of modulation using distributed inductance and capacitance by means of semiconductor devices having more than two electrodes
    • H03D9/0666Transference of modulation using distributed inductance and capacitance by means of semiconductor devices having more than two electrodes using bipolar transistors

Definitions

  • the present invention relates to an opto-microwave transducer for suppressing the local oscillator signal, and system implementing such a transducer. It finds a particularly interesting application in the field of mixed telecommunications networks. These are, for example, digital data transmission networks comprising a part by optical fiber and then a hertzian part.
  • the radio link concerns the last hundred meters for an outdoor link or the inside of a building for an intra-building link (indoor). Digital information is therefore first transmitted on an optical carrier and then on a microwave or millimeter carrier, the current frequencies for the radio part being in particular 24 or 60 GHz.
  • These links therefore include a transducer in which the data signal is transferred from an optical carrier to a microwave carrier at 24 or 60 GHz for example.
  • this transfer involves an optoelectronic mixer mixing the frequency data signal IF called intermediate frequency with the microwave frequency carrier OL.
  • the component that we want to isolate for a transmission is called high frequency RF sideband. It is therefore essential to eliminate the other components.
  • the component at the IF frequency is of very low power and can very easily be deleted. Conventional techniques are known which make it possible to suppress the frequency component LB, called the low sideband. However, it is difficult to suppress the frequency component OL because it generally has a power greater than that of the high sideband, in addition the frequencies RF and OL are very close.
  • a mixer In current transducer circuits, a mixer is used followed by a filter produced in hybrid technology so as to eliminate the frequency component OL downstream.
  • Other current circuits in order to eliminate the frequency component OL, require the sending of two radiofrequency signals phase shifted with respect to one another by means of two optical fibers followed by an optical phase shift difficult to implement , these two fibers illuminating two separate mixers.
  • the disadvantage of the circuits of the prior art is the complexity of their implementation and the use of a large number of electronic components.
  • the cellular networks include cells of small diameter, of the order of a few hundred meters. This therefore requires a large number of transducers, hence the importance of minimizing the number of electronic components in order to reduce the cost price of each transducer.
  • the present invention aims to remedy the aforementioned drawbacks by proposing an integrated transducer circuit which does not require an external hybrid circuit for the suppression of the frequency component OL.
  • Another object of the invention is to limit the number of components in the transducer in order to reduce the cost price.
  • the above objectives are achieved with an opto-microwave transducer for transferring a data signal modulating an optical carrier to an electric carrier, this transducer comprising two phototransistors arranged as a common emitter or as a common source in the case of MESFET.
  • the phototransistors are two identical bipolar transistors with heterojunction. The first phototransistor is able to detect the data signal and to mix this data signal with the electric carrier introduced at the base of this first phototransistor.
  • This first phototransistor therefore performs a photodetection function by detecting the data signal carried by the optical signal, and a mixing function by mixing this data signal with the electric carrier which is a microwave or millimeter signal.
  • this microwave signal is obtained from a local oscillator at the frequency OL.
  • the second phototransistor is able to mix on the one hand the electric carrier phase shifted by substantially 180 ° and introduced at the base of this second phototransistor with the data signal phase shifted by substantially 180 ° on the other hand.
  • the second phototransistor performs a mixing function.
  • the electric carrier phase shifted by 180 ° can come from a phase shift operated on the microwave signal leaving the local oscillator.
  • the 180 ° phase shifted data signal comes from the first phototransistor.
  • the transducer further comprises a bias current source connected to the emitters of the two transistors, this current source being able to transfer the data signal detected by the first phototransistor to the second phototransistor with a phase shift of substantially 180 °.
  • this current source is a current mirror.
  • the results of the mixing operations carried out by the two phototransistors are signals coming out of the collectors of the two phototransistors. These signals each include a frequency component OL.
  • the invention is remarkable by the fact that the frequency component OL exiting through the collector of the first phototransistor is 180 ° out of phase with respect to the frequency component OL exiting through the collector of the second phototransistor and the RF signals are not out of phase d 'one collector to another.
  • the transducer further comprises a coupler for combining the signals from the collectors of the two phototransistors so as to suppress the frequency components OL.
  • the two phototransistors can be polarized by means of a DC collector voltage and a basic DC voltage.
  • the DC bias voltage on the basis of the second phototransistor can be adjustable so as to correct the polarization offset due to the detection of the data signal on the first phototransistor.
  • the two phototransistors are polarized in a non-linear region.
  • the coupler is adapted for an operating frequency centered around the RF frequency of the high sideband.
  • the point of polarization of the phototransistors is such that, on the collectors of the phototransistors, the signal power in the high sideband is maximum.
  • the signal in high sideband (RF) being generally less powerful than the signal OL, one seeks to minimize the difference in power between the two, either by decreasing the signal OL, or by increasing the signal RF, or both actions, by adaptation, by the point of polarization, etc.
  • an opto-microwave communication system comprising a central site emitting an optical signal modulated by a signal IF intermediate frequency, and a local receiver to receive this modulated optical signal and transmit a microwave electrical signal modulated by the IF intermediate frequency signal.
  • the local receiver comprises an opto-microwave transducer according to the invention, this transducer being able to detect the intermediate frequency signal and then to mix this intermediate frequency signal with the microwave electrical signal while removing a component whose frequency is identical to the frequency of the microwave electrical signal.
  • this transducer being able to detect the intermediate frequency signal and then to mix this intermediate frequency signal with the microwave electrical signal while removing a component whose frequency is identical to the frequency of the microwave electrical signal.
  • FIG. 2 is an electronic diagram of a current mirror arranged in the transducer according to
  • FIG. 3 is a simplified electronic diagram of a coupler covering the two phototransistors of the transducer according to the invention; and - Figure 4 is an exploded view of the transducer according to the invention as shown in Figure 1.
  • the transducer according to the invention will allow the mixing of a signal at an intermediate frequency IF of the order of 2 GHz modulating an optical carrier 12 of wavelength 1.55 ⁇ m, 1.3 ⁇ m or 0.8 ⁇ m with a microwave signal 10 in millimeter wave coming from a local oscillator of frequency OL.
  • the transducer according to the invention is composed of two identical bipolar phototransistors Q1 and Q2 arranged in common emitters 2 and 4. These two transmitters 2 and 4 are connected to a current mirror 7 imposing a bias current Ipol.
  • the bases 1 and 5 of the phototransistors Q1 and Q2 are respectively connected to adaptation circuits 9 and 12.
  • the collectors 3 and 6 of the two phototransistors supply a coupler 8.
  • FIG. 1 illustrates a conventional internal diagram of the current mirror. This is mainly composed of two transistors Q3 and Q4, the transistor Q4 having its base and its collector at the same potential.
  • the value of the bias current Ipol passing through the transistor Q3 is determined by the voltage Vpol and the resistor R connected to the collector of the transistor Q4.
  • a local oscillator not shown provides the microwave signal 10 (electric carrier) of frequency OL.
  • This microwave signal 10 feeds the base 1 of the phototransistor Ql through the adaptation circuit 9.
  • a phase shift of the microwave signal 10 gives the microwave signal 11 which is injected into the base of the phototransistor Q2 through the adaptation circuit 12.
  • the frequency data signal FI modulating the optical carrier 12 is detected in the base-collector junction of the phototransistor Ql, then mixed with the microwave signal 10.
  • a polarization of the phototransistors Ql and Q2 in an area non-linear provides a mixture on the collectors.
  • a signal is obtained resulting from the mixing between the microwave signal 10 and the frequency data signal FI.
  • This signal on the collector 3 mainly comprises four components.
  • Ipol so as to polarize the phototransistors Ql and Q2 such that the two frequency components RF and OL have close powers.
  • There is also a third component of frequency IF but of very low power and a fourth component called low sideband of frequency LB (with LB OL - FI).
  • each phototransistor is polarized so as to have the lowest possible power difference between the frequency component RF and the frequency component OL.
  • the bias voltage Vce of transistor is 0.4 V; this corresponds to a point of polarization situated at the bend of the characteristic le (collector current) as a function of Vce of the phototransistor considered.
  • the current source represents an open circuit for the IF microwave signal. It is this particularity which is used in order to phase-shift the data signal by 180 ° between the collectors of each of the transistors.
  • this data signal is phase shifted between the collectors 3 and 6 of the two phototransistors by means of the current mirror 7.
  • the current source represents an open circuit for the frequency data signal FI, for example 2 GHZ.
  • the current mirror no longer fulfills this role of open circuit for the microwave signal 10 of frequency OL, since this microwave signal is at a frequency that is too high. A big part of this microwave signal 10 is lost in the current source. It is for this reason that it is necessary to apply this microwave signal to the two bases separately, by shifting them by 180 °.
  • This coupler 8 comprises two transistors Q5 and Q6 arranged in common collectors. Each base of these two transistors Q5 and Q6 is preceded by an adaptation circuit 13 or 14 such as circuits 9 and 12, before being connected to collector 3 or 6.
  • the collectors of transistors Q5 and Q6 are connected to the base of a third output transistor Q7.
  • These three transistors Q5, Q6, and Q7 can be bipolar heterojunction transistors whose reverse transmission coefficient S12 is low, in our case of -20 dB.
  • One can also use for example other coupler such as the ilkinson coupler.
  • FIG. 4 is an exploded view of the various elements described.
  • the adaptation circuit can be a circuit composed of a capacitor and an inductance. This transducer therefore uses a minimum number of electronic components integrated into a single integrated circuit, which makes it possible to reduce the cost price compared to the circuits of the prior art using an external hybrid circuit.
  • OL 38 GHz
  • FI 2 GHz
  • RF 40 GHz.
  • the 38 GHz microwave signal (OL) is sent on the basis of the phototransistor Q1 and is phase shifted by 180 ° before being also sent on the basis of the phototransistor Q2.
  • Each of the bases is adapted in accordance with FIG. 4.
  • the RF frequency component (the upper side band on the side Ql) on the collector of the phototransistor Ql comes from the mixture produced between a frequency signal FI and the microwave frequency signal OL both not phase-shifted, while the RF frequency component (the high side band on the side Q2) on the collector of the phototransistor Q2 comes from the mixture produced between the frequency signal FI and the microwave frequency signal OL both phase shifted 180 ° with respect to the signals on the phototransistor Ql.
  • Frequency collectors OL are also obtained on the collectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

The invention concerns a transducer for mixing a data signal at an intermediate frequency (IF) modulating an optical carrier with a microwave or millimetric wave from a local oscillator (LO). The microwave signal is then used as carrier for transmission to mobile terminals for example. Advantageously, said transducer performs a function for photodetection of the data signal, a function for mixing said data signal with the microwave signal and a function for suppressing in the output signal the LO frequency. Therefor, the transducer comprises two phototransistors in common transmitters, a current source connected to the two transmitters and a coupler for coupling the signals exiting from the collectors of the two phototransistors.

Description

"Transducteur opto-microonde à suppression du signal d'oscillateur local, et système mettant en œuvre un tel transducteur. " "Opto-microwave transducer with suppression of the local oscillator signal, and system implementing such a transducer."
La présente invention concerne un transducteur opto-microonde à suppression du signal d'oscillateur local, et système mettant en œuvre un tel transducteur. Elle trouve une application particulièrement intéressante dans le domaine des réseaux de télécommunications mixtes. II s'agit par exemple de réseaux de transmission de données numériques comportant une partie par fibre optique puis une partie hertzienne. La liaison hertzienne concerne les cents derniers mètres pour une liaison en extérieur (outdoor) ou l'intérieur d'un bâtiment pour une liaison intra bâtiment (indoor) . L'information numérique est donc d'abord transmise sur une porteuse optique puis sur une porteuse micro-onde ou millimétrique, les fréquences actuelles pour la partie hertzienne étant notamment de 24 ou 60 GHz. Ces liaisons comportent donc un transducteur dans lequel le signal de données est transféré d'une porteuse optique à une porteuse micro-onde à 24 ou 60 GHz par exemple.The present invention relates to an opto-microwave transducer for suppressing the local oscillator signal, and system implementing such a transducer. It finds a particularly interesting application in the field of mixed telecommunications networks. These are, for example, digital data transmission networks comprising a part by optical fiber and then a hertzian part. The radio link concerns the last hundred meters for an outdoor link or the inside of a building for an intra-building link (indoor). Digital information is therefore first transmitted on an optical carrier and then on a microwave or millimeter carrier, the current frequencies for the radio part being in particular 24 or 60 GHz. These links therefore include a transducer in which the data signal is transferred from an optical carrier to a microwave carrier at 24 or 60 GHz for example.
D'une façon générale, ce transfert implique un mélangeur optoélectronique mélangeant le signal de données de fréquence FI dite fréquence intermédiaire avec la porteuse micro-onde de fréquence OL. Le résultat de ce mélange est un signal de sortie comprenant différents produits d'intermodulation. Plus précisément, ce signal de sortie comprend quatre composantes respectivement à des fréquences RF (RF = OL + FI) , OL, FI et LB (LB = OL - FI). La composante que l'on désire isoler pour une transmission est appelée bande latérale haute de fréquence RF. Il est donc indispensable d'éliminer les autres composantes. La composante à la fréquence FI est d'une puissance très faible et peut très facilement être supprimée. On connaît des techniques conventionnelles permettant de supprimer la composante de fréquence LB, appelée bande latérale basse. Cependant, il est difficile de supprimer la composante de fréquence OL car elle possède généralement une puissance supérieure à celle de la bande latérale haute, en outre les fréquences RF et OL sont très proches .Generally, this transfer involves an optoelectronic mixer mixing the frequency data signal IF called intermediate frequency with the microwave frequency carrier OL. The result of this mixing is an output signal comprising different intermodulation products. More precisely, this output signal comprises four components respectively at frequencies RF (RF = OL + FI), OL, FI and LB (LB = OL - FI). The component that we want to isolate for a transmission is called high frequency RF sideband. It is therefore essential to eliminate the other components. The component at the IF frequency is of very low power and can very easily be deleted. Conventional techniques are known which make it possible to suppress the frequency component LB, called the low sideband. However, it is difficult to suppress the frequency component OL because it generally has a power greater than that of the high sideband, in addition the frequencies RF and OL are very close.
Dans les circuits transducteurs actuels, on utilise un mélangeur suivi d'un filtre réalisé en technologie hybride de façon à éliminer en aval la composante de fréquence OL. D'autres circuits actuels, pour supprimer la composante de fréquence OL, nécessitent l'envoi de deux signaux radiofréquences déphasés l'un par rapport à l'autre par le biais de deux fibres optiques suivies d'un déphasage optique difficile à mettre en oeuvre, ces deux fibres éclairant deux mélangeurs distincts. L'inconvénient des circuits de l'art antérieur est la complexité de leurs mises en œuvre et l'utilisation d'un grand nombre de composants électroniques. Or, à titre d'exemple, dans les systèmes de télécommunications utilisant un transducteur, les réseaux cellulaires comprennent des cellules de faible diamètre, de l'ordre de quelques centaines de mètres. Ceci nécessite donc un grand nombre de transducteurs, d'où l'importance de minimiser le nombre de composants électroniques afin de réduire le coût de revient de chaque transducteur.In current transducer circuits, a mixer is used followed by a filter produced in hybrid technology so as to eliminate the frequency component OL downstream. Other current circuits, in order to eliminate the frequency component OL, require the sending of two radiofrequency signals phase shifted with respect to one another by means of two optical fibers followed by an optical phase shift difficult to implement , these two fibers illuminating two separate mixers. The disadvantage of the circuits of the prior art is the complexity of their implementation and the use of a large number of electronic components. However, by way of example, in telecommunications systems using a transducer, the cellular networks include cells of small diameter, of the order of a few hundred meters. This therefore requires a large number of transducers, hence the importance of minimizing the number of electronic components in order to reduce the cost price of each transducer.
La présente invention a pour but de remédier aux inconvénients précités en proposant un circuit intégré transducteur ne nécessitant pas de circuit hybride extérieur pour la suppression de la composante de fréquence OL .The present invention aims to remedy the aforementioned drawbacks by proposing an integrated transducer circuit which does not require an external hybrid circuit for the suppression of the frequency component OL.
Un autre but de l'invention est de limiter le nombre de composants dans le transducteur afin d'en réduire le coût de revient. On atteint les objectifs ci-dessus avec un transducteur opto-micro-onde pour transférer un signal de données modulant une porteuse optique vers une porteuse électrique, ce transducteur comprenant deux phototransistors disposés en émetteur commun ou en source commune dans le cas de MESFET. Selon un mode de mise en œuvre de l'invention, les phototransistors sont deux transistors bipolaires identiques à hétérojonction. Le premier phototransistor est apte à détecter le signal de données et à mélanger ce signal de données avec la porteuse électrique introduite à la base de ce premier phototransistor. Ce premier phototransistor réalise donc une fonction de photodétection en détectant le signal de données porté par le signal optique, et une fonction de mélange en mélangeant ce signal de données avec la porteuse électrique qui est un signal micro-onde ou millimétrique. D'une façon générale, ce signal microonde est obtenu à partir d'un oscillateur local à la fréquence OL. Le second phototransistor est apte à mélanger d'une part la porteuse électrique déphasée de sensiblement 180° et introduite à la base de ce second phototransistor avec le signal de données déphasé de sensiblement 180° d'autre part. Le second phototransistor réalise une fonction de mélange. La porteuse électrique déphasée de 180° peut provenir d'un déphasage opéré sur le signal micro-onde sortant de l'oscillateur local. Par contre, le signal de données déphasé de 180° provient du premier phototransistor. Le transducteur comprend en outre une source de courant de polarisation connectée aux émetteurs des deux transistors, cette source de courant étant apte à transférer le signal de données détecté par le premier phototransistor vers le second phototransistor avec un déphasage de sensiblement 180°. Selon une caractéristique avantageuse de l'invention, cette source de courant est un miroir de courant.Another object of the invention is to limit the number of components in the transducer in order to reduce the cost price. The above objectives are achieved with an opto-microwave transducer for transferring a data signal modulating an optical carrier to an electric carrier, this transducer comprising two phototransistors arranged as a common emitter or as a common source in the case of MESFET. According to one embodiment of the invention, the phototransistors are two identical bipolar transistors with heterojunction. The first phototransistor is able to detect the data signal and to mix this data signal with the electric carrier introduced at the base of this first phototransistor. This first phototransistor therefore performs a photodetection function by detecting the data signal carried by the optical signal, and a mixing function by mixing this data signal with the electric carrier which is a microwave or millimeter signal. Generally, this microwave signal is obtained from a local oscillator at the frequency OL. The second phototransistor is able to mix on the one hand the electric carrier phase shifted by substantially 180 ° and introduced at the base of this second phototransistor with the data signal phase shifted by substantially 180 ° on the other hand. The second phototransistor performs a mixing function. The electric carrier phase shifted by 180 ° can come from a phase shift operated on the microwave signal leaving the local oscillator. However, the 180 ° phase shifted data signal comes from the first phototransistor. The transducer further comprises a bias current source connected to the emitters of the two transistors, this current source being able to transfer the data signal detected by the first phototransistor to the second phototransistor with a phase shift of substantially 180 °. According to one advantageous characteristic of the invention, this current source is a current mirror.
Les résultats des opérations de mélange réalisées par les deux phototransistors sont des signaux sortant par les collecteurs des deux phototransistors. Ces signaux comprennent chacun une composante de fréquence OL. L'invention est remarquable par le fait que la composante de fréquence OL sortant par le collecteur du premier phototransistor est déphasé de 180° par rapport à la composante de fréquence OL sortant par le collecteur du second phototransistor et les signaux RF ne sont pas déphasés d'un collecteur à l'autre. Ainsi, le transducteur comprend en outre un coupleur pour combiner les signaux des collecteurs des deux phototransistors de façon à supprimer les composantes de fréquence OL.The results of the mixing operations carried out by the two phototransistors are signals coming out of the collectors of the two phototransistors. These signals each include a frequency component OL. The invention is remarkable by the fact that the frequency component OL exiting through the collector of the first phototransistor is 180 ° out of phase with respect to the frequency component OL exiting through the collector of the second phototransistor and the RF signals are not out of phase d 'one collector to another. Thus, the transducer further comprises a coupler for combining the signals from the collectors of the two phototransistors so as to suppress the frequency components OL.
Avec un tel transducteur selon l'invention, on intègre donc trois fonctions dans un même circuit intégré, à savoir une fonction de photodétection, une fonction de mélangeur, et une fonction de suppression de la composante de fréquence OL. On évite ainsi l'ajout d'un circuit hybride extérieur à ce circuit intégré transducteur pour la suppression de la composante de fréquence OL, d'où un gain de coût important. Ce transducteur permet donc de mélanger un signal de données arrivant sur une porteuse optique avec un signal micro-onde ou millimétrique de façon à obtenir en sortie un signal micro-onde ou millimétrique modulé par le signal de données. Selon un mode de réalisation de l'invention, les deux phototransistors peuvent être polarisés par le biais d'une tension continue de collecteur et d'une tension continue de base. Par ailleurs, la tension continue de polarisation sur la base du second phototransistor peut être réglable de façon à corriger le décalage de polarisation dû à la détection du signal de données sur le premier phototransistor.With such a transducer according to the invention, three functions are therefore integrated in the same integrated circuit, namely a photodetection function, a mixer function, and a function for removing the frequency component OL. This avoids the addition of an external hybrid circuit to this integrated transducer circuit for the suppression of the frequency component OL, hence a significant cost saving. This transducer therefore makes it possible to mix a data signal arriving on an optical carrier with a microwave or millimeter signal so as to obtain at output a microwave or millimeter signal modulated by the data signal. According to an embodiment of the invention, the two phototransistors can be polarized by means of a DC collector voltage and a basic DC voltage. Furthermore, the DC bias voltage on the basis of the second phototransistor can be adjustable so as to correct the polarization offset due to the detection of the data signal on the first phototransistor.
De préférence, les deux phototransistors sont polarisés dans une zone non linéaire. Suivant un mode de réalisation préféré de l'invention, le coupleur est adapté pour une fréquence de fonctionnement centrée autour de la fréquence RF de la bande latérale haute.Preferably, the two phototransistors are polarized in a non-linear region. According to a preferred embodiment of the invention, the coupler is adapted for an operating frequency centered around the RF frequency of the high sideband.
Selon une autre caractéristique avantageuse de l'invention, le point de polarisation des phototransistors est tel que, sur les collecteurs des phototransistors, la puissance du signal en bande latérale haute est maximum. En effet, le signal en bande latérale haute (RF) étant généralement moins puissant que le signal OL, on cherche à minimiser la différence de puissance entre les deux, soit en diminuant le signal OL, soit en augmentant le signal RF, soit les deux actions, par l'adaptation, par le point de polarisation, etc ... Suivant un autre aspect de l'invention, il est proposé un système de communication opto-micro-onde comprenant un site central émettant un signal optique modulé par un signal de fréquence intermédiaire FI, et un récepteur local pour recevoir ce signal optique modulé et transmettre un signal électrique micro-onde modulé par le signal de fréquence intermédiaire FI . Avantageusement, le récepteur local comprend un transducteur opto-micro-onde selon l'invention, ce transducteur étant apte à détecter le signal de fréquence intermédiaire puis à mélanger ce signal de fréquence intermédiaire avec le signal électrique microonde tout en supprimant une composante dont la fréquence est identique à la fréquence du signal électrique microonde . D' autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après. Aux dessins annexés donnés à titre d'exemples non limitatifs : - la figure 1 est un schéma simplifié du circuit intégré transducteur selon l'invention, en particulier illustrant la configuration des deux phototransistors;According to another advantageous characteristic of the invention, the point of polarization of the phototransistors is such that, on the collectors of the phototransistors, the signal power in the high sideband is maximum. Indeed, the signal in high sideband (RF) being generally less powerful than the signal OL, one seeks to minimize the difference in power between the two, either by decreasing the signal OL, or by increasing the signal RF, or both actions, by adaptation, by the point of polarization, etc. According to another aspect of the invention, an opto-microwave communication system is proposed comprising a central site emitting an optical signal modulated by a signal IF intermediate frequency, and a local receiver to receive this modulated optical signal and transmit a microwave electrical signal modulated by the IF intermediate frequency signal. Advantageously, the local receiver comprises an opto-microwave transducer according to the invention, this transducer being able to detect the intermediate frequency signal and then to mix this intermediate frequency signal with the microwave electrical signal while removing a component whose frequency is identical to the frequency of the microwave electrical signal. Other features and advantages of the invention will become apparent in the description below. In the accompanying drawings given by way of nonlimiting examples: - Figure 1 is a simplified diagram of the transducer integrated circuit according to the invention, in particular illustrating the configuration of the two phototransistors;
— la figure 2 est un schéma électronique d'un miroir de courant disposé dans le transducteur selon- Figure 2 is an electronic diagram of a current mirror arranged in the transducer according to
1 ' invention;The invention;
— la figure 3 est un schéma électronique simplifié d'un coupleur coiffant les deux phototransistors du transducteur selon l'invention; et - la figure 4 est une vue éclatée du transducteur selon l'invention tel que représenté sur la figure 1.- Figure 3 is a simplified electronic diagram of a coupler covering the two phototransistors of the transducer according to the invention; and - Figure 4 is an exploded view of the transducer according to the invention as shown in Figure 1.
En se référant plus particulièrement à la figure 1, le transducteur selon l'invention va permettre le mélange d'un signal à une fréquence intermédiaire FI de l'ordre de 2 GHz modulant une porteuse optique 12 de longueur d'onde 1.55 μm, 1.3 μm ou 0.8 μm avec un signal micro-onde 10 en onde millimétrique provenant d'un oscillateur local de fréquence OL. Comme on le voit sur la figure 1, le transducteur selon l'invention est composé de deux phototransistors Ql et Q2 bipolaires identiques et disposés en émetteurs 2 et 4 communs. Ces deux émetteurs 2 et 4 sont connectés à un miroir de courant 7 imposant un courant de polarisation Ipol . Les bases 1 et 5 des phototransistors Ql et Q2 sont respectivement reliées à des circuits d'adaptation 9 et 12. Les collecteurs 3 et 6 des deux phototransistors alimentent un coupleur 8.Referring more particularly to FIG. 1, the transducer according to the invention will allow the mixing of a signal at an intermediate frequency IF of the order of 2 GHz modulating an optical carrier 12 of wavelength 1.55 μm, 1.3 μm or 0.8 μm with a microwave signal 10 in millimeter wave coming from a local oscillator of frequency OL. As can be seen in FIG. 1, the transducer according to the invention is composed of two identical bipolar phototransistors Q1 and Q2 arranged in common emitters 2 and 4. These two transmitters 2 and 4 are connected to a current mirror 7 imposing a bias current Ipol. The bases 1 and 5 of the phototransistors Q1 and Q2 are respectively connected to adaptation circuits 9 and 12. The collectors 3 and 6 of the two phototransistors supply a coupler 8.
La polarisation des deux phototransistors se fait au moyen d'une tension continue de collecteur, d'une tension de base et du courant Ipol imposé par le miroir de courant 7 sur les deux émetteurs. Les phototransistors sont polarisés au même point de fonctionnement au moyen de la tension de polarisation sur les bases 1 et 5. Un réglage de la tension sur la base 5 du phototransistor Q2 permet de rattraper la différence de polarisation due à la détection du signal optique 12. La figure 2 illustre un schéma interne conventionnel du miroir de courant. Celui-ci est composé principalement de deux transistors Q3 et Q4 , le transistor Q4 ayant sa base et son collecteur à un même potentiel. La valeur du courant de polarisation Ipol traversant le transistor Q3 est déterminée par la tension Vpol et la résistance R connectées au collecteur du transistor Q4.The polarization of the two phototransistors is done by means of a DC collector voltage, a base voltage and current Ipol imposed by the current mirror 7 on the two transmitters. The phototransistors are polarized at the same operating point by means of the polarization voltage on the bases 1 and 5. An adjustment of the voltage on the base 5 of the phototransistor Q2 makes it possible to compensate for the difference in polarization due to the detection of the optical signal 12 Figure 2 illustrates a conventional internal diagram of the current mirror. This is mainly composed of two transistors Q3 and Q4, the transistor Q4 having its base and its collector at the same potential. The value of the bias current Ipol passing through the transistor Q3 is determined by the voltage Vpol and the resistor R connected to the collector of the transistor Q4.
Un oscillateur local non représenté fournit le signal micro-onde 10 (porteuse électrique) de fréquence OL . Ce signal micro-onde 10 alimente la base 1 du phototransistor Ql à travers le circuit d'adaptation 9. Un déphasage du signal micro-onde 10 donne le signal micro-onde 11 que l'on injecte dans la base du phototransistor Q2 à travers le circuit d'adaptation 12. Le signal de données de fréquence FI modulant la porteuse optique 12 est détecté dans la jonction base-collecteur du phototransistor Ql, puis mélangé au signal micro-onde 10. Une polarisation des phototransistors Ql et Q2 dans une zone non-linéaire permet d'obtenir un mélange sur les collecteurs. Ainsi, sur le collecteur 3 du phototransistor Ql, on obtient un signal résultant du mélange entre le signal micro-onde 10 et le signal de données de fréquence FI. Ce signal sur le collecteur 3 comprend principalement quatre composantes. Une première composante dite bande latérale haute à la fréquence RF (avec RF = FI + OL) , c'est cette composante que l'on désire isoler particulièrement vis-à-vis d'une seconde composante de fréquence OL. En particulier, on peut avantageusement régler Ipol de façon à polariser les phototransistors Ql et Q2 tels que les deux composantes de fréquence RF et OL possèdent des puissances proches. On distingue également une troisième composante de fréquence FI mais de puissance très faible et une quatrième composante dite bande latérale basse de fréquence LB (avec LB = OL - FI) .A local oscillator not shown provides the microwave signal 10 (electric carrier) of frequency OL. This microwave signal 10 feeds the base 1 of the phototransistor Ql through the adaptation circuit 9. A phase shift of the microwave signal 10 gives the microwave signal 11 which is injected into the base of the phototransistor Q2 through the adaptation circuit 12. The frequency data signal FI modulating the optical carrier 12 is detected in the base-collector junction of the phototransistor Ql, then mixed with the microwave signal 10. A polarization of the phototransistors Ql and Q2 in an area non-linear provides a mixture on the collectors. Thus, on the collector 3 of the phototransistor Q1, a signal is obtained resulting from the mixing between the microwave signal 10 and the frequency data signal FI. This signal on the collector 3 mainly comprises four components. A first component called the high sideband at the RF frequency (with RF = FI + OL), it is this component which it is desired to isolate particularly with respect to a second component of frequency OL. In particular, we can advantageously adjust Ipol so as to polarize the phototransistors Ql and Q2 such that the two frequency components RF and OL have close powers. There is also a third component of frequency IF but of very low power and a fourth component called low sideband of frequency LB (with LB = OL - FI).
Selon une caractéristique avantageuse de l'invention, on polarise chaque phototransistor de façon à avoir une différence de puissance la plus faible possible entre la composante de fréquence RF et la composante de fréquence OL. On peut par exemple modifier la tension collecteur-émetteur Vce de chaque phototransistor. A titre d'exemple, pour des simulations sur un phototransistor avec OL égale 38 GHz, IF égale 2 GHz, RF égale 40 GHz, une puissance optique injectée de 165 μW, et un taux de modulation de 0.5, la tension de polarisation Vce du transistor est de 0.4 V; ceci correspond à un point de polarisation se situant au coude de la caractéristique le (courant collecteur) en fonction de Vce du phototransistor considéré.According to an advantageous characteristic of the invention, each phototransistor is polarized so as to have the lowest possible power difference between the frequency component RF and the frequency component OL. One can for example modify the collector-emitter voltage Vce of each phototransistor. For example, for simulations on a phototransistor with OL equal to 38 GHz, IF equal to 2 GHz, RF equal to 40 GHz, an injected optical power of 165 μW, and a modulation rate of 0.5, the bias voltage Vce of transistor is 0.4 V; this corresponds to a point of polarization situated at the bend of the characteristic le (collector current) as a function of Vce of the phototransistor considered.
La source de courant représente un circuit ouvert pour le signal micro-onde FI. C'est cette particularité qui est utilisée afin de déphaser le signal de données de 180° entre les collecteurs de chacun des transistors.The current source represents an open circuit for the IF microwave signal. It is this particularity which is used in order to phase-shift the data signal by 180 ° between the collectors of each of the transistors.
La détection du signal de données modulant l'onde optique 12 se faisant sur un seul des deux phototransistors, ce signal de données se trouve déphasé entre les collecteurs 3 et 6 des deux phototransistors par le biais du miroir de courant 7. La source de courant représente un circuit ouvert pour le signal de données de fréquence FI, par exemple 2 GHZ. Mais, le miroir de courant ne remplit plus ce rôle de circuit ouvert pour le signal micro-onde 10 de fréquence OL, puisque ce signal micro-onde est à une fréquence trop élevée. Une grande partie de ce signal micro-onde 10 se trouve perdue dans la source de courant. C'est pour cette raison qu'il est nécessaire d'appliquer ce signal micro-onde sur les deux bases séparément, en les déphasant de 180°. Par conséquent, on retrouve également sur le collecteur 6 du phototransistor Q2 quatre composantes mais avec des fréquences respectivement égales à RF ( -OL-FI = RF ) pour la première composante, -OL (le signe - représentant le déphasage de 180°) pour la seconde composante, -FI pour la troisième composante, et FI-OL pour la quatrième composante .The detection of the data signal modulating the optical wave 12 being done on only one of the two phototransistors, this data signal is phase shifted between the collectors 3 and 6 of the two phototransistors by means of the current mirror 7. The current source represents an open circuit for the frequency data signal FI, for example 2 GHZ. However, the current mirror no longer fulfills this role of open circuit for the microwave signal 10 of frequency OL, since this microwave signal is at a frequency that is too high. A big part of this microwave signal 10 is lost in the current source. It is for this reason that it is necessary to apply this microwave signal to the two bases separately, by shifting them by 180 °. Consequently, one also finds on the collector 6 of the phototransistor Q2 four components but with frequencies respectively equal to RF (-OL-FI = RF) for the first component, -OL (the sign - representing the phase shift of 180 °) for the second component, -FI for the third component, and FI-OL for the fourth component.
Les signaux sur les collecteurs 3 et 6 sont ensuite couplés dans le coupleur 8 tel que celui illustré par exemple sur la figure 3. Ce coupleur 8 comprend deux transistors Q5 et Q6 disposés en collecteurs communs. Chaque base de ces deux transistors Q5 et Q6 est précédée d'un circuit d'adaptation 13 ou 14 tel que les circuits 9 et 12, avant d'être connectée au collecteur 3 ou 6. Les collecteurs des transistors Q5 et Q6 sont connectés à la base d'un troisième transistor de sortie Q7. Ces trois transistors Q5, Q6, et Q7 peuvent être des transistors bipolaires à hétérojonction dont le coefficient de transmission inverse S12 est faible, dans notre cas de -20 dB . On peut aussi utiliser par exemple d'autre coupleur tel que le coupleur de ilkinson.The signals on the collectors 3 and 6 are then coupled in the coupler 8 such as that illustrated for example in FIG. 3. This coupler 8 comprises two transistors Q5 and Q6 arranged in common collectors. Each base of these two transistors Q5 and Q6 is preceded by an adaptation circuit 13 or 14 such as circuits 9 and 12, before being connected to collector 3 or 6. The collectors of transistors Q5 and Q6 are connected to the base of a third output transistor Q7. These three transistors Q5, Q6, and Q7 can be bipolar heterojunction transistors whose reverse transmission coefficient S12 is low, in our case of -20 dB. One can also use for example other coupler such as the ilkinson coupler.
Lors du couplage des signaux des collecteurs 3 et 6 dans le coupleur 8, les composantes de fréquence OL s'annulent puisqu'en opposition de phase. Par contre, les composantes de fréquences RF s'ajoutent puisqu'en phase. On obtient ainsi à la sortie du transducteur (transistor Q7 ) un spectre de mélange débarrassé de la fréquence OL de l'oscillateur local. Les autres composantes à savoir la bande latérale basse et la composante de fréquence FI peuvent être supprimées de façon conventionnelle. La figure 4 est une vue éclatée des différents éléments décrits. On voit que le circuit d'adaptation peut être un circuit composé d'un condensateur et d'une inductance. Ce transducteur utilise donc un nombre minimum de composants électroniques intégrés dans un seul circuit intégré, ce qui permet de réduire le coût de revient par rapport aux circuits de l'art antérieur utilisant un circuit hybride externe.During the coupling of the signals from the collectors 3 and 6 in the coupler 8, the frequency components OL cancel each other out since in phase opposition. On the other hand, the RF frequency components are added since in phase. There is thus obtained at the output of the transducer (transistor Q7) a mixing spectrum freed from the frequency OL of the local oscillator. The other components, namely the low sideband and the IF frequency component, can be suppressed in a conventional manner. Figure 4 is an exploded view of the various elements described. We see that the adaptation circuit can be a circuit composed of a capacitor and an inductance. This transducer therefore uses a minimum number of electronic components integrated into a single integrated circuit, which makes it possible to reduce the cost price compared to the circuits of the prior art using an external hybrid circuit.
Une simulation a été effectuée en prenant OL = 38 GHz, FI = 2 GHz, et RF = 40 GHz. Le signal micro-onde (OL) à 38 GHz est envoyé sur la base du phototransistor Ql et est déphasé de 180° avant d'être également envoyé sur la base du phototransistor Q2. Chacune des bases est adaptée conformément à la figure 4. Ainsi, la composante de fréquence RF (la bande latérale haute côté Ql) sur le collecteur du phototransistor Ql provient du mélange réalisé entre un signal de fréquence FI et le signal micro-onde de fréquence OL tous deux non déphasés, tandis que la composante de fréquence RF (la bande latérale haute côté Q2) sur le collecteur du phototransistor Q2 provient du mélange réalisé entre le signal de fréquence FI et le signal micro-onde de fréquence OL tous deux déphasés de 180° par rapport aux signaux sur le phototransistor Ql . On obtient également sur les collecteurs des composantes de fréquence OL. On couple ensuite les signaux des deux collecteurs au moyen d'un coupleur centré autour de 40 GHz. Le résultat en est que les composantes de fréquence OL disparaissent et les composantes de fréquence RF s'ajoutent : composante [RF (Ql) ] + composante [RF (Q2) ] avec RF(Q1) = (FI(+0°) + OL(+0°) etA simulation was performed by taking OL = 38 GHz, FI = 2 GHz, and RF = 40 GHz. The 38 GHz microwave signal (OL) is sent on the basis of the phototransistor Q1 and is phase shifted by 180 ° before being also sent on the basis of the phototransistor Q2. Each of the bases is adapted in accordance with FIG. 4. Thus, the RF frequency component (the upper side band on the side Ql) on the collector of the phototransistor Ql comes from the mixture produced between a frequency signal FI and the microwave frequency signal OL both not phase-shifted, while the RF frequency component (the high side band on the side Q2) on the collector of the phototransistor Q2 comes from the mixture produced between the frequency signal FI and the microwave frequency signal OL both phase shifted 180 ° with respect to the signals on the phototransistor Ql. Frequency collectors OL are also obtained on the collectors. The signals of the two collectors are then coupled by means of a coupler centered around 40 GHz. The result is that the frequency components OL disappear and the frequency components RF are added: component [RF (Ql)] + component [RF (Q2)] with RF (Q1) = (FI (+ 0 °) + OL (+ 0 °) and
RF(Q2) = (FI(+180°) + OL(+180°). Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. RF (Q2) = (FI (+ 180 °) + OL (+ 180 °). Of course, the invention is not limited to the examples which have just been described and numerous arrangements can be made to these examples without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Transducteur opto-micro-onde pour transférer un signal de données modulant une porteuse optique vers une porteuse électrique, cette porteuse électrique modulée par le signal de données formant un signal en bande latérale haute, caractérisé en ce qu'il comprend :1. Opto-microwave transducer for transferring a data signal modulating an optical carrier to an electrical carrier, this electrical carrier modulated by the data signal forming a signal in high sideband, characterized in that it comprises:
- deux phototransistors disposés en émetteur commun ou en source commune, le premier phototransistor étant apte à détecter le signal de données et à mélanger ce signal de données avec la porteuse électrique introduite à la base de ce premier phototransistor, le second phototransistor étant apte à mélanger la porteuse électrique déphasée de sensiblement 180° et introduite à la base de ce second phototransistor avec le signal de données déphasé de sensiblement 180°;- two phototransistors arranged as a common emitter or as a common source, the first phototransistor being able to detect the data signal and to mix this data signal with the electric carrier introduced at the base of this first phototransistor, the second phototransistor being able to mix the electric carrier phase shifted by substantially 180 ° and introduced at the base of this second phototransistor with the data signal phase shifted by substantially 180 °;
- une source de courant de polarisation connectée aux émetteurs des deux transistors, cette source de courant étant apte à transférer le signal de données détecté par le premier phototransistor vers le second phototransistor avec un déphasage de sensiblement 180°; et- a bias current source connected to the emitters of the two transistors, this current source being able to transfer the data signal detected by the first phototransistor to the second phototransistor with a phase shift of substantially 180 °; and
- un coupleur combinant les signaux des collecteurs des deux phototransistors de façon à supprimer des composantes dont la fréquence est identique à la fréquence de la porteuse électrique.- a coupler combining the signals from the collectors of the two phototransistors so as to remove components whose frequency is identical to the frequency of the electric carrier.
2. Transducteur selon la revendication 1, caractérisé en ce que la source de courant est un miroir de courant.2. Transducer according to claim 1, characterized in that the current source is a current mirror.
3. Transducteur selon l'une des revendications 1 ou 2, caractérisé en ce que les deux phototransistors sont polarisés par le biais d'une tension continue de collecteur et d'une tension continue de base. 3. Transducer according to one of claims 1 or 2, characterized in that the two phototransistors are polarized by means of a DC collector voltage and a basic DC voltage.
4. Transducteur selon la revendication 3, caractérisé en ce que la tension continue de polarisation sur la base du second phototransistor est réglable de façon à corriger le décalage de polarisation dû à la détection du signal de données.4. Transducer according to claim 3, characterized in that the DC bias voltage on the basis of the second phototransistor is adjustable so as to correct the bias offset due to the detection of the data signal.
5 Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux phototransistors sont polarisés dans une zone non linéaire.5 Transducer according to any one of the preceding claims, characterized in that the two phototransistors are polarized in a non-linear region.
6. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le coupleur est adapté pour une fréquence de fonctionnement centrée autour d'une fréquence étant la somme des fréquences de la porteuse électrique et du signal de données .6. Transducer according to any one of the preceding claims, characterized in that the coupler is suitable for an operating frequency centered around a frequency being the sum of the frequencies of the electric carrier and the data signal.
7. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les phototransistors sont des transistors bipolaires à heterojonction identiques.7. Transducer according to any one of the preceding claims, characterized in that the phototransistors are bipolar transistors with identical heterojunction.
8. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que la porteuse électrique provient d'un oscillateur local.8. Transducer according to any one of the preceding claims, characterized in that the electric carrier comes from a local oscillator.
9. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le coupleur comprend trois transistors bipolaires à heterojonction dont le coefficient de transmission inverse est faible.9. Transducer according to any one of the preceding claims, characterized in that the coupler comprises three bipolar heterojunction transistors whose reverse transmission coefficient is low.
10. Transducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le point de polarisation des phototransistors est tel que, sur les collecteurs des phototransistors, la puissance du signal en bande latérale haute est maximum.10. Transducer according to any one of the preceding claims, characterized in that the point of polarization of the phototransistors is such that, on the phototransistors collectors, the signal strength in the high sideband is maximum.
11. Système de communication opto-micro-onde comprenant un site central émettant un signal optique modulé par un signal de fréquence intermédiaire renfermant une information utile, et un récepteur local pour recevoir le signal optique modulé et transmettre un signal électrique micro-onde modulé par le signal de fréquence intermédiaire, caractérisé en ce que le récepteur local comprend un transducteur opto-micro-onde selon l'une quelconque des revendications précédentes, ce transducteur étant apte à détecter le signal de fréquence intermédiaire puis à mélanger ce signal de fréquence intermédiaire avec le signal électrique micro-onde tout en supprimant une composante dont la fréquence est identique à la fréquence du signal électrique micro-onde. 11. Opto-microwave communication system comprising a central site transmitting an optical signal modulated by an intermediate frequency signal containing useful information, and a local receiver for receiving the modulated optical signal and transmitting a microwave electric signal modulated by the intermediate frequency signal, characterized in that the local receiver comprises an opto-microwave transducer according to any one of the preceding claims, this transducer being capable of detecting the intermediate frequency signal and then mixing this intermediate frequency signal with the microwave electrical signal while removing a component whose frequency is identical to the frequency of the microwave electrical signal.
EP02806326A 2001-12-28 2002-12-10 Opto-microwave transducer with suppression of local oscillator signal, and system using same Withdrawn EP1461858A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116977A FR2834393B1 (en) 2001-12-28 2001-12-28 OPTO-MICROWAVE TRANDUCER WITH LOCAL OSCILLATOR SUPPRESSION SIGNAL, AND SYSTEM IMPLEMENTING SUCH A TRANSDUCER
FR0116977 2001-12-28
PCT/FR2002/004244 WO2003061113A2 (en) 2001-12-28 2002-12-10 Opto-microwave transducer with suppression of local oscillator signal, and system using same

Publications (1)

Publication Number Publication Date
EP1461858A2 true EP1461858A2 (en) 2004-09-29

Family

ID=8871050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806326A Withdrawn EP1461858A2 (en) 2001-12-28 2002-12-10 Opto-microwave transducer with suppression of local oscillator signal, and system using same

Country Status (4)

Country Link
EP (1) EP1461858A2 (en)
AU (1) AU2002364633A1 (en)
FR (1) FR2834393B1 (en)
WO (1) WO2003061113A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578891B1 (en) 2018-08-13 2020-03-03 International Business Machines Corporation Microwave-to-optical transducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896374A (en) * 1988-12-09 1990-01-23 Siemens Aktiengesellschaft Broadband monolithic balanced mixer apparatus
US5304794A (en) * 1993-05-25 1994-04-19 The United States Of America As Represented By The Secretary Of The Army Method for mixing optical and microwave signals using a GaAs MESFET
US6634811B1 (en) * 1999-11-30 2003-10-21 Jds Corporation High performance optical link
GB2362522B (en) * 2000-05-16 2004-04-28 Roke Manor Research High level mixer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03061113A3 *

Also Published As

Publication number Publication date
FR2834393B1 (en) 2004-03-12
WO2003061113A2 (en) 2003-07-24
WO2003061113A3 (en) 2004-02-12
FR2834393A1 (en) 2003-07-04
AU2002364633A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US6674969B1 (en) Two-optical signal generator for generating two opticle signals having adjustable optical frequency difference
Marpaung On-chip photonic-assisted instantaneous microwave frequency measurement system
US8073340B2 (en) Distortion compensation circuit including one or more phase invertible distortion paths
FR2474791A1 (en) DIVERSITY RADIO-TRANSMISSION SYSTEM OF SIMPLE AND ECONOMIC STRUCTURE, AND TELECOMMUNICATION NETWORK COMPRISING SUCH SYSTEMS
FR2719954A1 (en) Linearizer with broadband predistortion and auto temperature compensated for microwave amplifier.
WO2013015778A1 (en) Actively tuned circuit having parallel carrier and peaking paths
JP2019501542A (en) High RF frequency analog optical fiber link using optical signal processing
EP1605585A1 (en) Harmonic mixer using anti parallel diodes
EP1320190B1 (en) A wideband predistortion linearizer
EP0855809B1 (en) Millimetric optical source for a radio-over-fibre distribution network
FR2935849A1 (en) MIXER BI-MODE SIGNALS
US6266173B1 (en) Optical FM receiver
Meijerink et al. Phased array antenna steering using a ring resonator-based optical beam forming network
EP1148631A1 (en) Frequency translator with image frequency signal suppression
US6650185B1 (en) Frequency selective distributed amplifier
EP1461858A2 (en) Opto-microwave transducer with suppression of local oscillator signal, and system using same
EP4142149A1 (en) Radio frequency doubler and tripler
US10826729B1 (en) Communication system with adjustable equalization levels and related methods
US20040251958A1 (en) Active filter
FR3115429A1 (en) Module for transmitting/receiving signals, in particular radio frequency signals, and corresponding communication device
Sawasa et al. An experimental study on a self-oscillating optoelectronic up-converter that uses a heterojunction bipolar transistor
EP0943176A1 (en) Double balanced compact mixer using microwave monolithic integrated circuit cold fet quad
JP2004080350A (en) High frequency signal transmission system
Fandino et al. Optical single sideband transmitter using phase modulation and a photonic integrated filter
FR2796505A1 (en) LINEARIZER FOR HYPERFREQUENCY AMPLIFIER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040728

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050701