EP1461849A1 - Method for modelling optical fiber amplifiers - Google Patents

Method for modelling optical fiber amplifiers

Info

Publication number
EP1461849A1
EP1461849A1 EP02799787A EP02799787A EP1461849A1 EP 1461849 A1 EP1461849 A1 EP 1461849A1 EP 02799787 A EP02799787 A EP 02799787A EP 02799787 A EP02799787 A EP 02799787A EP 1461849 A1 EP1461849 A1 EP 1461849A1
Authority
EP
European Patent Office
Prior art keywords
fiber
equations
parameters
propagation
speeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02799787A
Other languages
German (de)
French (fr)
Inventor
Razvigor Ossikovski
Patrick Even
Nicolas Tallaron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Highwave Optical Technologies SA
Original Assignee
Highwave Optical Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highwave Optical Technologies SA filed Critical Highwave Optical Technologies SA
Publication of EP1461849A1 publication Critical patent/EP1461849A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Definitions

  • the present invention relates to the optical telecommunications sector, and more particularly to the field of fiber optic amplifiers. More specifically, the present invention relates to a method for modeling optical fiber amplifiers.
  • the present invention applies in particular to the modeling of double sheath optical fiber amplifiers doped Erbium Ytterbium.
  • Fiber amplifiers allow fully optical signal amplification, hence their wide use in optical telecommunications. We will usefully refer to documents [1], [2], [3] and [4] on this point.
  • a fiber amplifier has been shown diagrammatically, in which there is successively in cascade, from upstream to downstream: at 12 an optical input signal for example of the DWDM type, 14 a coupler for example at 5%, 16 an isolator, 18 an optical pump source, for example at 980 nm, 20 a fiber section for example of the Erbium doped single mode type, 22 an isolator, 24 a GFF section, 26 a multimode optical pump source, for example in the form of a diode, 28 a fiber section, for example of the Ytterbium and Erbium doped type with double sheath, 30 an isolator, 32 a coupler for example at 5% and at 34 the output signal.
  • the amplifying fiber used 10 can be doped in Er or Yb or co-doped in Er / Yb in order to achieve a higher gain. In the latter case it is often double sheathed (as shown schematically in Figures 2 and 3) and is pumped by one or more multimode laser pumps 26.
  • Figure 2 corresponds to a first variant of doped double cladding fiber.
  • a cross section of such a fiber and on the upper part of Figure 2 the index profile of this fiber. It comprises a single-mode core 40 surrounded by a first multimode sheath 42, of index less than that of the heart 40.
  • the first sheath 42 is itself even surrounded by a second sheath 44 having an index lower than the first sheath 42.
  • Figure 3 corresponds to a second variant of doped double cladding fiber. Again we see on the lower part of Figure 3, a cross section of such a fiber and on the upper part of Figure 3 the corresponding index profile.
  • a fiber which comprises a single-mode core 40 surrounded by a first sheath 42, multimode, of lower index.
  • the first sheath 42 is surrounded by a second sheath 44 having an index lower than the first sheath 42.
  • the fibers of FIGS. 2 and 3 can be doped with Er or Yb or Er and Yb.
  • the first sheath 42 has a circular outline of revolution, while according to Figure 3, the first sheath 42 has a rectangular outline.
  • the parameters of the fiber amplifier such as gain, noise figure, flatness of the amplified spectrum, have a direct impact on the performance and quality of the optical link of which the amplifier is a part. Hence the need to be able to design amplifiers with given characteristics and optimize their performance.
  • the object of the present invention is therefore to propose a new method making it possible to predict the performance, in terms of amplification (in particular gain and noise factor spectra, amplified spontaneous emission, residual pump), of an amplifier including a co fiber.
  • amplification in particular gain and noise factor spectra, amplified spontaneous emission, residual pump
  • -Er / Yb doping from the parameters of the fiber used (cross-sections, dopant concentrations, life time, opto-geometric parameters), powers and wavelengths of the pumps and input signals, in steady state stationary.
  • the resolution of the equations at speeds is obtained by means of numerical and iterative methods of resolution of systems of non-linear equations.
  • the present invention makes it possible in particular to take into account all the physical effects specific to the amplifying medium, hitherto neglected in existing methods (for example, pairs of Er - Er ions, Er-Yb retro-transfer, conversion of Er ions, absorption by excited state).
  • the method according to the present invention makes it possible to design and optimize an optical amplifier with Er / Yb co-doped fiber, taking into account the characteristics of the fiber and of the other components of the amplifier (isolators, couplers, equalizing filters of gain). It also makes it possible to predict the behavior of an existing amplifier in operating modes different from that for which the amplifier was designed. It also makes it possible to optimize the manufacturing processes of Er / Yb co-doped fibers in order to improve their performance.
  • the process according to the present invention is also directly applicable to fibers with single cladding Er / Yb co-doped, as well as fibers doped with Er only (double or single cladding).
  • the method according to the present invention constitutes a powerful tool for designing and optimizing fiber amplifiers and fibers alone.
  • the process according to the present invention also allows, with great speed of execution, a faithful and detailed modeling of the medium. amplifier ensuring greater precision than existing processes.
  • FIG. 1 previously described represents the schematic structure of a known fiber optic amplifier
  • FIGS. 2 and 3 previously described represent the cross section and the index profile of two doped fibers usable in the context of the invention
  • FIG. 4 schematically represents the energy levels of the elements Er and Yb in a silica matrix
  • FIG. 5 represents a general flow diagram of the method according to the present invention.
  • FIG. 6 represents different curves, respectively resulting from measurements on the one hand and from modeling in accordance with the present invention on the other hand, illustrating the gain of the amplifier as a function of the wavelength.
  • the present invention is based on the following considerations. The particular description which follows relates to the case of an Er doped fiber and
  • the present invention is not limited to this particular case. It applies for example as well to the case of a fiber doped only with Er or only with Yb or any equivalent doping (single or double cladding with mono- or multimode pumping in the latter case).
  • the amplifying medium can be described by a given number of energy levels of the elements Er and Yb in the silica matrix (the latter being able to be further doped with P, Al, etc.); as illustrated in Figure 4.
  • the populations of these levels, as well as their interactions, are governed by a system of equations at coupled speeds through the parameters of the fiber (cross sections, time of life, dopant concentrations, opto parameters -géométriques).
  • the speed equation system is completed by differential propagation equations for each of the signals present in the fiber (input signal, pump, amplified spontaneous emission).
  • the general flow diagram of the modeling method according to the present invention is shown in FIG. 5.
  • the first step 100 consists in establishing the input parameters and the velocity and propagation equations.
  • the speed equations are initialized on the basis of the parameters specific to the case analyzed, in step 110.
  • step 112 the formal analytical solutions of the differential propagation equations are uniformly discretized along the fiber and expressed as a function of the populations of the energy levels.
  • the populations of the levels are also uniformly discretized and interpolated between the discretization points, for example by the cubic spline method.
  • the solutions thus obtained for the propagation equations are injected into the speed equations in step 120.
  • the speed equations are solved simultaneously along the fiber compared to the populations of the levels.
  • step 130 the powers of the different signals. From these powers, we go directly to the desired parameters of the amplifier (gain, noise figure, etc.).
  • each of these effects can be included or excluded from the model in order to estimate its importance in the amplification process.
  • an arbitrary combination of effects can be formed.
  • the input data of the process according to the present invention are: 1) the opto-geometrical parameters of the co-doped fiber (radius of the core, surface of the doped section and of the internal cladding, cut-off frequency), 2) the physical parameters of the fiber (cross sections, time of life of the levels, dopant concentrations, length, linear losses), 3) the effects specific to the amplifying medium (transfer time Yb - Er, retro-transfer time Er - Yb , ion pair rate Er - Er, upconversion coefficient Er, absorption cross sections by excited state), and 4) stationary input signals (powers, wavelengths and directions of pumps, powers and signal wavelengths, multi or single mode absorption of the pump).
  • the method according to the present invention preferably takes into account, in step 100, the input parameters of the model and the following corresponding physical phenomena.
  • Parameters of the amplifying fiber a. Opto-geometric parameters Cutoff wavelength ⁇ c in nm Radius of the heart r in m: a (surface of the heart: m) Surface doped in m 2 Multimode surface in m 2 b. Physical parameters Length L in m Linear signal / pump losses l s I l p in dB / m
  • Input signal powers in mW I wavelengths in nm
  • Co-propagating pump powers in mW / wavelengths in nm
  • Counter-propagating pump powers in mW / wavelengths in nm Fiber input losses in dB Fiber output losses in dB Chromatic losses in dB (gain equalizer filter)
  • the surface of the heart noted a in table 1 corresponds to the expression m- 2 in the notations above.
  • the recovery factor r encountered in the expressions of the gains (cf. table 3) is estimated as the simple Sdop / Smult ratio in the case of multimode propagation; in the single mode case it is calculated according to the “classic” formula from the cut-off frequency ⁇ c and the spectral range of interest.
  • the signal flows F (pump, useful signal, amplified spontaneous emission Er and Yb) propagating in the fiber (cf. tables 1 and 2) are calculated by direct conversion of the corresponding powers into the number of photons per second.
  • Table 1 explains the system of equations at speeds taken into account in step 110, governing the populations of the quantum levels of the amplifying medium Er - Yb. These are therefore the main equations of the phenomenon, the unknowns being the populations along the fiber. There are as many equations as there are inversions of unknown populations: “ 3 ', excited level Yb; ni, unstable level Er; 11 2 , metastable level Er; n 2 ', excited level of Er ion pairs. Table 1: EQUATIONS AT SPEEDS 1. Ytterbium: excited level (population inversion n ' 3 )
  • the quantities F entering into the equations at the speeds represent the number of photons per second (the fluxes) of the signals propagating along the fiber: pump (co- and counter-propagative), “useful” signal, ASE (spontaneous emission amplified, co- and counter-propagative).
  • step 120 a system of non-linear functional equations is obtained for determining the inversions of unknown population n ⁇ (z).
  • ni (z / ⁇ ) 1, 2, ..., M, with M unknown components.
  • F2 SE M F SE (z k + 1 ) e ⁇ + 2 J? E z * tfx
  • the integrals on z taken between z * and appearing therein are determined explicitly, or at least approximately.
  • the cubic spline interpolation method we apply for example the cubic spline interpolation method.
  • This method consists in connecting the M points nfak) for an inversion given i by cubic polynomials having their first and second derivatives continuous in these points.
  • the application of this method on population inversions n t (z) amounts to interpolating their form (by cubic polynomial, in this case) between the discretization points z *.
  • the output data preferably include at least: 1) the powers of the signal, of the pumps and of the spontaneous amplified co-and 5 counter-propagative emissions at the fiber end, and 2) the spectral gain and noise figure values in piece of fiber.
  • the output parameters can include:
  • Noise factor spectrum calculated from gain and ASE (emission amplified spontaneous) Er at the fiber outlet
  • the present invention is not limited to the particular embodiment which has just been described, but extends to any variant in accordance with its spirit.
  • the process according to the present invention can be generalized in the case of a multi-stage amplifier, that is to say an amplifier comprising several stages each comprising a fiber, separated by passive inter-stage losses (chromatic - gain equalizer filter, e.g. - or not).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)
  • Optical Transform (AREA)

Abstract

The invention concerns a method for modelling an optical fiber amplifier, characterized in that it comprises steps which consist in: establishing (100) speed equations and propagation equations of physical phenomena or effects intervening in an optical fiber amplifier; obtaining (112) accurate analytical solution of the equations of signal propagation in the fiber, discretizing them and interpolating them along the fiber; solving (120) the speed equations previously discretized by injecting therein, the solutions obtained from the propagation equations; delivering (130) the performance parameters of the fiber in terms of amplification.

Description

PROCEDE DE MODELISATION D'AMPLIFICATEURS A FIBRES OPTIQUESMETHOD OF MODELING FIBER OPTIC AMPLIFIERS
La présente invention concerne le secteur des télécommunications optiques, et plus particulièrement le domaine des amplificateurs à fibres optiques. Plus précisément, la présente invention concerne un procédé de modélisation d'amplificateurs à fibres optiques.The present invention relates to the optical telecommunications sector, and more particularly to the field of fiber optic amplifiers. More specifically, the present invention relates to a method for modeling optical fiber amplifiers.
La présente invention s'applique en particulier à la modélisation d'amplificateurs à fibres optiques double gaine dopées Erbium Ytterbium.The present invention applies in particular to the modeling of double sheath optical fiber amplifiers doped Erbium Ytterbium.
Les amplificateurs à fibres permettent une amplification entièrement optique du signal, d'où leur large utilisation dans les télécommunications optiques. On se référera utilement sur ce point aux documents [1], [2], [3] et [4].Fiber amplifiers allow fully optical signal amplification, hence their wide use in optical telecommunications. We will usefully refer to documents [1], [2], [3] and [4] on this point.
Un schéma possible d'un amplificateur optique à fibre est présenté sur la Figure 1 annexée.A possible diagram of a fiber optic amplifier is presented in Figure 1 attached.
Sur cette figure 1, on a schématisé un amplificateur à fibre, dans lequel on trouve successivement en cascade, de l'amont vers l'aval : en 12 un signal optique d'entrée par exemple de type DWDM, 14 un coupleur par exemple à 5 %, 16 un isolateur, 18 une source optique de pompe, par exemple à 980 nm, 20 un tronçon de fibre par exemple de type monomode dopée Erbium, 22 un isolateur, 24 un tronçon GFF, 26 une source optique de pompe multimode, par exemple sous forme d'une diode, 28 un tronçon de fibre, par exemple de type dopée Ytterbium et Erbium à double gaine, 30 un isolateur, 32 un coupleur par exemple à 5 % et en 34 le signal de sortie.In this FIG. 1, a fiber amplifier has been shown diagrammatically, in which there is successively in cascade, from upstream to downstream: at 12 an optical input signal for example of the DWDM type, 14 a coupler for example at 5%, 16 an isolator, 18 an optical pump source, for example at 980 nm, 20 a fiber section for example of the Erbium doped single mode type, 22 an isolator, 24 a GFF section, 26 a multimode optical pump source, for example in the form of a diode, 28 a fiber section, for example of the Ytterbium and Erbium doped type with double sheath, 30 an isolator, 32 a coupler for example at 5% and at 34 the output signal.
La fibre amplificatrice utilisée 10 peut être dopée en Er ou Yb ou co-dopée en Er / Yb afin d'atteindre un gain plus élevé. Dans le dernier cas elle est souvent à double gaine (comme schématisée sur les Figures 2 et 3) et est pompée par une ou plusieurs pompes laser multimode 26.The amplifying fiber used 10 can be doped in Er or Yb or co-doped in Er / Yb in order to achieve a higher gain. In the latter case it is often double sheathed (as shown schematically in Figures 2 and 3) and is pumped by one or more multimode laser pumps 26.
La figure 2 correspond à une première variante de fibre double gaine dopée.Figure 2 corresponds to a first variant of doped double cladding fiber.
Plus précisément on aperçoit sur la partie inférieure de la figure 2, une section droite d'une telle fibre et sur la partie supérieure de la figure 2 le profil d'indice de cette fibre. Elle comprend un cœur monomode 40 entouré d'une première gaine 42, multimode, d'indice inférieur à celui du cœur 40. La première gaine 42 est elle même entourée d'une deuxième gaine 44 présentant un indice inférieur à la première gaine 42.More precisely we see on the lower part of Figure 2, a cross section of such a fiber and on the upper part of Figure 2 the index profile of this fiber. It comprises a single-mode core 40 surrounded by a first multimode sheath 42, of index less than that of the heart 40. The first sheath 42 is itself even surrounded by a second sheath 44 having an index lower than the first sheath 42.
La figure 3 correspond à une seconde variante de fibre double gaine dopée. La encore on aperçoit sur la partie inférieure de la figure 3, une section droite d'une telle fibre et sur la partie supérieure de la figure 3 le profil d'indice correspondant. On retrouve sur la figure 3 une fibre qui comprend un cœur monomode 40 entouré d'une première gaine 42, multimode, d'indice inférieur. La première gaine 42 est entourée d'une deuxième gaine 44 présentant un indice inférieur à la première gaine 42. Les fibres des figures 2 et 3 peuvent être dopées en Er ou Yb ou Er et Yb.Figure 3 corresponds to a second variant of doped double cladding fiber. Again we see on the lower part of Figure 3, a cross section of such a fiber and on the upper part of Figure 3 the corresponding index profile. We find in Figure 3 a fiber which comprises a single-mode core 40 surrounded by a first sheath 42, multimode, of lower index. The first sheath 42 is surrounded by a second sheath 44 having an index lower than the first sheath 42. The fibers of FIGS. 2 and 3 can be doped with Er or Yb or Er and Yb.
On notera que selon la figure 2, la première gaine 42 présente un contour circulaire de révolution, tandis que selon la figure 3, la première gaine 42 possède un contour rectangulaire.Note that according to Figure 2, the first sheath 42 has a circular outline of revolution, while according to Figure 3, the first sheath 42 has a rectangular outline.
Les paramètres de l'amplificateur à fibre, tels que gain, figure de bruit, platitude du spectre amplifié, ont un impact direct sur les performances et la qualité de la liaison optique dont l'amplificateur fait partie. D'où la nécessité d'être en mesure de concevoir des amplificateurs à caractéristiques données et d'en optimiser les performances.The parameters of the fiber amplifier, such as gain, noise figure, flatness of the amplified spectrum, have a direct impact on the performance and quality of the optical link of which the amplifier is a part. Hence the need to be able to design amplifiers with given characteristics and optimize their performance.
Il existe plusieurs procédés connus plus ou moins évolués traitant de la conception d'amplificateurs à fibres.There are several known more or less advanced processes dealing with the design of fiber amplifiers.
A la connaissance de l'inventeur, les procédés existants ne tiennent compte que d'un nombre limité d'effets physiques propres à la fibre co-dopée Er / Yb ce qui peut conduire à une prédiction inexacte des performances de l'amplificateur. Par ailleurs les procédés connus requièrent un temps de traitement important. La présente invention a ainsi pour but de proposer un nouveau procédé permettant de prédire les performances, en termes d'amplification (notamment spectres de gain et de facteur de bruit, émission spontanée amplifiée, pompe résiduelle), d'un amplificateur incluant une fibre co-dopée Er / Yb, à partir des paramètres de la fibre utilisée (sections efficaces, concentrations des dopants, temps de vie, paramètres opto-géométriques), des puissances et longueurs d'onde des pompes et des signaux d'entrée, en régime stationnaire. Ce but est atteint dans le cadre de la présente invention grâce à un procédé qui consiste à :To the knowledge of the inventor, the existing methods take into account only a limited number of physical effects specific to the co-doped fiber Er / Yb, which can lead to an inaccurate prediction of the performances of the amplifier. Furthermore, the known methods require a significant processing time. The object of the present invention is therefore to propose a new method making it possible to predict the performance, in terms of amplification (in particular gain and noise factor spectra, amplified spontaneous emission, residual pump), of an amplifier including a co fiber. -Er / Yb doping, from the parameters of the fiber used (cross-sections, dopant concentrations, life time, opto-geometric parameters), powers and wavelengths of the pumps and input signals, in steady state stationary. This object is achieved in the context of the present invention by a method which consists in:
. établir les équations aux vitesses et les équations de propagation des phénomènes ou effets physiques entrant enjeu dans un amplificateur à fibre optique, . obtenir, des solutions analytiques exactes des équations de propagation des signaux dans la fibre, les discrétiser et réaliser leur interpolation le long de la fibre, . résoudre les équations aux vitesses préalablement discrétisées par injection dans celles-ci, des solutions obtenues à partir des équations de propagation, et . délivrer les paramètres de performance, en termes d'amplification, de la fibre. Selon une autre caractéristique préférentielle de la présente invention, la résolution des équations aux vitesses est obtenue par le biais de méthodes numériques et itératives de résolution de systèmes d'équations non linéaires.. establish the equations for the speeds and the equations for the propagation of the physical phenomena or effects entering the issue in a fiber optic amplifier,. obtain, exact analytical solutions of the equations of propagation of the signals in the fiber, discretize them and carry out their interpolation along the fiber,. solve the equations at speeds previously discretized by injecting into them, solutions obtained from the propagation equations, and. deliver the performance parameters, in terms of amplification, of the fiber. According to another preferred characteristic of the present invention, the resolution of the equations at speeds is obtained by means of numerical and iterative methods of resolution of systems of non-linear equations.
La présente invention permet notamment de prendre en compte tous les effets physiques propres au milieu amplificateur, jusqu'alors négligés dans les procédés existants (par exemple, paires d'ions Er - Er, rétro-transfert Er - Yb, conversion des ions Er, absorption par état excité) .The present invention makes it possible in particular to take into account all the physical effects specific to the amplifying medium, hitherto neglected in existing methods (for example, pairs of Er - Er ions, Er-Yb retro-transfer, conversion of Er ions, absorption by excited state).
Ainsi le procédé conforme à la présente invention permet de concevoir et optimiser un amplificateur optique à fibre co-dopée Er / Yb , en prenant en compte les caractéristiques de la fibre et des autres composants de l'amplificateur (isolateurs, coupleurs, filtres égaliseurs de gain). Il permet également de prédire le comportement d'un amplificateur existant dans des régimes de fonctionnement différents de celui pour lequel l'amplificateur a été conçu. Il permet par ailleurs d'optimiser les procédés de fabrication de fibres co-dopées Er / Yb dans le but d'améliorer leurs performances. Le procédé conforme à la présente invention est aussi directement applicable à des fibres à simple gaine co-dopées Er / Yb, ainsi qu'à des fibres dopées en Er uniquement (à double ou à simple gaine). D'autre part, il prend en charge le pompage mono- ou multimode dans le cas de fibres à double gaine. Ainsi, le procédé conforme à la présente invention constitue un outil puissant de conception et d'optimisation d'amplificateurs à fibres et de fibres seules. Le procédé conforme à la présente invention permet également, avec une grande rapidité d'exécution, une modélisation fidèle et détaillée du milieu amplificateur assurant une précision supérieure à celle des procédés existants.Thus, the method according to the present invention makes it possible to design and optimize an optical amplifier with Er / Yb co-doped fiber, taking into account the characteristics of the fiber and of the other components of the amplifier (isolators, couplers, equalizing filters of gain). It also makes it possible to predict the behavior of an existing amplifier in operating modes different from that for which the amplifier was designed. It also makes it possible to optimize the manufacturing processes of Er / Yb co-doped fibers in order to improve their performance. The process according to the present invention is also directly applicable to fibers with single cladding Er / Yb co-doped, as well as fibers doped with Er only (double or single cladding). On the other hand, it supports mono- or multimode pumping in the case of double-clad fibers. Thus, the method according to the present invention constitutes a powerful tool for designing and optimizing fiber amplifiers and fibers alone. The process according to the present invention also allows, with great speed of execution, a faithful and detailed modeling of the medium. amplifier ensuring greater precision than existing processes.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels : . la figure 1 précédemment décrite représente la structure schématique d'un amplificateur connu à fibre optique,Other characteristics, aims and advantages of the present invention will appear on reading the detailed description which follows, and with reference to the appended drawings, given by way of nonlimiting examples and in which:. FIG. 1 previously described represents the schematic structure of a known fiber optic amplifier,
. les figures 2 et 3 précédemment décrites représentent la section droite et le profil d'indice de deux fibres dopées utilisables dans le cadre de l'invention,. FIGS. 2 and 3 previously described represent the cross section and the index profile of two doped fibers usable in the context of the invention,
. la figure 4 représente schématiquement les niveaux d'énergie des éléments Er et Yb dans une matrice de silice,. FIG. 4 schematically represents the energy levels of the elements Er and Yb in a silica matrix,
. la figure 5 représente un organigramme général du procédé conforme à la présente invention et. FIG. 5 represents a general flow diagram of the method according to the present invention and
. la figure 6 représente différentes courbes, résultant respectivement de mesures d'une part et de la modélisation conforme à la présente invention d'autre part, illustrant le gain de l'amplificateur en fonction de la longueur d'onde. La présente invention repose sur les considérations suivantes. Le descriptif particulier qui suit se rapporte au cas d'une fibre dopée Er et. FIG. 6 represents different curves, respectively resulting from measurements on the one hand and from modeling in accordance with the present invention on the other hand, illustrating the gain of the amplifier as a function of the wavelength. The present invention is based on the following considerations. The particular description which follows relates to the case of an Er doped fiber and
Yb. Cependant la présente invention n'est pas limitée à ce cas particulier. Elle s'applique par exemple aussi bien au cas d'une fibre dopée uniquement en Er ou uniquement en Yb ou tout dopage équivalent (à simple ou à double gaine avec pompage mono- ou multimode dans le dernier cas).Yb. However, the present invention is not limited to this particular case. It applies for example as well to the case of a fiber doped only with Er or only with Yb or any equivalent doping (single or double cladding with mono- or multimode pumping in the latter case).
Le milieu amplificateur peut être décrit par un nombre donné de niveaux d'énergie des éléments Er et Yb dans la matrice de silice (celle-ci pouvant être de plus dopée en P, Al, etc.) ; comme illustré sur la Figure 4. Les populations des ces niveaux, ainsi que leurs interactions, sont gouvernées par un système d'équations aux vitesses couplées à travers les paramètres de la fibre (sections efficaces, temps de vie, concentrations en dopants, paramètres opto-géométriques).The amplifying medium can be described by a given number of energy levels of the elements Er and Yb in the silica matrix (the latter being able to be further doped with P, Al, etc.); as illustrated in Figure 4. The populations of these levels, as well as their interactions, are governed by a system of equations at coupled speeds through the parameters of the fiber (cross sections, time of life, dopant concentrations, opto parameters -géométriques).
Le système d'équations aux vitesses est complété par des équations différentielles de propagation pour chacun des signaux présents dans la fibre (signal d'entrée, pompe, émission spontanée amplifiée). L'organigramme général du procédé de modélisation conforme à la présente invention est représenté sur la Fig. 5.The speed equation system is completed by differential propagation equations for each of the signals present in the fiber (input signal, pump, amplified spontaneous emission). The general flow diagram of the modeling method according to the present invention is shown in FIG. 5.
La première étape 100 consiste à établir les paramètres d'entrée et les équations aux vitesses et de propagation. Les équations aux vitesses sont initialisées sur la base des paramètres spécifiques au cas analysé, à l'étape 110.The first step 100 consists in establishing the input parameters and the velocity and propagation equations. The speed equations are initialized on the basis of the parameters specific to the case analyzed, in step 110.
En parallèle, à l'étape 112, les solutions analytiques formelles des équations différentielles de propagation sont discrétisées uniformément le long de la fibre et exprimées en fonction des populations des niveaux d'énergie. Les populations des niveaux sont, elles aussi, discrétisées uniformément et interpolées entre les points de discrétisation, par exemple par la méthode du spline cubique.In parallel, in step 112, the formal analytical solutions of the differential propagation equations are uniformly discretized along the fiber and expressed as a function of the populations of the energy levels. The populations of the levels are also uniformly discretized and interpolated between the discretization points, for example by the cubic spline method.
Puis les solutions ainsi obtenues pour les équations de propagation sont injectées dans les équations aux vitesses à l'étape 120. En utilisant des méthodes numériques et itératives de résolution de systèmes d'équations non linéaires, les équations aux vitesses sont résolues simultanément le long de la fibre par rapport aux populations des niveaux.Then the solutions thus obtained for the propagation equations are injected into the speed equations in step 120. Using numerical and iterative methods of solving systems of non-linear equations, the speed equations are solved simultaneously along the fiber compared to the populations of the levels.
Les solutions ainsi obtenues fournissent à l'étape 130 les puissances des différents signaux. A partir de ces puissances, on remonte directement aux paramètres recherchés de l'amplificateur (gain, figure de bruit, etc.).The solutions thus obtained provide in step 130 the powers of the different signals. From these powers, we go directly to the desired parameters of the amplifier (gain, noise figure, etc.).
Plus précisément encore, le procédé conforme à la présente invention est de préférence basé sur la suite d'étapes suivantes et sur les équations mentionnées dans les tableaux 1 à 8 qui suivent.More precisely still, the process in accordance with the present invention is preferably based on the following series of steps and on the equations mentioned in Tables 1 to 8 which follow.
A la constitution des équations aux vitesses et de propagation, en plus de l'effet principal de transfert direct d'énergie Yb - Er, il est tenu compte, dans le cadre de la présente invention, d'un nombre d'effets physiques typiques du milieu amplificateur et susceptibles d'influencer ces performances sous certaines conditions : 1) absorption par état excité de la pompe, 2) upconversion des ions Er, 3) présence de paires d'ions Er - Er, 4) rétro-transfert d'énergie Er -Yb, 5) pompage direct de l'Er, 6) émission spontanée amplifiée de l'Yb.When constituting the velocity and propagation equations, in addition to the main effect of direct energy transfer Yb - Er, account is taken, in the context of the present invention, of a number of typical physical effects of the amplifying medium and likely to influence these performances under certain conditions: 1) absorption by excited state of the pump, 2) upconversion of Er ions, 3) presence of pairs of Er - Er ions, 4) retro-transfer of energy Er -Yb, 5) direct pumping of Er, 6) amplified spontaneous emission of Yb.
Plus précisément, dans le cadre de l'invention, chacun de ces effets peut être inclus ou exclu du modèle afin d'estimer son importance dans le processus d'amplification. De plus, dans le cadre de la présente invention, une combinaison arbitraire d'effets peut être formée.More specifically, in the context of the invention, each of these effects can be included or excluded from the model in order to estimate its importance in the amplification process. In addition, in the context of the present invention, an arbitrary combination of effects can be formed.
Les données d'entrée du procédé conforme à la présente invention sont : 1) les paramètres opto-géométriques de la fibre co-dopée (rayon du cœur, surface de la section dopée et de la gaine interne, fréquence de coupure), 2) les paramètres physiques de la fibre (sections efficaces, temps de vie des niveaux, concentrations en dopants, longueur, pertes linéiques), 3) les effets propres au milieu amplificateur (temps de transfert Yb - Er, temps de rétro-transfert Er - Yb, taux de paires d'ions Er - Er, coefficient de upconversion Er, sections efficaces de l'absorption par état excité), et 4) les signaux d'entrée stationnaires (puissances, longueurs d'onde et directions des pompes, puissances et longueurs d'onde du signal, absorption multi ou monomode de la pompe).The input data of the process according to the present invention are: 1) the opto-geometrical parameters of the co-doped fiber (radius of the core, surface of the doped section and of the internal cladding, cut-off frequency), 2) the physical parameters of the fiber (cross sections, time of life of the levels, dopant concentrations, length, linear losses), 3) the effects specific to the amplifying medium (transfer time Yb - Er, retro-transfer time Er - Yb , ion pair rate Er - Er, upconversion coefficient Er, absorption cross sections by excited state), and 4) stationary input signals (powers, wavelengths and directions of pumps, powers and signal wavelengths, multi or single mode absorption of the pump).
Le procédé conforme à la présente invention prend en compte de préférence, à l'étape 100, les paramètres d'entrée du modèle et les phénomènes physiques correspondants suivants. 1. Paramètres de la fibre amplificatrice : a. Paramètres opto-géométriques Longueur d'onde de coupure λc en nm Rayon du cœur r en m : a (surface du cœur : m ) Surface dopée en m2 Surface multimode en m2 b. Paramètres physiques Longueur L en m Pertes linéiques signal / pompe ls I lp en dB/mThe method according to the present invention preferably takes into account, in step 100, the input parameters of the model and the following corresponding physical phenomena. 1. Parameters of the amplifying fiber: a. Opto-geometric parameters Cutoff wavelength λ c in nm Radius of the heart r in m: a (surface of the heart: m) Surface doped in m 2 Multimode surface in m 2 b. Physical parameters Length L in m Linear signal / pump losses l s I l p in dB / m
Concentration en Er NE en m'3 Er N E concentration in m '3
Concentration en Yb Ny en m" Concentration in Yb Ny in m "
Temps de vie Er TE en sLifetime Er T E in s
Temps de vie Yb τyen s Temps de vie niveau instable Er τ32 en 5Life time Yb τyen s Life time unstable level Er τ 32 in 5
Sections efficaces spectrales absorption / émission Er σa E I σe E en m2 Sections efficaces spectrales absorption / émission Yb σ„ I σe en m Section efficace ESA (absorption par état excité) pompe σa ESA en m2 Temps de transfert Yb - Er τtr en s Temps de rétro-transfert Er - Yb τ en s Taux de paires d'ions Er kAbsorption / emission spectral cross sections Er σ a E I σ e E in m 2 Absorption / emission spectral cross sections Yb σ „I σ e in m ESA cross section (absorption by excited state) pump σ a ESA in m 2 Transfer time Yb - Er τ tr in s Retro-transfer time Er - Yb τ en s Rate of Er ion pairs
Coefficient d'up-conversion CEE (OU ) en m3 /sUp-conversion coefficient C EE (OU) in m 3 / s
2. Paramètres de l'amplificateur2. Amplifier parameters
Signal d'entrée : puissances en mW I longueurs d'onde en nm Pompe co-propagative : puissances en mW/ longueurs d'onde en nm Pompe contra-propagative : puissances en mW/ longueurs d'onde en nm Pertes en entrée de fibre en dB Pertes en sortie de fibre en dB Pertes chromatiques en dB (filtre égaliseur de gain)Input signal: powers in mW I wavelengths in nm Co-propagating pump: powers in mW / wavelengths in nm Counter-propagating pump: powers in mW / wavelengths in nm Fiber input losses in dB Fiber output losses in dB Chromatic losses in dB (gain equalizer filter)
3. Paramètres de contrôle (flags à valeur 0 ou 1) a. Pompage3. Control parameters (flags with value 0 or 1) a. Pumping
Pompage co-propagatifCo-propagative pumping
Pompage contra-propagatifCounter propagative pumping
Pompage mono / multimode b. Phénomènes physiques Présence de paires d'ions ErMono / multimode pumping b. Physical phenomena Presence of Er ion pairs
Prise en compte de l'ASE (émission spontanée amplifiée) YbTaking into account the ASE (amplified spontaneous emission) Yb
Prise en compte du pompage direct ErConsideration of direct pumping Er
Prise en compte du rétro-transfertConsideration of retro-transfer
Présence d'up-conversion Présence d'ESA (absorption par état excité) pompePresence of up-conversion Presence of ESA (absorption by excited state) pump
La grande majorité des paramètres cités entrent directement (« tels quels ») dans les équations aux vitesses, de propagation et les expressions des gains (cf.The vast majority of the parameters cited enter directly ("as is") in the equations for speeds, propagation and expressions of gains (cf.
Tableaux 1, 2 et 3). La surface du cœur notée a dans le tableau 1 correspond à l'expression m-2 dans les notations ci-dessus. Le facteur de recouvrement r rencontré dans les expressions des gains (cf. tableau 3) est estimé comme le simple rapport Sdop / Smult dans le cas de propagation multimode ; dans le cas monomode il est calculé selon la formule « classique » à partir de la fréquence de coupure λc et de la gamme spectrale d'intérêt. Les flux F des signaux (pompe, signal utile, émission spontanée amplifiée Er et Yb) se propageant dans la fibre (cf. tableaux 1 et 2) sont calculés par conversion directe des puissances correspondantes en nombre de photons par seconde.Tables 1, 2 and 3). The surface of the heart noted a in table 1 corresponds to the expression m- 2 in the notations above. The recovery factor r encountered in the expressions of the gains (cf. table 3) is estimated as the simple Sdop / Smult ratio in the case of multimode propagation; in the single mode case it is calculated according to the “classic” formula from the cut-off frequency λ c and the spectral range of interest. The signal flows F (pump, useful signal, amplified spontaneous emission Er and Yb) propagating in the fiber (cf. tables 1 and 2) are calculated by direct conversion of the corresponding powers into the number of photons per second.
Le tableau 1 explicite le système d'équations aux vitesses pris en compte à l'étape 110, gouvernant les populations des niveaux quantiques du milieu amplificateur Er - Yb. Ce sont donc les équations maîtresses du phénomène, les inconnues étant les populations le long de la fibre. Il y autant d'équations que d'mversions de populations inconnues : «3 ', niveau excité Yb ; ni, niveau instable Er ; 112, niveau métastable Er ; n2 ', niveau excité des paires d'ions Er. Tableau 1 : EQUATIONS AUX VITESSES 1. Ytterbium : niveau excité (inversion de population n '3)Table 1 explains the system of equations at speeds taken into account in step 110, governing the populations of the quantum levels of the amplifying medium Er - Yb. These are therefore the main equations of the phenomenon, the unknowns being the populations along the fiber. There are as many equations as there are inversions of unknown populations: “ 3 ', excited level Yb; ni, unstable level Er; 11 2 , metastable level Er; n 2 ', excited level of Er ion pairs. Table 1: EQUATIONS AT SPEEDS 1. Ytterbium: excited level (population inversion n ' 3 )
SpYF P + ASEFASE + WY dv + ^NYa + Sp YF P + ASE F ASE + W Y dv + ^ N Y a +
I 1 1 1 fin (1 - Tl - U ) fi (1 - U . ) (1 - « )«oI 1 1 1 end (1 - Tl - U) fi (1 - U.) (1 - ")" o
+ _3^ 2 N + 2k_ LN a~ 213_tfyα = 0 + _3 ^ 2 N + 2k _ LN a ~ 213_tf y α = 0
{l + 2k)τtr Y ( + 2k)τtr Y (X + 2k)τbt Y 2. Erbium : niveau instable (inversion de population «3) n3 ΛT «3 G - "2 - n3 ) N a + (l - »3 *3 r32 (l + 2k)τtr (l + 2k)τbt {l + 2k) τ tr Y (+ 2k) τ tr Y (X + 2k) τ bt Y 2. Erbium: unstable level (population inversion " 3 ) n 3 ΛT" 3 G - "2 - n 3) N a + (l - »3 * 3 r 32 (l + 2k) τ tr (l + 2k) τ bt
3. Erbium : niveau métastable (inversion de population ni) : g,F, + hgASEFÏsE + 4βE)dv + ^NEa -^NEa + CEENÎnîa = 03. Erbium: metastable level (population inversion ni): g, F, + hg ASE FÏs E + 4β E ) dv + ^ N E a - ^ N E a + C EE NÎnîa = 0
J TE T32 4. Erbium : niveau paires d'ions (inversion de population n 2) : JT E T 32 4. Erbium: ion pair level (population inversion n 2 ):
Les grandeurs F entrant dans les équations aux vitesses représentent le nombre de photons par seconde (les flux) des signaux se propageant le long de la fibre : pompe (co- et contra-propagative), signal « utile », ASE (émission spontanée amplifiée, co- et contra-propagative).The quantities F entering into the equations at the speeds represent the number of photons per second (the fluxes) of the signals propagating along the fiber: pump (co- and counter-propagative), “useful” signal, ASE (spontaneous emission amplified, co- and counter-propagative).
Leur évolution est gouvernée par les équations de propagation, données dans le tableau 2. La variable z repère la position le long de la fibre, 0 < z ≤ L, L étant sa longueur. Tableau 2 : EQUATIONS DE PROPAGATIONTheir evolution is governed by the propagation equations, given in table 2. The variable z marks the position along the fiber, 0 <z ≤ L, L being its length. Table 2: PROPAGATION EQUATIONS
Propagation pompe (co- et contra-propagative) : dF± ± -~- = (gp + p Y - aESA ~ lp FPPump propagation (co- and counter-propagative): dF ± ± - ~ - = (gp + p Y - a ES A ~ l p F P
Propagation signal : dK s E dz = teï -WSignal propagation: dK s E dz = teï -W
Propagation ASE (émission spontanée amplifiée, co- et contra-propagative) :ASE propagation (amplified spontaneous, co- and counter-propagative emission):
az Les différents gains g- participant dans les équations aux vitesses et les équations de propagation sont exprimés dans le tableau 3 à travers les inversions de population ntfz) et les paramètres physiques de la fibre : sections efficaces d'absorption et d'émission σe et σa en fonction de la longueur d'onde (pour Er et Yb), concentrations en dopants Er et Yb, NE et Ny, facteur de recouvrement F. Pour le signal de pompe, ce dernier dépend du mode de propagation dans la fibre : mono- ou multimode (le signal amplifié se propageant toujours en monomode).az The different gains g- participating in the velocity equations and the propagation equations are expressed in table 3 through the population inversions (ntfz) and the physical parameters of the fiber: absorption and emission cross sections σ e and σ a as a function of the wavelength (for Er and Yb), dopant concentrations Er and Yb, N E and Ny, overlap factor F. For the pump signal, the latter depends on the mode of propagation in the fiber: mono- or multimode (the amplified signal always propagating in monomode).
Tableau 3 : EXPRESSIONS DES GAINSTable 3: EXPRESSIONS OF EARNINGS
Gain : pompe, signal, ASE (émission spontanée amplifiée) : g = [(σe + σa)n -σa]NT Gain : paires d'ions Er : gpr = [(σ + 2σ K - 2σξ]NETGain: pump, signal, ASE (amplified spontaneous emission): g = [(σ e + σ a ) n -σ a ] NT Gain: ion pairs Er: g pr = [(σ + 2σ K - 2σξ] N E T
Absorption ESA (absorption par état excité) : aESA = ^a SΛn2NET ESA absorption (absorption by excited state): a ESA = ^ a SΛn 2 N E T
Terme source ASE (émission spontanée amplifiée) : β = σenNT Les équations de propagation (mentionnées dans le tableau 2) représentent des équations différentielles ordinaires linéaires vis-à-vis des flux F ; elles peuvent donc être résolues analytiquement, à l'étape 112, par rapport aux flux, comme indiqué sur le tableau 4.Source term ASE (amplified spontaneous emission): β = σ e nNT The propagation equations (mentioned in table 2) represent ordinary linear differential equations with respect to the fluxes F; they can therefore be resolved analytically, in step 112, with respect to the flows, as indicated in table 4.
Tableau 4 : SOLUTIONS ANALYTIQUES DES EQUATIONS DE PROPAGATION Propagation pompe (co- et contra-propagative) : z LTable 4: ANALYTICAL SOLUTIONS OF THE PROPAGATION EQUATIONS Pump propagation (co- and counter-propagative): z L
\gpdx \gpdx\ g p dx \ g p dx
F;{z) = F; ) e» F-{z) = F~(L) e*F; {z) = F; ) e » F- {z) = F ~ (L) e *
Propagation signal : zSignal propagation: z
\gsdx\ g s dx
Fs (z) = Fs (0) e°F s (z) = F s (0) e °
Propagation ASE (émission spontanée amplifiée, co- et contra-propagative) :ASE propagation (amplified spontaneous, co- and counter-propagative emission):
F+ SE(z) F + SE (z)
Par conséquent, après injection de ces solutions formelles dans les équations aux vitesses, on obtient à l'étape 120 un système d'équations fonctionnelles non- linéaires pour la détermination des inversions de population inconnues nι(z).Consequently, after injection of these formal solutions into the speed equations, in step 120 a system of non-linear functional equations is obtained for determining the inversions of unknown population nι (z).
Pour éviter les problèmes de résolution analytique d'un système d'équations fonctionnelles, dans le cadre de la présente invention, on discrétise la fibre le long de sa longueur en M points, par exemple equidistants (l'équi distance n'est pas requise en général) et on remplace les fonctions n{(z) inconnues par les vecteurs ni(z), k = 1, 2,... , M, à M composantes inconnues. De cette manière, on obtient un système d'équations non-linéaires à 4 x M inconnues. C'est la méthode des collocations, résumée sur le tableau 5.To avoid the problems of analytical resolution of a system of functional equations, in the context of the present invention, the fiber is discretized along its length in M points, for example equidistant (the equi distance is not required in general) and we replace the unknown functions n { (z) by the vectors ni (z / ς ), k = 1, 2, ..., M, with M unknown components. In this way, we obtain a system of non-linear equations with 4 x M unknowns. This is the collocation method, summarized in Table 5.
Tableau 5 : METHODE DES COLLOCATIONSTable 5: METHOD OF COLLOCATIONS
/,(*;«,(*)) = o //(**;**(**)) = k = 1,2,...,M/, (*; ", (*)) = O / / (**; ** (**)) = k = 1,2, ..., M
Les solutions analytiques des équations de propagation sont alors discrétisées en M points le long de la fibre, comme le montre le tableau. 6. Tableau 6 : DISCRETISATION DES SOLUTIONS DES EQUATIONS DEThe analytical solutions of the propagation equations are then discretized in M points along the fiber, as shown in the table. 6. Table 6: DISCRETISATION OF SOLUTIONS OF EQUATIONS OF
PROPAGATIONSPREAD
Propagation pompe (co- et contra-propagative) : ZA-+1 *k+lPump propagation (co- and counter-propagative): Z A- + 1 * k + l
\gpdx \gpdx (zk+ι = ^ /c) * zk F~(zk) = Fp-{zk+l) e *\ g p dx \ g p dx (z k + ι = ^ / c ) * zk F ~ (z k ) = F p - {z k + l ) e *
Propagation signal :Signal propagation:
ZA+1 Z A + 1
\gsdx\ g s dx
Fs {^ι) = Fs {zk) e - Propagation ASE (émission spontanée amplifiée, co- et contra-propagative) :F s {^ ι) = F s {z k ) e - Propagation ASE (amplified spontaneous emission, co- and counter-propagative):
zk z k
F2SEM = F SE(zk+1)e ^ + 2 J ?ez* tfxF2 SE M = F SE (z k + 1 ) e ^ + 2 J? E z * tfx
Cependant, avant de les substituer dans les équations aux vitesses, les intégrales sur z, prises entre z* et y figurant sont déterminées explicitement, ou tout du moins approximativement. Dans ce but, et afin d'améliorer l'approximation des intégrales, on applique par exemple la méthode d'interpolation par spline cubique.However, before substituting them in the equations for velocities, the integrals on z, taken between z * and appearing therein are determined explicitly, or at least approximately. For this purpose, and in order to improve the approximation of the integrals, we apply for example the cubic spline interpolation method.
Cette méthode consiste à relier les M points nfak) pour une inversion donnée i par des polynômes cubiques ayant leurs dérivées première et seconde continues dans ces points. La méthode est résumée formellement dans le tableau 7 où les fonctions Fi et 2 permettent de calculer les dérivées première et seconde du spline, x^ et Xk ", étant données les valeurs fonctionnelles Xk, k = 1, 2,... , M. L'application de cette méthode sur les inversions de population nt(z) revient à interpoler leur forme (par polynôme cubique, en l'occurrence) entre les points de discrétisation z*.This method consists in connecting the M points nfak) for an inversion given i by cubic polynomials having their first and second derivatives continuous in these points. The method is formally summarized in Table 7 where the functions Fi and 2 make it possible to calculate the first and second derivatives of the spline, x ^ and X k ", given the functional values X k , k = 1, 2, ... , M. The application of this method on population inversions n t (z) amounts to interpolating their form (by cubic polynomial, in this case) between the discretization points z *.
Tableau 7 : METHODE DU SPLINE CUBIQUETable 7: CUBIC SPLINE METHOD
En appliquant l'interpolation par spline, on peut calculer avec une très bonne précision les intégrales prises entre deux points successifs z* et Zk+j. Dans le cas des intégrales des gains g le calcul est exact (pour un polynôme cubique) et la formule est donnée sur le tableau 8. Le passage des gains g en inversions n est immédiat, les gains étant des fonctions linéaires des inversions (cf. tableau 3). En ce qui concerne les intégrales composées figurant comme seconds termes dans les expressions de l'ASE (cf. tableau 6), elles sont approximées par la formule de Simpson (formule des paraboles). Tableau 8 : RESOLUTION DE L'INTEGRALE DU GAINBy applying spline interpolation, the integrals taken between two successive points z * and Z k + j can be calculated with very good precision. In the case of the integrals of the gains g the calculation is exact (for a cubic polynomial) and the formula is given in table 8. The passage of the gains g in inversions n is immediate, the gains being linear functions of inversions (cf. table 3). Regarding the composite integrals appearing as second terms in the expressions of the ASE (cf. table 6), they are approximated by the Simpson formula (parabolic formula). Table 8: RESOLUTION OF THE ENTIRE GAIN
zk z k
Après substitution des solutions des équations de propagation dans les équations aux vitesses, celles-ci sont résolues itérativement à l'étape 120 par rapport aux quatre vecteurs inconnus n,(zk), i ~ 1, 2, 3, 4 ; k = 1, 2,... , M ; cf. tableau 9.After substitution of the solutions of the propagation equations in the velocity equations, these are resolved iteratively in step 120 with respect to the four unknown vectors n, (z k ), i ~ 1, 2, 3, 4; k = 1, 2, ..., M; cf. table 9.
Pour ce faire, on exprime les inversions n contenues dans tous les gains g figurant en facteur dans les expressions de type gF ; de cette manière on obtient un schéma itératif par rapport aux inversions n explicité dans le tableau 9, deuxième équation.To do this, we express the inversions n contained in all the gains g appearing as a factor in expressions of type gF; in this way one obtains an iterative diagram compared to the inversions n explained in table 9, second equation.
Tableau 9 : SCHEMA ITERATIF Vecteurs des inconnues : i = 2, 2 3, 3' (indice des inversions de population) »i = Yni zx ni{z1 ...,ni{zM \ Itérations simples : m = 0, 1, 2, ... (compteur des itérations) :Table 9: ITERATIVE DIAGRAM Vectors of the unknowns: i = 2, 2 3, 3 '(index of population inversions) "i = Yn i z x n i {z 1 ..., n i {z M \ Simple iterations: m = 0, 1, 2, ... (counter of iterations):
Itérations avec paramètre de relaxation m : n = (l-ω) "° +ωFi{iii{ n ) = *r +ω[Fi(n^) -n ") ] (0 < ω < \) Les méthodes numériques de résolution du système d'équations non linéaires sont basées de préférence sur des procédures itératives comprenant des méthodes d'accélération de la convergence (processus d'Aitken) et de transformation de la divergence en convergence (procédure de relaxation). Ainsi afin d'accélérer la convergence de ce schéma, ainsi que de convertir la divergence en convergence pour certains jeux de paramètres physiques particuliers, on peut utiliser un schéma itératif plus général, défini par le paramètre de relaxation m; Fig. 9, troisième équation. Le choix judicieux du paramètre m , typiquement entre 0,4 et 0,6, améliore considérablement la convergence du processus itératif. En parallèle avec les itérations principales, dans le cadre de la présente invention, on lance un deuxième processus itératif représentant une généralisation à M dimensions du processus o d'Aitken donné dans le tableau 10. Dans pratiquement tous les cas, celui-ci converge plus rapidement que le schéma itératif 5 principal, permettant ainsi de diminuer, parfois considérablement, le temps d'exécution.Iterations with relaxation parameter m: n = (l-ω) " ° + ωF i {iii {n ) = * r + ω [F i (n ^) -n ") ] (0 <ω <\) The methods Numerical resolution of the system of non-linear equations are preferably based on iterative procedures including methods of acceleration of convergence (Aitken process) and of transformation of divergence into convergence (relaxation procedure). Thus in order to accelerate the convergence of this diagram, as well as to convert the divergence into convergence for certain sets of particular physical parameters, one can use a more general iterative diagram, defined by the relaxation parameter m; Fig. 9, third equation. The judicious choice of the parameter m, typically between 0.4 and 0.6, considerably improves the convergence of the iterative process. In parallel with the main iterations, in the context of the present invention, a second iterative process is launched representing a generalization to M dimensions of the Aitken process given in table 10. In practically all cases, this converges more quickly than the main iterative diagram 5, thus making it possible to reduce, sometimes considerably, the execution time.
Tableau 10 : ACCELERATION DE LA CONVERGENCE Matrice des M approximations successives et ses différences finies :Table 10: ACCELERATION OF CONVERGENCE Matrix of successive M approximations and its finite differences:
o ΔN } = Nim) - Nk {m~l) Δ2N > = A(ANlm) ) o ΔN } = Ni m) - N k {m ~ l) Δ 2 N> = A (ANl m) )
Formule d'Aitken généralisée à M dimensions : Aitken formula generalized to M dimensions:
Les données de sortie comprennent de préférence au moins : 1) les puissances du signal, des pompes et des émissions spontanées amplifiées co- et 5 contra-propagatives en bout de fibre, et 2) les valeurs spectrales de gain et de figure de bruit en bout de fibre.The output data preferably include at least: 1) the powers of the signal, of the pumps and of the spontaneous amplified co-and 5 counter-propagative emissions at the fiber end, and 2) the spectral gain and noise figure values in piece of fiber.
Il est à noter que, dans le cadre de la présente invention, d'autres paramètres en plus de ceux décrits en 1) et en 2) ci-dessus, peuvent être calculés et affichés ( par exemple densités spectrales des émissions spontanées amplifiées co- et contra- 0 propagatives).It should be noted that, in the context of the present invention, other parameters in addition to those described in 1) and in 2) above, can be calculated and displayed (for example spectral densities of the spontaneous amplified emissions co- and counter propagative).
Ainsi dans le cadre de la présente invention, les paramètres de sortie peuvent comprendre :Thus in the context of the present invention, the output parameters can include:
1. Evolution de la puissance du signal le long de la fibre / puissance de sortie1. Evolution of the signal power along the fiber / output power
2. Evolution de la puissance de la pompe (co- ou contra-propagative) le long 5 de la fibre / puissance de la pompe résiduelle (en entrée ou en sortie de fibre)2. Evolution of the pump power (co- or counter-propagating) along the fiber / residual pump power (at the fiber input or output)
3. Accumulation de l'ASE (émission spontanée amplifiée) co- et contra- propagative Er et Yb le long de la fibre / ASE Er et Yb en entrée ou en sortie de fibre3. Accumulation of co-and counter-propagating ASE (amplified spontaneous emission) Er and Yb along the fiber / ASE Er and Yb at the input or output of the fiber
4. Spectre de gain : calculé comme le rapport signal de sortie / signal 0 d'entrée4. Gain spectrum: calculated as the output signal / input signal 0 ratio
5. Spectre du facteur de bruit : calculé à partir du gain et de l'ASE (émission spontanée amplifiée) Er en sortie de fibre et5. Noise factor spectrum: calculated from gain and ASE (emission amplified spontaneous) Er at the fiber outlet and
6. Evolution des inversions de population le long de la fibre. Le procédé conforme à la présente invention à été validé par confrontation avec l'expérience sur plusieurs types de fibres co-dopées. La figure 6 illustre l'accord du modèle avec l'expérience pour une fibre co-dopée Er / Yb type.6. Evolution of population inversions along the fiber. The process according to the present invention has been validated by comparison with experience on several types of co-doped fibers. Figure 6 illustrates the agreement of the model with the experiment for a typical Er / Yb co-doped fiber.
Bien entendu la présente invention n'est pas limitée au mode de réalisation particulier qui vient d'être décrit, mais s'étend à toute variante conforme à son esprit. En particulier le procédé conforme à la présente invention est généralisable au cas d'un amplificateur multi-étage, c'est à dire un amplificateur comprenant plusieurs étages comportant chacun une fibre, séparés par des pertes passives interétage (chromatiques - filtre égaliseur de gain, par ex. - ou non). BIBLIOGRAPHIEOf course the present invention is not limited to the particular embodiment which has just been described, but extends to any variant in accordance with its spirit. In particular, the process according to the present invention can be generalized in the case of a multi-stage amplifier, that is to say an amplifier comprising several stages each comprising a fiber, separated by passive inter-stage losses (chromatic - gain equalizer filter, e.g. - or not). BIBLIOGRAPHY
[1] T. Kasamatsu et al, Appl. Phys. B 69 (1999), 491; F. di Pascuale et al., Proc. OFC, vol. 2 (TEEE, Piscata ay, NJ, 1999), 4 [2] P. R. Morkel, in Opt. Amplifiers Appl. Tech. Dig., vol. 17 (OSA, Washington, DC, 1992), 206; P. F. Wysocki, in OSA Trends Opt. Photon. Opt. Ampl. Appl. 16 (1997), 46[1] T. Kasamatsu et al, Appl. Phys. B 69 (1999), 491; F. di Pascuale et al., Proc. OFC, vol. 2 (TEEE, Piscata ay, NJ, 1999), 4 [2] P. R. Morkel, in Opt. Amplifiers Appl. Tech. Dig., Vol. 17 (OSA, Washington, DC, 1992), 206; P. F. Wysocki, in OSA Trends Opt. Photon. Opt. Ampl. Appl. 16 (1997), 46
[3] E. Delevaque et al., IEEE Photonics Technol. Lett. 5 (1993), 73 [4] F. Sanchez et al., Phys. Rev. A 48 (1993), 2220; E. Delevaque, Ph.D. Thesis (Université de Lilles, Villeneuve d'Ascq, 1993), 137. [3] E. Delevaque et al., IEEE Photonics Technol. Lett. 5 (1993), 73 [4] F. Sanchez et al., Phys. Rev. A 48 (1993), 2220; E. Delevaque, Ph.D. Thesis (University of Lilles, Villeneuve d'Ascq, 1993), 137.

Claims

REVENDICATIONS
1. Procédé de modélisation d'amplificateur à fibre optique, caractérisé en ce qu'il comprend les étapes qui consistent à :1. A method of modeling an optical fiber amplifier, characterized in that it comprises the steps which consist in:
. établir (100) les équations aux vitesses et les équations de propagation des phénomènes ou effets physiques entrant en jeu dans un amplificateur à fibre optique,. establish (100) the speed equations and the propagation equations for the physical phenomena or effects involved in a fiber optic amplifier,
. obtenir (112), des solutions analytiques exactes des équations de propagation des signaux dans la fibre, les discrétiser et réaliser leur interpolation le long de la fibre, . résoudre (120) les équations aux vitesses préalablement discrétisées par injection dans celles-ci, des solutions obtenues à partir des équations de propagation, et . délivrer (130) les paramètres de performance, en termes d'amplification, de la fibre. . obtain (112), exact analytical solutions of the equations of propagation of the signals in the fiber, discretize them and carry out their interpolation along the fiber,. solve (120) the equations at speeds previously discretized by injection into them, solutions obtained from the propagation equations, and. deliver (130) the performance parameters, in terms of amplification, of the fiber.
2. Procédé selon la revendication 1, caractérisé par le fait que la résolution des équations aux vitesses est obtenue par le biais de méthodes numériques et itératives de résolution de systèmes d'équations non linéaires.2. Method according to claim 1, characterized in that the resolution of the equations at speeds is obtained by means of numerical and iterative methods of resolution of systems of non-linear equations.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé par le fait qu'il prend en compte des paramètres choisis dans le groupe comprenant : des paires d'ions, telles que Er - Er, des transferts directs, tels que Yb - Er, des rétro- transferts, tels que Er - Yb, des conversions d'ions, telles que Er, des absorptions par état excité, des pompages directs, tels que de l'Er, des émissions spontanées amplifiées, telles que de l'Yb.3. Method according to one of claims 1 or 2, characterized in that it takes into account parameters chosen from the group comprising: pairs of ions, such as Er - Er, direct transfers, such as Yb - Er, retro-transfers, such as Er - Yb, ion conversions, such as Er, absorptions by excited state, direct pumping, such as Er, amplified spontaneous emissions, such as l Yb.
4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait qu'il prend en compte des paramètres choisis dans le groupe comprenant : 1) des paramètres opto-géométriques de la fibre dopée, notamment rayon du cœur, surface de la section dopée et de la gaine interne, fréquence de coupure, 2) des paramètres physiques de la fibre, notamment sections efficaces, temps de vie des niveaux, concentrations en dopants, longueur, pertes linéiques, 3) des effets propres au milieu amplificateur, notamment temps de transfert Yb - Er, temps de rétro-transfert Er - Yb, taux de paires d'ions Er - Er, coefficient de upconversion Er, sections efficaces de l'absorption par état excité, et 4) des signaux d'entrée stationnaires, notamment puissances, longueurs d'onde et directions des pompes, puissances et longueurs d'onde du signal, absorption multi ou monomode de la pompe.4. Method according to one of claims 1 to 3, characterized in that it takes into account parameters chosen from the group comprising: 1) opto-geometric parameters of the doped fiber, in particular radius of the heart, surface of the doped section and the internal cladding, cut-off frequency, 2) physical parameters of the fiber, in particular cross-sections, time of life of the levels, dopant concentrations, length, linear losses, 3) effects specific to the amplifying medium, in particular transfer time Yb - Er, retro-transfer time Er - Yb, ion pair rate Er - Er, upconversion coefficient Er, cross sections of absorption by excited state, and 4) of the input signals stationary, especially pump powers, wavelengths and directions, signal powers and wavelengths, multi or single mode absorption of the pump.
5. Procédé selon l'une des revendications 1 à 4, caractérisé par le fait que les populations des niveaux sont discrétisées uniformément et interpolées entre les points de discrétisation, par exemple par une méthode du spline cubique.5. Method according to one of claims 1 to 4, characterized in that the populations of the levels are uniformly discretized and interpolated between the discretization points, for example by a cubic spline method.
6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que la résolution des équations aux vitesses est basée sur une procédure itérative comprenant une méthode d'accélération de la convergence.6. Method according to one of claims 1 to 5, characterized in that the resolution of the equations at speeds is based on an iterative procedure comprising a method of acceleration of convergence.
7. Procédé selon la revendication 6, caractérisé par le fait que la résolution des équations aux vitesses est basée sur une procédure itérative comprenant une méthode d'accélération de la convergence du type processus d'Aitken.7. Method according to claim 6, characterized in that the resolution of the equations at speeds is based on an iterative procedure comprising a method of acceleration of convergence of the Aitken process type.
8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait que la résolution des équations aux vitesses est basée sur une procédure itérative comprenant une méthode de transformation de la divergence en convergence. 8. Method according to one of claims 1 to 7, characterized in that the resolution of the equations at the speeds is based on an iterative procedure comprising a method of transforming the divergence into convergence.
9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que les paramètres délivrés comprennent des éléments choisis dans le groupe comprenant : les puissances du signal, des pompes et des émissions spontanées amplifiées co- et contra-propagatives en bout de fibre et les valeurs spectrales de gain et de figure de bruit en bout de fibre. 9. Method according to one of claims 1 to 8, characterized in that the parameters delivered comprise elements chosen from the group comprising: the powers of the signal, pumps and spontaneous amplified emissions co- and counter-propagative at the end fiber and the gain and noise spectral values at the end of the fiber.
10. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que les paramètres délivrés comprennent des éléments choisis dans le groupe comprenant : l'évolution de la puissance du signal le long de la fibre / puissance de sortie, l'évolution de la puissance de la pompe (co- ou contra-propagative) le long de la fibre / puissance de la pompe résiduelle (en entrée ou en sortie de fibre) , l'accumulation de l'ASE (émission spontanée amplifiée) co- et contra-propagative Er et Yb le long de la fibre / ASE Er et Yb en entrée ou en sortie de fibre, les pectre de gain calculé comme le rapport signal de sortie / signal d'entrée, le spectre du facteur de bruit calculé à partir du gain et de l'ASE (émission spontanée amplifiée) Er en sortie de fibre et l'évolution des inversions de population le long de la fibre. 10. Method according to one of claims 1 to 9, characterized in that the parameters delivered comprise elements chosen from the group comprising: the evolution of the signal power along the fiber / output power, the evolution of the pump power (co- or counter-propagative) along the fiber / residual pump power (in fiber input or output), the accumulation of ASE (amplified spontaneous emission) co- and counter propagating Er and Yb along the fiber / ASE Er and Yb at the input or output of the fiber, the gain pecters calculated as the output signal / input signal ratio, the spectrum of the noise factor calculated at from the gain and from the ASE (amplified spontaneous emission) Er at the fiber output and the evolution of population inversions along the fiber.
11. Procédé selon l'une des revendications 1 à 10, caractérisé par le fait qu'il s'applique à la modélisation d'un amplificateur à fibre dopée Er ou Yb, ou Er et Yb. 11. Method according to one of claims 1 to 10, characterized in that it applies to the modeling of an Er or Yb doped fiber amplifier, or Er and Yb.
EP02799787A 2001-12-07 2002-12-06 Method for modelling optical fiber amplifiers Withdrawn EP1461849A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0115842 2001-12-07
FR0115842A FR2833416B1 (en) 2001-12-07 2001-12-07 METHOD FOR MODELING OPTICAL FIBER AMPLIFIERS
PCT/FR2002/004210 WO2003049240A1 (en) 2001-12-07 2002-12-06 Method for modelling optical fiber amplifiers

Publications (1)

Publication Number Publication Date
EP1461849A1 true EP1461849A1 (en) 2004-09-29

Family

ID=8870222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799787A Withdrawn EP1461849A1 (en) 2001-12-07 2002-12-06 Method for modelling optical fiber amplifiers

Country Status (7)

Country Link
US (1) US7151631B2 (en)
EP (1) EP1461849A1 (en)
JP (1) JP2005512332A (en)
AU (1) AU2002364430A1 (en)
CA (1) CA2469591A1 (en)
FR (1) FR2833416B1 (en)
WO (1) WO2003049240A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784406B2 (en) 2006-06-13 2011-10-05 住友電気工業株式会社 Fiber laser apparatus and laser processing method
CN103201915B (en) * 2010-10-29 2016-04-06 古河电气工业株式会社 Optical amplification device and light conveying system
JP5398804B2 (en) * 2011-09-16 2014-01-29 株式会社東芝 Fiber laser equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381560B1 (en) * 1999-12-09 2002-04-30 Lucent Technologies Inc. Methods of modeling erbium doped fiber amplifiers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03049240A1 *

Also Published As

Publication number Publication date
US7151631B2 (en) 2006-12-19
US20050068610A1 (en) 2005-03-31
WO2003049240A8 (en) 2004-06-03
AU2002364430A1 (en) 2003-06-17
FR2833416B1 (en) 2004-06-25
WO2003049240A1 (en) 2003-06-12
JP2005512332A (en) 2005-04-28
FR2833416A1 (en) 2003-06-13
CA2469591A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
Mu et al. High-gain waveguide amplifiers in Si 3 N 4 technology via double-layer monolithic integration
Vázquez-Córdova et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon
Dawson et al. E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber
FR2765752A1 (en) FIBER OPTICAL AMPLIFIER FOR REACHING A HIGH GAIN OF A SMALL SIGNAL
EP3029860A1 (en) Optical amplification system
Rahman et al. Multiwavelength Brillouin fiber laser with enhanced reverse-S-shaped feedback coupling assisted by out-of-cavity optical amplifier
Bonneville et al. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching
WO2012155572A1 (en) Method and device for parameter emulation
Yu et al. 219.6 W large-mode-area Er: Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers
Tench et al. Novel highly efficient in-band pump wavelengths for medium slope efficiency holmium-doped fiber amplifiers
Yu et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers
Zhang et al. Suppressing stimulated Raman scattering by adopting a composite cavity in a narrow linewidth fiber oscillator
Tench et al. 25 W 2 μm broadband polarization-maintaining hybrid Ho-and Tm-doped fiber amplifier
An et al. High-power all-fiberized superfluorescent source with distributed side-coupled cladding-pumped fiber
Feng et al. Characterization of Giles parameters for extended L-band erbium-doped fibers
EP1461849A1 (en) Method for modelling optical fiber amplifiers
Sintov et al. Extractable energy from ytterbium-doped high-energy pulsed fiber amplifiers and lasers
Wei et al. Use of a genetic algorithm to optimize multistage erbium-doped fiber-amplifier systems with complex structures
Shin et al. Investigation of signal excited-state absorption in bismuth-based erbium-doped fiber amplifier
EP3649707B1 (en) Moderately multimodal amplifying fibre
Jarabo et al. Spectral hole burning induced by reflected amplified spontaneous emission in erbium-doped silica optical fiber pumped at 980 nm
Li et al. Raman suppression in high-power fiber oscillators by femtosecond-written chirped and tilted fiber Bragg gratings
US6049416A (en) Erbium-doped fiber amplifiers with desired gain-bandwidth characteristics
FR2971639A1 (en) HIGH POWER OPTICAL FIBER LASER
JP2005512332A6 (en) Modeling method for optical fiber amplifier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20040618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TALLARON, NICOLAS

Inventor name: EVEN, PATRICK

Inventor name: OSSIKOVSKI, RAZVIGOR

19U Interruption of proceedings before grant

Effective date: 20060222

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20210601

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 2524 EN DATE DU 23/03/2022)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211202