EP1459146A1 - PROCEDE D OPTIMISATION DE L INTERCEPTION DE CIBLES MOBI LES, SYSTEME D INTERCEPTION ET MISSILE METTANT EN OEUV RE UN TEL PROCEDE - Google Patents
PROCEDE D OPTIMISATION DE L INTERCEPTION DE CIBLES MOBI LES, SYSTEME D INTERCEPTION ET MISSILE METTANT EN OEUV RE UN TEL PROCEDEInfo
- Publication number
- EP1459146A1 EP1459146A1 EP02805366A EP02805366A EP1459146A1 EP 1459146 A1 EP1459146 A1 EP 1459146A1 EP 02805366 A EP02805366 A EP 02805366A EP 02805366 A EP02805366 A EP 02805366A EP 1459146 A1 EP1459146 A1 EP 1459146A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- missile
- target
- interception
- interception system
- tracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims description 27
- 238000005457 optimization Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 5
- 230000006872 improvement Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- NIOPZPCMRQGZCE-WEVVVXLNSA-N 2,4-dinitro-6-(octan-2-yl)phenyl (E)-but-2-enoate Chemical compound CCCCCCC(C)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1OC(=O)\C=C\C NIOPZPCMRQGZCE-WEVVVXLNSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/12—Target-seeking control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/30—Command link guidance systems
- F41G7/301—Details
- F41G7/303—Sighting or tracking devices especially provided for simultaneous observation of the target and of the missile
Definitions
- the invention relates to interception systems, single and multi-target, of targets moving by missiles, in particular of aerial targets by Air-Air or Surface-Air missiles.
- FIG. 1 shows a current two-phase air-air missile 10. It comprises a receiver 11 which makes it possible, for example, to provide the LAM aircraft-missile link.
- the missile 10 comprises a military charge 13, a propulsion device 12, a navigation and guidance device 14 and a self-steering device 15.
- the missiles 10 used today are said to be two-phase.
- the engaged target 30 is generally at a considerable range p c (for example, of the order of 50 to 60 km) when the missiles 10 are fired.
- the attachment range p a of the self-steering device 15 of the missile 10 is significantly lower (for example, about 10 to 15 km), which causes the missile 10 to have a first flight phase (called inertial phase) before the final autoguiding phase.
- the navigation and guidance device 14 therefore operates in inertial navigation mode.
- the interception system 20 of the aircraft transmits via an aircraft-missile link LAM an estimate of the position and the speed of the target 30.
- the state of the target 30 is estimated using the sensors (in particular radar) in a appropriate mark. This estimation of the state of the target 30 can be carried out simultaneously for several targets and is called tracking on discontinuous information.
- the second phase is triggered by the attachment of the self-steering device 15 to the target 30.
- the navigation and guidance device 14 of the missile 10 operates from this moment on in autoguiding mode.
- An interception system 20 conventionally comprises a first subsystem, called the firing subsystem 20-r. It is responsible for ensuring the implementation of the weaponry means against the mobile targets. Missile (s) 10 (s) fired by the firing unit (s) of the sub- firing system 20 ⁇ after calculation of fire control and initialization of missiles 10 are improvements already implemented today.
- the designation subsystem 20p comprises one or more devices including the sensors, in particular radar and / or optronics sensors.
- the pursuit of the missiles 10 fired was another improvement of the interception systems 20. It can be carried out by the same sensors (radar and / or optronics) or possibly result from an estimation of the position and the speed of these missiles 10 by trajectography estimated according to the firing conditions and a modeling of the kinematics of the missiles 10 fired. Tracking of the missiles 10 fired and management of the emissions to these missiles 10 (for example, management of the aircraft-missile LAM link) as well as the other fire control functions (calculation of the firing ranges, estimates of the missile positions 10 draws Certainly can be provided by either of the 20p or 20-r subsystems.
- the two designation 20 P and firing 20 ⁇ subsystems can be co-located, that is to say placed on the same platform (for example on board an aircraft or the same surface system- air ...) as in Figure 3 in the case of an Air-Air fire hose.
- the sensors (in particular radar) of the interception system 20 of the aircraft make it possible to cover a so-called DR radar domain.
- the targets 30 are sought in a search volume Vs defined by the designation subsystem 20 P.
- This subsystem 20 P makes it possible to designate in this search volume Vs the target (s) 30.
- This designation subsystem 20p of the interception system 20 of the aircraft also ensures the pursuit of the targets 30 and missiles 10 fired by the firing subsystem 20 ⁇ of the interception system 20 of the same aircraft in the volume Vp defined by the designation subsystem 20p and transmits via a LAM link this tracking information to the missiles 10 fired.
- the two designation 20p and firing 20 ⁇ subsystems can also be relocated (for example distributed among several aircraft) by using in this case a suitable data transmission system as shown in the example in FIG. 4.
- An aircraft includes the designation subsystem 20p. In the same way as in the example of FIG. 3, it searches for targets 30 in the search volume Vs. But the aircraft 20 P not comprising the firing subsystem 20 ⁇ , it transmits the state information targets 30 via an LPT track-and-fire link to the aircraft comprising this 20 ⁇ firing subsystem. Once the missile (s) 10 fired by the aircraft 20 ⁇ , the designation subsystem 20p tracks the missiles 10 fired and the targets 30 in the tracking volume Vp. It transmits this tracking information via the LPT link to the gunner aircraft 20j which transmits tracking information from the targets 30 to the missiles 10 fired via the LAM link.
- the interception systems 20 also benefit from the existing link between the firing subsystem 20 ⁇ or the designation subsystem 20 P and the missile (s) 10.
- This link allows transmission to ( x) missile (s) 10 of the coordinates (position and speed) of the target 30. These coordinates are in a trihedron in which the missile 10 can estimate its displacement and reconstruct the estimated kinematic conditions of the interception.
- the self-steering device 15 of the missile 10 is attached in general during inertial flight. It is based on criteria established before firing to avoid certain errors.
- the tracking of missiles 10 fired using one or the other type of sensor is subject to errors.
- the errors made by the sensors of the interception system 20 on the state vector of the missiles 10 fired during their flight are a first limiting factor of this system 20. They are mainly due to the harmonization errors of the respective inertia units of the interception system 20 and of the missile 10 to the errors of drift of the navigation of the missile 10 and to the uncertainties on the characteristics of the missiles.
- the pursuit of the targets 30 using one or the other type of sensors is also subject to errors.
- These estimation errors of the sensors of the designation subsystem 20p on the state vector (position, speed and possibly acceleration) of the targets 30 constitute a second limiting factor of the interception system 20.
- the interception system 20 of this airplane can know if the airplane-missile link LAM is scrambled. However, it cannot know whether the missile 10 takes into account the information transmitted by the interception system 20.
- the interception system 20 also does not know when the self-steering device 15 clings to the target 30 nor to which target. This results in errors in the assignment of the missiles 10 fired which form the fourth factor limiting the current interception systems 20.
- These missile allocation errors 10 fired at the targets 30 to be engaged are due, in particular, to the conditions of attachment in flight in a multi-target situation of the self-steering devices responsible for the terminal automatic steering of the missiles 10.
- the first evolution is linked to the increase in the desired ranges for the missiles 10. This increase in range is induced by the search for an interception of the target 30 before it can itself engage its interception system 20
- a second development is linked to the limitation of target signatures. In fact, they become “discreet” (emission control) or stealthy during most of the interception.
- the present invention overcomes these drawbacks at least in part.
- the object of this invention is a method for optimizing the interception of target (s) 30 mobile (s) comprising the following steps: the pursuit of target (s) 30, the pursuit of missile (s) (s) 10 fired, the emission from the interception system 20 to the missile (s) 10 fired from the target tracking information 30, and the emission information by the missile (s) fired 10 towards the interception system 20 in order to improve its performance on at least one of the tracking and / or emission steps of the interception 20.
- an interception system 20 comprising: a designation subsystem 20p and a shooting subsystem 20 ⁇ co-located or not, a device for 21 E to the missile (s) in any of the designation 20p and firing 20 ⁇ subsystems, and a device 21 R for receiving the signals emitted by the missile (s) in any of the 20p designation and 20-r firing subsystems.
- the designation subsystem 20p and the missile 10 each comprise a GPS-type location device, the information from the GPS of the missile 10 being transmitted by the missile 10 to the interception system 20 who uses them to improve their performance.
- a variant of the invention consists in that the GPS type location devices operate in relative mode.
- FIG. 3 the operation of an interception system 20 with designation subsystems 20 P and firing 20 ⁇ co-located according to the state of the art
- FIG. 4 the operation of an interception system 20 with designation subsystems 20p and shooting 20 ⁇ relocated according to the state of the art
- FIG. 5 a diagram of the interception system 20 according to the invention
- FIG. 6 a simplified graphic representation of the pursuit of the missiles 10 fired and of the targets 30 to be reached
- the interception system 20 of FIG. 5 consists of two subsystems, a designation subsystem 20p and a firing subsystem 20 ⁇ .
- our invention adds a "return” link of the missile 10 to the interception system 20 ("downlink").
- These connections are established, as shown diagrammatically in FIG. 5, using the transceiver 1 1 * E / R coupled to the antenna A1 of the missile 10 and the transceiver 21 E / R coupled to the antenna A2 of the interception system 20.
- the transmitter 21 E and the receiver 21 R are co-located in any of the designation 20p and firing subsystems 20 ⁇ .
- they are separated.
- the transmitter 21 E is in the firing subsystem 20 ⁇ and the receiver 21 R in the designation subsystem 20p or vice versa.
- the emission of the missile 10 to the interception system 20 allows the latter to improve its performance.
- the interception system 20 can use the information received on the state of the missile 10 fired to improve the performance of the various functions that it implements. Different types of information can be emitted by the missile
- the missile 10 may relate, for example, to the general condition of the missile 10. It is then, in particular, the position, the speed, the acceleration of the missile 10, the means used by the missile 10 to obtain this information. ..
- this information can be detailed indications as to the state of missile 10, in particular the state of one or other of the missile devices 10. So the jamming conditions, the end of engagement conditions (for example, the activation of the proximity rocket), etc. may also be part of this information.
- the indications on the state of the various devices of the missile 10 are on their physical and / or mechanical state.
- the navigation devices 14 and self-guidance 15 of the missile 10 also provide part of the information emitted by the missile 10. These are the phase of the navigation and guidance device 14: inertial or self-guided, the prerequisites and resulting from the attachment of the self-guiding device 15. Or, it is information concerning the targets 30 engaged such as the positions and relative speeds, the distances, speeds and radial accelerations of these targets 30 Certainly .
- the devices 26 of the interception system 20 and 16 of the missile 10 are localization devices. They can be of the GPS (Global Positioning System) type. In our example, these are mainly and in nominal mode GPS localization devices in relative operating mode. The relative functioning of the GPS makes it possible to obtain information with better precision.
- GPS Global Positioning System
- the GPS type location device has another advantage. It makes it possible to precisely date the state vector of the missile 10. This vector comprises the position and the speed of the missile 10 in a reference trihedron known from the interception system 20 and from the other missiles 10 in flight. GPS therefore allows the operation of all of these elements (missiles and interception system 20) with an extremely precise common time reference.
- GPS localization devices 16 and 26 can therefore allow an improvement in the time synchronization of the missiles 10 fired and of the interception system 20, in particular the designation subsystem 20p and / or the firing subsystem 20 -r.
- the designation subsystem 20 has a location device 26 as shown in FIG. 5. And, if the two subsystems 20 P and 20 ⁇ are not co-located, the firing subsystem 20 ⁇ comprises, itself also, a second location device 26 "(not shown in the figure). In this case, the exchange of information between these two subsystems 20 P and 20 ⁇ is ensured by a bidirectional link. It allows in particular GPS operation by relative mode.
- the operation in relative mode of the GPS supposes, for the participants of the system, the interception system 20 and the fired missile (s), the estimation of the positions from the same subset. of the constellation of GPS 40 satellites, accessible at the same time to the participants concerned. This is why the missile 10 will use the link made using the transmitter 11 * E and the receiver 21 R to transmit the identification of the GPS satellites used 40 with the state vector developed by the GPS location device. 16.
- the interception system 20 will establish its position using the GPS location device 26 for each possible subset of GPS satellites 40 so as to be able to establish the relative position of the missile 10 fired by means of the information received from the missile 10 as to at its GPS position and at the subset of GPS satellites used 40 to establish it.
- the device 23 uses this information to improve the detection and tracking processing available such as, for example, radar and / or optronics on the missiles 10 fired.
- the state vector of each missile 10 is known with precision.
- This knowledge improves the functioning of search and tracking modes.
- the state information obtained by the different search and tracking modes can be merged either for an estimation of errors, in particular of bias type, or for harmonization between radar and optronics.
- FIG. 6 shows a simplified graphic representation of the pursuit of the missiles 10 fired and of the targets 30 to be reached.
- the position estimates but also the trajectory estimates can be viewed for all the missiles 10 and all the targets 30 to be reached.
- a single missile 10 is displayed.
- the first position estimate M R of the missile 10 is that obtained using the radar sensors
- the second position estimate M 0 is that obtained using the optronic sensors.
- the position M G ps determined by the GPS location device 16 of the missile 10 and transmitted by the latter to the interception system 20 to be represented on the tracking graph.
- the radar B R and optronic B 0 estimates of a target 30 are represented.
- FIG. 7 provides an example of a functional diagram for optimizing the interception of target (s) 30.
- a first step E10 various pieces of information are acquired by the missile on its state, the operating state of its various devices, the state of the targets 30 which it acquires then pursues ...
- This information is dated, formatted then transmitted during a step S1 towards the interception system 20.
- the different types of information received by the sub- designation system 20 P are then processed in parallel. For example, during a step S21, the information concerning the position, the speed and the acceleration of the missile 10 acquired with the aid of the GPS location device 16 of this missile 10 is used to improve the tracking of this missile 10 as previously described.
- the temporal information acquired by the GPS location device 16 of the missile 10 also allow, during a step S22, the synchronization of the missile 10 with the interception system 20.
- the information acquired by the GPS location device 16 of the missile 10 and the estimates of the state of the missile 10 and of the targets 30, the errors of the radar and / or optronic sensors are estimated in step S23 and used in step S33 to improve the tracking of the targets 30 as described above.
- the control device 23 of the tracking subsystem 20 P analyzes all of the information received from the various missiles 10 fired. During this analysis, it can identify the number of missiles 10 attached to the same target 30. If several missiles 10 are attached to the same target 30, it will go to the next step S34. During this step S34, the control device 23 will calculate a new distribution of the missiles 10 on the different targets 30 by exploiting all the information available and, for example, using proximity criteria with respect to the targets 30. In this example , missile 10 closest to the target, called primary missile thereafter, has its target confirmed.
- the other missiles 10, called secondary missiles are assigned other targets 30
- the information obtained during these various stages are transmitted by the transceiver 21 E / R of the interception system 20 towards the (s) missile (s) fired.
- the information on pursuit of target 30, of change of target 30 during a new distribution is transmitted only to the missile 10 for which the target 30 is designated.
- the target change order may be due to the intervention of the firing system, for example by an appropriate automation, or of the operator using interface 22. Or, this order may result from the analysis made by the control device 23 then allowing a new distribution of the missiles 10.
- Figure 7 shows only part of the functions that can be envisaged. Indeed, the exploitation of the state of the missile 10 and its devices (self-guidance device 15, proximity rocket - not shown -, etc.) by the interception system 20, allows the latter to '' accurately improve the overall tactical situation and the taking into account of objectives, including terminal conditions. For example, improving the "kill-assessment", evaluation of the shooting results in French, by rallying the sensors concerned capable of carrying out a fine technical analysis on the area where the impact should take place.
- the analysis of the information emitted by the various missiles 10 fired therefore allows the control device 23 of the interception system 20 to analyze the precise situation as a function of the relative state of the missiles 10 and targets 30, to develop and then d '' issue specific instructions to each missile 10 such as, for example, the activation of the self-guidance device 15 (possibly simultaneous activation on several missiles 10 in order to create a salvo), the possible activation of the active device homing of the missile 10, attachment to a designated target 30, detachment of the self-guidance device 15 or of navigation and / or guidance commands for the navigation and guidance device 14 in the event of jamming of the device d autoguiding 15 ...
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
L'invention concerne les systímes d'interception de cibles mobiles par des missiles, notamment de cibles aériennes par des missiles Air-Air ou Surface-Air. L'interception de cibles 30 mobiles est optimisée grâce au procédé comportant les étapes de poursuite des cibles 30, de poursuite des missiles 10 tirés, d'émission du systíme d'interception 20 vers les missiles 10 tirés des informations de poursuite des cibles 30, et d'émission d'informations par les missiles tirés 10 vers le systíme d'interception 20 afin d'améliorer les performances sur au moins l'une des étapes de poursuite et/ou d'émission du systíme d'interception 20. L'interception est en outre optimisée par l'utilisation dans le sous-systíme de désignation 20p et le missile 10 de dispositifs de localisation de type GPS, fonctionnant notamment en mode relatif.
Description
Procédé d'optimisation de l'interception de cibles mobiles, système d'interception et missile mettant en œuvre un tel procédé
L'invention concerne les systèmes d'interception, mono et multicibles, de cibles mobiles par des missiles, notamment de cibles aériennes par des missiles Air-Air ou Surface-Air.
A titre d'exemple, la figure 1 montre un missile 10 air-air bi-phase actuel. Il comporte un récepteur 11 qui permet, par exemple, d'assurer la liaison avion-missile LAM. En outre, le missile 10 comporte une charge militaire 13, un dispositif de propulsion 12, un dispositif de navigation et de guidage 14 et un dispositif d'auto-direction 15. Les missiles 10 utilisés aujourd'hui sont dits bi-phase. Comme le montre la figure 2, la cible engagée 30 est en général à une portée pc importante (par exemple, de l'ordre de 50 à 60 km) lorsque les missiles 10 sont tirés. Or la portée d'accrochage pa du dispositif d'auto-direction 15 du missile 10 est nettement inférieure (par exemple, environ 10 à 15 km), ce qui entraîne pour le missile 10 la nécessité d'avoir une première phase de vol (dite phase inertielle) avant la phase finale d'autoguidage.
Durant la première phase, le dispositif de navigation et de guidage 14 fonctionne donc en mode de navigation inertielle. Le système d'interception 20 de l'avion transmet via une liaison avion-missile LAM une estimation de la position et de la vitesse de la cible 30. L'état de la cible 30 est estimé grâce aux capteurs (notamment radar) dans un repère approprié. Cette estimation de l'état de la cible 30 peut être effectué simultanément pour plusieurs cibles et est appelée poursuite sur information discontinue. La seconde phase est déclenchée par l'accrochage du dispositif d'auto-direction 15 sur la cible 30. Le dispositif de navigation et du guidage 14 du missile 10 fonctionne à partir de cet instant en mode d'autoguidage.
Un système d'interception 20 comporte de manière classique un premier sous-système, appelé sous-système de tir 20-r. Il est chargé d'assurer la mise en œuvre des moyens d'armements contre les cibles 30 mobiles. Le(s) tir(s) de missile(s) 10 par la(les) unité(s) de tir du sous-
système de tir 20τ après calcul de conduite de tir et initialisation des missiles 10 sont des améliorations déjà implémentées aujourd'hui.
D'autres améliorations ont été apportées aux systèmes d'interception 20 de cible(s) 30 air-air ou surface-air. Ce sont la détection, la poursuite, l'identification et la désignation de cible(s) 30 à intercepter. Elles sont effectuées par un(ou des) capteur(s). Ces améliorations sont regroupées dans un deuxième sous-système que comporte généralement le système d'interception 20. Ce sous-système est appelé sous-système de désignation 20p. Il est chargé d'établir une situation tactique associée à l'engagement. Notamment, il est chargé d'assurer les fonctions de détection, poursuite, identification et de désigner la(les) cible(s) 30 au sous-système de tir 20-r. Pour cela, il s'appuie sur des interfaces adaptées éventuellement avec opérateurs. Le sous-système de désignation 20p comporte un ou plusieurs dispositifs dont les capteurs, notamment des capteurs radar et/ou optronique. La poursuite des missiles 10 tirés fut une autre amélioration des systèmes d'interception 20. Elle peut être effectuée par les mêmes capteurs (radar et/ou optronique) ou éventuellement résulter d'une estimation de la position et de la vitesse de ces missiles 10 par trajectographie estimée en fonction des conditions de tir et d'une modélisation de la cinématique des missiles 10 tirés. La poursuite des missiles 10 tirés et la gestion des émissions vers ces missiles 10 (par exemple, la gestion de la liaison avion- missile LAM) ainsi que les autres fonctions de conduite de tir (calcul des domaines de tirs, estimations des positions des missiles 10 tirés...) peuvent être assurées par l'un ou l'autre des sous-systèmes 20p ou 20-r. Les deux sous-systèmes de désignation 20P et de tir 20τ peuvent être co-localisés, c'est-à-dire placés sur une même plate-forme (par exemple à bord d'un aéronef ou d'un même système surface-air...) comme sur la figure 3 dans le cas d'une conduite de tir Air-Air. Dans ce cas, les capteurs (notamment radar) du système d'interception 20 de l'avion permettent de couvrir un domaine dit radar DR. Les cibles 30 sont recherchées dans un volume de recherche Vs défini par le sous-système de désignation 20P. Ce sous-système 20P permet de désigner dans ce volume de recherche Vs le(s) cible(s) 30. Ce sous-système de désignation 20p du système d'interception 20 de l'avion assure aussi la poursuite des cibles 30 et missiles 10 tirés par le sous-système de tir 20τ du système d'interception 20 du même avion dans
le volume Vp défini par le sous-système de désignation 20p et transmet via une liaison LAM ces informations de poursuite vers les missiles 10 tirés.
Les deux sous-systèmes de désignation 20p et de tir 20τ peuvent aussi être délocalisés (par exemple répartis entre plusieurs aéronefs) en exploitant dans ce cas un système de transmission de données adaptées comme le montre l'exemple de la figure 4. Un avion comporte le sous- système de désignation 20p. De la même façon que dans l'exemple de la figure 3, il recherche les cibles 30 dans le volume de recherche Vs. Mais l'avion 20P ne comportant pas le sous-système de tir 20τ, il transmet les informations d'état des cibles 30 via une liaison "poursuite-tir" LPT à l'avion comportant ce sous-système de tir 20τ. Une fois le(s) missile(s) 10 tirés par l'avion 20τ, le sous-système de désignation20p poursuit les missiles 10 tirés et les cibles 30 dans le volume de poursuite Vp. Il transmet ces informations de poursuites via la liaison LPT à l'avion tireur 20j qui transmet les informations de poursuite des cibles 30 aux missiles 10 tirés via la liaison LAM.
Les systèmes d'interception 20 bénéficient, de plus, de la liaison existante entre le sous-système de tir 20τ ou le sous-système de désignation 20P et le(s) missile(s) 10. Cette liaison permet la transmission au(x) missile(s) 10 des coordonnées (position et vitesse) de la cible 30. Ces coordonnées sont dans un trièdre dans lequel le missile 10 peut estimer son déplacement et reconstituer les conditions cinématiques estimées de l'interception.
L'accrochage du dispositif d'auto-direction 15 du missile 10, s'effectue généralement en cours de vol inertiel. Il est fonction de critères établis avant le tir permettant d'éviter certaines erreurs.
Malgré ces améliorations, les capacités opérationnelles des systèmes d'interception 20 actuels sont toujours limitées. Tout d'abord, la poursuite des missiles 10 tirés à l'aide de l'un ou l'autre type de capteurs (radar ou optronique, par exemple) est sujette à des erreurs. Les erreurs faites par les capteurs du système d'interception 20 sur le vecteur d'état des missiles 10 tirés pendant leur vol sont un premier facteur limitant de ce système 20. Elles sont principalement dues aux erreurs d'harmonisation des centrales d'inertie respectives du système d'interception 20 et du missile 10 aux erreurs de dérives de la navigation du missile 10 et aux incertitudes sur les caractéristiques des missiles.
Ensuite, la poursuite des cibles 30 à l'aide de l'un ou l'autre type de capteurs (radar ou optronique, par exemple) est, elle aussi, sujette à des erreurs. Ces erreurs d'estimation des capteurs du sous-système de désignation 20p sur le vecteur d'état (position, vitesse et éventuellement accélération) des cibles 30 constituent un deuxième facteur limitant du système d'interception 20.
Des erreurs d'estimation du vecteur d'état des missiles 10 tirés découlent un troisième facteur limitant des systèmes d'interception 20 actuels. Ce sont des difficultés et contraintes pour assurer efficacement une liaison entre les sous-systèmes de tirs 20τ et les missiles 10 tirés.
Prenons, ensuite, le cas où un avion tire un missile 10. Le système d'interception 20 de cet avion peut savoir si la liaison avion-missile LAM est brouillée. Mais, il ne peut pas savoir si le missile 10 prend en compte les informations transmises par le système d'interception 20. Le système d'interception 20 ne sait pas non plus quand le dispositif d'auto-direction 15 s'accroche à la cible 30 ni à quelle cible. En résultent des erreurs d'affectation des missiles 10 tirés qui forment le quatrième facteur limitant les systèmes d'interception 20 actuels. Ces erreurs d'affectation des missiles 10 tirés aux cibles 30 à engager sont dues, notamment, aux conditions d'accrochage en vol en situation multicible des dispositifs d'auto-direction chargés de l'autoguidage terminal des missiles 10.
En outre, apparaît un cinquième facteur limitant de ces systèmes d'interception 20 lié au missile 10. Il s'agit de l'effet des contre-mesures qui interviennent sur le fonctionnement du missile 10, notamment en phase d'autoguidage terminal après accrochage du dispositif d'auto-direction 15 du missile 10 sur la cible 30 engagée.
Ces limitations seront accentuées par les tendances d'évolution prévisibles des systèmes d'interception 20, notamment des systèmes d'interception Air-Air ou Surface-Air. La première évolution est liée à l'augmentation des portées souhaitées pour les missiles 10. Cette augmentation de portée est induite par la recherche d'une interception de la cible 30 avant qu'elle ne puisse elle-même engager son système d'interception 20. Une deuxième évolution est liée à la limitation des signatures des cibles. En effet, celles-ci deviennent « discrètes » (contrôle des émissions) ou furtives pendant la plus grande partie de l'interception.
La présente invention permet de palier au moins en partie ces inconvénients. L'objet de cette invention est un procédé d'optimisation de l'interception de cible(s) 30 mobile(s) comportant les étapes suivantes: la poursuite de(s) cible(s) 30, la poursuite de(s) missile(s) 10 tiré(s), l'émission du système d'interception 20 vers le(s) missile(s) 10 tiré(s) des informations de poursuite de(s) cible(s) 30, et l'émission d'informations par le(s) missile(s) tiré(s) 10 vers le système d'interception 20 afin d'améliorer ses performances sur au moins l'une des étapes de poursuite et/ou d'émission du système d'interception 20.
Ce procédé d'optimisation de l'interception est mis en œuvre dans l'invention par un système d'interception 20 comportant: un sous-système de désignation 20p et un sous-système de tir 20τ co-localisés ou non, un dispositif d'émission 21 E vers le(s) missile(s) dans l'un quelconque des sous- systèmes de désignation 20p et de tir 20τ, et un dispositif de réception 21 R des signaux émis par le(s) missile(s) dans l'un quelconque des sous- systèmes de désignation 20p et de tir 20-r.
Un autre objet de l'invention est que le sous-système de désignation 20p et le missile 10 comporte chacun un dispositif de localisation de type GPS, les informations du GPS du missile 10 étant émises par le missile 10 vers le système d'interception 20 qui les utilise pour améliorer ses performances. Une variante de l'invention consiste en ce que les dispositifs de localisation de type GPS fonctionnent en mode relatif.
Les caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description, faite à titre d'exemple, et des figures s'y rapportant qui représentent :
- Figure 1 , le schéma d'un missile 10 bi-phase selon l'état de l'art, - Figure 2, le fonctionnement d'un système d'interception 20 bi- phase selon l'état de l'art,
- Figure 3, le fonctionnement d'un système d'interception 20 avec sous-systèmes de désignation 20P et de tir 20τ co-localisés selon l'état de l'art,
- Figure 4, le fonctionnement d'un système d'interception 20 avec sous-systèmes de désignation 20p et de tir 20τ délocalisés selon l'état de l'art,
- Figure 5, un schéma du système d'interception 20 selon l'invention,
- Figure 6, une représentation graphique simplifiée de la poursuite des missiles 10 tirés et des cibles 30 à atteindre,
- Figure 7, un schéma bloc du procédé d'optimisation de l'interception selon l'invention.
Le système d'interception 20 de la figure 5 est constitué de deux sous-systèmes, un sous-système de désignation 20p et un sous-système de tir 20τ.
A la liaison existante du système d'interception 20 vers le missile 10 ("liaison montante"), notre invention ajoute une liaison "retour" du missile 10 vers le système d'interception 20("liaison descendante"). Ces liaisons sont établies, comme schématisées sur la figure 5, à l'aide de l'émetteur- récepteur 1 1 *E/R couplé à l'antenne A1 du missile 10 et l'émetteur-récepteur 21 E/R couplé à l'antenne A2 du système d'interception 20. Dans une première variante du système d'interception 20, l'émetteur 21 E et le récepteur 21 R sont co-localisés dans l'un quelconque des sous-systèmes de désignation 20p et de tir 20τ. Dans une deuxième variante, ils sont séparés. L'émetteur 21 E est dans le sous-système de tir 20γ et le récepteur 21 R dans le sous-système de désignation 20p ou vice-versa. L'émission du missile 10 vers le système d'interception 20 permet à ce dernier d'améliorer ses performances. Notamment, le système d'interception 20 peut utiliser les informations reçues sur l'état du missile 10 tiré pour améliorer les performances des différentes fonctions qu'il met en œuvre. Différents types d'information peuvent être émises par le missile
10. Elles peuvent concerner, par exemple, l'état général du missile 10. Il s'agit alors, notamment de la position, la vitesse, l'accélération du missile 10, des moyens utilisé par le missile 10 pour obtenir ces informations...
Ou encore, ces informations peuvent être des indications détaillées quant à l'état du missile 10, notamment l'état de l'un ou l'autre des
dispositifs du missile 10. Donc, les conditions de brouillage, les conditions de fin d'engagement (par exemple, l'activation de la fusée de proximité), etc. peuvent aussi faire partie de ces informations. Les indications sur l'état des différents dispositifs du missile 10 sont sur leur état physique et/ou mécanique.
Les dispositifs de navigation 14, et d'auto-guidage 15 du missile 10 fournissent également une partie des informations émises par le missile 10. Ce sont la phase du dispositif de navigation et de guidage 14 : inertielle ou auto-guidée, les conditions préalables et résultant de l'accrochage du dispositif d'auto-guidage 15. Ou encore, ce sont des informations concernant les cibles 30 engagées telles que les positions et vitesses relatives, les distances, vitesses et accélérations radiales de ces cibles 30 ...).
Toutes ces informations sont datées et la datation des informations est émise par le missile 10 avec celles-ci. Les dispositifs 26 du système d'interception 20 et 16 du missile 10 sont des dispositifs de localisation. Ils peuvent être de type GPS (Global Positionning System). Dans notre exemple, ce sont principalement et en mode nominal des dispositifs de localisation GPS en mode de fonctionnement relatif. Le fonctionnement relatif du GPS permet d'obtenir des informations avec une meilleures précisions.
Le dispositif de localisation de type GPS a un autre avantage. Il permet de dater précisément le vecteur d'état du missile 10. Ce vecteur comporte la position et la vitesse du missile 10 dans un trièdre de référence connu du système d'interception 20 et des autres missiles 10 en vol. Le GPS permet donc le fonctionnement de l'ensemble de ces éléments (missiles et système d'interception 20) avec une référence de temps commune extrêmement précise.
L'utilisation des dispositifs de localisation GPS 16 et 26 peut donc permettre une amélioration de la synchronisation temporelle des missiles 10 tirés et du système d'interception 20, notamment du sous-système de désignation 20p et/ou du sous-système de tir 20-r.
En cas d'inexistence du GPS ou de sa non-disponibilité, les améliorations décrites demeurent accessibles au travers du système de navigation inertielle ( non représenté) du missile 10 mais dans des conditions de performances moindres.
Le sous-système de désignation 20 possède un dispositif de localisation 26 comme le montre la figure 5. Et, si les deux sous-systèmes 20P et 20τ ne sont pas co-localisés, le sous-système de tir 20τ comporte, lui aussi, un deuxième dispositif de localisation 26" (non représenté sur la figure). Dans ce cas, les échanges d'information entre ces deux sous- systèmes 20P et 20τ sont assurés par une liaison bidirectionnelle. Elle permet notamment le fonctionnement GPS en mode relatif.
Mais le fonctionnement en mode relatif du GPS suppose, pour les participants du système, le système d'interception 20 et le(s) missile(s) tiré(s), l'estimation des positions à partir d'un même sous-ensemble de la constellation de satellites GPS 40, accessible en même temps aux participants concernés. C'est pourquoi le missile 10 utilisera la liaison réalisée à l'aide de l'émetteur 11*E et du récepteur 21 R pour émettre l'identification des satellites GPS utilisés 40 avec le vecteur d'état élaboré par le dispositif de localisation GPS 16. Le système d'interception 20 établira sa position à l'aide du dispositif de localisation GPS 26 pour chaque sous- ensemble de satellites GPS possible 40 afin de pouvoir établir la position relative du missile 10 tiré grâce aux informations reçues du missile 10 quant à sa position GPS et au sous-ensemble de satellite GPS utilisés 40 pour l'établir.
Pour un accrochage rapide, le fonctionnement en GPS relatif suppose aussi une procédure d'initialisation en temps et des échanges spécifiques entre les différents dispositifs de localisation GPS 16 et 26 généralement effectués avant le tir ou dans la première phase du tir. L'ensemble des informations émises par le missile 10 vers le système d'interception 20 sont utilisées par ce dernier au sein du dispositif de contrôle 23 afin d'optimiser l'interception de(s) cible(s) 30 non visualisées sur la figure 5.
Tout d'abord, le dispositif 23 utilise ces informations pour améliorer les traitements de détection et de poursuite disponibles tels que, par exemple, radar et/ou optronique sur les missiles 10 tirés. En effet, grâce au dispositif de localisation 16, et notamment par l'utilisation du GPS en relatif à l'aide du dispositif de localisation 26, le vecteur d'état de chaque missile 10 est connu avec précision. Cette connaissance permet l'amélioration du fonctionnement des modes de recherche et de poursuite.
Par exemple, les informations d'état obtenues par les différents modes de recherche et de poursuite (radar et/ou optronique et/ou GPS) peuvent être fusionnées soit pour une estimation d'erreurs, notamment de type biais, ou pour une harmonisation entre radar et optronique. La figure 6 montre une représentation graphique simplifiée de la poursuite des missiles 10 tirés et des cibles 30 à atteindre. En réalité, sur la représentation graphique de la poursuite pouvant éventuellement être présentée à un opérateur par l'interface opérateur 22 du système d'interception 20, non seulement les estimations de position mais aussi les estimations de trajectoire sont visualisables pour l'ensemble des missiles tirés 10 et l'ensemble des cibles 30 à atteindre. Sur cet exemple simplifié, un seul missile 10 est visualisé. La première estimation de position MR du missile 10 est celle obtenue à l'aide des capteurs radar, la deuxième estimation de position M0 est celle obtenue à l'aide des capteurs optronique. De plus, la position MGps déterminée par le dispositif de localisation GPS 16 du missile 10 et émise par celui-ci vers le système d'interception 20 pour être représentée sur le graphique de poursuite. De la même manière, sont représentées les estimations radar BR et optronique B0 d'une cible 30. Ces estimations peuvent être corrigées à partir de l'estimation des erreurs radar et optronique calculées à partir des estimations radar, optronique du missile 10 et de la position GPS de ce missile 10. Ceci permet d'améliorer significativement la poursuite des cibles 30 et de la rendre plus réactive en présence d'"évasives".
La figure 7 propose un exemple de schéma fonctionnel d'optimisation de l'interception de cible(s) 30. Dans une première étape E10, diverses informations sont acquises par le missile sur son état, l'état de fonctionnement de ses divers dispositifs, l'état des cibles 30 qu'il acquiert puis poursuit... Ces informations sont datées, mises en forme puis émises lors d'une étape S1 vers le système d'interception 20. Les différents types d'informations reçues par le sous-système de désignation 20P sont alors traitées en parallèle. Par exemple, lors d'une étape S21 , les informations concernant la position, la vitesse et l'accélération du missile 10 acquises à l'aide du dispositif de localisation GPS 16 de ce missile 10 sont utilisée pour améliorer la poursuite de ce missile 10 comme cela a été décrit précédemment. Les informations temporelles acquises par
le dispositif de localisation GPS 16 du missile 10 permettent aussi, lors d'une étape S22, la synchronisation du missile 10 avec le système d'interception 20. En utilisant, les informations acquises par le dispositif de localisation GPS 16 du missile 10 et les estimations d'état du missile 10 et des cibles 30, les erreurs des capteurs radar et/ou optronique sont estimées à l'étape S23 et utilisées à l'étape S33 pour améliorer la poursuite des cibles 30 comme cela a été décrit précédemment.
Lors d'une étape S24, le dispositif de contrôle 23 du sous-système de poursuite 20P analyse l'ensemble des informations reçues des différents missiles 10 tirés. Lors de cette analyse, il peut identifier le nombre de missiles 10 accrochés sur la même cible 30. Si plusieurs missiles 10 sont accrochés sur une même cible 30, il passera à l'étape suivante S34. Lors de cette étape S34, le dispositif de contrôle 23 calculera une nouvelle répartition des missiles 10 sur les différentes cibles 30 en exploitant l'ensemble des informations disponibles et, par exemple, utilisant des critères de proximité par rapport aux cibles 30. Dans cet exemple, le missile 10 le plus proche de la cible, appelé missile primaire par la suite, se voit confirmer sa cible. Et, les autres missiles 10, nommés missiles secondaires, se voit affecter d'autres cibles 30 Les informations obtenues lors de ces diverses étapes sont émises par l'émetteur-récepteur 21 E/R du système d'interception 20 vers le(s) missile(s) tirés. Les informations de poursuites de cible 30, de changement de cible 30 lors d'une nouvelle répartition sont transmises uniquement au missile 10 pour lequel la cible 30 est désignée. L'ordre de changement de cible peut être dû à l'intervention du système de tir, par exemple par un automatisme approprié, ou de l'opérateur grâce à l'interface 22. Ou encore, cet ordre peut résulter de l'analyse fait par le dispositif de contrôle 23 permettant alors une nouvelle répartition des missiles 10.
La figure 7 ne montre qu'une partie des fonctions qui peuvent être envisagées. En effet, l'exploitation de l'état du missile 10 et de ses dispositifs (dispositif d'auto-guidage 15, fusée de proximité - non représentée -,etc.) par le système d'interception 20, permet à ce dernier d'améliorer avec précision la situation tactique globale et la prise en compte des objectifs, y compris les conditions terminales. Par exemple, l'amélioration du "kill-assessment", évaluation des résultats de tirs en français, par ralliement des capteurs
concernés capables d'effectuer une analyse technique fine sur la zone où doit avoir lieu l'impact.
L'analyse des informations émises par les différents missiles 10 tirés permet donc au dispositif de contrôle 23 du système d'interception 20 d'analyser la situation précise en fonction de l'état relatif des missiles 10 et cibles 30, d'élaborer puis d'émettre vers chaque missile 10 des consignes particulières telles que, par exemple, l'activation du dispositif d'auto-guidage 15 (éventuellement activation simultanée sur plusieurs missiles 10 afin de créer une salve), l'activation éventuelle du dispositif actif d'autoguidage du missile 10, l'accrochage sur une cible 30 désignée, le décrochage du dispositif d'auto-guidage 15 ou de commandes de navigation et/ou de guidage pour le dispositif de navigation et de guidage 14 en cas de brouillage du dispositif d'autoguidage 15...
Ces consignes et commandes permettent une meilleure gestion de l'interception, une activation plus tardive des dispositifs d'auto-guidage 15 actifs, donc un gain en discrétion, et une meilleure affectation des cibles 30 par une analyse globale possible pour le système d'interception 20 de la situation vue par les dispositifs d'auto-guidage 15. Cette analyse est rendue possible par l'exploitation de l'ensemble des informations disponibles pour tous les missiles 10 et système d'interception 20 avec une qualité, une datation et une disponibilité significativement améliorées par les évolutions proposées pour le système d'interception 20.
Claims
1. Procédé d'optimisation de l'interception de cible(s) 30 mobile(s) comportant les étapes suivantes:
- la poursuite de(s) cible(s) 30, - la poursuite de(s) missile(s) 10 tiré(s),
- l'émission du système d'interception 20 vers le(s) missile(s) 10 tiré(s) des informations de poursuite de(s) cible(s) 30 en utilisant les informations de poursuite de(s) missile(s) 10 tiré(s), caractérisé en ce qu'il comporte, en outre, l'émission d'informations par le(s) missile(s) 10 tiré(s) vers le système d'interception 20 afin d'améliorer ses performances sur au moins l'une des étapes de poursuite et/ou d'émission du système d'interception 20.
2. Procédé d'optimisation selon la revendication précédente caractérisé en ce que les informations d'état émise par le missile 10 comporte: - la position, la vitesse du missile 10,
- et/ou les positions et vitesse des cibles accrochées/poursuivies par le dispositif d'autoguidage 15,
- et la datation précise de ces données.
3. Procédé d'optimisation selon la revendication précédente caractérisé en ce qu'il comporte l'estimation de l'erreur de poursuite de chaque missile 10 tiré par rapport aux informations d'état émises par ledit missile.
4. Procédé d'optimisation selon la revendication précédente caractérisé en ce qu'il comporte la correction de la poursuite de(s) cible(s) 30 en utilisant l'estimation des erreurs de poursuite des missiles 10.
5. Procédé d'optimisation selon l'une quelconque des revendication 2 à 4 caractérisé en ce qu'il comporte la correction de la poursuite de chaque missile 10 tiré à l'aide des informations d'état émise par ledit missile.
6. Procédé d'optimisation selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte l'émission d'un ordre de changement d'affectation de cible 30 à un missile 10 donné.
7. Procédé d'optimisation selon la revendication précédente caractérisé en ce que cet ordre de changement de cible 30 résulte de l'intervention d'un opérateur à l'aide d'une interface 22 du système d'interception 20.
8. Procédé d'optimisation selon la revendication précédente caractérisé en ce qu'il comporte l'analyse de la situation tactique comportant le nombre de missile 10 et l'identification des missiles 10 tirés accrochés à chaque cibles 30.
9. Procédé d'optimisation selon la revendication 6 caractérisé en ce que:
- l'analyse permet de déterminer un missile 10 primaire et un ou plusieurs missile(s) secondaire(s) lorsque le nombre de missiles 10 accroché à une même cible 30 est supérieur à un, et
- l'ordre de changement de cible 30 est émis vers ces missiles 10 secondaires.
10. Système d'interception utilisant le procédé d'optimisation selon l'une quelconque des revendications précédentes comportant:
- un sous-système de désignation 20p et un sous-système de tir 20τ co- localisé ou non, - un dispositif d'émission 21 E vers le(s) missile(s) 10 dans l'un quelconque des sous-systèmes de désignation 20p et de tir 20τ, caractérisé en ce qu'il comporte un dispositif de réception 21 R des signaux émis par le(s) missile(s) 10 dans l'un quelconque des sous-systèmes de désignation 20p et de tir 20τ.
11. Système d'interception selon la revendication précédente caractérisé en ce que le sous-système de désignation 20P comporte un dispositif de localisation de type GPS 26.
12. Système d'interception selon la revendication précédente caractérisé en ce que le dispositif de localisation de type GPS 26 fonctionne en mode relatif en liaison avec le dispositif de localisation de type GPS 16 du missile 10.
13. Missile caractérisé en ce qu'il comporte:
- un récepteur 11*R qui lui permet de recevoir des informations provenant du système d'interception 20 selon l'une des revendications 11 à 13,
- un dispositif de propulsion 12, - un charge militaire 13,
- un dispositif de navigation et de guidage 14,
- un dispositif d'auto-guidage 15 caractérisé en ce qu'il comporte un émetteur 11*E qui lui permet d'émettre vers le système d'interception 20 des informations produites par l'un quelconques de ses dispositifs 1 1 *R, 12, 13, 14, 15.
14. Missile selon la revendication précédente caractérisé en ce qu'il comporte un dispositif de localisation de type GPS 16.
15. Missile selon la revendication précédente caractérisé en ce que le dispositif de localisation de type GPS 16 fonctionne en mode relatif en liaison avec le dispositif de localisation de type GPS 26 du système d'interception.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0116395 | 2001-12-18 | ||
FR0116395A FR2833722B1 (fr) | 2001-12-18 | 2001-12-18 | Procede d'optimisation de l'interception de cibles mobiles, systeme d'interception et missile mettant en oeuvre un tel procede |
PCT/FR2002/004269 WO2003054647A1 (fr) | 2001-12-18 | 2002-12-10 | Procede d'optimisation de l'interception de cibles mobiles, systeme d'interception et missile mettant en oeuvre un tel procede |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1459146A1 true EP1459146A1 (fr) | 2004-09-22 |
Family
ID=8870643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02805366A Withdrawn EP1459146A1 (fr) | 2001-12-18 | 2002-12-10 | PROCEDE D OPTIMISATION DE L INTERCEPTION DE CIBLES MOBI LES, SYSTEME D INTERCEPTION ET MISSILE METTANT EN OEUV RE UN TEL PROCEDE |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1459146A1 (fr) |
FR (1) | FR2833722B1 (fr) |
WO (1) | WO2003054647A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7137588B2 (en) * | 2004-01-06 | 2006-11-21 | United Technologies Corporation | Ballistic target defense system and methods |
JP6199017B2 (ja) * | 2012-10-05 | 2017-09-20 | 三菱重工業株式会社 | 管制装置、航空機、ミサイル誘導引継プログラム、及びミサイル誘導引継方法 |
CN112504016B (zh) * | 2020-09-21 | 2022-11-18 | 上海航天控制技术研究所 | 一种适应协同任务规划的目标不可逃逸区可靠预测方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1116801A (en) * | 1963-03-22 | 1968-06-12 | Dehavilland Aircraft | Improvements in or relating to homing systems |
FR2657980B1 (fr) * | 1990-02-08 | 1992-05-29 | Aerospatiale | Calculateur de missile. |
US5917442A (en) * | 1998-01-22 | 1999-06-29 | Raytheon Company | Missile guidance system |
-
2001
- 2001-12-18 FR FR0116395A patent/FR2833722B1/fr not_active Expired - Fee Related
-
2002
- 2002-12-10 EP EP02805366A patent/EP1459146A1/fr not_active Withdrawn
- 2002-12-10 WO PCT/FR2002/004269 patent/WO2003054647A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO03054647A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2833722A1 (fr) | 2003-06-20 |
FR2833722B1 (fr) | 2005-06-17 |
WO2003054647A1 (fr) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1684088B1 (fr) | Coordination de contre-mesures électroniques (ECM) | |
FR2890760A1 (fr) | Systeme et procede de guidage. | |
WO2007082940A1 (fr) | Dispositif de contrôle de position(s) relative(s) par mesures de puissance, pour un engin spatial d'un groupe d'engins spatiaux en formation | |
CN111650620A (zh) | 一种基于gps导航的轨迹欺骗方法 | |
US9234963B2 (en) | Optically augmented weapon locating system and methods of use | |
EP2659283A1 (fr) | Procede de synchronisation de systemes optroniques et ensemble de systemes optroniques synchronises selon ce procede | |
WO2003054647A1 (fr) | Procede d'optimisation de l'interception de cibles mobiles, systeme d'interception et missile mettant en oeuvre un tel procede | |
EP2370832A1 (fr) | Procede et systeme de localisation d'une cible dans un systeme interrogation reponse (iff) | |
EP2652430B1 (fr) | Procédé et système de détection d'un train d'impulsions électromagnétiques, dispositif de guidage électromagnétique d'une munition vers une cible comprenant un tel système de détection | |
US20210270570A1 (en) | Directed navigation of rounds | |
WO2021194582A2 (fr) | Navigation en essaim au moyen du suivi de l'approche vers l'avant | |
EP2642319B1 (fr) | Dispositif de réception de signaux de radio-navigation à antennes multiples et asservissement de synchronisation commun | |
FR2929700A1 (fr) | Dispositif decentralise d'autodefense comprenant un pointeur portable et mobile apte a assurer en urgence la defense rapprochee d'un navire ou d'une plate-forme en mer contre une menace de surface. | |
EP0809084B1 (fr) | Dispositif de détermination de l'orientation en roulis d'un engin volant, notamment d'une munition | |
Chandrashekar et al. | China’s anti-ship ballistic missile: Game changer in the Pacific ocean | |
EP1257778B1 (fr) | Dispositif de protection d'une zone de terrain contre les menaces ennemies | |
WO2006067220A2 (fr) | Missile equipe d'un autodirecteur comportant une antenne de radar asynthese d'ouverture et procede deguidage associe | |
EP2161591A1 (fr) | Procédé et système de détection de départs de tir | |
WO2022106334A1 (fr) | Système de guidage d'une munition | |
FR2730816A1 (fr) | Procede et dispositif de reconnaissance de cible ou de position | |
EP2515066A1 (fr) | Dispositif de guidage différentiel par imagerie active laser | |
EP4030409A1 (fr) | Simulateur et procédé de simulation à précision renforcée, en particulier un simulateur de système d'arme, et système d'arme pourvu d'un tel simulateur | |
WO2022017851A1 (fr) | Procede et dispositif de prediction de l'etat d'une cible mobile | |
EP4390298A1 (fr) | Procédé et dispositif de détermination d'impact de tir | |
FR2988178A1 (fr) | Dispositif de guidage sur faisceaux electromagnetiques, objet volant et systeme de lancement associe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040719 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131204 |