EP1458415A2 - Composes amphiphiles a usage pharmaceutique ou cosmetique - Google Patents

Composes amphiphiles a usage pharmaceutique ou cosmetique

Info

Publication number
EP1458415A2
EP1458415A2 EP02805808A EP02805808A EP1458415A2 EP 1458415 A2 EP1458415 A2 EP 1458415A2 EP 02805808 A EP02805808 A EP 02805808A EP 02805808 A EP02805808 A EP 02805808A EP 1458415 A2 EP1458415 A2 EP 1458415A2
Authority
EP
European Patent Office
Prior art keywords
phase
amino acid
biologically active
active molecule
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02805808A
Other languages
German (de)
English (en)
Inventor
Nicolas Calvet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physica Sarl
Original Assignee
Physica Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physica Sarl filed Critical Physica Sarl
Publication of EP1458415A2 publication Critical patent/EP1458415A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound

Definitions

  • the present invention relates to the formation and pharmaceutical or cosmetic use of an amphiphilic compound called an "amphiphilic ion pair" (or "PIA") resulting from an ionic interaction between an acyl amino acid and an active pharmaceutical or cosmetic molecule.
  • an amphiphilic compound called an "amphiphilic ion pair" (or "PIA)
  • the pharmacological activity of an active principle does not depend solely on its chemical structure and therefore on its physico-chemical properties, but also on its ability to reach its active site, that is to say the place where it acts and this in sufficient quantity. This property is called "bioavailability”.
  • the bioavailability of an active ingredient strongly depends on the route used to administer it (enteral and parenteral route). In fact, depending on the route of administration, the active principle may encounter obstacles reducing its absorption; it can dissolve more or less in biological fluids, undergo more or less bio-transformations and ultimately be more or less absorbed. It is therefore important to choose the best route of administration for a given active ingredient.
  • the most widely used route of administration is the oral route. This choice is clearly explained by the ease of swallowing a drug and by the fact that the digestive tract represents an interesting absorption site.
  • the preferential use of the oral route as a route of administration leads to the exclusion of a good number of pharmacologically promising active molecules, for problems of bio-transformation or absorption defects. Indeed, this would lead to use high doses of active ingredients responsible for a high cost of treatment and / or increased toxicity incompatible with the marketing of the product.
  • the clinician may then have recourse to an alternative administration such as the injectable route (SC, IM, IV).
  • liquid preparations such as water in oil emulsions, that is to say systems where the hydrophilic phase is dispersed in the lipophilic phase, or multiple emulsions of the Water in Oil in Water type.
  • the complex resulting from this association is present either in the form of a precipitate in the hydrophilic phase (patent WO 0132218) or in the form dissolved in an organic solvent (patents US-A-5, 770, 559 and US-A- 5,853,740) of ethanol, octanol, DMSO, DMF, or N methyl pyrrolidone type.
  • patent WO 0132218 seeks to improve the bioavailability of active principles hydrophilic insoluble in a lipophilic phase, decreasing their solubility in the hydrophilic phase and increasing their solubility in said lipophilic phase.
  • the authors of this patent use amphiphilic counterions by forming with the hydrophilic compound a hydrophobic complex of the ion pair type.
  • the inventions relating to these patents are directed towards reducing the hydrophilic nature of the active principle.
  • These patents base their approach on the reduction of the solubility in the aqueous phase to increase the solubility in the organic or lipophilic phase.
  • This object is achieved by the formation of a hydrophobic ion pair complex.
  • This formation results from the complexation between an active principle and an amphiphilic compound, in particular sodium lauryl sulfate (SLS), sodium dodecyl sulfate (SDS) or a zwitterion.
  • acyl amino acids have been used as absorption promoters.
  • US Patent 5650386, WO 0135998 and WO 0151454 disclose the use of acyl amino acids in pharmaceutical compositions.
  • Patent US 5650386 describes a technique for encapsulating the active ingredients.
  • the acyl amino acids will form microspheres constituting hollow matrices inside which the active principle will be enclosed (or encapsulated). The active ingredient will thus be protected from various degradations.
  • Patent WO 0135998 describes acyl amino acids as absorption promoters, dissolved in biphasic lipid vesicles of the liposome type.
  • WO 0151454 describes an aqueous phase mixture between an acyl amino acid and an active ingredient.
  • the simple presence of acyl amino acids promotes absorption.
  • the object of the present invention is therefore to form complexes between a compound and an active principle, which can be soluble in the hydrophilic phase and therefore usable in aqueous solution directly or in a dispersed system of the H / L type (phase hydrophilic dispersed in a lipophilic phase).
  • the subject of the present invention relates to a compound for pharmaceutical or cosmetic use, consisting of an ion pair complex between an acyl amino acid and a biologically active molecule, used in therapeutic or cosmetic treatments , the complex being amphiphilic.
  • the interaction between the acyl amino acid and the active pharmaceutical or cosmetic molecule corresponds to the interactions found within complexes, also called coordination compounds. Such an interaction is qualified according to the literature of coordination link, coordination link or even dative link.
  • the compound resulting from this association has amphiphilic properties and is therefore called “amphiphilic ion pair" (or “PIA"), or amphiphilic ion pair complex (or “PIA” complex).
  • the invention generally applies to molecules of an organic and hydrophilic nature, the properties of which do not allow it to easily cross biological membranes and / or which are rapidly bio-transformed in one organism.
  • These amphiphilic compounds have the advantage of improving the availability of the active ingredients in the body and of retaining the 3D structure of these active ingredients. They also have the advantage of being inserted at the interfaces of dispersed systems, thus making it possible to protect said compound from bio-transformations and therefore to prolong the life of the active molecules.
  • the invention applies to biologically active molecules such as short peptides, polypeptides, proteins, hormones, antigens, nucleotides or genes, the properties of which do not allow them to easily cross the biological membranes and / or which are rapidly bio-transformed in the body.
  • biologically active molecules such as short peptides, polypeptides, proteins, hormones, antigens, nucleotides or genes, the properties of which do not allow them to easily cross the biological membranes and / or which are rapidly bio-transformed in the body.
  • a "PIA" complex is formed between one of these molecules and an acyl amino acid. The absorption of this molecule will thus be improved thanks to the amphiphilic properties of this complex.
  • the major advantage of these compounds is that the presence of the acyl amino acid gives them an amphiphilic character and not a hydrophobic character.
  • the "PIA" resulting from this association remains in solution and is preferentially localized at the interfaces of dispersed systems.
  • This surprising property distinguishes the complexes formed from an acyl amino acid from the other complexes commonly formed from ions, such as sodium lauryl sulfate (SLS) or sodium dodecyl sulfate (SDS), which have a hydrophobic character.
  • SLS sodium lauryl sulfate
  • SDS sodium dodecyl sulfate
  • these complexes are preferably used for biologically active hydrophilic molecules.
  • the latter because of their hydrophilic property, hardly pass through the biological membrane.
  • the amphiphilic nature of the complex thus improves the transmembrane passage of the active principle.
  • this amphiphilic nature also makes it possible to use this complex in solution in water or in the hydrophilic phase of a dispersed system, which is impossible with a hydrophobic complex.
  • the transmembrane passage of the active principle is improved, it is therefore still usable in the hydrophilic phase.
  • an amphiphilic complex can also be obtained which can then be dissolved in hydrophilic phase and always easily passing through biological membranes.
  • acyl amino acid means any compound resulting from an acylation between a fatty acid of natural, synthetic or modified origin and a natural, synthetic or modified amino acid, the fatty acid comprising from 4 to 40 carbon atoms and the amino acid. having at least one acid function and at least one free amino function. More particularly, one of the amino functions is located in the alpha position relative to the carboxylic acid function.
  • amino acid can be used by way of example: aspartic acid, glutamic acid, alanine, arginine, cysteine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, ornithine, taurine, threonine, tryptophan, tyrosine, serine or valine.
  • fatty acid can be used by way of example: capric acid, caprylic acid, acid lauric, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, essential fatty acids such as eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA).
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • amphiphilic compound results from the interaction between, at least one of the reactive functions of the active principle and at least one reactive function carried by the acyl amino acid, generally an acid or amino function.
  • the reactive function of the active ingredient generally has a basic or an acidic character. It is an interaction as defined previously in the present application, that is to say of the type that is found within the complexes.
  • biologically active molecules also commonly called active ingredients, is meant molecules having therapeutic or cosmetic properties.
  • biologically active molecules can be organic molecules, short peptides consisting of 2 to 20 amino acids, nucleotides, genes, polypeptides, proteins, hormones or antigens.
  • amoxicillin By way of example, mention may be made of amoxicillin, losartan, pravastatin, diclofenac, lidocaine, vancomicin, spiramicin, neomicin, colistin, cimetidine, ranitidine, insulin, vasopressin, calcitonin, angiotensin, secretin, heparin, growth hormone, erythropoietin, parathyroid hormone or filgastrin.
  • said amphiphilic compounds can be inserted into dispersed systems.
  • dispersed systems is meant systems composed of two immiscible phases, one generally the other hydrophilic lipophilic and one or the other of these two phases constitutes the dispersing phase or the dispersed phase.
  • miscibility is meant the property for two compounds of being able to mix, one with the other, forming only one continuous phase.
  • Another object of the invention is therefore a dispersed system comprising a complex according to the present invention.
  • the internal dispersed phase (hydrophilic or lipophilic) and the dispersing phase (lipophilic or hydrophilic) contain one or more emulsifiers and / or viscosants.
  • the ion pair complex is obtained by mixing two phases named A and B which are prepared separately.
  • Phase A contains at least one acyl amino acid in the dissolved or dispersed state and forms a miscible or dispersible mixture in phase B.
  • Phase B contains at least one active principle in the dissolved or dispersed state and forms a miscible or dispersible in phase A.
  • phase A During the incorporation of phase A into phase B, or vice versa, an interaction is formed between the acyl amino acid and the active principle so that there is formation of a "pair of amphiphilic ions".
  • phase A miscible in phase B, there is obtained after mixing, a single and single phase comprising the amphiphilic ion pair complex solubilized in this single phase.
  • phase A is dispersible in phase B, after mixing, a dispersed system is obtained in which the "PIA" complex is present in dissolved form inside the internal phase and preferably is inserted at the interfaces of the system scattered.
  • At least the acyl amino acid or the biologically active molecule is in native form. That is to say that either the acyl amino acid and the biologically active molecule are both under native form, one of which is in native form and the other in the state of salt.
  • Said amphiphilic compound can also be isolated for use in various therapeutic compositions (tablets, capsules).
  • the examples given below are in no way limiting.
  • the first three examples relate to methods for obtaining an amphiphilic complex according to the present invention.
  • the fourth example is a permeation study of a compound according to the present invention.
  • Example 1 Formation of an ion pair between a non-salified hydrophilic active principle (calcitonin) and the non-salified lipoamino acid (oleyl methyl glycine).
  • calcitonin a non-salified hydrophilic active principle
  • oleyl methyl glycine a non-salified lipoamino acid
  • Two aqueous solutions are used. The first contains calcitonin. Since calcitonin is hydrophilic, the solution is clear. The second solution contains oleyl methyl glycine dispersed in the aqueous phase, the oleyl methyl glycine being sparingly soluble in water. This second solution has a milky white appearance.
  • Example 2 Formation of an ion pair between a non-salified lipophilic active principle (lidocaine) and the non-salified acyl amino acid (oleyl glycine).
  • Two aqueous solutions are used. The first contains lidocaine dispersed in the aqueous solution.
  • the second solution contains oleyl glycine dispersed in the aqueous phase, the oleyl glycine being sparingly soluble in water. This second solution has a milky white appearance.
  • Example 3 Formation of an ion pair between a salified active principle (polymixin E sulfate) and the non-salified acyl amino acid (linoleyl glycine).
  • solution A comprising linoleyl glycine dispersed in solution A. Since linoleyl glycine is sparingly soluble in water, solution A has a milky white appearance.
  • Solution A is added to solution B, the solution obtained has only one clear phase.
  • the polymixin therefore resolubilized in the form of an amphiphilic complex, linoleyl glycine from polymixin E.
  • the active principle being salified with a negative ion, the sulphate ion, the precipitation of the active principle in its non-salified form is obtained using a sodium hydroxide solution.
  • precipitation of the active principle in its non-salified form is obtained using a hydrochloric acid solution.
  • An in vitro diffusion study is carried out in order to test the performance of passage of polymixin E through a synthetic membrane.
  • This nylon-type membrane is impregnated with lipid substances, in order to simulate the diffusion through the lipid membrane. intestinal.
  • This study compares the performance of polymixin E in the form of an ion pair with an acyl amino acid (oleyl methyl glycine) and in a form salified by sulphate.
  • the in vitro permeation study was carried out using a Frantz cell. These cells have a donor compartment, in which is deposited a formulation containing polymixin E in the form of an ion pair or a solution of Polymixin E sulfate, and a receptor compartment containing demineralized water.
  • the measurements are carried out in 3 cells at the same time, for each of the forms of polymixin E (polymixin E sulfate or oleyl methyl glycine of polymixin E).
  • the two compartments are separated by the synthetic membrane.
  • the measurement of the quantity of polymixin E which diffuses through the membrane is carried out by UV after: 1 hour, 2.5 hours, 4 hours, 6 hours and finally 7 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L’invention concerne des composés amphiphiles, à usage pharmaceutique ou cosmétique, constitués d’un complexe de paire d’ions entre un acyl aminoacide et une molécule biologiquement active. Lesdits composés formés permettent d’améliorer les propriétés des molécules pharmaceutiques ou cosmétiques en particulier des petites molécules organiques, des peptides et des protéines, des nucléotides ou des gènes.

Description

Composés amphiphiles à usage pharmaceutique ou cosmétique
Domaine technique
La présente invention concerne la formation et l'utilisation pharmaceutique ou cosmétique d'un composé amphiphile appelé "paire d'ions amphiphile" (ou "PIA") résultant d'une interaction ionique entre un acyl aminoacide et une molécule active pharmaceutique ou cosmétique.
Etat de la technique antérieure
L'activité pharmacologique d'un principe actif ne dépend pas uniquement de sa structure chimique et donc de ses propriétés physico-chimiques, mais également de sa capacité à rejoindre son site actif, c'est à dire l'endroit où il agit et ceci en quantité suffisamment importante. Cette propriété est appelée "biodisponibilité" .
La biodisponibilité d'un principe actif dépend fortement de la voie utilisée pour l'administrer (voie entêrale et parentérale) . En effet, selon la voie d'administration, le principe actif peut rencontrer des obstacles réduisant son absorption; il peut se dissoudre plus ou moins dans les liquides biologiques, subir plus ou moins de bio-transformations et finalement être plus ou moins absorbé. Aussi, est-il important de choisir la meilleure voie d'administration pour un principe actif donné .
La voie d'administration la plus utilisée est la voie orale. Ce choix s'explique de façon évidente par la facilité à avaler un médicament et par le fait que le tractus digestif représente un site d'absorption intéressant.
Toutefois l'utilisation préférentielle de la voie orale comme voie d'administration, conduit à écarter un bon nombre de molécules actives prometteuses sur le plan pharmacologique, pour des problèmes de bio-transformation ou de défauts d'absorption. En effet, cela conduirait à utiliser des doses élevées d'actifs responsables d'un coût élevé de traitement et/ou d'une toxicité accrue incompatibles avec la mise sur le marché du produit. Le clinicien peut avoir alors recours à une administration alternative comme la voie injectable ( SC, IM, IV ) .
L'homme de l'art a donc recherché des moyens techniques pour améliorer la protection de la molécule active, c'est à dire augmenter la quantité de composés susceptible d'arriver sur le site d'absorption. Il a aussi cherché à modifier la résorption des molécules actives en agissant soit sur sa solubilité dans le cas ou la dissolution est le facteur freinant l'absorption de la molécule, soit en améliorant le passage transmembranaire intestinal .
En ce qui concerne l'amélioration de l'absorption par la diminution des phénomènes de bio-transformation, l'homme du métier a développé des préparations principalement liquides comme les émulsions eau dans huile, c'est à dire des systèmes où la phase hydrophile est dispersée dans la phase lipophile, ou des émulsions multiples de type Eau dans Huile dans Eau.
Le brevet américain US-A-5, 897, 876 présente des systèmes émulsionnés de type H/L c'est à dire constitués d'une phase hydrophile dispersée dans une phase lipophile. Ces systèmes créent un environnement lipophile autour de la molécule active permettant ainsi d'augmenter la quantité de molécules résorbées. En effet, ils permettent une protection des principes actifs contre l'action déstabilisante des enzymes protéolytiques et des fluides gastro-intestinaux. Cette protection augmenterait ainsi la quantité de principe actif arrivant sur son site d'absorption.
Toutefois, la proportion réduite de la phase dispersée
(inférieure à 10%) de ces systèmes limite la quantité de principe actif susceptible d'être solubilisée. De plus, la présence d'éthanol dans la partie hydrophile peut conduire à une déstabilisation du système et entraîner des effets irritants au niveau cellulaire. Une approche plus récente consiste en l'amélioration de l'absorption par l'augmentation du caractère lipophile des molécules actives par la formation de complexes ioniques. Le brevet US-A-5, 853 , 740 met en avant l'intérêt de systèmes utilisant comme agent de complexation du sodium dodécylsufonate. Ces moyens sont utilisés pour améliorer l'absorption de molécules actives faiblement résorbées (c'est à dire des molécules faiblement absorbées au niveau de la membrane intestinale) . Ces complexes sont constitués d'une paire d'ions entre les molécules actives de nature acide ou basique et un composé amphiphile à fonction ionique libre basique ou acide. Le complexe résultant de cette association se présente, soit sous la forme d'un précipité dans la phase hydrophile (brevet WO 0132218) soit sous forme dissoute dans un solvant organique (brevets US-A-5, 770, 559 et US-A- 5,853,740) de type éthanol, octanol, DMSO, DMF, ou N méthyl pyrrolidone.
L'un des avantages de ces complexes est qu'ils permettent la conservation de la structure tridimensionnelle de la substance active. Certaines molécules peuvent en effet perdre leur activité biologique en cas de dénaturation de cette structure. Ces différents brevets indiquent que l'utilisation de tels complexes peut améliorer la biodisponibilité des principes actifs.
Les auteurs du brevet US-A-5, 770, 559 utilisent une méthode de préparation d'une solution organique homogène d'un composé actif dans laquelle ledit composé actif n'est pas normalement soluble. Cette solubilisation est obtenue en formant un complexe de paire d'ions hydrophobe entre un composé amphiphile et ladite molécule active. Le complexe ainsi obtenu peut être transformé en particules solides par précipitation dans un fluide supercritique, pour des administrations par inhalation, notamment en utilisant la muqueuse nasale .
Comme le brevet précédent, le brevet WO 0132218 cherche à améliorer la biodisponibilité de principes actifs hydrophiles insolubles dans une phase lipophile, en diminuant leur solubilité dans la phase hydrophile et en augmentant leur solubilité dans ladite phase lipophile. Pour y arriver, les auteurs de ce brevet utilisent des contre- ions amphiphiles en formant avec le composé hydrophile un complexe hydrophobe de type paire d'ions.
Les inventions relatives à ces brevets s'orientent vers la diminution du caractère hydrophile du principe actif. Ces brevets basent leur approche sur la diminution de la solubilité en phase aqueuse pour augmenter la solubilité en phase organique ou lipophile. Ce but est atteint par la formation d'un complexe de paire d'ions hydrophobe. Cette formation résulte de la complexation entre un principe actif et un composé amphiphile, notamment du lauryl sulfate de sodium (SLS) , du sodium dodécyl sulfate (SDS) ou un zwitterion.
L'enseignement de ces brevets est donc limité à la formation de complexes de paire d'ions hydrophobes. Ces complexes sont donc essentiellement solubilisés dans des solvants organiques. Ces complexes hydrophobes peuvent donc difficilement être utilisés en phase hydrophile ou en phase dispersée de type phase hydrophile dans phase lipophile, notamment eau dans huile.
Il est connu de l'homme de l'art depuis les années 50, des moyens d'obtenir des sels inorganiques (sodium ou potassium notamment) d'acyl aminoacide. En raison de leurs propriétés amphiphiles, ces composés ont été utilisés depuis ces années-là dans le domaine des détergents. Les acyl aminoacides sont également utilisés dans le domaine de la cosmétique en tant que biovecteurs d'acides aminés.
Plus récemment les acyl aminoacides ont été utilisés en tant que promoteurs d'absorption. Le brevet US 5650386, les brevets WO 0135998 et WO 0151454 divulguent l'utilisation des acyl aminoacides au sein de compositions pharmaceutiques.
Le brevet US 5650386 décrit une technique d' encapsulation des principes actifs. Lors de la préparation de la composition, les acyl aminoacides vont former des microsphères constituant des matrices creuses à l'intérieur desquelles le principe actif sera enfermé (ou encapsulé) . Le principe actif sera ainsi protégé des diverses dégradations. Le brevet WO 0135998 décrit les acyl aminoacides comme agents promoteurs d'absorption, dissous dans des vésicules lipidiques biphasiques de type liposomes.
Le brevet WO 0151454 décrit quant à lui un mélange en phase aqueuse entre un acyl aminoacide et un principe actif. Dans ce brevet la simple présence d'acyl aminoacides favorise l'absorption.
Tous les systèmes décrits précédemment n'apportent que des solutions incomplètes dans le cas de molécules hydrophiles ionisables et faiblement perméables. De plus, aucun enseignement tiré de l'état de la technique ne pouvait inciter à employer ces acyl aminoacides pour former des complexes de paire d'ions solubles en phase hydrophile.
Exposé de 1 ' invention Le but de la présente invention est donc de former des complexes entre un composé et un principe actif, pouvant être solubles en phase hydrophile et donc utilisables en solution aqueuse directement ou dans un système dispersé de type H/L (phase hydrophile dispersée dans une phase lipophile) .
De façon plus précise, l'objet de la présente invention se rapporte à un composé à usage pharmaceutique ou cosmétique, constitué d'un complexe de paire d'ions entre un acyl aminoacide et une molécule biologiquement active, utilisée dans les traitements thérapeutiques ou cosmétiques, le complexe étant amphiphile.
L'interaction entre l'acyl aminoacide et la molécule active pharmaceutique ou cosmétique, correspond aux interactions que l'on trouve au sein des complexes, encore appelés composés de coordination. Une telle interaction est qualifiée selon la littérature de liaison de coordination, de liaison de coordinence ou encore de liaison dative. Le composé résultant de cette association présente des propriétés amphiphiles et est donc appelé "paire d'ions amphiphile" (ou "PIA"), ou encore complexe de paire d'ions amphiphile (ou complexe "PIA"). L'invention s'applique généralement à des molécules de nature organique et hydrophile, dont les propriétés ne permettent pas de traverser aisément les membranes biologiques et/ou qui sont rapidement bio-transformées dans 1 ' organisme . Ces composés amphiphiles présentent l'avantage d'améliorer la mise à disposition des principes actifs dans l'organisme et de conserver la structure 3D de ces principes actifs. Ils présentent en outre l'avantage de s'insérer aux interfaces des systèmes dispersés, permettant ainsi de protéger ledit composé des bio-transformations et donc de prolonger la durée de vie des molécules actives.
Description détaillée de l'invention
De façon plus précise, l'invention s'applique à des molécules biologiquement actives telles que des peptides courts, des polypeptides, des protéines, des hormones, des antigènes, des nucleotides ou des gènes, dont les propriétés ne permettent pas de traverser aisément les membranes biologiques et/ou qui sont rapidement bio-transformées dans l'organisme. Selon l'invention, on constitue un complexe "PIA" entre une de ces molécules et un acyl aminoacide. L'absorption de cette molécule sera ainsi améliorée grâce au propriétés amphiphiles de ce complexe.
L'intérêt majeur de ces composés est que la présence de l'acyl aminoacide leur confère un caractère amphiphile et non un caractère hydrophobe. La "PIA" résultant de cette association reste en solution et se localise préférentiellement aux interfaces des systèmes dispersés. Cette propriété surprenante distingue les complexes constitués à partir d'un acyl aminoacide des autres complexes couramment constitués à partir d'ions, tels que le lauryl sulfate de sodium (SLS) ou le sodium dodécyl sulfate (SDS) , et qui présentent un caractère hydrophobe.
Ainsi, ces complexes sont préférentiellement utilisés pour des molécules biologiquement actives hydrophiles. En effet ces derniers du fait de leur propriété hydrophile passe difficilement à travers la membrane biologique. Le caractère amphiphile du complexe améliore ainsi le passage transmembranaire du principe actif. De plus, ce caractère amphiphile permet également d'utiliser ce complexe en solution dans l'eau ou dans la phase hydrophile d'un système dispersé, ce qui est impossible avec un complexe hydrophobe. Ainsi, bien que le passage transmembranaire du principe actif soit amélioré, il est donc toujours utilisable en phase hydrophile. II est à noter qu'en constituant un complexe entre un acyl aminoacide à l'état natif, c'est à dire non salifié, et un principe actif non soluble dans l'eau, on obtient également un complexe amphiphile pouvant alors être solubilisé en phase hydrophile et passant toujours facilement au travers des membranes biologiques .
Par acyl aminoacide, on entend tout composé résultant d'une acylation entre un acide gras d'origine naturelle, synthétique ou modifiée et un aminoacide naturel, synthétique ou modifié, l'acide gras comprenant de 4 à 40 atomes de carbone et l' aminoacide présentant au moins une fonction acide et au moins une fonction aminé libre. Plus particulièrement, l'une des fonctions aminé est située en position alpha par rapport à la fonction acide carboxylique.
Comme aminoacide peuvent être utilisés à titre d'exemple : l'acide aspartique, l'acide glutamique, l'alanine, l'arginine, la cystéine, la glycine, l'histidine, 1 ' isoleucine, la leucine, la lysine, la méthionine, la phénylalanine, la proline, l'ornithine, la taurine, la thréonine, le tryptophane, la tyrosine, la serine ou la valine.
Comme acide gras peuvent être utilisés a titre d'exemple : l'acide caprique, l'acide caprylique, l'acide laurique, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide oléique, l'acide linoléique, l'acide linolénique, l'acide arachidique, des acides gras essentiels comme l'acide eicosapentaenoïque (EPA) , ou l'acide docosahexaenoïque (DHA) .
Divers acyl aminoacides sont ainsi obtenus, tel que 1 'oléyl glycine, le capryloyl glycine, l'oléyl sarcosine, le lauroyl proline, l'oleyl lysine, le lauroyl lysine, le palmitoyl phénylalanine ou le capryloyl serine . Selon un mode préférentiel, le composé amphiphile résulte de l'interaction entre, au moins une des fonctions réactives du principe actif et au moins une fonction réactive portée par l'acyl aminoacide, généralement une fonction acide ou aminé. La fonction réactive du principe actif possède généralement un caractère basique ou un caractère acide. Il s'agit d'une interaction telle que définie précédemment dans la présente demande, c'est à dire du type de celles que l'on trouve au sein des complexes.
Par molécules biologiquement actives, également couramment appelées principes actifs, on entend des molécules ayant des propriétés thérapeutiques ou cosmétiques. Ces molécules biologiquement actives, peuvent être des molécules organiques, des peptides courts constitués par 2 à 20 acides aminés, des nucleotides, des gènes, des polypeptides, des protéines, des hormones ou des antigènes .
A titre d'exemple on pourra citer l' amoxicilline, le losartan, la pravastatine, le diclofenac, la lidocaïne, la vancomicine, la spiramicine, la néomicine, la colistine, la cimétidine, la ranitidine, l'insuline, la vasopressine, la calcitonine, 1 'angiotensine, la secretine, l'héparine, l'hormone de croissance, 1 'erythropoietine, l'hormone parathyroide ou la filgastrine.
Selon un mode de préparation avantageux, lesdits composés amphiphiles peuvent s ' insérer dans des systèmes dispersés . On entend par systèmes dispersés des systèmes composés de deux phases non miscibles, l'une généralement lipophile l'autre hydrophile et dont l'une ou l'autre de ces deux phases constitue la phase dispersante ou la phase dispersée. Par miscibilité, on entend la propriété pour deux composés de pouvoir se mélanger, l'un avec l'autre, en ne formant qu'une seule phase continue.
Ainsi un autre objet de l'invention, est un système dispersé comprenant un complexe selon la présente invention.
Selon un mode préférentiel de réalisation, la phase dispersée interne (hydrophile ou lipophile) et la phase dispersante (lipophile ou hydrophile) contiennent un ou plusieurs agents émulsionnants et/ou viscosants.
Selon un mode de réalisation particulièrement avantageux de l'invention, le complexe de paire d'ions est obtenu en mélangeant deux phases nommées A et B qui sont préparées séparément . La phase A contient au moins un acyl aminoacide à l'état dissous ou dispersé et forme un mélange miscible ou dispersible dans la phase B. La phase B contient au moins un principe actif à l'état dissous ou dispersé et forme un mélange miscible ou dispersible dans la phase A.
Lors de l'incorporation de la phase A dans la phase B, ou réciproquement, il se forme une interaction entre l'acyl aminoacide et le principe actif de sorte qu'il y ait formation d'une "paire d'ions amphiphile". Lorsque la phase A est miscible dans la phase B, on obtient après le mélange, une seule et unique phase comprenant le complexe de paire d'ions amphiphile solubilisé dans cette unique phase. Lorsque la phase A est dispersible dans la phase B, on obtient après le mélange, un système dispersé dans lequel le complexe "PIA" se présente sous forme solubilisée à l'intérieur de la phase interne et préférentiellement, s'insère aux interfaces du système dispersé.
Selon un mode préférentiel de préparation, au moins l'acyl aminoacide ou la molécule biologiquement active est sous forme native. C'est à dire que soit l'acyl aminoacide et la molécule biologiquement active sont tous deux sous forme native, soit l'un d'eux est sous forme native et l'autre à l'état de sel.
On peut également isoler ledit composé amphiphile pour l'utiliser dans diverses compositions thérapeutiques (comprimés, gélules) .
Les exemples figurant ci-dessous ne sont nullement limitatifs. Les trois premiers exemples concernent des méthodes d'obtention d'un complexe amphiphile selon la présente invention. Le quatrième exemple est une étude de perméation d'un composé selon la présente invention.
Exemple 1 : Formation d'une paire d'ion entre un principe actif hydrophile non salifié (calcitonine) et le lipoaminoacide non salifié (l'oléyl méthyl glycine). Deux solutions aqueuses sont utilisées. La première contient de la calcitonine. La calcitonine étant hydrophile, la solution est limpide. La deuxième solution contient de l'oléyl méthyl glycine dispersée dans la phase aqueuse, l'oléyl méthyl glycine étant faiblement soluble dans l'eau. Cette deuxième solution a un aspect blanc laiteux.
Après mélange de la première et de la deuxième solution, on obtient une solution limpide présentant une seule et unique phase. Le complexe obtenu, l'oléyl méthyl glycine de calcitonine, est donc amphiphile.
Exemple 2 : Formation d'une paire d'ion entre un principe actif lipophile non salifié (lidocaïne) et l'acyl aminoacide non salifié (l'oléyl glycine) . Deux solutions aqueuses sont utilisées. La première contient de la lidocaïne dispersée dans la solution aqueuse. La deuxième solution contient de l'oléyl glycine dispersée dans la phase aqueuse, l'oléyl glycine étant faiblement soluble dans l'eau. Cette deuxième solution a un aspect blanc laiteux.
Après mélange de la première et de la deuxième solution, toutes deux non limpides, on obtient une solution limpide présentant une seule et unique phase. Le complexe obtenu, l'oléyl glycine de lidocaïne, est donc amphiphile.
Exemple 3 : Formation d'une paire d'ion entre un principe actif salifié (polymixine E sulfate) et l'acyl aminoacide non salifié (linoléyl glycine) .
A une solution de polymixine E de sulfate, on ajoute une solution de NaOH en quantité nécessaire pour faire précipiter la totalité de la polymixine E par déplacement du sel sulfate. La polymixine E, également appelée colistine, retrouve ainsi sa structure de base, non salifiée. La solution résultante, solution B, est donc une phase aqueuse avec un précipité de polymixine E .
On utilise ensuite une solution aqueuse, solution A, comprenant de la linoléyl glycine dispersée dans la solution A. La linoléyl glycine étant faiblement soluble dans l'eau, la solution A a un aspect blanc laiteux.
La solution A est ajoutée à la solution B, la solution obtenue ne présente qu'une seule phase limpide. La polymixine s'est donc resolubilisée sous la forme d'un complexe amphiphile le linoléyl glycine de polymixine E.
Il est à noter que lors de la première étape, le principe actif étant salifié avec un ion négatif, l'ion sulfate, on obtient la précipitation du principe actif sous sa forme non salifiée en utilisant une solution de soude. Dans le cas, où le principe actif est salifié avec un ion positif, on obtient la précipitation du principe actif sous sa forme non salifiée en utilisant une solution d'acide chlorhydrique .
Exemple 4 : Etude de diffusion in vitro au travers d'une membrane synthétique
Une étude de diffusion in vitro est effectuée dans le but de tester les performances de passage de la polymixine E au travers d'une membrane synthétique. Cette membrane, de type nylon, est imprégnée de substances lipidiques, afin de simuler la diffusion à travers la membrane lipidique intestinale. Cette étude compare les performances de la polymixine E sous forme de paire d'ions avec un acyl aminoacide ( oléyl méthyl glycine ) et sous une forme salifiée par du sulfate. L'étude de perméation in vitro a été réalisée à partir de cellule de Frantz. Ces cellules présentent un compartiment donneur, dans lequel est déposée une formulation renfermant la polymixine E sous forme de paire d'ions ou une solution de Polymixine E sulfate, et un compartiment récepteur contenant de l'eau déminéralisée. Les mesures sont effectuées dans 3 cellules en même temps, pour chacune des formes de la polymixine E (polymixine E sulfate ou oléyl méthyl glycine de polymixine E) . Les deux compartiments sont séparés par la membrane synthétique. La mesure de la quantité de polymixine E qui diffuse au travers de la membrane est effectuée par UV au bout de : 1 heure, 2.5 heures, 4 heures, 6 heures et enfin 7 heures.
Le tableau ci-dessous présente une quantité de polymixine E qui a diffusé au cours du temps; les valeurs présentées sont des valeurs cumulées .
Ces résultats mettent en évidence que la paire d'ions Polymixine E - oléyl méthyl glycine diffuse 2 fois plus rapidement au travers d'une membrane synthétique lipidique, que sous sa forme salifiée par du sulfate.

Claims

REVENDICATIONS
1. Composé à usage pharmaceutique ou cosmétique constitué d'un complexe de paire d'ions entre un acyl aminoacide et une molécule biologiquement active, utilisée dans les traitements thérapeutiques ou cosmétiques, ledit complexe étant amphiphile.
2. Composé selon la revendication 1, dans lequel ladite molécule biologiquement active est un corps de nature hydrophile, non amphiphile, et préférentiellement une molécule organique, un peptide court, une protéine, un antigène, un nucléotide ou une hormone.
3. Composé selon la revendication 1, dans lequel ladite molécule biologiquement active est non soluble dans l'eau.
4. Composé selon l'une quelconque des revendications précédentes, dans lequel ledit acyl aminoacide résulte de la condensation entre un acide gras d'origine naturelle, synthétique ou modifiée et un aminoacide naturel, synthétique ou modifié.
5. Composé selon la revendication 4 , dans lequel ledit aminoacide comporte au moins une fonction aminé en position alpha par rapport à la fonction acide carboxylique.
6. Composé selon l'une quelconque des revendications précédentes, constitué d'un complexe de paire d'ions entre au moins une fonction réactive de l'acyl aminoacide et au moins une fonction réactive de ladite molécule biologiquement active, la fonction réactive de ladite molécule biologiquement active étant préférentiellement une fonction à caractère acide ou à caractère aminée .
7. Système dispersé dans lequel la phase dispersée interne est hydrophile et comprend au moins un composé amphiphile selon l'une des revendications de 1 à 6 et dans lequel la phase dispersante est lipophile.
8. Système dispersé selon la revendication 7, dans lequel la phase dispersée interne et la phase dispersante contiennent un ou plusieurs agents émulsionnants et/ou viscosants.
9. Procédé d'obtention d'un composé selon l'une des revendications 1 à 6, comprenant les étapes suivantes : - préparer séparément une première et une deuxième phase, les première et deuxième phases étant miscibles ou dispersibles l'une dans l'autre, ladite première phase contenant au moins un acyl aminoacide à l'état dissous ou dispersé et ladite deuxième phase contenant au moins une molécule biologiquement active à l'état dissous ou dispersé, et - mélanger la première phase et la deuxième phase .
10. Procédé selon la revendication 9, dans lequel ledit acyl aminoacide et ladite molécule biologiquement active sont soit tous deux sous forme native, soit pour l'un d'eux sous forme native et pour l'autre sous forme de sel.
EP02805808A 2001-12-27 2002-12-24 Composes amphiphiles a usage pharmaceutique ou cosmetique Withdrawn EP1458415A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116936A FR2834215B1 (fr) 2001-12-27 2001-12-27 Composes amphiphiles a usage pharmaceutique ou cosmetique
FR0116936 2001-12-27
PCT/FR2002/004561 WO2003055528A2 (fr) 2001-12-27 2002-12-24 Composes amphiphiles a usage pharmaceutique ou cosmetique

Publications (1)

Publication Number Publication Date
EP1458415A2 true EP1458415A2 (fr) 2004-09-22

Family

ID=8871028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805808A Withdrawn EP1458415A2 (fr) 2001-12-27 2002-12-24 Composes amphiphiles a usage pharmaceutique ou cosmetique

Country Status (6)

Country Link
US (1) US20050069513A1 (fr)
EP (1) EP1458415A2 (fr)
AU (1) AU2002364684A1 (fr)
CA (1) CA2472124A1 (fr)
FR (1) FR2834215B1 (fr)
WO (1) WO2003055528A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959936B1 (fr) * 2010-05-14 2012-08-03 Physica Pharma Composition nasales a visee systemique a base de cocoyl proline ou d 'au moins un de ses constituants
FR2971941B1 (fr) 2011-02-24 2013-08-02 Physica Pharma Compositions pharmaceutiques administrables par voie cutanee et destinees au traitement local de la dermatite atopique canine
FR2971943B1 (fr) * 2011-02-24 2013-08-02 Physica Pharma Compositions pharmaceutiques a action locale administrables par application cutanee

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2128862A1 (fr) * 1971-03-10 1972-10-20 Degussa
FR2289179A1 (fr) * 1974-10-28 1976-05-28 Morelle Jean Sels metalliques de lipoaminoacides
EP0552405A1 (fr) * 1992-01-24 1993-07-28 LINTEC Corporation Stimulateur d'absorption percutanée, pansement et méthode pour la stimulation de l'absortion percutanée

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US442090A (en) * 1890-12-02 Edwin t
US4837026A (en) * 1985-10-03 1989-06-06 Rajakhyaksha Vithal J Transdermal and systemic preparation and method
US5853755A (en) * 1993-07-28 1998-12-29 Pharmaderm Laboratories Ltd. Biphasic multilamellar lipid vesicles
ES2270426T3 (es) * 1994-03-18 2007-04-01 Supernus Pharmaceuticals, Inc. Sistema de suministros de farmacos emulsionados.
EP1265638A1 (fr) * 1999-11-12 2002-12-18 Pharmaderm Laboratories Ltd. Compositions pour administration transdermique et transmuqueuse d'agents therapeutiques
FR2828102B1 (fr) * 2001-03-28 2004-07-09 Ifc Sa Utilisation des lipoaminoacides dans une composition pharmaceutique comme promoteur et systeme disperse a usage pharmaceutique contenant de tels composes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2128862A1 (fr) * 1971-03-10 1972-10-20 Degussa
FR2289179A1 (fr) * 1974-10-28 1976-05-28 Morelle Jean Sels metalliques de lipoaminoacides
EP0552405A1 (fr) * 1992-01-24 1993-07-28 LINTEC Corporation Stimulateur d'absorption percutanée, pansement et méthode pour la stimulation de l'absortion percutanée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONG J.T.H. ET AL.: "Drug-excipient interactions resulting from powder mixing. VI. Role of various surfactants", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 96, 1993, pages 231 - 242, XP023725599 *

Also Published As

Publication number Publication date
FR2834215A1 (fr) 2003-07-04
FR2834215B1 (fr) 2004-07-16
AU2002364684A1 (en) 2003-07-15
WO2003055528A3 (fr) 2004-02-26
WO2003055528A2 (fr) 2003-07-10
CA2472124A1 (fr) 2003-07-10
US20050069513A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
Sarciaux et al. Using microemulsion formulations for oral drug delivery of therapeutic peptides
Sintov et al. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies
WO1996033697A1 (fr) Formulation auto-emulsionnable formant une emulsion huile dans l'eau
EP1372730A1 (fr) Utilisation de lipoaminoacides comme promoteurs d'absorption dans une composition pharmaceutique
EP0004223A1 (fr) Procédé de fabrication de capsules lipidiques renfermant un matériau biologiquement actif, produits obtenus par ce procédé ainsi que leur utilisation
CA2748713C (fr) Composition comprenant un actif de faible solubilite aqueuse
Wei et al. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin
WO2011141685A2 (fr) Compositions nasales a visee systemique a base de cocoyl proline ou d'au moins un de ses constituants
CA2682250A1 (fr) Complexes d'ibuprofene, de cyclodextrines et d'agents ternaires, et leurs utilisations en pharmaceutique
EP0491921B1 (fr) Procede de preparation d'une lipoproteine modifiee par incorporation d'une substance active lipophile
EP1458415A2 (fr) Composes amphiphiles a usage pharmaceutique ou cosmetique
EP1244427A2 (fr) Compositions pharmaceutiques destinees a une administration par voie orale
EP0726760B1 (fr) Formulation auto-emulsionnable formant une huile dans eau
EP2482853B1 (fr) Transport cooperatif de principes actifs basiques par des molecules amphiphiles acides
FR2787029A1 (fr) Utilisation dans une composition pharmaceutique pour l'administration par voie nasale de vitamine b12 pour la delivrance d'agents actifs au systeme nerveux central
US20240165028A1 (en) Chitosomes or chitosan-coated liposomes, use thereof to obtain cosmetic or pharmaceutical compositions and preparation method thereof
Nieto-Suárez et al. Behavior of insulin–sphingomyelin mixed Langmuir monolayers spread at the air–water interface
OA10033A (en) Solution hypertonique de cisplatine
WO1999029295A1 (fr) Utilisation dans une composition pharmaceutique pour l'administration par voie nasale de particules hydrophiles pour la delivrance d'agents actifs au systeme nerveux central
FR3124953A1 (fr) Forme galénique à base de pulpe de baobab, procédés de préparation et utilisations
FR2828101A1 (fr) Utilisation des lipoaminoacides dans une composition pharmaceutique comme promoteurs d'absorption et systeme disperse a usage pharmaceutique contenant de tels composes
CA3204844A1 (fr) Compositions liposomales orales
WO2010067035A1 (fr) Procede de fabrication d'une formulation et utilisation pour la delivrance de medicaments polaires
Jaber First Pass Metabolism of Oral Insulin in Normal and Streptozotocin-Intoxicated Animals
Mathieu Liposomes-experiment of magnetic resonance imaging application

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040621

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20070712

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090701