EP1452701B1 - Method and device of oil temperature evaluation of a combustion engine - Google Patents

Method and device of oil temperature evaluation of a combustion engine Download PDF

Info

Publication number
EP1452701B1
EP1452701B1 EP04300088A EP04300088A EP1452701B1 EP 1452701 B1 EP1452701 B1 EP 1452701B1 EP 04300088 A EP04300088 A EP 04300088A EP 04300088 A EP04300088 A EP 04300088A EP 1452701 B1 EP1452701 B1 EP 1452701B1
Authority
EP
European Patent Office
Prior art keywords
temperature
engine
predicted
coolant
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04300088A
Other languages
German (de)
French (fr)
Other versions
EP1452701A1 (en
Inventor
Jean-Baptiste Bonnet
Emmanuel Sedda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1452701A1 publication Critical patent/EP1452701A1/en
Application granted granted Critical
Publication of EP1452701B1 publication Critical patent/EP1452701B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant

Definitions

  • the invention relates to a method for evaluating the temperature of the oil of an internal combustion engine and a system for carrying out this method. It is applicable in particular to automobile engines.
  • Knowing the oil temperature of an engine is often used to control a gasoline or diesel engine. This information is sometimes indicated on the dashboard of the vehicle. It comes most often from an oil temperature sensor directly placed in the engine. This then requires to provide a sensor that is generally in contact with the engine oil, electronic circuits that translate this information into electrical signals and a link for transmitting these signals to the display device on the dashboard of the vehicle.
  • the present invention proposes to estimate the engine oil temperature of a vehicle from information available in the engine control devices without having to use an engine oil temperature sensor.
  • the invention makes it possible to avoid the use of a sensor for the temperature of the engine oil and the associated electronic circuits (see for example DE-A-19 961 118 , US-A-5,633,796 , US Patent 4847768 , US Patent 6449538 , US-639337 ).
  • steps (e) and (d) can be performed in a single step.
  • the prediction calculation then incorporates a correction taking into account the error calculated on the temperature of the water.
  • the error value of the predicted temperature of the oil to be corrected is substantially proportional to the error between the measured temperature of the coolant and the predicted temperature of the coolant.
  • the invention also relates to a system for estimating the temperature of the oil of a combustion engine (M) implementing this method.
  • This system comprises a processing system implementing a first algorithm for predicting the temperature of the cooling fluid as a function of operating parameters of the engine and providing a predicted temperature of the cooling fluid.
  • An error calculation circuit calculates the error between a measured temperature of the cooling fluid and the temperature thus predicted.
  • the processing system implements a second algorithm for predicting the temperature of the engine oil as a function of engine operating parameters and provides a predicted oil temperature.
  • a correction circuit corrects the predicted oil temperature using the error calculated by the error calculation circuit and provides an estimated oil temperature.
  • the system according to the invention makes use of non-linear functions (f (c, n), g (c, n)) approximated by maps of coolant temperatures and oil temperatures for different operating parameters. of the motor.
  • the temperature of the lubricating oil of the engine and the coolant (that is to say the cooling water) of an engine is also subject to variations according to these parameters.
  • a vehicle usually has a water temperature sensor, information on engine torque and engine speed.
  • the object of the invention is to determine the value of the oil temperature of an engine using the water temperature and various operating parameters of the engine and this without the aid of a sensor for measuring the temperature of the oil.
  • a first algorithm predicts the water temperature from an internal (mathematical) model that uses information such as load and engine speed. This predicted water temperature is then compared to the water temperature measured by the sensor.
  • a second algorithm predicts the oil temperature from an internal (mathematical) model that uses information such as engine load and engine speed.
  • the error between the water temperature predicted by the first algorithm and the measured water temperature makes it possible to perform a correction of the oil temperature predicted by the second algorithm. This correction makes it possible to obtain an estimate of the temperature of the engine oil.
  • the evolution of the oil temperature is estimated using an internal model of water and oil temperature, the behavior of which is close to that of a system governed by two differential equations of the first order. It is based on observing measurements of changes in water and oil temperatures as a function of engine operating parameters, in particular the load, the engine speed and the time. It is a state model written in differential form.
  • a first differential equation of the first order makes it possible to estimate the temperature of the cooling water
  • a second differential equation of the first order makes it possible to estimate the temperature of the engine oil.
  • the model of evolution of the water temperature is identical to that used for the oil.
  • the water temperature predicted by the model is corrected by measuring the actual temperature. This correction made on the water temperature makes it possible to correct the predicted temperature of the oil.
  • the invention thus makes it possible to dispense with an oil temperature sensor and the associated system for processing and transmitting electrical signals.
  • the method according to the invention therefore provides, as indicated above, from different operating information of the engine - such as the temperature of the cooling water, the engine load, its speed - to determine the temperature of the oil of the motor.
  • Nonlinearities appearing on the figure 2a at 100s and 300s are respectively the opening of the thermostat and the start of motorcycle fan units. Under these conditions, to keep a simple model, these phenomena will not be taken into account. However, alternatively, for a better accuracy on the estimation of the oil temperature, the thermostat and the start of the GMVs are taken into account.
  • Tests have therefore made it possible to establish constant-load maps according to the load such as that of the figure 3a for the mapping of the engine cooling water temperature, and that of the figure 3b for mapping the engine oil temperature.
  • the maps f (c, n) and g (c, n) are defined, for example, for nine operating points recorded on a chassis dynamometer. Between these operating points, a linear interpolation is performed to determine a determined operating temperature which will be called the target temperature.
  • f (c, n) / g (c, n) In order to determine f (c, n) / g (c, n), the system was simplified by dividing the "target" temperatures for the nine operating points recorded, and then calculating the average value of these ratios. . In the model thus implemented, f (c, n) / g (c, n) is considered as a constant.
  • the figure 4a represents a general example of realization of this system.
  • the engine M is equipped with a temperature sensor TE capable of measuring the water temperature of the water of engine cooling.
  • the motor M comprises devices such as P1 and P2 capable of indicating engine operating parameters such as, for example, the torque developed by the engine and the rotational speed as has been considered in the previous examples.
  • the values of these operating parameters are applied to the inputs of two processing devices A1 and A2 which respectively provide a predicted temperature of the cooling water and a predicted temperature of the engine oil.
  • a calculation circuit D1 receives the measured temperature of water at the temperature predicted from the water of cooling, compares these temperatures and provides a calf value representing this difference.
  • another calculation circuit D2 receives the predicted temperature Tphil of the engine oil as well as the value calf previously calculated and provides a value of the corrected oil temperature Tatti.
  • the figure 4b represents a more detailed system for implementing the invention.
  • This system includes, as in figure 4a , devices P1 and P2 providing engine operating parameters and a TE temperature sensor providing the temperature of the cooling water of the engine.
  • the system has in memory a mapping G (c, n) of the cooling water temperatures according to a type of parameter (the torque for example) for different values of another parameter (the engine speed for example). It also has a similar mapping f (c, n) for the engine oil temperatures.
  • mapping g (c, n) is exploited in an A1 algorithm using the parameters c and n provided by the devices P1 and P2.
  • the algorithm provides a predicted temperature for the skin.
  • a difference circuit receives this predicted temperature as well as the water temperature measured by the TE sensor. and provides a difference value ⁇ water.
  • This difference is transmitted to an operator OP1 which multiplies it by an average value of different ratios f (c, n) / g (c, n) calculated for different operating points of the engine.
  • the operator OP1 provides an oil value which substantially represents the uncertainty in calculating the value of the oil temperature to be reached in steady state.
  • mapping G (c, n) is exploited in an algorithm A2 using the parameters c and n provided by the devices P1 and P2.
  • the algorithm also takes into account the value of oil and provides a temperature Tatti.
  • the water temperature at start-up is used as the initial value of the oil temperature. If the engine is cold at start-up, the water is substantially equal to Theld. If the engine is hot, the two temperatures may be different (in principle, a difference of less than ten degrees). Initializing the oil temperature estimator to an erroneous value does not disturb its convergence, as shown by the Figures 5a and 5b . In what follows, the initial value of the oil temperature will be initialized to the initial value of the water temperature.
  • the system is effective during a shutdown of the engine followed by a restart (so hot).
  • the estimation of the oil temperature during the engine shutdown is used to initialize the estimator at the next start.
  • the figure 6 shows a decrease in temperature when the engine is stopped. It can be seen that, in the example, the oil and water temperatures are substantially equal to the time 0 (engine stop time), then, both temperatures decrease almost identically. After about 1800s, there is a difference of about 5 ° C between water and oil. If the water temperature is used at this time to initialize the estimator, an error of about 5 ° C is made.
  • the stabilization time of the system to obtain an error reduced to less than 2% is about 600s.
  • two maximum temperatures were produced at times 1500s and 1800s, and the estimated temperatures took these maxima into account.
  • An advantage of this system is the speed of convergence of the estimate which makes it insensitive to the initialization value. This removes the problem of stopping temperature estimation because it is possible to initialize the system with the water temperature at startup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The method involves calculating a predicted temperature of a coolant by a primary algorithm (A1), based on functioning parameters of an engine. An error between measured and predicted temperatures of the coolant is calculated. A predicted oil temperature is calculated by a secondary algorithm (A2), based on functioning parameters of the engine. The predicted oil temperature is corrected based on the calculated error. An independent claim is also included for a system to estimate oil temperature of an internal combustion engine.

Description

L'invention concerne un procédé d'évaluation de la température de l'huile d'un moteur à combustion interne et un système permettant de mettre en oeuvre ce procédé. Elle est applicable notamment aux moteurs automobiles.The invention relates to a method for evaluating the temperature of the oil of an internal combustion engine and a system for carrying out this method. It is applicable in particular to automobile engines.

La connaissance de la température de l'huile d'un moteur est souvent utilisée pour le contrôle d'un moteur à essence ou diesel. Cette information est parfois indiquée sur le tableau de bord du véhicule. Elle provient le plus souvent d'un capteur de température d'huile directement placé dans le moteur. Cela nécessite alors de prévoir un capteur qui est généralement en contact avec l'huile du moteur, des circuits électroniques qui traduisent cette information en signaux électriques et une liaison permettant de transmettre ces signaux au dispositif d'affichage sur le tableau de bord du véhicule.Knowing the oil temperature of an engine is often used to control a gasoline or diesel engine. This information is sometimes indicated on the dashboard of the vehicle. It comes most often from an oil temperature sensor directly placed in the engine. This then requires to provide a sensor that is generally in contact with the engine oil, electronic circuits that translate this information into electrical signals and a link for transmitting these signals to the display device on the dashboard of the vehicle.

La présente invention se propose d'estimer la température de l'huile du moteur d'un véhicule à partir d'informations disponibles dans les dispositifs de contrôle du moteur sans avoir à utiliser un capteur de température d'huile du moteur. En d'autres termes, l'invention permet d'éviter l'utilisation d'un capteur de la température de l'huile du moteur et les circuits électroniques associés (voir par exemple DE-A-19 961 118 , US-A-5 633 796 , US-A-4847768 , US-A-6449538 , US-A-639337 ).The present invention proposes to estimate the engine oil temperature of a vehicle from information available in the engine control devices without having to use an engine oil temperature sensor. In other words, the invention makes it possible to avoid the use of a sensor for the temperature of the engine oil and the associated electronic circuits (see for example DE-A-19 961 118 , US-A-5,633,796 , US Patent 4847768 , US Patent 6449538 , US-639337 ).

L'invention concerne donc un procédé d'estimation de la température de l'huile d'un moteur à explosion comprenant notamment un circuit de refroidissement à fluide de refroidissement et un dispositif de mesure de la température du fluide de refroidissement fournissant une température mesurée du fluide de refroidissement. Ce procédé comporte les étapes suivantes :

  1. (a) Calcul de prédiction d'une température prédite du fluide de refroidissement en fonction de paramètres de fonctionnement du moteur,
  2. (b) Mesure de la température du liquide de refroidissement à l'aide du dispositif de mesure,
  3. (c) Calcul d'une erreur entre la température mesurée et la température prédite du fluide de refroidissement,
  4. (d) Calcul de prédiction d'une température d'huile prédite en fonction de paramètres de fonctionnement du moteur,
  5. (e) Correction de la température d'huile prédite à l'aide de ladite erreur pour fournir une température d'huile estimée.
The invention therefore relates to a method for estimating the temperature of the oil of an internal combustion engine including in particular a cooling fluid cooling circuit and a device for measuring the temperature of the cooling fluid providing a measured temperature of the engine. cooling fluid. This process comprises the following steps:
  1. (a) Calculation of prediction of a predicted temperature of the coolant as a function of engine operating parameters,
  2. (b) Measurement of the coolant temperature using the measuring device,
  3. (c) calculating an error between the measured temperature and the predicted temperature of the coolant,
  4. (d) Calculation of prediction of a predicted oil temperature as a function of engine operating parameters,
  5. (e) correcting the predicted oil temperature using said error to provide an estimated oil temperature.

Dans ce procédé, les étapes (e) et (d) peuvent être effectuées en une seule étape. Le calcul de prédiction incorpore alors une correction tenant compte de l'erreur calculée sur la température de l'eau.In this method, steps (e) and (d) can be performed in a single step. The prediction calculation then incorporates a correction taking into account the error calculated on the temperature of the water.

La prédiction de la température de refroidissement est déterminée par exemple, en résolvant l'équation différentielle : d T peau dt = T peau t eau + g c n t eau

Figure imgb0001
dans laquelle :

  • Tpeau est la température d'eau prédite par la formule,
  • teau est la constante de temps de l'évolution de la température du fluide de refroidissement,
  • g(c,n) est une cartographie de différentes températures atteintes en régime permanent en fonction de paramètres de fonctionnement du moteur tels que le couple moteur réel et le régime de rotation du moteur.
The prediction of the cooling temperature is determined, for example, by solving the differential equation: d T skin dt = T skin t water + boy Wut vs not t water
Figure imgb0001
in which :
  • Water is the water temperature predicted by the formula,
  • water is the time constant of the evolution of the temperature of the cooling fluid,
  • g (c, n) is a mapping of different steady-state temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed.

La prédiction de la température d'huile peut être obtenue en résolvant l'équation différentielle suivante : dTphuile dt = Tphuile thuile + f c n + ϑhuile thuile

Figure imgb0002
dans laquelle :

  • Tphuile est la température de l'huile moteur prédite,
  • thuile est la constante de temps de l'évolution de la température de l'huile,
  • f(c,n) est une cartographie de différentes températures en fonction de paramètres de fonctionnement du moteur tels que le couple moteur réel et le régime de rotation du moteur,
  • ϑhuile, est une valeur d'erreur à corriger sur la valeur de la température prédite de l'huile moteur.
The prediction of the oil temperature can be obtained by solving the following differential equation: dTphuile dt = Tphuile thuile + f vs not + θhuile thuile
Figure imgb0002
in which :
  • Tphuile is the temperature of the predicted engine oil,
  • the oil is the time constant of the evolution of the temperature of the oil,
  • f (c, n) is a mapping of different temperatures according to engine operating parameters such as the actual engine torque and the rotational speed of the engine,
  • oil, is an error value to be corrected on the value of the predicted temperature of the engine oil.

La valeur d'erreur de la température prédite de l'huile à corriger est sensiblement proportionnelle à l'erreur entre la température mesurée du fluide de refroidissement et la température prédite du fluide de refroidissement.The error value of the predicted temperature of the oil to be corrected is substantially proportional to the error between the measured temperature of the coolant and the predicted temperature of the coolant.

Pour mettre en oeuvre ce procédé, on prévoit au préalable d'établir et d'enregistrer en mémoire une cartographie des températures du liquide de refroidissement pour différents paramètres de fonctionnement du moteur et d'une cartographie des températures de l'huile pour les mêmes paramètres de fonctionnement du moteur.To implement this method, provision is made beforehand to establish and store in memory a map of the coolant temperatures for different engine operating parameters and a map of the oil temperatures for the same parameters. engine operation.

L'invention se rapporte également à un système d'estimation de la température de l'huile d'un moteur à explosion (M) mettant en oeuvre ce procédé. Ce système comporte un système de traitement mettant en oeuvre un premier algorithme de prédiction de la température du fluide de refroidissement en fonction de paramètres de fonctionnement du moteur et fournissant une température prédite du fluide de refroidissement. Un circuit de calcul d'erreur calcule l'erreur entre une température mesurée du fluide de refroidissement et la température ainsi prédite. De plus le système de traitement met en oeuvre un deuxième algorithme de prédiction de la température de l'huile du moteur en fonction de paramètres de fonctionnement du moteur et fournit une température d'huile prédite. Enfin, un circuit de correction corrige la température d'huile prédite à l'aide de l'erreur calculée par le circuit de calcul d'erreur et fournit une température d'huile estimée.The invention also relates to a system for estimating the temperature of the oil of a combustion engine (M) implementing this method. This system comprises a processing system implementing a first algorithm for predicting the temperature of the cooling fluid as a function of operating parameters of the engine and providing a predicted temperature of the cooling fluid. An error calculation circuit calculates the error between a measured temperature of the cooling fluid and the temperature thus predicted. In addition, the processing system implements a second algorithm for predicting the temperature of the engine oil as a function of engine operating parameters and provides a predicted oil temperature. Finally, a correction circuit corrects the predicted oil temperature using the error calculated by the error calculation circuit and provides an estimated oil temperature.

Le système selon l'invention fait appel à des fonctions non linéaires (f(c,n), g(c,n)) approchées par des cartographies des températures du liquide de refroidissement et des températures de l'huile pour différents paramètres de fonctionnement du moteur.The system according to the invention makes use of non-linear functions (f (c, n), g (c, n)) approximated by maps of coolant temperatures and oil temperatures for different operating parameters. of the motor.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement avec la description qui suit et les figures annexées qui représentent :

  • La figure 1, un exemple d'organigramme du procédé de l'invention,
  • Les figures 2a et 2b, des courbes d'évolution des température du liquide de refroidissement et de l'huile,
  • les figures 3a et 3b, des cartographies des températures du liquide de refroidissement et de l'huile pour différentes valeurs du couple moteur et différentes valeur du régime,
  • les figures 4a et 4b, des diagrammes de liaisons d'un système permettant de mettre en oeuvre l'invention,
  • les figures 5a et 5b, des courbes de températures mettant en évidence la convergence correcte du système de l'invention,
  • la figure 6, l'évolution de la chute de température lors d'un arrêt du moteur, et
  • les figures 7a à 7d, des relevés d'essais mettant en évidence le fonctionnement de l'invention dans différentes conditions d'essais.
Other features and advantages of the invention will emerge more clearly with the description which follows and the appended figures which represent:
  • The figure 1 an example of a flowchart of the method of the invention,
  • The Figures 2a and 2b , curves of evolution of the coolant temperature and the oil,
  • the Figures 3a and 3b , maps of coolant temperatures and oil for different values of the engine torque and different speed values,
  • the Figures 4a and 4b , link diagrams of a system for implementing the invention,
  • the Figures 5a and 5b , temperature curves highlighting the correct convergence of the system of the invention,
  • the figure 6 , the evolution of the temperature drop during an engine stop, and
  • the Figures 7a to 7d , test records highlighting the operation of the invention under different test conditions.

On précise tout d'abord que la température d'un moteur varie principalement en fonction:

  • de la vitesse du véhicule,
  • de la température extérieure,
  • de la charge du moteur (couple délivré par le moteur)
  • et du régime moteur.
First of all, the temperature of an engine varies mainly according to:
  • the speed of the vehicle,
  • outside temperature,
  • the motor load (torque delivered by the motor)
  • and engine speed.

La température de l'huile de lubrification du moteur et du liquide de refroidissement (c'est-à-dire l'eau de refroidissement) d'un moteur subit donc aussi des variations en fonction de ces paramètres.The temperature of the lubricating oil of the engine and the coolant (that is to say the cooling water) of an engine is also subject to variations according to these parameters.

Un véhicule possède en général un capteur de température d'eau, une information sur le couple moteur et son régime.A vehicle usually has a water temperature sensor, information on engine torque and engine speed.

L'objet de l'invention est de déterminer la valeur de la température de l'huile d'un moteur à l'aide de la température de l'eau et de divers paramètres de fonctionnement du moteur et cela sans l'aide d'un capteur de mesure de température de l'huile.The object of the invention is to determine the value of the oil temperature of an engine using the water temperature and various operating parameters of the engine and this without the aid of a sensor for measuring the temperature of the oil.

Un premier algorithme prédit la température d'eau à partir d'un modèle interne (mathématique) utilisant en entrée des informations telles que la charge et le régime du moteur. Cette température d'eau prédite est alors comparée alors à la température d'eau mesurée par le capteur.A first algorithm predicts the water temperature from an internal (mathematical) model that uses information such as load and engine speed. This predicted water temperature is then compared to the water temperature measured by the sensor.

Un deuxième algorithme prédit la température de l'huile à partir d'un modèle interne (mathématique) utilisant en entrée des informations telles que la charge et le régime du moteur. L'erreur entre la température d'eau prédite par le premier algorithme et la température d'eau mesurée permet d'effectuer une correction de la température d'huile prédite par le deuxième algorithme. Cette correction permet d'obtenir une estimation de la température de l'huile du moteur.A second algorithm predicts the oil temperature from an internal (mathematical) model that uses information such as engine load and engine speed. The error between the water temperature predicted by the first algorithm and the measured water temperature makes it possible to perform a correction of the oil temperature predicted by the second algorithm. This correction makes it possible to obtain an estimate of the temperature of the engine oil.

Dans le système selon l'invention, on estime l'évolution de la température d'huile en utilisant un modèle interne de température d'eau et d'huile dont le comportement est proche de celui d'un système régi par deux équations différentielles du premier ordre. Il est basé sur l'observation de mesures d'évolution des températures d'eau et d'huile en fonction de paramètres de fonctionnement du moteur et notamment de la charge, du régime du moteur et du temps. Il s'agit d'un modèle d'état écrit sous forme différentielle.In the system according to the invention, the evolution of the oil temperature is estimated using an internal model of water and oil temperature, the behavior of which is close to that of a system governed by two differential equations of the first order. It is based on observing measurements of changes in water and oil temperatures as a function of engine operating parameters, in particular the load, the engine speed and the time. It is a state model written in differential form.

Une première équation différentielle du premier ordre permet d'estimer la température de l'eau de refroidissement, une deuxième équation différentielle du premier ordre permet d'estimer la température de l'huile du moteur.A first differential equation of the first order makes it possible to estimate the temperature of the cooling water, a second differential equation of the first order makes it possible to estimate the temperature of the engine oil.

Selon un mode de réalisation de l'invention, le modèle d'évolution de la température de l'eau est identique à celui utilisé pour l'huile. La température d'eau prédite par le modèle est corrigée par la mesure de la température réelle. Cette correction effectuée sur la température de l'eau permet de corriger la température prédite de l'huile.According to one embodiment of the invention, the model of evolution of the water temperature is identical to that used for the oil. The water temperature predicted by the model is corrected by measuring the actual temperature. This correction made on the water temperature makes it possible to correct the predicted temperature of the oil.

L'invention permet donc de se passer d'un capteur de température d'huile et du système associé de traitement et de transmission des signaux électriques.The invention thus makes it possible to dispense with an oil temperature sensor and the associated system for processing and transmitting electrical signals.

En se reportant à la figure 1, on va donc tout d'abord décrire un exemple d'organigramme général illustrant le procédé de l'invention.Referring to the figure 1 Therefore, an example of a general flowchart illustrating the process of the invention will first be described.

Le procédé selon l'invention prévoit donc, comme indiqué précédemment, à partir de différentes informations de fonctionnement du moteur - telles que la température de l'eau de refroidissement, la charge du moteur, son régime - de déterminer la température de l'huile du moteur.The method according to the invention therefore provides, as indicated above, from different operating information of the engine - such as the temperature of the cooling water, the engine load, its speed - to determine the temperature of the oil of the motor.

Ce procédé comporte les étapes suivantes :

  • élaboration d'un algorithme de prédiction de la température de l'eau de refroidissement en fonction de certains paramètres de fonctionnement du moteur tels que ceux indiqués précédemment. Cet algorithme peut être représenté par une équation différentielle représentant les évolutions de la température de l'eau de refroidissement du moteur: dTpeau dt = Tpeau teau + g c n teau
    Figure imgb0003
où :
  • Tpeau est la température d'eau prédite par la formule,
  • teau est la constante de temps de l'évolution de la température de l'eau,
  • g(c,n) est une cartographie de différentes températures en fonction de paramètres de fonctionnement du moteur tels que le couple moteur réel et le régime de rotation du moteur.
    • mesure de la température réelle Teau de l'eau de refroidissement du moteur à l'aide du capteur de température de l'eau ;
    • comparaison de la température prédite Tpeau de l'eau lors de la première étape du procédé et de la température mesurée Teau et calcul de la différence ϑeau entre ces deux températures ;
    • élaboration d'un autre algorithme de prédiction d'une température prédite Tphuile de l'huile du moteur en fonction de paramètres de fonctionnement du moteur tels que ceux indiqués précédemment. Comme l'algorithme précédent, cet algorithme peut être représenté par une équation différentielle représentant les évolutions de la température de l'huile du moteur:
    dTphuile dt = Tphuile thuile + f c n thuile
    Figure imgb0004
    où :
  • Tphuile est la température de l'huile prédite par la formule,
  • thuile est la constante de temps de l'évolution de la température de l'huile,
  • f(c,n) est une cartographie de différentes températures en fonction de paramètres de fonctionnement du moteur tels que le couple moteur réel et le régime de rotation du moteur.
    • calcul d'une valeur de température estimée Thuile de l'huile du moteur par correction de la température prédite Tphuile à l'aide de la différence ϑeau obtenue précédemment entre la température prédite de l'eau et la température mesurée de l'eau. Cette correction peut prendre simplement la forme d'une somme algébrique de la température prédite Tphuile et de la différence veau.
This process comprises the following steps:
  • development of an algorithm for predicting the temperature of the cooling water according to certain operating parameters of the engine such as those indicated above. This algorithm can be represented by a differential equation representing the changes in the temperature of the engine cooling water: dTpeau dt = Tpeau teau + boy Wut vs not teau
    Figure imgb0003
or :
  • Water is the water temperature predicted by the formula,
  • water is the time constant of the evolution of the temperature of the water,
  • g (c, n) is a mapping of different temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed.
    • measuring the actual temperature Water cooling water of the engine using the water temperature sensor;
    • comparing the predicted temperature of the water in the first step of the process and the measured temperature of the water and calculating the difference in water between these two temperatures;
    • developing another algorithm for predicting a predicted temperature of the engine oil as a function of engine operating parameters such as those indicated above. Like the previous algorithm, this algorithm can be represented by a differential equation representing the changes in the temperature of the engine oil:
    dTphuile dt = Tphuile thuile + f vs not thuile
    Figure imgb0004
    or :
  • Tphuile is the temperature of the oil predicted by the formula,
  • the oil is the time constant of the evolution of the temperature of the oil,
  • f (c, n) is a mapping of different temperatures according to operating parameters of the such as the actual engine torque and engine rotation speed.
    • calculating an estimated temperature value Thuile of the engine oil by correcting the predicted temperature Tphuile using the difference θeau previously obtained between the predicted water temperature and the measured water temperature. This correction can take the simple form of an algebraic sum of the predicted temperature Tphilus and the difference calf.

Les deux dernières étapes peuvent être réalisées en une seule étape en intégrant une incertitude ϑhuile de la valeur de la température prédite de l'huile dans l'équation différentielle de prédiction de cette température : dTphuile dt = Tphuile thuile + f c n + ϑhuile thuile

Figure imgb0005
The last two steps can be carried out in a single step by integrating an oil uncertainty of the value of the predicted temperature of the oil into the differential equation of prediction of this temperature: dTphuile dt = Tphuile thuile + f vs not + θhuile thuile
Figure imgb0005

Dans le procédé qui précède, il convient de connaître les constantes de temps teau et thuile ainsi que les fonctions f(c,n) et g(c,n) .In the above procedure, it is necessary to know the time constants of water and oil as well as the functions f (c, n) and g (c, n).

Pour identifier les constantes de temps τeau et τhuile, on peut prévoir des essais de montées en températures sur un banc d'essais. A titre d'exemple on considèrera que les variables à prendre en compte sont des échelons de charges et de régimes du moteur et qu'elles permettent l'identification des constantes de temps.To identify the time constants τeau and τuile, it is possible to provide temperature rise tests on a test bench. By way of example, it will be considered that the variables to be taken into account are load echelons and engine speeds and that they allow the identification of time constants.

Par exemple, en mesurant le temps nécessaire pour atteindre une valeur de la température à 63% (t = T) de la valeur finale puis à 95% (t = 3.T) de la valeur finale, il est possible de déduire la constante de temps du système. Pour l'huile comme pour l'eau, on trouve que les constantes de temps ont des valeurs similaires, 150s par exemple. La figure 2a et 1a. figure 2b montrent des courbes d'évolution des températures de l'eau de refroidissement et des températures de l'huile respectivement, avec les constantes de temps identifiées précédemment. Ces courbes sont comparées aux courbes de température réelles.For example, by measuring the time required to reach a value of the temperature at 63% (t = T) of the final value and then at 95% (t = 3.T) of the final value, it is possible to deduce the constant of system time. For both oil and water, we find that time constants have similar values, for example 150s. The figure 2a and 1a. figure 2b show curves of evolution of cooling water temperatures and oil temperatures respectively, with the time constants identified previously. These curves are compared with the actual temperature curves.

Les non linéarités apparaissant sur la figure 2a à 100s et 300s sont respectivement l'ouverture du thermostat et la mise en marche des groupes moto ventilateurs. Dans ces conditions, pour conserver un modèle simple, on ne tiendra pas compte de ces phénomènes. Toutefois, en variante, pour une meilleure précision sur l'estimation de la température d'huile, on tient compte du thermostat et de la mise en marche des GMV.Nonlinearities appearing on the figure 2a at 100s and 300s are respectively the opening of the thermostat and the start of motorcycle fan units. Under these conditions, to keep a simple model, these phenomena will not be taken into account. However, alternatively, for a better accuracy on the estimation of the oil temperature, the thermostat and the start of the GMVs are taken into account.

Pour obtenir les fonctions f(c,n) et g(c,n) on prévoit de réaliser des cartographies de points de fonctionnement possibles. Ces cartographies peuvent être réalisées sur un banc en se fixant des conditions de fonctionnement typiques. Par exemple, on pourra prévoir les conditions de fonctionnement suivantes:

  • fonctionnement du banc d'essai en mode iso vitesse (vitesse constante),
  • le véhicule est sur le second rapport de boîte de vitesse,
  • le régime du moteur est fixé par la vitesse de rotation des rouleaux du banc d'essai,
  • la charge est ajustée par la pression sur la pédale d'accélérateur,
  • le refroidissement est assuré par un ventilateur dont la vitesse de l'air pulsé est égale une vitesse de déplacement simulée,
  • le capot moteur est ouvert (pour des raisons d'instrumentation).
To obtain the functions f (c, n) and g (c, n), maps of possible operating points are provided. These maps can be performed on a bench by setting typical operating conditions. For example, the following operating conditions can be provided:
  • operation of the test bench in iso speed mode (constant speed),
  • the vehicle is on the second gearbox ratio,
  • the speed of the motor is fixed by the speed of rotation of the rollers of the test bench,
  • the load is adjusted by the pressure on the accelerator pedal,
  • the cooling is provided by a fan whose pulsed air speed is equal to a simulated displacement speed,
  • the engine hood is open (for instrumentation reasons).

A titre d'exemple, des points de fonctionnement sont choisis sur la plage d'utilisation du moteur:

  • vitesses : 2000 tr/min, 3000 tr/min et 4000 tr/min
  • couples : 30 Nm, 74 Nm et 130 Nm (mesurés grâce à la variable « Couple Réel » sur un réseau CAN (« Control Area Network ») inter système.
By way of example, operating points are chosen over the range of use of the motor:
  • speeds: 2000 rpm, 3000 rpm and 4000 rpm
  • torques: 30 Nm, 74 Nm and 130 Nm (measured using the variable "Real torque" on a CAN ("Control Area Network") inter-system network.

Dans cet exemple, on dispose donc d'un total de neuf points d'étalonnage pour chaque fluide (eau et huile).In this example, there is therefore a total of nine calibration points for each fluid (water and oil).

Des essais ont donc permis d'établir des cartographies à régime constant en fonction de la charge telles que celle de la figure 3a pour la cartographie de la température de l'eau de refroidissement du moteur,et celle de la figure 3b pour la cartographie de la température de l'huile du moteur.Tests have therefore made it possible to establish constant-load maps according to the load such as that of the figure 3a for the mapping of the engine cooling water temperature, and that of the figure 3b for mapping the engine oil temperature.

En régime permanent, la température d'eau Teau est mesurée puis comparée à la valeur prédite Tpeau. On en déduit la valeur de ϑeau, l'erreur commise sur la température de l'eau étant : ϑeau = Teau - Tpeau

Figure imgb0006
In steady state, the water temperature is measured and compared with the predicted water value. We deduce the value of water, the error committed on the temperature of the water being: θeau = teau - Tpeau
Figure imgb0006

Si on considère que les énergies dissipées par pertes pour l'huile et pour l'eau sont quasi identiques, on obtient une relation entre ϑeau et ϑhuile qui est de la forme : ϑhuile = ϑeau f c n / g c n

Figure imgb0007
If we consider that the dissipated energy losses for oil and water are almost identical, we obtain a relationship between water and oil which is of the form: θhuile = θeau f vs not / boy Wut vs not
Figure imgb0007

Comme décrit précédemment, les cartographies f(c,n) et g(c,n) sont définies, à titre d'exemple, pour neuf points de fonctionnement relevés sur banc à rouleaux. Entre ces points de fonctionnement, on effectue une interpolation linéaire pour déterminer une température de fonctionnement déterminée qu'on appellera température cible.As described above, the maps f (c, n) and g (c, n) are defined, for example, for nine operating points recorded on a chassis dynamometer. Between these operating points, a linear interpolation is performed to determine a determined operating temperature which will be called the target temperature.

Afin de déterminer f(c,n)/g(c,n), on a, pour simplifier le système, effectué la division des températures «cibles» pour les neuf points de fonctionnements relevés puis on a calculé la valeur moyenne de ces rapports. Dans le modèle ainsi implémenté, f(c,n)/g(c,n) est donc considéré comme une constante.In order to determine f (c, n) / g (c, n), the system was simplified by dividing the "target" temperatures for the nine operating points recorded, and then calculating the average value of these ratios. . In the model thus implemented, f (c, n) / g (c, n) is considered as a constant.

En se reportant aux figures 4a et 4b, on va maintenant décrire un exemple de réalisation d'un système permettant de mettre en oeuvre le procédé précédemment décrit.Referring to Figures 4a and 4b an embodiment of a system for implementing the previously described method will now be described.

La figure 4a représente un exemple général de réalisation de ce système.The figure 4a represents a general example of realization of this system.

Le moteur M est équipé d'un capteur de température TE capable de mesurer la température Teau de l'eau de refroidissement du moteur. Le moteur M comporte des dispositifs tels que P1 et P2 capables d'indiquer des paramètres de fonctionnement du moteur tels que, par exemple, le couple développé par le moteur et le régime de rotation comme cela a été considéré dans les exemples précédents.The engine M is equipped with a temperature sensor TE capable of measuring the water temperature of the water of engine cooling. The motor M comprises devices such as P1 and P2 capable of indicating engine operating parameters such as, for example, the torque developed by the engine and the rotational speed as has been considered in the previous examples.

Les valeurs de ces paramètres de fonctionnement sont appliquées aux entrées de deux dispositifs de traitement A1 et A2 qui fournissent, respectivement, une température prédite Tpeau de l'eau de refroidissement et une température prédite Tphuile de l'huile du moteur.The values of these operating parameters are applied to the inputs of two processing devices A1 and A2 which respectively provide a predicted temperature of the cooling water and a predicted temperature of the engine oil.

Un circuit de calcul D1 reçoit la température mesurée Teau la température prédite Tpeau de l'eau de refroidissement, compare ces températures et fournit une valeur veau représentant cette différence.A calculation circuit D1 receives the measured temperature of water at the temperature predicted from the water of cooling, compares these temperatures and provides a calf value representing this difference.

Par ailleurs, un autre circuit de calcul D2 reçoit la température prédite Tphuile de l'huile du moteur ainsi que la valeur veau calculée précédemment et fournit une valeur de la température d'huile corrigée Thuile.Furthermore, another calculation circuit D2 receives the predicted temperature Tphil of the engine oil as well as the value calf previously calculated and provides a value of the corrected oil temperature Thuile.

La figure 4b représente un système plus détaillé permettant de mettre en oeuvre l'invention. Ce système comporte, comme en figure 4a, des dispositifs P1 et P2 fournissant des paramètres de fonctionnement du moteur ainsi qu'un capteur de température TE fournissant la température de l'eau de refroidissement du moteur.The figure 4b represents a more detailed system for implementing the invention. This system includes, as in figure 4a , devices P1 and P2 providing engine operating parameters and a TE temperature sensor providing the temperature of the cooling water of the engine.

De plus le système possède en mémoire une cartographie G(c,n) des températures de l'eau de refroidissement en fonction d'un type de paramètre (le couple par exemple) pour différentes valeurs d'un autre paramètre (le régime du moteur par exemple). Il possède également une cartographie similaire f(c,n) pour les températures de l'huile du moteur.In addition the system has in memory a mapping G (c, n) of the cooling water temperatures according to a type of parameter (the torque for example) for different values of another parameter (the engine speed for example). It also has a similar mapping f (c, n) for the engine oil temperatures.

La cartographie g(c,n) est exploitée dans un algorithme A1 à l'aide des paramètres c et n fournis par les dispositifs P1 et P2. L'algorithme fournit une température prédite Tpeau. Un circuit de différence reçoit cette température prédite ainsi que la température Teau mesurée par le capteur TE et fournit une valeur de différence ϑeau. Cette différence est transmise à un opérateur OP1 qui la multiplie par une valeur moyenne de différents rapports f(c,n)/g(c,n) calculés pour différents points de fonctionnement du moteur. L'opérateur OP1 fournit une valeur ϑhuile qui représente sensiblement l'incertitude sur le calcul de la valeur de la température d'huile à atteindre en régime permanent.The mapping g (c, n) is exploited in an A1 algorithm using the parameters c and n provided by the devices P1 and P2. The algorithm provides a predicted temperature for the skin. A difference circuit receives this predicted temperature as well as the water temperature measured by the TE sensor. and provides a difference value θwater. This difference is transmitted to an operator OP1 which multiplies it by an average value of different ratios f (c, n) / g (c, n) calculated for different operating points of the engine. The operator OP1 provides an oil value which substantially represents the uncertainty in calculating the value of the oil temperature to be reached in steady state.

Par ailleurs, la cartographie G(c,n) est exploitée dans un algorithme A2 à l'aide des paramètres c et n fournis par les dispositifs P1 et P2. L'algorithme prend en compte également la valeur de ϑhuile et fournit une température Thuile.Moreover, the mapping G (c, n) is exploited in an algorithm A2 using the parameters c and n provided by the devices P1 and P2. The algorithm also takes into account the value of oil and provides a temperature Thuile.

Dans la description qui précède, on a utilisé à titre d'exemple deux paramètres de fonctionnement (le couple du moteur et le régime) mais on pourrait utiliser d'autres paramètres sans sortir du cadre de l'invention.In the foregoing description, two operating parameters (motor torque and speed) were used as examples, but other parameters could be used without departing from the scope of the invention.

Pour initialiser le système, la température de l'eau au moment du démarrage est utilisée comme valeur initiale de la température de l'huile. Si le moteur est froid lors du démarrage, Teau est sensiblement égal à Thuile. Si le moteur est chaud, les deux températures peuvent être différentes (en principe, une différence inférieure à la dizaine de degrés). Initialiser l'estimateur de température d'huile à une valeur erronée ne perturbe pas sa convergence, comme le montre les figures 5a et 5b. Dans ce qui va suivre, la valeur initiale de la température d'huile sera donc initialisée à la valeur initiale de la température d'eau.To initialize the system, the water temperature at start-up is used as the initial value of the oil temperature. If the engine is cold at start-up, the water is substantially equal to Thuile. If the engine is hot, the two temperatures may be different (in principle, a difference of less than ten degrees). Initializing the oil temperature estimator to an erroneous value does not disturb its convergence, as shown by the Figures 5a and 5b . In what follows, the initial value of the oil temperature will be initialized to the initial value of the water temperature.

On observe la convergence de l'estimateur quelle que soit la valeur initiale de la température d'huile.The convergence of the estimator is observed regardless of the initial value of the oil temperature.

Par ailleurs, on observe que le système est efficace lors d'un arrêt du moteur suivi d'un redémarrage (donc à chaud). En effet, l'estimation de la température d'huile lors de l'arrêt du moteur sert à initialiser l'estimateur lors du démarrage suivant. La figure 6 présente une diminution de température lors d'un arrêt du moteur. On constate que, dans l'exemple, les températures d'huile et d'eau sont sensiblement égales au temps 0 (instant d'arrêt du moteur), puis, les deux températures décroissent de manière quasi identique. Au bout de 1800s environ, il existe une différence d'environ 5°C entre l'eau et l'huile. Si l'on utilise, à ce moment là, la température d'eau pour initialiser l'estimateur, on commet une erreur d'environ 5°C.Furthermore, it is observed that the system is effective during a shutdown of the engine followed by a restart (so hot). Indeed, the estimation of the oil temperature during the engine shutdown is used to initialize the estimator at the next start. The figure 6 shows a decrease in temperature when the engine is stopped. It can be seen that, in the example, the oil and water temperatures are substantially equal to the time 0 (engine stop time), then, both temperatures decrease almost identically. After about 1800s, there is a difference of about 5 ° C between water and oil. If the water temperature is used at this time to initialize the estimator, an error of about 5 ° C is made.

Or, comme cela a été décrit précédemment en relation avec les figures 5a et 5b, grâce à la convergence rapide de l'estimateur comportemental, une erreur de 5°C sur la température initiale de l'huile ne perturbe pas sa convergence. Il n'est donc pas nécessaire d'utiliser un modèle d'estimateur particulier pour la phase d'arrêt du moteur, la différence entre la température de l'eau et la température de l'huile en phase d'arrêt du moteur n'étant pas suffisamment importante.However, as described above in relation to the Figures 5a and 5b thanks to the rapid convergence of the behavioral estimator, an error of 5 ° C on the initial temperature of the oil does not disturb its convergence. It is therefore not necessary to use a particular estimator model for the stopping phase of the engine, the difference between the water temperature and the oil temperature during engine stopping. being not important enough.

Pour valider le fonctionnement du système d'estimation de la température d'huile, différents essais ont été réalisés dans différentes conditions de circulation :

  • en roulage urbain par temps frais (figure 7a),
  • en roulage urbain par temps chaud (figure 7b),
  • en roulage extra urbain (figure 7c),
  • en roulage autoroutier avec un moteur chaud (figure 7d) .
To validate the operation of the system for estimating the oil temperature, various tests were carried out in different traffic conditions:
  • in urban running in cool weather ( figure 7a )
  • in urban running in hot weather ( figure 7b )
  • in extra urban traffic ( Figure 7c )
  • when driving on a motorway with a hot engine ( figure 7d ).

Chacune de ces figures comporte trois graphiques :

  • le graphique du haut représente les températures d'eau en degrés C en fonction du temps, en secondes, et cela durant une variation du régime du moteur et du couple,
  • le graphique du milieu fournit les températures estimées de l'huile et les températures d'huile qui ont été mesurées pour vérification, en degrés C en fonction du temps,
  • le graphique du bas fournit les écarts, en degrés, en fonction du temps, entre les températures d'huile mesurées et les températures estimées.
Each of these figures has three graphs:
  • the graph at the top shows the water temperatures in degrees C as a function of time, in seconds, and this during a variation of the engine speed and the torque,
  • the middle graph provides the estimated oil temperatures and oil temperatures that were measured for verification, in degrees C as a function of time,
  • the bottom graph provides the deviations, in degrees, as a function of time, between the measured oil temperatures and the estimated temperatures.

Comme on peut le voir sur la figure 7a, lors d'un roulage urbain dans des conditions tempérées (21°C par exemple) on constate une convergence de l'estimateur vers des valeurs proches des valeurs réelles au bout d'environ 600s. De plus, l'erreur commise reste dans une gamme comprise entre 2,4 et 7 pour cent.As can be seen on the figure 7a during an urban run in temperate conditions (21 ° C for example) there is a convergence of the estimator towards values close to real values after about 600s. In addition, the error committed remains within a range of 2.4 to 7 percent.

En roulage urbain par temps chaud (figure 7b), par exemple par 33°C de température extérieure, avec une période de circulation dense entre les temps 400s et 2200s, la température a fortement augmenté. On a enregistré des températures d'eau atteignant 97°C. On constate que l'erreur sur l'estimation de la température d'huile est inférieure à environ 6%. On a constaté également que lorsque la circulation était plus fluide, l'erreur chutait à 3%.In urban running in hot weather ( figure 7b ), for example by 33 ° C outdoor temperature, with a dense circulation period between times 400s and 2200s, the temperature has increased sharply. Water temperatures up to 97 ° C were recorded. It is found that the error on the estimate of the oil temperature is less than about 6%. It was also found that when the circulation was more fluid, the error fell to 3%.

En roulage extra urbain illustré en figure 7c, le temps de stabilisation du système pour obtenir une erreur réduite à moins de 2% est d'environ 600s. Par ailleurs, on constate que lors de l'essai, deux maxima de températures ont été produits aux temps 1500s et 1800s, et les températures estimées ont pris en compte ces maxima.In extra urban traffic illustrated in Figure 7c , the stabilization time of the system to obtain an error reduced to less than 2% is about 600s. In addition, it can be seen that during the test, two maximum temperatures were produced at times 1500s and 1800s, and the estimated temperatures took these maxima into account.

Enfin en roulage autoroutier à moteur chaud représenté en figure 7d, le système a tendance à surestimer la température réelle. L'erreur relative maximale est de 11,2%. Puis, lors d'un ralentissement (sortie d'autoroute), et un retour à un roulage modéré (au temps 1050s environ), le système retrouve un niveau de performance correspondant à une erreur de 5%.Finally, in hot-air motorways, represented in figure 7d , the system tends to overestimate the actual temperature. The maximum relative error is 11.2%. Then, during a slowdown (motorway exit), and a return to a moderate run (at about 1050s time), the system returns to a level of performance corresponding to a 5% error.

On constate donc que le système de l'invention donne de bons résultats tant en ce qui concerne le respect de la dynamique de la température d'huile que pour la valeur de régime permanent.It can therefore be seen that the system of the invention gives good results both as regards the respect of the oil temperature dynamics as for the steady state value.

Un avantage de ce système est la rapidité de convergence de l'estimation qui le rend peu sensible à la valeur d'initialisation. Cela supprime le problème de l'estimation de la température à l'arrêt car il est possible d'initialiser le système avec la température de l'eau au démarrage.An advantage of this system is the speed of convergence of the estimate which makes it insensitive to the initialization value. This removes the problem of stopping temperature estimation because it is possible to initialize the system with the water temperature at startup.

Sans sortir du cadre de l'invention, on pourrait :

  • prendre en compte d'autres paramètres de fonctionnement que le couple ou le régime : la vitesse du véhicule, la température extérieure par exemple,
  • réaliser les cartographies des températures avec un plus grand nombre de points de fonctionnement.
Without departing from the scope of the invention, one could:
  • take into account other operating parameters than the torque or the speed: the speed of the vehicle, the outside temperature for example,
  • perform temperature mapping with a greater number of operating points.

Claims (13)

  1. Method of estimating the oil temperature of a combustion engine (M) comprising a coolant cooling circuit, a device (TE) for measuring the temperature of this coolant providing a measured temperature (Teau) of said coolant, characterized in that it involves the following steps:
    • (a) a predictive calculation (A1) of a predicted temperature (Tpeau) of the coolant on the basis of engine operating parameters,
    • (b) measuring the temperature (Teau) of the coolant using the measurement device (TE),
    • (c) calculating an error between the measured temperature (Teau) of the coolant and the predicted temperature (Tpeau) of the coolant,
    • (d) predictive calculation (A2) of a predicted oil temperature (Tphuile) on the basis of engine operating parameters, and
    • (e) correcting the predicted oil temperature (Tphuile) using said error in order to provide an estimated oil temperature (Thuile).
  2. Method according to Claim 1, characterized in that steps (e) and (d) are performed in a single step, the predicted calculation of oil temperature (A2) incorporating a correction to take account of the calculated error in water temperature.
  3. Method according to Claim 1 or 2, characterized in that the predictive calculation (A1) of coolant temperature is based on the following differential equation: dTpeau dt = Tpeau teau + g ( c , n ) teau
    Figure imgb0012

    in which:
    • Tpeau is the predicted water temperature,
    • Teau is the time constant for the change in water temperature,
    • g(c, n) is a map of various temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed.
  4. Method according to one of Claims 1 to 3, characterized in that the predictive calculation of water temperature is based on the following differential equation: dTphuile dt = Tphuile thuile + f ( c , n ) + ϑhuile thuile
    Figure imgb0013

    in which:
    • Tphuile is the engine oil temperature predicted by the formula,
    • thuile is the time constant for the change in oil temperature,
    • f(c, n) is a map of various temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed,
    • ϑhuile is an error value to be corrected in the predicted engine oil temperature value.
  5. Method according to Claim 4, characterized in that the error value (ϑhuile) to be corrected is substantially proportional to the error between the measured coolant temperature (Teau) and the predicted coolant temperature (Tpeau).
  6. Method according to Claim 1, characterized in that it comprises a prior step of establishing and of recording in memory a map (g(c, n)) of coolant temperatures for various engine operating parameters and a map (F(c, n)) of oil temperatures for the same engine operating parameters.
  7. System for estimating the oil temperature of a combustion engine (M) comprising a coolant cooling circuit, a device (TE) for measuring the temperature of said coolant providing a measured temperature (Teau) of said coolant, characterized in that it comprises a processing system comprising:
    • a first means (A1) of predicting the coolant temperature on the basis of engine operating parameters and providing a predicted coolant temperature (Tpeau),
    • an error calculating means (D) calculating the error between the measured coolant temperature (Teau) and the predicted coolant temperature (Tpeau),
    • a second means of predicting the engine oil temperature on the basis of engine operating parameters and supplying a predicted oil temperature (Tphuile),
    • a correction means correcting the predicted oil temperature (Tphuile) using the error calculated by the error calculation means and providing an estimated oil temperature (Thuile).
  8. System according to Claim 7, characterized in that the predicted oil temperature (Tphuile) is corrected in the second prediction means.
  9. System according to Claim 7 or 8, characterized in that the first prediction means (A1) comprises a means for solving the differential equation: dTpeau dt = Tpeau teau + g ( c , n ) teau
    Figure imgb0014

    in which:
    • Tpeau is the water temperature predicted by the formula,
    • Teau is the time constant for the change in water temperature,
    • g(c, n) is a map of various temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed.
  10. System according to one of Claims 7 to 9, characterized in that the second prediction means (A2) comprises a means of solving the differential equation: dTphuile dt = Tphuile thuile + f ( c , n ) + ϑhuile thuile
    Figure imgb0015

    in which:
    • Tphuile is the engine oil temperature predicted by the formula,
    • thuile is the time constant for the change in oil temperature,
    • f(c, n) is a map of various temperatures as a function of engine operating parameters such as actual engine torque and engine rotational speed,
    • ϑhuile is an error value to be corrected in the predicted engine oil temperature value.
  11. System according to Claim 10, characterized in that it comprises a means such that the error value (ϑhuile) to be corrected is substantially proportional to the error between the measured coolant temperature (Teau) and the predicted coolant temperature (Tpeau).
  12. System according to Claim 7, characterized in that it comprises means (f(c, n), g(c, n)) for establishing and recording in memory a map (g(c, n)) of coolant temperatures for various engine operating parameters and a map (f(c, n)) of oil temperatures for the same engine operating parameters.
  13. Combustion engine comprising a system according to one of Claims 7 to 12.
EP04300088A 2003-02-27 2004-02-19 Method and device of oil temperature evaluation of a combustion engine Expired - Lifetime EP1452701B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0302379A FR2851784B1 (en) 2003-02-27 2003-02-27 METHOD AND SYSTEM FOR EVALUATING THE OIL TEMPERATURE OF A COMBUSTION ENGINE
FR0302379 2003-02-27

Publications (2)

Publication Number Publication Date
EP1452701A1 EP1452701A1 (en) 2004-09-01
EP1452701B1 true EP1452701B1 (en) 2009-02-18

Family

ID=32749735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04300088A Expired - Lifetime EP1452701B1 (en) 2003-02-27 2004-02-19 Method and device of oil temperature evaluation of a combustion engine

Country Status (5)

Country Link
EP (1) EP1452701B1 (en)
AT (1) ATE423269T1 (en)
DE (1) DE602004019464D1 (en)
ES (1) ES2320548T3 (en)
FR (1) FR2851784B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222044B3 (en) 2016-11-10 2018-05-30 Continental Automotive Gmbh Method and device for determining the oil temperature in an internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996253B1 (en) * 2012-10-01 2014-10-10 Peugeot Citroen Automobiles Sa DEVICE FOR CALCULATING AN OIL TEMPERATURE MODEL FOR A THERMAL MOTOR EQUIPPED WITH AN ADDITIONAL HEATER
CN110411607A (en) * 2019-07-15 2019-11-05 山东新华医疗器械股份有限公司 The multiple spot method of calibration of sterilizer temperature sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847768A (en) * 1988-08-29 1989-07-11 General Motors Corporation Automatic engine oil change indicator system
US5633796A (en) * 1994-12-12 1997-05-27 Ford Motor Company Method and apparatus for inferring engine oil temperature for use with an oil change indicator
DE19961118A1 (en) * 1999-12-17 2001-07-05 Siemens Ag Method for determining engine oil temperature in an internal combustion engine
DE10006533B4 (en) * 2000-02-15 2005-11-17 Siemens Ag Method for determining the oil temperature in an internal combustion engine
US6393357B1 (en) * 2000-07-17 2002-05-21 Ford Global Technologies, Inc. System and method for inferring engine oil temperature at startup
JP3448772B2 (en) * 2001-03-19 2003-09-22 本田技研工業株式会社 Engine oil deterioration detection device
DE10119786A1 (en) * 2001-04-23 2002-10-31 Siemens Ag Method for determining the oil temperature in an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222044B3 (en) 2016-11-10 2018-05-30 Continental Automotive Gmbh Method and device for determining the oil temperature in an internal combustion engine
US10781730B2 (en) 2016-11-10 2020-09-22 Vitesco Technologies GmbH Method and device for acquiring the oil temperature in an internal combustion engine

Also Published As

Publication number Publication date
DE602004019464D1 (en) 2009-04-02
ES2320548T3 (en) 2009-05-25
ATE423269T1 (en) 2009-03-15
FR2851784B1 (en) 2005-05-27
EP1452701A1 (en) 2004-09-01
FR2851784A1 (en) 2004-09-03

Similar Documents

Publication Publication Date Title
US7528570B2 (en) Method and device for predicting the starting ability of a vehicle
US6732572B1 (en) Method and device for monitoring and/or determining motor oil quality
FR2941262A1 (en) METHOD AND INSTALLATION FOR DIAGNOSING AN EXHAUST GAS PARTICLE FILTER
JP2003524169A (en) How to determine engine oil consumption
EP1956203B1 (en) Device and method for estimating the oil consumption of a vehicle engine
US20210381409A1 (en) Method and system for sensing engine oil deterioration
EP1452701B1 (en) Method and device of oil temperature evaluation of a combustion engine
WO2010119206A1 (en) Method for determining motor vehicle operating parameters
EP2240676B1 (en) Method for detecting electric power blips and managing the operation of a motor
US20050090968A1 (en) Misfire detector for detecting misfire of internal combustion engine
EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
JP2007055497A (en) Battery condition control device
EP1523632B1 (en) Method and device for automatic transmission control equipping a vehicle in uphill situation
EP2168836B1 (en) Method for estimating the maximum possible longitudinal acceleration that can be achieved with the next higher transmission ratio for a vehicle equipped with a discrete gearing system
FR2908484A1 (en) Dry friction clutch operating state diagnosing method for motor vehicle, involves calculating inner temperature gradients by evaluation of thermal model of clutch, and determining heating state of clutch relative to calculated gradients
EP1319857A1 (en) Clutch wear diagnostic system in a motor vehicle
CN114072653A (en) Heavy engine adjustment test device and method
FR2718191A1 (en) Suppression oscillation along automobile longitudinal axis
FR2910062A1 (en) Stressed component's e.g. bonnet, mechanical reliability controlling method for e.g. motor vehicle's oil engine, involves emitting alert or applying power reduction strategy to limit progression of damage to assure life time for component
JP2003120401A (en) Method for modeling friction torque of engine
FR2881527A1 (en) METHOD FOR EVALUATING THE OPERATION OF A BATTERY FOR A MOTOR VEHICLE
EP2042222A1 (en) Device and method for detecting the clogging of a fuel filter of an internal combustion engine fuel supply system
EP1308740B1 (en) Device for diagnosing the operability of a storage battery
FR2904050A1 (en) PROCESS FOR THE AUTOMATIC DETERMINATION OF THE QUALITY OF A TRANSIENT COMPENSATION
FR3101430A1 (en) Method for estimating the aging of a vehicle battery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BONNET, JEAN-BAPTISTE

Inventor name: SEDDA, EMMANUEL

17P Request for examination filed

Effective date: 20050301

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20090226

REF Corresponds to:

Ref document number: 602004019464

Country of ref document: DE

Date of ref document: 20090402

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2320548

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: PEUGEOT CITROEN AUTOMOBILES S.A.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090519

REG Reference to a national code

Ref country code: ES

Ref legal event code: GC2A

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150128

Year of fee payment: 12

Ref country code: ES

Payment date: 20150122

Year of fee payment: 12

Ref country code: DE

Payment date: 20150122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150220

Year of fee payment: 12

Ref country code: GB

Payment date: 20150123

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004019464

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160220