EP1450005A1 - Turbine discs cooling device - Google Patents

Turbine discs cooling device Download PDF

Info

Publication number
EP1450005A1
EP1450005A1 EP04290324A EP04290324A EP1450005A1 EP 1450005 A1 EP1450005 A1 EP 1450005A1 EP 04290324 A EP04290324 A EP 04290324A EP 04290324 A EP04290324 A EP 04290324A EP 1450005 A1 EP1450005 A1 EP 1450005A1
Authority
EP
European Patent Office
Prior art keywords
upstream
flange
annular
wall
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04290324A
Other languages
German (de)
French (fr)
Other versions
EP1450005B1 (en
Inventor
Sébastien Imbourg
Jean-Luc Soupizon
Philippe Pabion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of EP1450005A1 publication Critical patent/EP1450005A1/en
Application granted granted Critical
Publication of EP1450005B1 publication Critical patent/EP1450005B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc

Definitions

  • the present invention relates to the general field of cooling of high-pressure and low-pressure turbine discs of a turbomachine. It relates more particularly to a device for cooling the disc of the moving blades of the high-pressure turbine and the discs of the rotating blades of the low-pressure turbine of a turbomachine.
  • the cooling of the high and low pressure turbines are generally provided by injection air from the distributor of the low-pressure turbine by through annular flanges mounted on a platform lower support of a fixed vane of the distributor.
  • Figure 7 schematically represents the junction between the high and low turbines pressure of a turbomachine with a cooling device of the type known.
  • three annular flanges 100 are fixed to a lower platform 102 for supporting a fixed vane 104 of the distributor 106 of the low-pressure turbine.
  • the assembly of these flanges creates a annular cavity 108 supplied with cooling air by sockets 110 connecting air from the base of the fixed blade 104 of the distributor.
  • Holes 112 made in the flanges 100 allow inject cooling air to a disc 114 of a moving blade 116 from the high-pressure turbine and a disc 118 from a rotary vane 120 of the low-pressure turbine.
  • a fourth annular flange 122 extending radially between the assembly of the three flanges 100 and a flange 124 of the disc 114 of the movable blade allows the assembly to delimit a high-pressure enclosure 126 and a low-pressure enclosure 128.
  • the quality of the cooling of the high turbine discs and low pressure depends in particular on the cooling air supply of the injection cavity defined by the annular flanges of the cooling. In particular, it is important to obtain a perfect sealing of this cavity and avoiding pressure drops at the level of feeding it. The pressure losses generally result of poor quality of the air flow at the outlet of the sockets link.
  • the flow of air from the connecting sockets 110 undergoes a change of direction important (represented by arrow 130) which is the source of losses of charge detrimental to the proper functioning of the device.
  • a gooseneck distributor characterized by lower and upper platforms for supporting the stationary blades which are elongated to increase performance aerodynamics of the low-pressure turbine.
  • the flanges of the cooling device the turbine discs are bent in order to adapt to the elongated geometry of the lower platform of the distributor so that the cooling air from the foot of the blades fixed undergoes significant direction changes.
  • level of these bends in the flasks, areas with high pressure drops are also significantly more pronounced when it comes to a turbine distributor low pressure says "swan neck”.
  • the present invention therefore aims to overcome such drawbacks by proposing a device for cooling turbine discs, particularly adapted to a geometry of the gooseneck distributor, which reduces pressure losses while maintaining perfect seal.
  • a cooling device is provided. low-pressure and high-pressure turbine engine discs, the device being supplied with cooling air from at least one air orifice made through a lower annular platform of support of at least one fixed blade of the low-pressure turbine and arranged between an upstream flange and a downstream flange of the lower platform, characterized in that it comprises: an upstream annular flange extending radially from the upstream flange of the lower platform; a flask downstream annular extending radially from the downstream flange of the platform lower, the upstream and downstream flanges delimiting longitudinally at least one annular cooling air cavity; a device sealing extending longitudinally between said upstream flanges and downstream so as to seal the air cavity of cooling; means for holding the upstream and downstream flanges against the upstream and downstream flanges of the lower platform; and an a plurality of holes for injecting cooling air into the turbine discs.
  • the assembly of these flanges makes it possible to limit the losses load by creating a perfectly cool air cavity waterproof.
  • the upstream and downstream flanges of the cooling device do not form no elbows so the air cavity can be directly supplied without pressure drop from the air opening through of a lower platform.
  • the cooling device does not has only two flanges which constitutes a gain in mass by compared to the devices of the prior art.
  • the upstream flange has a connecting part with the lower platform formed of an annular wall substantially radial, and an injection part formed by a first annular wall substantially radial offset radially and longitudinally downstream relative to the connecting part, a second annular wall substantially radial offset longitudinally downstream from the first radial wall, and a first annular wall substantially longitudinal extending between the radial wall of the connecting part and the second radial wall of the injection part so as to divide longitudinally the cooling air cavity in a lower area and upper area.
  • the injection part of the upstream flange further comprises a second substantially longitudinal annular wall extending between the first and second radial walls and disposed between the first wall longitudinal and the sealing device so as to divide the area lower into a mounting area and an injection area.
  • a plurality substantially radial partitions extending between the first and second longitudinal walls and arranged perpendicular to the first and second radial walls to divide the mounting area into a plurality of annular cavities.
  • the first longitudinal wall of the injection part of the upstream flange has communication openings between the zones lower and upper so as to supply cooling air to the minus an annular cavity, these communication openings being radially aligned with the air opening made through the platform lower.
  • This or these annular cavities supplied with air from cooling includes, at the second longitudinal wall, at minus a passage allowing the air injection area to be supplied with cooling.
  • the injection area has a plurality of holes practiced in the first and second radial walls of the part injector of the upstream flange in order to inject the cooling air to the turbine discs.
  • Connection tubes are advantageously arranged in each communication opening in order to supply air to cooling the annular cavity or cavities.
  • radial retention of each of these connecting tubes can be provided and the second radial wall of the injection part of the upstream flange can have a plurality of annular windows for mounting the tubes link.
  • downstream flange advantageously comprises a part connecting with the lower platform formed by an annular wall substantially radial, and a part for holding the upstream flange formed a substantially radial annular wall offset radially and longitudinally upstream with respect to the connecting part and disposed against the second radial wall of the injection portion of the flange upstream, and a longitudinal wall extending between the radial walls of the connecting part and the holding part.
  • the cooling device may further include a additional annular flange extending radially between the device impeller sealing flange and disc high-pressure so as to define a high-pressure enclosure and a low-pressure enclosure on either side of the cooling device.
  • Stiffening elements are preferably arranged between ends additional ring flange to improve behavior dynamics of the cooling device.
  • Figure 1 shows in longitudinal section a device for cooling according to the invention in its environment.
  • FIG. 1 shows in particular a high-pressure turbine 10 of longitudinal axis X-X provided with a plurality of movable blades 12 (only one is shown in Figure 1).
  • the movable blades 12 are all mounted on an annular disc 14 animated by a movement of rotation around the longitudinal axis X-X.
  • a low-pressure turbine 16 also of longitudinal axis X-X, is arranged downstream of the turbine high pressure 10 in the direction F of the flow of gas from the high pressure turbine.
  • the low-pressure turbine 16 has several turbine stages (only one stage is fully shown in the figure 1) which each consist of a distributor 18 and a plurality of blades rotary 20 placed behind each distributor.
  • Rotary blades 20 are all mounted on an annular disc 22 rotated around the longitudinal axis X-X.
  • each distributor 18 is formed of a plurality of fixed vanes 24 supported by an annular platform upper 26 and a lower annular platform 28.
  • the distributor 18 of the first stage of the turbine low pressure has a swan neck configuration, i.e. the upper 26 and lower 28 platforms thereof are elongated so to increase the distance between the leading edge of the stationary vanes 24 of the distributor and the trailing edge of the moving blades 12 of the high-pressure turbine 10.
  • This configuration improves the performance of the low pressure turbine.
  • the present invention can also apply to low-pressure turbine distributors whose platforms support blades are not elongated.
  • the device 30 for cooling the disc 14 of the moving blades 12 of the high-pressure turbine and of the disc 22 of the rotary blades 20 of the low-pressure turbine is notably constituted by assembling an upstream annular flange 32 with a flange downstream annular 34.
  • the upstream 32 and downstream 34 flanges are each provided in the form of a ring whose axis of symmetry coincides with the axis longitudinal X-X of high and low pressure turbines.
  • the upstream flange 32 extends radially from a flange 36 disposed at an upstream end of the lower platform 28, while the downstream flange 34 extends radially from a flange 38 disposed at a downstream end of the same platform.
  • These upstream and downstream flanges thus define a annular enclosure 40 which is sealed by a device sealing, for example by an annular plate 42 fixed between the free ends of the upstream and downstream flanges.
  • the annular enclosure 40 is supplied with air from a cooling circuit which equips each fixed vane 24 of the distributor 18.
  • air which is by example taken from the high-pressure compressor of the turbomachine, is introduced into each stationary vane 24 of the distributor by its summit, then circulates in the fixed dawn following a delimited path by a cooling cavity (not shown) possibly fitted with a shirt before being evacuated, particularly at the foot 24a of the blade by orifices 44 passing through the lower platform 28.
  • a cooling cavity possibly fitted with a shirt
  • air evacuation orifices 44 are arranged at the foot 24a of each blade, between the upstream flange 36 and the downstream flange 38 of the platform lower.
  • upstream and downstream flanges we will now describe, more precisely, the geometry of these upstream and downstream flanges.
  • the upper end of a flange is defined as opposed to the lower end of it as the end of the flange furthest from the longitudinal axis XX.
  • the concept of upstream and downstream is interpreted in relation to the meaning gas flow F from the high-pressure turbine.
  • the upstream and downstream flanges each have a connecting part with the upstream and downstream flanges 36 38 of the lower platform 28 of the distributor 18.
  • These flanges making projecting radially from the lower platform, the parts of connection are formed by annular walls 46, 48 extending radially from so as to come to rest against these flanges during the assembly of the platform lower 28 on the cooling device. The means of maintenance of the connecting parts of the upstream and downstream flanges against the flanges will be described later.
  • the upstream flange 32 further comprises an injection part in particular formed of a first annular wall 50 extending radially and which is offset longitudinally downstream relative to the wall 46 of its connecting part, and a second annular wall 52 extending radially and which is offset from the first wall 50, both radially towards the longitudinal axis X-X and longitudinally downstream.
  • a first longitudinal annular wall 54 connects one end bottom of the wall 46 of the connecting part at an upper end of the second wall 52. This first longitudinal wall thus divides the annular enclosure 40 in a lower zone 40a and an upper zone 40b.
  • the injection part of the upstream flange further comprises a second longitudinal wall annular 56 which extends between the first and second radial walls 50, 52.
  • This second longitudinal wall 56 is moreover disposed between the first longitudinal wall 54 and the annular sheet 42 forming the device sealing 42 so as to divide the lower zone 40a into a zone 58 said assembly and a so-called injection area 60.
  • the mounting area 58 is itself divided into a plurality of annular cavities 62 by radial partitions 64. These partitions radials are arranged perpendicular to the first 50 and second 52 radial walls of the injection part of the upstream flange and extend between the first and second longitudinal walls 54, 56. They are regularly spaced around the longitudinal axis X-X of the turbines.
  • the mounting area 58 is segmented into a plurality of cavities annular 62, while the injection zone 60 is continuous all around of the longitudinal axis X-X.
  • the first longitudinal wall 54 of the injection part of the upstream flange has a plurality of openings 66 intended to put in communication the upper zone 40b with the lower zone 40a so supply cooling air to the latter.
  • these openings 66 open in the upper zone 40b and open into certain annular cavities 62a formed in the mounting zone 58.
  • the openings are arranged in such a way that the upper zone supplies air with cooling only one out of two annular cavities 62, and two openings opening into the same annular cavity are provided.
  • the second longitudinal wall annular 56 has at least one passage 68 allowing the air to cooling to pass from the annular cavity 62a to the injection zone 60. Furthermore, the openings 66 are arranged in the first wall longitudinal 54 so as to be axially aligned with the air openings 44 made in the lower platform 28 ( Figure 1). So the losses load at the level of the supply of each annular cavity 62a are limited.
  • the injection zone 60 opens towards the disc 14 of the blades mobile 12 of the high-pressure turbine and towards the disc 22 of the blades rotary 20 of the low-pressure turbine via a plurality holes 70 made in the first and second radial walls 50, 52 of the injection part of the upstream flange.
  • these holes 70 can be inclined holes (as in the figures) or straight. All another system for calibrating a desired flow rate to cool the High and low pressure turbine discs may also be suitable.
  • the air evacuated through the orifices 44 of the lower platform 28 supplies the upper zone 40b then certain annular cavities 62a by through openings 66.
  • the air then diffuses into the area injection 60 via passages 68 before being evacuated by the holes 70 for cooling the disc 14 of the moving blades of the turbine high pressure and the disc 22 of the rotary blades of the low pressure turbine.
  • a cavity annular 62 on two is supplied with cooling air by the openings (the cavities 62a).
  • the annular cavities 62b which are not supplied with air are intended to allow the attachment of the downstream flange to the upstream flange.
  • the second radial wall 52 of the part injection of the upstream flange present, at least at some of these non-powered cavities 62b, holes 72 intended to be crossed by bolted connections of screw / nut type.
  • the first wall radial 50 of the injection part includes lights 74, for example circular, arranged opposite these holes. These lights thus facilitate access to bolted connections during assembling the upstream and downstream flanges and "drowning" the nut of these connections so as not to create turbulence.
  • connecting tubes 76 can be disposed in each of the openings 66 in order to guide the air from cooling towards the annular cavities 62a.
  • the downstream flange 34 has, at an opposite lower end at its connecting part, a part for holding the upstream flange which is formed by an annular wall 80 extending radially and which is offset from the radial wall 48 of its connecting part, both radially towards the longitudinal axis X-X and longitudinally upstream.
  • This radial annular wall 80 is arranged so as to come to bear against the second radial wall 52 of the injection part of the flange upstream. It is also centered with clamping on the upstream flange to perfect the sealing of the cooling device.
  • An annular wall longitudinal 81 connects a lower end of the radial wall 48 of the connecting part at an upper end of the radial wall 80 of the holding part.
  • the radial wall 80 of the holding part has a plurality of holes 82 intended to be crossed by the links bolted. These holes 82 are arranged all around the axis longitudinal X-X so as to coincide with the holes 72 in the flange upstream when the upstream and downstream flanges are assembled one against the other the other.
  • the upstream 32 and downstream 34 flanges can thus be maintained in support one against the other, after the assembly of the lower platform 28, via bolted connections 83.
  • This arrangement particular of the holding means makes it possible to obtain an assembly slightly prestressed from the lower platform 28 on the flanges upstream 32 and downstream 34 in order to improve the dynamic behavior of the cooling device while limiting movement relative longitudinal and ensuring good sealing of the areas lower and upper.
  • the wall radial 80 of the holding part of the downstream flange comprises radial retention devices for these tubes.
  • Such devices retention can for example be brackets 84 fixed against the wall radial 80 and whose dimensions are adapted to be accommodated in the annular windows 78 of the second radial wall 52 of the part injection of the upstream flange.
  • the cooling device 30 thus formed comprises an annular flange additional 85 which extends radially between the sealing device 42 and a flange 86 of the disc 14 of the moving blades of the high-pressure turbine with whom he is in contact.
  • This additional flange 85 thus makes it possible to define a high-pressure enclosure 87 and an enclosure low pressure 88 on either side of the cooling device 30.
  • the contact between the flange 86 of the disc 14 and the lower end of the additional flange 85 is effected by through sealing means.
  • the annular flange additional 85 has a substantially triangular cross section.
  • stiffening elements 91 can be arranged between the upper and lower ends of the additional flange. As shown in Figures 3 and 6, such stiffening elements can by example take the form of sheets fixed on the upper ends and bottom of the additional flange 85.
  • the cooling device 30 can also include a device anti-rotation of the assembly of the upstream 32 and downstream 34 flanges.
  • anti-rotation device can be formed from a plurality of radial pins 92 arranged on the downstream flange 34, in the extension of the wall radial annular 80 of its holding part. As illustrated in the figure 1, these pins 92 thus come into abutment in notches 93 of the platform dispenser 28 to prevent rotation untimely cooling device.
  • the pins can be formed on the upstream flange 32, for example at the level of the first longitudinal wall 54 of its injection part. In this case no shown in the figures, the pins also come into abutment in notches on the lower platform.
  • the upstream and downstream flanges of the cooling device can be made in one and the same piece so as to constitute a single flange.
  • a flange must also be fitted at the level of the wall radial of the connecting part of the upstream flange to allow the use specific tools to remove the prestress during mounting of the lower platform on the mono-flange.
  • Such a mono-flange variant allows to remove bolted connections which decreases the mass of the assembly and the time of its assembly.
  • the cooling device thus defined has many advantages. It allows in particular to reduce losses of charge which reduces the specific consumption of the turbine engine. This reduction in pressure drops does not lead to as much a degradation of the aerodynamic behavior of the device. Moreover, such a device is perfectly suitable for a low-pressure turbine distributor having a swan neck configuration. We will also note that, the number of flanges being reduced compared to the devices the mass of the cooling device according to the invention is therefore reduced and its assembly facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

The device has an upstream (32) and downstream annular plate (34) extending radially from upstream and downstream flanges (36, 38) of a lower platform, respectively. An airtight device (42) extends longitudinally between the plates to seal an annular cavity. Bolded links (83) maintain the upstream and downstream plates against the respective flanges. Holes (70) inject cooling air towards a turbine disc.

Description

Arrière-plan de l'inventionInvention background

La présente invention se rapporte au domaine général du refroidissement des disques de turbines haute-pression et basse-pression d'une turbomachine. Elle vise plus particulièrement un dispositif permettant de refroidir le disque des aubes mobiles de la turbine haute-pression et les disques des aubes rotatives de la turbine basse-pression d'une turbomachine.The present invention relates to the general field of cooling of high-pressure and low-pressure turbine discs of a turbomachine. It relates more particularly to a device for cooling the disc of the moving blades of the high-pressure turbine and the discs of the rotating blades of the low-pressure turbine of a turbomachine.

Dans une turbomachine, le refroidissement des disques de turbines haute et basse pression est généralement assuré par injection d'air provenant du distributeur de la turbine basse-pression par l'intermédiaire de flasques annulaires montés sur une plate-forme inférieure de support d'une aube fixe du distributeur. La figure 7 représente schématiquement la jonction entre les turbines haute et basse pression d'une turbomachine avec un dispositif de refroidissement de type connu. Sur cette figure, trois flasques annulaires 100 sont fixés à une plate-forme inférieure 102 de support d'une aube fixe 104 du distributeur 106 de la turbine basse-pression. L'assemblage de ces flasques créé une cavité annulaire 108 alimentée en air de refroidissement par des douilles de liaison 110 collectant de l'air issu du pied de l'aube fixe 104 du distributeur. Des perçages 112 pratiqués dans les flasques 100 permettent d'injecter de l'air de refroidissement vers un disque 114 d'une aube mobile 116 de la turbine haute-pression et un disque 118 d'une aube rotative 120 de la turbine basse-pression. Un quatrième flasque annulaire 122 s'étendant radialement entre l'assemblage des trois flasques 100 et une bride 124 du disque 114 de l'aube mobile permet à l'ensemble de délimiter une enceinte haute-pression 126 et une enceinte basse-pression 128.In a turbomachine, the cooling of the high and low pressure turbines are generally provided by injection air from the distributor of the low-pressure turbine by through annular flanges mounted on a platform lower support of a fixed vane of the distributor. Figure 7 schematically represents the junction between the high and low turbines pressure of a turbomachine with a cooling device of the type known. In this figure, three annular flanges 100 are fixed to a lower platform 102 for supporting a fixed vane 104 of the distributor 106 of the low-pressure turbine. The assembly of these flanges creates a annular cavity 108 supplied with cooling air by sockets 110 connecting air from the base of the fixed blade 104 of the distributor. Holes 112 made in the flanges 100 allow inject cooling air to a disc 114 of a moving blade 116 from the high-pressure turbine and a disc 118 from a rotary vane 120 of the low-pressure turbine. A fourth annular flange 122 extending radially between the assembly of the three flanges 100 and a flange 124 of the disc 114 of the movable blade allows the assembly to delimit a high-pressure enclosure 126 and a low-pressure enclosure 128.

La qualité du refroidissement des disques de turbines haute et basse pression dépend notamment de l'alimentation air de refroidissement de la cavité d'injection définie par les flasques annulaires du dispositif de refroidissement. En particulier, il est important d'obtenir une parfaite étanchéité de cette cavité et d'éviter les pertes de charge au niveau de l'alimentation de celle-ci. Les pertes de charge résultent généralement d'une mauvaise qualité de l'écoulement d'air en sortie des douilles de liaison. Dans le dispositif de refroidissement illustré sur la figure 7, le flux d'air issu des douilles de liaison 110 subit un changement de direction important (représenté par la flèche 130) qui est à l'origine de pertes de charge préjudiciables au bon fonctionnement du dispositif.The quality of the cooling of the high turbine discs and low pressure depends in particular on the cooling air supply of the injection cavity defined by the annular flanges of the cooling. In particular, it is important to obtain a perfect sealing of this cavity and avoiding pressure drops at the level of feeding it. The pressure losses generally result of poor quality of the air flow at the outlet of the sockets link. In the cooling device illustrated in Figure 7, the flow of air from the connecting sockets 110 undergoes a change of direction important (represented by arrow 130) which is the source of losses of charge detrimental to the proper functioning of the device.

Les pertes de charge dues à des changements de direction du flux d'air alimentant de tels dispositifs de refroidissement sont par ailleurs nettement plus prononcées lorsqu'il s'agit d'un distributeur de turbine basse-pression dit « à col de cygne ». Un distributeur à col de cygne se caractérise par des plates-formes inférieure et supérieure de support des aubes fixes qui sont allongées afin d'augmenter les performances aérodynamiques de la turbine basse-pression. Dans ce cas, les flasques du dispositif de refroidissement des disques de turbines sont coudés afin de s'adapter à la géométrie allongée de la plate-forme inférieure du distributeur de sorte que l'air de refroidissement issu du pied des aubes fixes subit des changements de direction importants. Il en résulte, au niveau de ces coudes des fiasques, des zones à fortes pertes de charge.Pressure losses due to changes in direction of the air flow supplying such cooling devices are also significantly more pronounced when it comes to a turbine distributor low pressure says "swan neck". A gooseneck distributor characterized by lower and upper platforms for supporting the stationary blades which are elongated to increase performance aerodynamics of the low-pressure turbine. In this case, the flanges of the cooling device the turbine discs are bent in order to adapt to the elongated geometry of the lower platform of the distributor so that the cooling air from the foot of the blades fixed undergoes significant direction changes. As a result, level of these bends in the flasks, areas with high pressure drops.

Objet et résumé de l'inventionSubject and summary of the invention

La présente invention vise donc à pallier de tels inconvénients en proposant un dispositif de refroidissement de disques de turbine, notamment adapté à une géométrie du distributeur à col de cygne, qui permet de réduire les pertes de charge tout en conservant une parfaite étanchéité.The present invention therefore aims to overcome such drawbacks by proposing a device for cooling turbine discs, particularly adapted to a geometry of the gooseneck distributor, which reduces pressure losses while maintaining perfect seal.

A cet effet, il est prévu un dispositif de refroidissement de disques de turbines basse-pression et haute pression de turbomachine, le dispositif étant alimenté en air de refroidissement depuis au moins un orifice d'air pratiqué au travers d'une plate-forme annulaire inférieure de support d'au moins une aube fixe de la turbine basse-pression et disposé entre une bride amont et une bride aval de la plate-forme inférieure, caractérisé en ce qu'il comporte : un flasque annulaire amont s'étendant radialement depuis la bride amont de la plate-forme inférieure ; un flasque annulaire aval s'étendant radialement depuis la bride aval de la plate-forme inférieure, les flasques amont et aval délimitant longitudinalement au moins une cavité annulaire d'air de refroidissement ; un dispositif d'étanchéité s'étendant longitudinalement entre lesdits flasques amont et aval de façon à obturer de manière étanche la cavité d'air de refroidissement ; des moyens de maintien des flasques amont et aval contre les brides amont et aval de la plate-forme inférieure ; et une pluralité de perçages afin d'injecter de l'air de refroidissement vers les disques de turbines.To this end, a cooling device is provided. low-pressure and high-pressure turbine engine discs, the device being supplied with cooling air from at least one air orifice made through a lower annular platform of support of at least one fixed blade of the low-pressure turbine and arranged between an upstream flange and a downstream flange of the lower platform, characterized in that it comprises: an upstream annular flange extending radially from the upstream flange of the lower platform; a flask downstream annular extending radially from the downstream flange of the platform lower, the upstream and downstream flanges delimiting longitudinally at least one annular cooling air cavity; a device sealing extending longitudinally between said upstream flanges and downstream so as to seal the air cavity of cooling; means for holding the upstream and downstream flanges against the upstream and downstream flanges of the lower platform; and an a plurality of holes for injecting cooling air into the turbine discs.

Ainsi, l'assemblage de ces flasques permet de limiter les pertes de charge en créant une cavité d'air de refroidissement parfaitement étanche. Les flasques amont et aval du dispositif de refroidissement ne forment pas de coudes de sorte que la cavité d'air peut être directement alimentée sans pertes de charge depuis l'orifice d'air pratiqué au travers d'une plate-forme inférieure. De plus, le dispositif de refroidissement ne comporte que deux flasques ce qui constitue un gain de masse par rapport aux dispositifs de l'art antérieur.Thus, the assembly of these flanges makes it possible to limit the losses load by creating a perfectly cool air cavity waterproof. The upstream and downstream flanges of the cooling device do not form no elbows so the air cavity can be directly supplied without pressure drop from the air opening through of a lower platform. In addition, the cooling device does not has only two flanges which constitutes a gain in mass by compared to the devices of the prior art.

De préférence, le flasque amont comporte une partie de liaison avec la plate-forme inférieure formée d'une paroi annulaire sensiblement radiale, et une partie d'injection formée d'une première paroi annulaire sensiblement radiale décalée radialement et longitudinalement vers l'aval par rapport à la partie de liaison, d'une seconde paroi annulaire sensiblement radiale décalée longitudinalement vers l'aval par rapport à la première paroi radiale, et d'une première paroi annulaire sensiblement longitudinale s'étendant entre la paroi radiale de la partie de liaison et la seconde paroi radiale de la partie d'injection de façon à diviser longitudinalement la cavité d'air de refroidissement en une zone inférieure et zone supérieure.Preferably, the upstream flange has a connecting part with the lower platform formed of an annular wall substantially radial, and an injection part formed by a first annular wall substantially radial offset radially and longitudinally downstream relative to the connecting part, a second annular wall substantially radial offset longitudinally downstream from the first radial wall, and a first annular wall substantially longitudinal extending between the radial wall of the connecting part and the second radial wall of the injection part so as to divide longitudinally the cooling air cavity in a lower area and upper area.

La partie d'injection du flasque amont comporte en outre une seconde paroi annulaire sensiblement longitudinale s'étendant entre les première et seconde parois radiales et disposée entre la première paroi longitudinale et le dispositif d'étanchéité de façon à diviser la zone inférieure en une zone de montage et une zone d'injection. Une pluralité de cloisons sensiblement radiales s'étendant entre les première et seconde parois longitudinales et disposées perpendiculairement aux première et seconde parois radiales permettent de diviser la zone de montage en une pluralité de cavités annulaires. The injection part of the upstream flange further comprises a second substantially longitudinal annular wall extending between the first and second radial walls and disposed between the first wall longitudinal and the sealing device so as to divide the area lower into a mounting area and an injection area. A plurality substantially radial partitions extending between the first and second longitudinal walls and arranged perpendicular to the first and second radial walls to divide the mounting area into a plurality of annular cavities.

La première paroi longitudinale de la partie d'injection du flasque amont comporte des ouvertures de communication entre les zones inférieure et supérieure de façon à alimenter en air de refroidissement au moins une cavité annulaire, ces ouvertures de communication étant radialement alignées avec l'orifice d'air pratiqué au travers de la plate-forme inférieure. Cette ou ces cavités annulaires alimentées en air de refroidissement comporte, au niveau de la seconde paroi longitudinale, au moins un passage permettant d'alimenter la zone d'injection en air de refroidissement. La zone d'injection présente une pluralité de perçages pratiqués dans les première et seconde parois radiales de la partie d'injection du flasque amont afin d'injecter l'air de refroidissement vers les disques de turbines.The first longitudinal wall of the injection part of the upstream flange has communication openings between the zones lower and upper so as to supply cooling air to the minus an annular cavity, these communication openings being radially aligned with the air opening made through the platform lower. This or these annular cavities supplied with air from cooling includes, at the second longitudinal wall, at minus a passage allowing the air injection area to be supplied with cooling. The injection area has a plurality of holes practiced in the first and second radial walls of the part injector of the upstream flange in order to inject the cooling air to the turbine discs.

Des tubes de liaison sont avantageusement disposés dans chaque ouverture de communication afin d'alimenter en air de refroidissement la ou les cavités annulaires. Dans ce cas, des dispositifs de rétention radiale de chacun de ces tubes de liaison peuvent être prévus et la seconde paroi radiale de la partie d'injection du flasque amont peut comporter une pluralité de fenêtres annulaires pour le montage des tubes de liaison.Connection tubes are advantageously arranged in each communication opening in order to supply air to cooling the annular cavity or cavities. In this case, radial retention of each of these connecting tubes can be provided and the second radial wall of the injection part of the upstream flange can have a plurality of annular windows for mounting the tubes link.

De plus, le flasque aval comporte avantageusement une partie de liaison avec la plate-forme inférieure formée d'une paroi annulaire sensiblement radiale, et une partie de maintien du flasque amont formée d'une paroi annulaire sensiblement radiale décalée radialement et longitudinalement vers l'amont par rapport à la partie de liaison et disposée contre la seconde paroi radiale de la partie d'injection du flasque amont, et d'une paroi longitudinale s'étendant entre les parois radiales de la partie de liaison et de la partie de maintien.In addition, the downstream flange advantageously comprises a part connecting with the lower platform formed by an annular wall substantially radial, and a part for holding the upstream flange formed a substantially radial annular wall offset radially and longitudinally upstream with respect to the connecting part and disposed against the second radial wall of the injection portion of the flange upstream, and a longitudinal wall extending between the radial walls of the connecting part and the holding part.

Le dispositif de refroidissement peut en outre comporter un flasque annulaire supplémentaire s'étendant radialement entre le dispositif d'étanchéité et une bride du disque des aubes mobiles de la turbine haute-pression de façon à définir une enceinte haute-pression et une enceinte basse-pression de part et d'autre du dispositif de refroidissement. Des éléments raidisseurs sont de préférence disposés entre des extrémités du flasque annulaire supplémentaire afin d'améliorer le comportement dynamique du dispositif de refroidissement. The cooling device may further include a additional annular flange extending radially between the device impeller sealing flange and disc high-pressure so as to define a high-pressure enclosure and a low-pressure enclosure on either side of the cooling device. Stiffening elements are preferably arranged between ends additional ring flange to improve behavior dynamics of the cooling device.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :

  • la figure 1 est une vue en coupe longitudinale et partielle d'un dispositif de refroidissement selon l'invention ;
  • les figure 2 et 3 sont des vues selon deux perspectives différentes du dispositif de refroidissement de la figure 1 ;
  • les figures 4 et 5 sont des vues en sections respectives selon IV-IV et V-V de la figure 3 ;
  • la figure 6 est une vue en perspective et partielle du dispositif de refroidissement de la figure 1 illustrant son montage ; et
  • la figure 7 est en coupe longitudinale et partielle d'un dispositif de refroidissement connu de l'art antérieur.
Other characteristics and advantages of the present invention will emerge from the description given below, with reference to the appended drawings which illustrate an embodiment thereof devoid of any limiting character. In the figures:
  • Figure 1 is a longitudinal and partial sectional view of a cooling device according to the invention;
  • Figures 2 and 3 are views from two different perspectives of the cooling device of Figure 1;
  • Figures 4 and 5 are views in respective sections along IV-IV and VV of Figure 3;
  • Figure 6 is a perspective and partial view of the cooling device of Figure 1 illustrating its assembly; and
  • Figure 7 is a longitudinal and partial section of a cooling device known from the prior art.

Description détaillée d'un mode de réalisationDetailed description of an embodiment

La figure 1 représente en coupe longitudinale un dispositif de refroidissement selon l'invention dans son environnement.Figure 1 shows in longitudinal section a device for cooling according to the invention in its environment.

Sur cette figure, est notamment représentée une turbine haute-pression 10 d'axe longitudinal X-X munie d'une pluralité aubes mobiles 12 (une seule est représentée sur la figure 1). Les aubes mobiles 12 sont toutes montées sur un disque annulaire 14 animé d'un mouvement de rotation autour de l'axe longitudinal X-X. Une turbine basse-pression 16, également d'axe longitudinal X-X, est disposée en aval de la turbine haute-pression 10 dans le sens F d'écoulement du flux gazeux issu de la turbine haute-pression. La turbine basse-pression 16 comporte plusieurs étages de turbine (un seul étage est entièrement représenté sur la figure 1) qui se composent chacun d'un distributeur 18 et d'une pluralité d'aubes rotatives 20 placées derrière chaque distributeur. Les aubes rotatives 20 sont toutes montées sur un disque annulaire 22 mis en rotation autour de l'axe longitudinal X-X. Enfin, chaque distributeur 18 est formé d'une pluralité d'aubes fixes 24 supportées par une plate-forme annulaire supérieure 26 et une plate-forme annulaire inférieure 28. This figure shows in particular a high-pressure turbine 10 of longitudinal axis X-X provided with a plurality of movable blades 12 (only one is shown in Figure 1). The movable blades 12 are all mounted on an annular disc 14 animated by a movement of rotation around the longitudinal axis X-X. A low-pressure turbine 16, also of longitudinal axis X-X, is arranged downstream of the turbine high pressure 10 in the direction F of the flow of gas from the high pressure turbine. The low-pressure turbine 16 has several turbine stages (only one stage is fully shown in the figure 1) which each consist of a distributor 18 and a plurality of blades rotary 20 placed behind each distributor. Rotary blades 20 are all mounted on an annular disc 22 rotated around the longitudinal axis X-X. Finally, each distributor 18 is formed of a plurality of fixed vanes 24 supported by an annular platform upper 26 and a lower annular platform 28.

Sur la figure 1, le distributeur 18 du premier étage de la turbine basse-pression a une configuration en col de cygne, c'est à dire que les plates-formes supérieure 26 et inférieure 28 de celui-ci sont allongées afin d'augmenter la distance entre le bord d'attaque des aubes fixes 24 du distributeur et le bord de fuite des aubes mobiles 12 de la turbine haute-pression 10. Cette configuration permet d'améliorer les performances de la turbine basse-pression. Toutefois, la présente invention peut également s'appliquer à des distributeurs de turbine basse-pression dont les plates-formes de support des aubes ne sont pas allongées.In FIG. 1, the distributor 18 of the first stage of the turbine low pressure has a swan neck configuration, i.e. the upper 26 and lower 28 platforms thereof are elongated so to increase the distance between the leading edge of the stationary vanes 24 of the distributor and the trailing edge of the moving blades 12 of the high-pressure turbine 10. This configuration improves the performance of the low pressure turbine. However, the present invention can also apply to low-pressure turbine distributors whose platforms support blades are not elongated.

Selon l'invention, le dispositif de refroidissement 30 du disque 14 des aubes mobiles 12 de la turbine haute-pression et du disque 22 des aubes rotatives 20 de la turbine basse-pression est notamment constitué par l'assemblage d'un flasque annulaire amont 32 avec un flasque annulaire aval 34. Les flasques amont 32 et aval 34 se présentent chacun sous la forme d'un anneau dont l'axe de symétrie est confondu avec l'axe longitudinal X-X des turbines haute et basse pression.According to the invention, the device 30 for cooling the disc 14 of the moving blades 12 of the high-pressure turbine and of the disc 22 of the rotary blades 20 of the low-pressure turbine is notably constituted by assembling an upstream annular flange 32 with a flange downstream annular 34. The upstream 32 and downstream 34 flanges are each provided in the form of a ring whose axis of symmetry coincides with the axis longitudinal X-X of high and low pressure turbines.

Comme représenté sur la figure 1, le flasque amont 32 s'étend radialement depuis une bride 36 disposée à une extrémité amont de la plate-forme inférieure 28, tandis que le flasque aval 34 s'étend radialement depuis une bride 38 disposée à une extrémité aval de la même plate-forme. Ces flasques amont et aval délimitent ainsi une enceinte annulaire 40 qui est obturée de façon étanche par un dispositif d'étanchéité, par exemple par une tôle annulaire 42 fixée entre les extrémités libres des flasques amont et aval. L'enceinte annulaire 40 est alimentée en air provenant d'un circuit de refroidissement qui équipe chaque aube fixe 24 du distributeur 18. Typiquement, de l'air, qui est par exemple prélevé au niveau du compresseur haute-pression de la turbomachine, est introduit dans chaque aube fixe 24 du distributeur par son sommet, circule ensuite dans l'aube fixe en suivant un chemin délimité par une cavité de refroidissement (non représentée) éventuellement munie d'une chemise avant d'être évacué notamment au niveau du pied 24a de l'aube par des orifices 44 traversant la plate-forme inférieure 28. Ces orifices 44 d'évacuation de l'air sont aménagés au niveau du pied 24a de chaque aube, entre la bride amont 36 et la bride aval 38 de la plate-forme inférieure. As shown in Figure 1, the upstream flange 32 extends radially from a flange 36 disposed at an upstream end of the lower platform 28, while the downstream flange 34 extends radially from a flange 38 disposed at a downstream end of the same platform. These upstream and downstream flanges thus define a annular enclosure 40 which is sealed by a device sealing, for example by an annular plate 42 fixed between the free ends of the upstream and downstream flanges. The annular enclosure 40 is supplied with air from a cooling circuit which equips each fixed vane 24 of the distributor 18. Typically, air, which is by example taken from the high-pressure compressor of the turbomachine, is introduced into each stationary vane 24 of the distributor by its summit, then circulates in the fixed dawn following a delimited path by a cooling cavity (not shown) possibly fitted with a shirt before being evacuated, particularly at the foot 24a of the blade by orifices 44 passing through the lower platform 28. These air evacuation orifices 44 are arranged at the foot 24a of each blade, between the upstream flange 36 and the downstream flange 38 of the platform lower.

On décrira maintenant, de façon plus précise, la géométrie de ces flasques amont et aval. Dans cette description, l'extrémité supérieure d'un flasque est définie par opposition à l'extrémité inférieure de celui-ci comme étant l'extrémité du flasque la plus éloignée de l'axe longitudinal X-X. De même, la notion d'amont et d'aval s'interprète par rapport au sens d'écoulement du flux gazeux F issu de la turbine haute-pression.We will now describe, more precisely, the geometry of these upstream and downstream flanges. In this description, the upper end of a flange is defined as opposed to the lower end of it as the end of the flange furthest from the longitudinal axis XX. Similarly, the concept of upstream and downstream is interpreted in relation to the meaning gas flow F from the high-pressure turbine.

A une extrémité supérieure, les flasques amont et aval comportent chacun une partie de liaison avec les brides amont 36 et aval 38 de la plate-forme inférieure 28 du distributeur 18. Ces brides faisant saillie radialement par rapport à la plate-forme inférieure, les parties de liaison sont formées de parois annulaires 46, 48 s'étendant radialement de façon à venir s'appuyer contre ces brides lors du montage de la plate-forme inférieure 28 sur le dispositif de refroidissement. Les moyens de maintien des parties de liaison des flasques amont et aval contre les brides seront décrit ultérieurement.At an upper end, the upstream and downstream flanges each have a connecting part with the upstream and downstream flanges 36 38 of the lower platform 28 of the distributor 18. These flanges making projecting radially from the lower platform, the parts of connection are formed by annular walls 46, 48 extending radially from so as to come to rest against these flanges during the assembly of the platform lower 28 on the cooling device. The means of maintenance of the connecting parts of the upstream and downstream flanges against the flanges will be described later.

A une extrémité inférieure opposée à sa partie de liaison, le flasque amont 32 comporte en outre une partie d'injection notamment formée d'une première paroi annulaire 50 s'étendant radialement et qui est décalée longitudinalement vers l'aval par rapport à la paroi 46 de sa partie de liaison, et d'une seconde paroi annulaire 52 s'étendant radialement et qui est décalée par rapport à la première paroi 50, à la fois radialement vers l'axe longitudinal X-X et longitudinalement vers l'aval. Une première paroi annulaire longitudinale 54 relie une extrémité inférieure de la paroi 46 de la partie de liaison à une extrémité supérieure de la seconde paroi 52. Cette première paroi longitudinale divise ainsi l'enceinte annulaire 40 en une zone inférieure 40a et une zone supérieure 40b.At a lower end opposite its connecting part, the upstream flange 32 further comprises an injection part in particular formed of a first annular wall 50 extending radially and which is offset longitudinally downstream relative to the wall 46 of its connecting part, and a second annular wall 52 extending radially and which is offset from the first wall 50, both radially towards the longitudinal axis X-X and longitudinally downstream. A first longitudinal annular wall 54 connects one end bottom of the wall 46 of the connecting part at an upper end of the second wall 52. This first longitudinal wall thus divides the annular enclosure 40 in a lower zone 40a and an upper zone 40b.

Comme illustré par les figures 4 et 5, la partie d'injection du flasque amont comporte en outre une seconde paroi longitudinale annulaire 56 qui s'étend entre les première et seconde parois radiales 50, 52. Cette seconde paroi longitudinale 56 est par ailleurs disposée entre la première paroi longitudinale 54 et la tôle annulaire 42 formant le dispositif d'étanchéité 42 de façon à diviser la zone inférieure 40a en une zone 58 dite de montage et une zone dite d'injection 60. De plus, comme illustré par la figure 6, la zone de montage 58 est elle-même divisée en une pluralité de cavités annulaires 62 par des cloisons radiales 64. Ces cloisons radiales sont disposées perpendiculairement aux première 50 et seconde 52 parois radiales de la partie d'injection du flasque amont et s'étendent entre les première et seconde parois longitudinales 54, 56. Elles sont régulièrement espacées tout autour de l'axe longitudinal X-X des turbines. Ainsi, la zone de montage 58 est segmentée en une pluralité de cavités annulaires 62, tandis que la zone d'injection 60 est continue tout autour de l'axe longitudinal X-X.As illustrated in FIGS. 4 and 5, the injection part of the upstream flange further comprises a second longitudinal wall annular 56 which extends between the first and second radial walls 50, 52. This second longitudinal wall 56 is moreover disposed between the first longitudinal wall 54 and the annular sheet 42 forming the device sealing 42 so as to divide the lower zone 40a into a zone 58 said assembly and a so-called injection area 60. In addition, as illustrated in FIG. 6, the mounting area 58 is itself divided into a plurality of annular cavities 62 by radial partitions 64. These partitions radials are arranged perpendicular to the first 50 and second 52 radial walls of the injection part of the upstream flange and extend between the first and second longitudinal walls 54, 56. They are regularly spaced around the longitudinal axis X-X of the turbines. Thus, the mounting area 58 is segmented into a plurality of cavities annular 62, while the injection zone 60 is continuous all around of the longitudinal axis X-X.

La première paroi longitudinale 54 de la partie d'injection du flasque amont comporte une pluralité d'ouvertures 66 destinées à mettre en communication la zone supérieure 40b avec la zone inférieure 40a afin d'alimenter en air de refroidissement cette dernière. Plus précisément, ces ouvertures 66 s'ouvrent dans la zone supérieure 40b et débouchent dans certaines cavités annulaires 62a formées dans la zone de montage 58. Sur l'exemple de réalisation illustré par la figure 6, les ouvertures sont disposées de façon à ce que la zone supérieure alimente en air de refroidissement seulement une cavité annulaire 62 sur deux, et deux ouvertures débouchant dans une même cavité annulaire sont prévues. Bien entendu, on pourrait imaginer des configurations différentes pour le nombre de cavités annulaires communiquant avec la zone supérieure et pour le nombre d'ouvertures de communication par cavité annulaire ainsi alimentée.The first longitudinal wall 54 of the injection part of the upstream flange has a plurality of openings 66 intended to put in communication the upper zone 40b with the lower zone 40a so supply cooling air to the latter. Specifically, these openings 66 open in the upper zone 40b and open into certain annular cavities 62a formed in the mounting zone 58. On the embodiment illustrated in FIG. 6, the openings are arranged in such a way that the upper zone supplies air with cooling only one out of two annular cavities 62, and two openings opening into the same annular cavity are provided. Of course, one could imagine different configurations for the number of annular cavities communicating with the upper zone and for the number of communication openings per annular cavity as well powered.

Dans chaque cavité annulaire 62a qui est ainsi alimentée en air de refroidissement par les ouvertures 66, la seconde paroi longitudinale annulaire 56 présente au moins un passage 68 permettant à l'air de refroidissement de passer de la cavité annulaire 62a à la zone d'injection 60. Par ailleurs, les ouvertures 66 sont aménagées dans la première paroi longitudinale 54 de façon à être axialement alignées avec les orifices d'air 44 pratiqués dans la plate-forme inférieure 28 (figure 1). Ainsi, les pertes de charge au niveau de l'alimentation de chaque cavité annulaire 62a sont limitées.In each annular cavity 62a which is thus supplied with air cooling through the openings 66, the second longitudinal wall annular 56 has at least one passage 68 allowing the air to cooling to pass from the annular cavity 62a to the injection zone 60. Furthermore, the openings 66 are arranged in the first wall longitudinal 54 so as to be axially aligned with the air openings 44 made in the lower platform 28 (Figure 1). So the losses load at the level of the supply of each annular cavity 62a are limited.

La zone d'injection 60 s'ouvre vers le disque 14 des aubes mobiles 12 de la turbine haute-pression et vers le disque 22 des aubes rotatives 20 de la turbine basse-pression par l'intermédiaire d'une pluralité de perçages 70 pratiqués dans les première et seconde parois radiales 50, 52 de la partie d'injection du flasque amont. Par exemple, ces perçages 70 peuvent être des trous inclinés (comme sur les figures) ou droits. Tout autre système permettant de calibrer un débit souhaité pour refroidir les disques des turbines haute et basse pression peut également convenir. Ainsi, l'air évacué par les orifices 44 de la plate-forme inférieure 28 alimente la zone supérieure 40b puis certaines cavités annulaires 62a par l'intermédiaire des ouvertures 66. L'air se diffuse ensuite dans la zone d'injection 60 par l'intermédiaire des passages 68 avant d'être évacué par les perçages 70 pour refroidir le disque 14 des aubes mobiles de la turbine haute-pression et le disque 22 des aubes rotatives de la turbine basse-pression.The injection zone 60 opens towards the disc 14 of the blades mobile 12 of the high-pressure turbine and towards the disc 22 of the blades rotary 20 of the low-pressure turbine via a plurality holes 70 made in the first and second radial walls 50, 52 of the injection part of the upstream flange. For example, these holes 70 can be inclined holes (as in the figures) or straight. All another system for calibrating a desired flow rate to cool the High and low pressure turbine discs may also be suitable. Thus, the air evacuated through the orifices 44 of the lower platform 28 supplies the upper zone 40b then certain annular cavities 62a by through openings 66. The air then diffuses into the area injection 60 via passages 68 before being evacuated by the holes 70 for cooling the disc 14 of the moving blades of the turbine high pressure and the disc 22 of the rotary blades of the low pressure turbine.

Dans l'exemple de réalisation illustré par les figures, une cavité annulaire 62 sur deux est alimentée en air de refroidissement par les ouvertures (les cavités 62a). Les cavités annulaires 62b qui ne sont pas alimentées en air sont destinées à permettre la fixation du flasque aval sur le flasque amont. A cet effet, la seconde paroi radiale 52 de la partie d'injection du flasque amont présente, au niveau au moins de certaines de ces cavités non alimentées 62b, des perçages 72 destinés à être traversés par des liaisons boulonnées de type vis/écrou. De plus, pour chaque cavité non alimentée 62b présentant l'un de ces perçages, la première paroi radiale 50 de la partie d'injection comporte des lumières 74, par exemple circulaires, aménagées en regard de ces perçages. Ces lumières permettent ainsi de faciliter l'accès aux liaisons boulonnées lors de l'assemblage des flasques amont et aval et de « noyer » l'écrou de ces liaisons pour ne pas créer de turbulences.In the embodiment illustrated by the figures, a cavity annular 62 on two is supplied with cooling air by the openings (the cavities 62a). The annular cavities 62b which are not supplied with air are intended to allow the attachment of the downstream flange to the upstream flange. For this purpose, the second radial wall 52 of the part injection of the upstream flange present, at least at some of these non-powered cavities 62b, holes 72 intended to be crossed by bolted connections of screw / nut type. In addition, for each cavity unpowered 62b having one of these holes, the first wall radial 50 of the injection part includes lights 74, for example circular, arranged opposite these holes. These lights thus facilitate access to bolted connections during assembling the upstream and downstream flanges and "drowning" the nut of these connections so as not to create turbulence.

De façon avantageuse, des tubes de liaison 76 peuvent être disposés dans chacune des ouvertures 66 afin de guider l'air de refroidissement vers les cavités annulaires 62a. Afin de faciliter le montage des tubes de liaison 76, il est en outre préférable d'aménager des fenêtres annulaires 78 dans la seconde paroi radiale 52 de la partie d'injection du flasque amont au niveau des cavités annulaire 62a alimentées en air.Advantageously, connecting tubes 76 can be disposed in each of the openings 66 in order to guide the air from cooling towards the annular cavities 62a. To facilitate assembly connecting tubes 76, it is also preferable to arrange windows annulars 78 in the second radial wall 52 of the injection part of the upstream flange at the level of the annular cavities 62a supplied with air.

Le flasque aval 34 comporte, à une extrémité inférieure opposée à sa partie de liaison, une partie de maintien du flasque amont qui est formée par une paroi annulaire 80 s'étendant radialement et qui est décalée par rapport à la paroi radiale 48 de sa partie de liaison, à la fois radialement vers l'axe longitudinal X-X et longitudinalement vers l'amont. Cette paroi annulaire radiale 80 est disposée de façon à venir s'appuyer contre la seconde paroi radiale 52 de la partie d'injection du flasque amont. Elle est en outre centrée avec serrage sur le flasque amont pour parfaire l'étanchéité du dispositif de refroidissement. Une paroi annulaire longitudinale 81 relie une extrémité inférieure de la paroi radiale 48 de la partie de liaison à une extrémité supérieure de la paroi radiale 80 de la partie de maintien.The downstream flange 34 has, at an opposite lower end at its connecting part, a part for holding the upstream flange which is formed by an annular wall 80 extending radially and which is offset from the radial wall 48 of its connecting part, both radially towards the longitudinal axis X-X and longitudinally upstream. This radial annular wall 80 is arranged so as to come to bear against the second radial wall 52 of the injection part of the flange upstream. It is also centered with clamping on the upstream flange to perfect the sealing of the cooling device. An annular wall longitudinal 81 connects a lower end of the radial wall 48 of the connecting part at an upper end of the radial wall 80 of the holding part.

La paroi radiale 80 de la partie de maintien présente une pluralité de perçages 82 destinés à être traversés par les liaisons boulonnées. Ces perçages 82 sont disposés tout autour de l'axe longitudinal X-X de façon à coïncider avec les perçages 72 du flasque amont lorsque les flasques amont et aval sont assemblés l'un contre l'autre. Les flasques amont 32 et aval 34 peuvent ainsi être maintenus en appui l'un contre l'autre, après l'assemblage de la plate-forme inférieure 28, par l'intermédiaire de liaisons boulonnées 83. Cette disposition particulière des moyens de maintien permet d'obtenir un assemblage légèrement précontraint de la plate-forme inférieure 28 sur les flasques amont 32 et aval 34 afin d'améliorer le comportement dynamique du dispositif de refroidissement tout en limitant les déplacements longitudinaux relatifs et en assurant une bonne étanchéité des zones inférieure et supérieure.The radial wall 80 of the holding part has a plurality of holes 82 intended to be crossed by the links bolted. These holes 82 are arranged all around the axis longitudinal X-X so as to coincide with the holes 72 in the flange upstream when the upstream and downstream flanges are assembled one against the other the other. The upstream 32 and downstream 34 flanges can thus be maintained in support one against the other, after the assembly of the lower platform 28, via bolted connections 83. This arrangement particular of the holding means makes it possible to obtain an assembly slightly prestressed from the lower platform 28 on the flanges upstream 32 and downstream 34 in order to improve the dynamic behavior of the cooling device while limiting movement relative longitudinal and ensuring good sealing of the areas lower and upper.

Par ailleurs, dans le cas où des tubes de liaisons 76 sont disposés dans chacune des ouvertures 66 du flasque amont, la paroi radiale 80 de la partie de maintien du flasque aval comporte des dispositifs de rétention radiale de ces tubes. De tels dispositifs de rétention peuvent par exemple être des équerres 84 fixées contre la paroi radiale 80 et dont les dimensions sont adaptées pour venir se loger dans les fenêtres annulaires 78 de la seconde paroi radiale 52 de la partie d'injection du flasque amont.Furthermore, in the case where connecting tubes 76 are arranged in each of the openings 66 of the upstream flange, the wall radial 80 of the holding part of the downstream flange comprises radial retention devices for these tubes. Such devices retention can for example be brackets 84 fixed against the wall radial 80 and whose dimensions are adapted to be accommodated in the annular windows 78 of the second radial wall 52 of the part injection of the upstream flange.

Selon une caractéristique avantageuse de l'invention, le dispositif de refroidissement 30 ainsi formé comporte un flasque annulaire supplémentaire 85 qui s'étend radialement entre le dispositif d'étanchéité 42 et une bride 86 du disque 14 des aubes mobiles de la turbine haute-pression avec lesquels il est en contact. Ce flasque supplémentaire 85 permet ainsi de définir une enceinte haute-pression 87 et une enceinte basse-pression 88 de part et d'autre du dispositif de refroidissement 30. Afin d'assurer une parfaite étanchéité entre les enceintes haute-pression et basse-pression ainsi définies, le contact entre la bride 86 du disque 14 et l'extrémité inférieure du flasque supplémentaire 85 s'effectue par l'intermédiaire de moyens d'étanchéité. Ces moyens peuvent être réalisés sous la forme d'un joint labyrinthe 89 aménagé sur la bride 86 et d'un revêtement abradable 90 disposé sur l'extrémité inférieure du flasque supplémentaire 85. Sur les figures 1, 4 et 5, le flasque annulaire supplémentaire 85 présente une section droite sensiblement triangulaire. Dans ce cas, pour améliorer le comportement dynamique du dispositif de refroidissement, des éléments raidisseurs 91 peuvent être disposés entre les extrémités supérieure et inférieure du flasque supplémentaire. Comme représenté sur les figures 3 et 6, de tels éléments raidisseurs peuvent par exemple prendre la forme de tôles fixées sur les extrémités supérieure et inférieure du flasque supplémentaire 85.According to an advantageous characteristic of the invention, the cooling device 30 thus formed comprises an annular flange additional 85 which extends radially between the sealing device 42 and a flange 86 of the disc 14 of the moving blades of the high-pressure turbine with whom he is in contact. This additional flange 85 thus makes it possible to define a high-pressure enclosure 87 and an enclosure low pressure 88 on either side of the cooling device 30. To ensure a perfect seal between the high-pressure chambers and low-pressure thus defined, the contact between the flange 86 of the disc 14 and the lower end of the additional flange 85 is effected by through sealing means. These means can be realized in the form of a labyrinth seal 89 fitted on the flange 86 and a abradable coating 90 disposed on the lower end of the flange additional 85. In FIGS. 1, 4 and 5, the annular flange additional 85 has a substantially triangular cross section. In this case, to improve the dynamic behavior of the cooling, stiffening elements 91 can be arranged between the upper and lower ends of the additional flange. As shown in Figures 3 and 6, such stiffening elements can by example take the form of sheets fixed on the upper ends and bottom of the additional flange 85.

Selon une autre caractéristique avantageuse de l'invention, le dispositif de refroidissement 30 peut également comporter un dispositif d'anti-rotation de l'assemblage des flasques amont 32 et aval 34. Un tel dispositif d'anti-rotation peut être formé d'une pluralité de picots radiaux 92 disposés sur le flasque aval 34, dans le prolongement de la paroi annulaire radiale 80 de sa partie de maintien. Comme illustré sur la figure 1, ces picots 92 viennent ainsi en butée dans des encoches 93 de la plate-forme inférieure 28 du distributeur afin d'empêcher toute rotation intempestive du dispositif de refroidissement. Alternativement, les picots peuvent être formés sur le flasque amont 32, par exemple au niveau de la première paroi longitudinale 54 de sa partie d'injection. Dans ce cas non représenté sur les figures, les picots viennent également en butée dans des encoches de la plate-forme inférieure.According to another advantageous characteristic of the invention, the cooling device 30 can also include a device anti-rotation of the assembly of the upstream 32 and downstream 34 flanges. anti-rotation device can be formed from a plurality of radial pins 92 arranged on the downstream flange 34, in the extension of the wall radial annular 80 of its holding part. As illustrated in the figure 1, these pins 92 thus come into abutment in notches 93 of the platform dispenser 28 to prevent rotation untimely cooling device. Alternatively, the pins can be formed on the upstream flange 32, for example at the level of the first longitudinal wall 54 of its injection part. In this case no shown in the figures, the pins also come into abutment in notches on the lower platform.

Selon une variante de réalisation non représentée de l'invention, les flasques amont et aval du dispositif de refroidissement peuvent être réalisés en une seule et même pièce de façon à constituer un mono-flasque. Dans ce cas, il conviendra par exemple d'utiliser des tubes de liaison ayant une collerette afin d'être maintenus radialement en place. De plus, une collerette devra également être aménagée au niveau de la paroi radiale de la partie de liaison du flasque amont pour permettre l'utilisation d'un outillage spécifique afin de supprimer la précontrainte lors du montage de la plate-forme inférieure sur le mono-flasque. Une telle variante mono-flasque permet de supprimer les liaisons boulonnées ce qui diminue la masse de l'ensemble et le temps de son assemblage. According to a variant embodiment not shown of the invention, the upstream and downstream flanges of the cooling device can be made in one and the same piece so as to constitute a single flange. In this case, for example, use connection having a collar in order to be held radially in place. Of more, a flange must also be fitted at the level of the wall radial of the connecting part of the upstream flange to allow the use specific tools to remove the prestress during mounting of the lower platform on the mono-flange. Such a mono-flange variant allows to remove bolted connections which decreases the mass of the assembly and the time of its assembly.

Le dispositif de refroidissement ainsi défini présente de nombreux avantages. Il permet notamment de réduire les pertes de charge ce qui permet de diminuer la consommation spécifique de la turbomachine. Cette réduction des pertes de charge n'entraíne pas pour autant une dégradation de la tenue aérodynamique du dispositif. De plus, un tel dispositif convient parfaitement à un distributeur de turbine basse-pression ayant une configuration à col de cygne. On notera également que, le nombre de flasques étant réduit par rapport aux dispositifs antérieurs, la masse du dispositif de refroidissement selon l'invention est donc réduite et son montage facilité.The cooling device thus defined has many advantages. It allows in particular to reduce losses of charge which reduces the specific consumption of the turbine engine. This reduction in pressure drops does not lead to as much a degradation of the aerodynamic behavior of the device. Moreover, such a device is perfectly suitable for a low-pressure turbine distributor having a swan neck configuration. We will also note that, the number of flanges being reduced compared to the devices the mass of the cooling device according to the invention is therefore reduced and its assembly facilitated.

Claims (15)

Dispositif de refroidissement (30) de disques (14, 22) de turbines (10, 16) haute-pression et basse-pression de turbomachine, ledit dispositif étant alimenté en air de refroidissement depuis au moins un orifice d'air (44) pratiqué au travers d'une plate-forme annulaire inférieure (28) de support d'au moins une aube fixe (24) de ladite turbine basse-pression et disposé entre une bride amont (36) et une bride aval (38) de ladite plate-forme inférieure, caractérisé en ce qu'il comporte : un flasque annulaire amont (32) s'étendant radialement depuis la bride amont (36) de ladite plate-forme inférieure ; un flasque annulaire aval (34) s'étendant radialement depuis la bride aval (38) de la plate-forme inférieure, lesdits flasques amont et aval délimitant longitudinalement au moins une cavité annulaire d'air de refroidissement (40) ; un dispositif d'étanchéité (42) s'étendant longitudinalement entre lesdits flasques amont et aval de façon à obturer de manière étanche la cavité d'air de refroidissement (40) ; des moyens de maintien (83) desdits flasques amont et aval contre les brides amont et aval de ladite plate-forme inférieure ; et une pluralité de perçages (70) afin d'injecter de l'air de refroidissement vers les disques (14, 22) de turbines. Cooling device (30) for high-pressure and low-pressure discs (14, 22) of turbomachine turbines (10, 16), said device being supplied with cooling air from at least one air orifice (44) provided through a lower annular platform (28) for supporting at least one fixed vane (24) of said low-pressure turbine and disposed between an upstream flange (36) and a downstream flange (38) of said flat -lower form, characterized in that it comprises: an upstream annular flange (32) extending radially from the upstream flange (36) of said lower platform; a downstream annular flange (34) extending radially from the downstream flange (38) of the lower platform, said upstream and downstream flanges delimiting longitudinally at least one annular cavity of cooling air (40); a sealing device (42) extending longitudinally between said upstream and downstream flanges so as to seal the cooling air cavity (40); means for holding (83) said upstream and downstream flanges against the upstream and downstream flanges of said lower platform; and a plurality of holes (70) for injecting cooling air to the turbine discs (14, 22). Dispositif selon la revendication 1, caractérisé en ce que le flasque amont (32) comporte une partie de liaison avec la plate-forme inférieure (28) formée d'une paroi annulaire sensiblement radiale (46), et une partie d'injection formée d'une première paroi annulaire sensiblement radiale (50) décalée radialement et longitudinalement vers l'aval par rapport à ladite partie de liaison, d'une seconde paroi annulaire sensiblement radiale (52) décalée longitudinalement vers l'aval par rapport à ladite première paroi radiale, et d'une première paroi annulaire sensiblement longitudinale (54) s'étendant entre la paroi radiale (46) de ladite partie de liaison et la seconde paroi radiale (52) de ladite partie d'injection de façon à diviser longitudinalement la cavité d'air de refroidissement (40) en une zone inférieure (40a) et zone supérieure (40b). Device according to claim 1, characterized in that the upstream flange (32) has a connecting part with the lower platform (28) formed by a substantially radial annular wall (46), and an injection part formed by a first substantially radial annular wall (50) offset radially and longitudinally downstream relative to said connecting portion, a second substantially radial annular wall (52) offset longitudinally downstream relative to said first radial wall , and a first substantially longitudinal annular wall (54) extending between the radial wall (46) of said connecting portion and the second radial wall (52) of said injection portion so as to longitudinally divide the cavity d cooling air (40) in a lower zone (40a) and upper zone (40b). Dispositif selon la revendication 2, caractérisé en ce que la partie d'injection du flasque amont (32) comporte en outre une seconde paroi annulaire sensiblement longitudinale (56) s'étendant entre les première et seconde parois radiales (50, 52) et disposée entre la première paroi longitudinale (54) et le dispositif d'étanchéité (42) de façon à diviser la zone inférieure (40a) en une zone de montage (58) et une zone d'injection (60).Device according to claim 2, characterized in that the injection part of the upstream flange (32) further comprises a second substantially longitudinal annular wall (56) extending between the first and second radial walls (50, 52) and arranged between the first longitudinal wall (54) and the sealing device (42) so as to divide the lower zone (40a) into a mounting zone (58) and an injection zone (60). Dispositif selon la revendication 3, caractérisé en ce que la partie d'injection du flasque amont (32) comporte en outre une pluralité de cloisons sensiblement radiales (64) s'étendant entre les première et seconde parois longitudinales (54, 56) et disposées perpendiculairement aux première et seconde parois radiales (50, 52) de façon à diviser la zone de montage (58) en une pluralité de cavités annulaires (62).Device according to claim 3, characterized in that the injection part of the upstream flange (32) further comprises a plurality of substantially radial partitions (64) extending between the first and second longitudinal walls (54, 56) and arranged perpendicular to the first and second radial walls (50, 52) so as to divide the mounting area (58) into a plurality of annular cavities (62). Dispositif selon la revendication 4, caractérisé en ce que la première paroi longitudinale (54) de ladite partie d'injection du flasque amont (32) comporte des ouvertures (66) de communication entre les zones inférieure (40a) et supérieure (40b) de façon à alimenter en air de refroidissement au moins une cavité annulaire (62a), lesdites ouvertures de communication étant axialement alignées avec ledit orifice d'air (44) pratiqué au travers de la plate-forme inférieure (28).Device according to claim 4, characterized in that the first longitudinal wall (54) of said injection part of the upstream flange (32) has openings (66) for communication between the lower (40a) and upper (40b) zones of so as to supply cooling air to at least one annular cavity (62a), said communication openings being axially aligned with said air orifice (44) formed through the lower platform (28). Dispositif selon la revendication 5, caractérisé en ce que ladite au moins une cavité annulaire (62a) alimentée en air de refroidissement comporte, au niveau de la seconde paroi longitudinale (56), au moins un passage (68) afin d'alimenter la zone d'injection (60) en air de refroidissement.Device according to claim 5, characterized in that said at least one annular cavity (62a) supplied with cooling air comprises, at the level of the second longitudinal wall (56), at least one passage (68) in order to supply the area injection (60) of cooling air. Dispositif selon la revendication 6, caractérisé en ce que la zone d'injection (60) présente une pluralité de perçages (70) pratiqués dans les première et seconde parois radiales (50, 52) de la partie d'injection du flasque amont (32) afin d'injecter l'air de refroidissement vers les disques (14, 22) de turbines. Device according to claim 6, characterized in that the injection zone (60) has a plurality of holes (70) made in the first and second radial walls (50, 52) of the injection part of the upstream flange (32 ) in order to inject the cooling air towards the discs (14, 22) of the turbines. Dispositif selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il comporte en outre des tubes de liaison (76) disposés dans chaque ouverture de communication (60) afin de guider l'air de refroidissement vers ladite au moins une cavité annulaire (62a).Device according to any one of Claims 5 to 7, characterized in that it further comprises connecting tubes (76) arranged in each communication opening (60) in order to guide the cooling air towards said at least one annular cavity (62a). Dispositif selon la revendication 8, caractérisé en ce qu'il comporte en outre des dispositifs de rétention radiale (84) de chacun desdits tubes de liaison (76).Device according to claim 8, characterized in that it further comprises radial retention devices (84) of each of said connecting tubes (76). Dispositif selon l'une des revendications 8 et 9, caractérisé en ce que la seconde paroi radiale (52) de la partie d'injection du flasque amont (32) comporte une pluralité de fenêtres annulaires (78) pour le montage desdits tubes de liaison (76).Device according to either of Claims 8 and 9, characterized in that the second radial wall (52) of the injection part of the upstream flange (32) comprises a plurality of annular windows (78) for mounting said connecting tubes (76). Dispositif selon l'une quelconque des revendications 2 à 10, caractérisé en ce que le flasque aval (34) comporte une partie de liaison avec la plate-forme inférieure (28) formée d'une paroi annulaire sensiblement radiale (48), et une partie de maintien du flasque amont formée d'une paroi annulaire sensiblement radiale (80) décalée radialement et longitudinalement vers l'amont par rapport à ladite partie de liaison et disposée contre la seconde paroi radiale (52) de la partie d'injection du flasque amont (32), et d'une paroi annulaire sensiblement longitudinale (81) s'étendant entre la paroi radiale (48) de ladite partie de liaison et la paroi radiale (80) de ladite partie de maintien.Device according to any one of Claims 2 to 10, characterized in that the downstream flange (34) has a connecting part with the lower platform (28) formed by a substantially radial annular wall (48), and a holding part of the upstream flange formed by a substantially radial annular wall (80) offset radially and longitudinally upstream relative to said connecting part and disposed against the second radial wall (52) of the injection part of the flange upstream (32), and a substantially longitudinal annular wall (81) extending between the radial wall (48) of said connecting portion and the radial wall (80) of said retaining portion. Dispositif selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comporte en outre un flasque annulaire supplémentaire (85) s'étendant radialement entre le dispositif d'étanchéité (42) et une bride (86) du disque (14) d'aubes mobiles (12) de la turbine haute-pression (10) de façon à définir une enceinte haute-pression (87) et une enceinte basse-pression (88) de part et d'autre dudit dispositif de refroidissement.Device according to any one of Claims 1 to 11, characterized in that it further comprises an additional annular flange (85) extending radially between the sealing device (42) and a flange (86) of the disc ( 14) movable blades (12) of the high-pressure turbine (10) so as to define a high-pressure enclosure (87) and a low-pressure enclosure (88) on either side of said cooling device. Dispositif selon la revendication 12, caractérisé en ce qu'il comporte en outre éléments raidisseurs (91) disposés entre des extrémités dudit flasque annulaire supplémentaire (85) afin d'améliorer le comportement dynamique du dispositif de refroidissement.Device according to claim 12, characterized in that it further comprises stiffening elements (91) arranged between ends of said additional annular flange (85) in order to improve the dynamic behavior of the cooling device. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comporte en outre un dispositif d'anti-rotation (92) desdits flasques amont (32) et aval (34).Device according to any one of Claims 1 to 13, characterized in that it further comprises an anti-rotation device (92) of said upstream (32) and downstream (34) flanges. Dispositif selon l'une quelconque des revendications 1 à 14, caractérisé en ce que lesdits flasques amont et aval sont réalisés en une seule et même pièce.Device according to any one of Claims 1 to 14, characterized in that the said upstream and downstream flanges are produced in one and the same piece.
EP04290324A 2003-02-14 2004-02-09 Turbine discs cooling device Expired - Lifetime EP1450005B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301842 2003-02-14
FR0301842A FR2851288B1 (en) 2003-02-14 2003-02-14 DEVICE FOR COOLING TURBINE DISKS

Publications (2)

Publication Number Publication Date
EP1450005A1 true EP1450005A1 (en) 2004-08-25
EP1450005B1 EP1450005B1 (en) 2007-04-25

Family

ID=32732001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04290324A Expired - Lifetime EP1450005B1 (en) 2003-02-14 2004-02-09 Turbine discs cooling device

Country Status (8)

Country Link
US (1) US7025562B2 (en)
EP (1) EP1450005B1 (en)
JP (1) JP4578117B2 (en)
CA (1) CA2456700C (en)
DE (1) DE602004006035T2 (en)
ES (1) ES2283955T3 (en)
FR (1) FR2851288B1 (en)
RU (1) RU2341669C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098686A2 (en) 2008-03-04 2009-09-09 Hitachi Ltd. Two-shaft gas turbine
FR2995021A1 (en) * 2012-09-04 2014-03-07 Snecma AIR SUPPLY DEVICE FOR AIRCRAFT ENGINE TURBINES
WO2016097632A1 (en) * 2014-12-17 2016-06-23 Snecma Turbine assembly of an aircraft turbine engine
EP3150798A1 (en) * 2015-10-02 2017-04-05 Doosan Heavy Industries & Construction Co., Ltd. Gas turbine disk
FR3087839A1 (en) * 2018-10-30 2020-05-01 Safran Aircraft Engines TURBINE
FR3115562A1 (en) * 2020-10-26 2022-04-29 Safran Aircraft Engines Turbomachinery Turbine Cooling Air Injector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517666B2 (en) 2005-09-12 2013-08-27 United Technologies Corporation Turbine cooling air sealing
IL181439A0 (en) * 2007-02-20 2007-07-04 Medic Nrg Ltd An endodontic file member
US8206080B2 (en) * 2008-06-12 2012-06-26 Honeywell International Inc. Gas turbine engine with improved thermal isolation
US9447694B2 (en) * 2012-01-30 2016-09-20 United Technologies Corporation Internal manifold for turning mid-turbine frame flow distribution
US11021962B2 (en) * 2018-08-22 2021-06-01 Raytheon Technologies Corporation Turbulent air reducer for a gas turbine engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912221A (en) * 1953-11-20 1959-11-10 Napier & Son Ltd Apparatus for cooling turbine wheels in combustion turbines
FR1351268A (en) * 1963-03-20 1964-01-31 Rolls Royce Gas turbine engine with cooled turbine blade
US4217755A (en) * 1978-12-04 1980-08-19 General Motors Corporation Cooling air control valve
US4805398A (en) * 1986-10-01 1989-02-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S. N. E. C. M. A." Turbo-machine with device for automatically controlling the rate of flow of turbine ventilation air
US5503528A (en) * 1993-12-27 1996-04-02 Solar Turbines Incorporated Rim seal for turbine wheel
US6179555B1 (en) * 1998-10-06 2001-01-30 Pratt & Whitney Canada Corp. Sealing of T.O.B.I feed plenum

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945758A (en) * 1974-02-28 1976-03-23 Westinghouse Electric Corporation Cooling system for a gas turbine
US4187054A (en) * 1978-04-20 1980-02-05 General Electric Company Turbine band cooling system
US5358374A (en) * 1993-07-21 1994-10-25 General Electric Company Turbine nozzle backflow inhibitor
US5645397A (en) * 1995-10-10 1997-07-08 United Technologies Corporation Turbine vane assembly with multiple passage cooled vanes
JP3564286B2 (en) * 1997-12-08 2004-09-08 三菱重工業株式会社 Active clearance control system for interstage seal of gas turbine vane
DE19824766C2 (en) * 1998-06-03 2000-05-11 Siemens Ag Gas turbine and method for cooling a turbine stage
US6065928A (en) * 1998-07-22 2000-05-23 General Electric Company Turbine nozzle having purge air circuit
FR2786222B1 (en) * 1998-11-19 2000-12-29 Snecma LAMELLE SEALING DEVICE
DE19962244A1 (en) * 1999-12-22 2001-06-28 Rolls Royce Deutschland Cooling air guide system in the high pressure turbine section of a gas turbine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912221A (en) * 1953-11-20 1959-11-10 Napier & Son Ltd Apparatus for cooling turbine wheels in combustion turbines
FR1351268A (en) * 1963-03-20 1964-01-31 Rolls Royce Gas turbine engine with cooled turbine blade
US4217755A (en) * 1978-12-04 1980-08-19 General Motors Corporation Cooling air control valve
US4805398A (en) * 1986-10-01 1989-02-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S. N. E. C. M. A." Turbo-machine with device for automatically controlling the rate of flow of turbine ventilation air
US5503528A (en) * 1993-12-27 1996-04-02 Solar Turbines Incorporated Rim seal for turbine wheel
US6179555B1 (en) * 1998-10-06 2001-01-30 Pratt & Whitney Canada Corp. Sealing of T.O.B.I feed plenum

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098686A2 (en) 2008-03-04 2009-09-09 Hitachi Ltd. Two-shaft gas turbine
EP2098686A3 (en) * 2008-03-04 2013-07-03 Hitachi Ltd. Two-shaft gas turbine
GB2520212B (en) * 2012-09-04 2017-06-28 Snecma Air supply device for aircraft engine turbines
FR2995021A1 (en) * 2012-09-04 2014-03-07 Snecma AIR SUPPLY DEVICE FOR AIRCRAFT ENGINE TURBINES
GB2520212A (en) * 2012-09-04 2015-05-13 Snecma Air supply device for aircraft engine turbines
US9920690B2 (en) 2012-09-04 2018-03-20 Snecma Air supply device for aircraft engine turbines
WO2014037664A1 (en) * 2012-09-04 2014-03-13 Snecma Air supply device for aircraft engine turbines
CN107109956A (en) * 2014-12-17 2017-08-29 赛峰飞机发动机公司 The turbine assembly of aircraft turbine engines
FR3030614A1 (en) * 2014-12-17 2016-06-24 Snecma TURBOMACHINE HIGH PRESSURE TURBINE ASSEMBLY
WO2016097632A1 (en) * 2014-12-17 2016-06-23 Snecma Turbine assembly of an aircraft turbine engine
CN107109956B (en) * 2014-12-17 2019-04-12 赛峰飞机发动机公司 The turbine assembly of aircraft turbine engines
US10280776B2 (en) 2014-12-17 2019-05-07 Safran Aircraft Engines Turbine assembly of an aircraft turbine engine
RU2705319C2 (en) * 2014-12-17 2019-11-06 Сафран Эркрафт Энджинз Turbine assembly of aircraft gas turbine engine
EP3150798A1 (en) * 2015-10-02 2017-04-05 Doosan Heavy Industries & Construction Co., Ltd. Gas turbine disk
US10605085B2 (en) 2015-10-02 2020-03-31 DOOSAN Heavy Industries Construction Co., LTD Gas turbine disk
FR3087839A1 (en) * 2018-10-30 2020-05-01 Safran Aircraft Engines TURBINE
FR3115562A1 (en) * 2020-10-26 2022-04-29 Safran Aircraft Engines Turbomachinery Turbine Cooling Air Injector

Also Published As

Publication number Publication date
RU2004104120A (en) 2005-07-27
FR2851288A1 (en) 2004-08-20
CA2456700C (en) 2011-09-27
RU2341669C2 (en) 2008-12-20
JP2004245224A (en) 2004-09-02
EP1450005B1 (en) 2007-04-25
JP4578117B2 (en) 2010-11-10
US20040161334A1 (en) 2004-08-19
CA2456700A1 (en) 2004-08-14
ES2283955T3 (en) 2007-11-01
DE602004006035T2 (en) 2008-01-03
US7025562B2 (en) 2006-04-11
FR2851288B1 (en) 2006-07-28
DE602004006035D1 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CA2635636C (en) Cooling device for the cells of a turbine engine rotor disk
CA2635637C (en) Cooling device for the cells of a turbine engine rotor disk with dual air feed
EP1847687B1 (en) Device for cooling a turbine casing of a turbomachine and a distributor therefore
CA2652679C (en) Blades for turbomachine impeller, with a groove for cooling
CA2581007A1 (en) Moving blade of a turbomachine with a common cavity for the supply of cooling air
EP0789133A1 (en) Support disc with stiffening element for the labyrinth seal of a turbo machine rotor
CA2456700C (en) Device for cooling turbine disks
EP1316675A1 (en) Stator for a turbomachine
EP3134620A1 (en) Turbomachine turbine blade comprising a cooling circuit with improved homogeneity
EP1452691B1 (en) Annular stator blade platform for low pressure turbine in a gas turbine engine
CA2605947A1 (en) Transition channel between two turbine stages
WO2012136917A1 (en) Sealing ring for a turbine stage of an aircraft turbomachine, comprising slotted anti-rotation pegs
FR2961250A1 (en) DEVICE FOR COOLING ALVEOLES OF A TURBOMACHINE ROTOR DISC BEFORE THE TRAINING CONE
FR3099520A1 (en) Turbomachine wheel
CA2485329C (en) Connection device between a distributor and a power enclosure for cooling fluid injectors in a turbine engine
FR2961249A1 (en) Axial cells cooling device for rotor disk of low pressure turbine of turbomachine, has rotor disk whose annular shell is provided with ventilation orifices emerging from air diffusion cavity to supply cooling air to air diffusion cavity
FR3064050A1 (en) COMBUSTION CHAMBER OF A TURBOMACHINE
FR2907499A1 (en) Distributor stator module for e.g. jet engine of aircraft, has case and diffuser that are formed in two separate parts and assembled by locking along axial direction of turbo machine, where case is located below high pressure distributor
EP3420198A1 (en) Rectifier for aircraft turbomachine compressor, comprising air extraction openings having a stretched form in the peripheral direction
FR3111942A1 (en) LOW PRESSURE TURBINE ROTOR ASSEMBLY OF A TURBOMACHINE
FR3092865A1 (en) ROTOR DISK WITH BLADE AXIAL STOP, DISC AND RING ASSEMBLY AND TURBOMACHINE
EP3847339B1 (en) Rotor disc with axial retention of the blades, assembly of a disc and a ring, and turbomachine
WO2023099857A1 (en) Assembly for a turbomachine comprising a distributor borne by an annular support
FR2960020A1 (en) Device for cooling discs of rotor of aeronautical turbine engine, has sending units sending air injected into cavity on interior surfaces of discs in order to cool discs, and evacuating unit evacuating air that cools discs
FR3098852A1 (en) High pressure distributor for a turbomachine and turbomachine comprising such a high pressure distributor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004006035

Country of ref document: DE

Date of ref document: 20070606

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2283955

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004006035

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230119

Year of fee payment: 20

Ref country code: IT

Payment date: 20230120

Year of fee payment: 20

Ref country code: GB

Payment date: 20230120

Year of fee payment: 20

Ref country code: DE

Payment date: 20230119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004006035

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240208