EP1448938B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP1448938B1
EP1448938B1 EP02785582A EP02785582A EP1448938B1 EP 1448938 B1 EP1448938 B1 EP 1448938B1 EP 02785582 A EP02785582 A EP 02785582A EP 02785582 A EP02785582 A EP 02785582A EP 1448938 B1 EP1448938 B1 EP 1448938B1
Authority
EP
European Patent Office
Prior art keywords
cavity
wall
cooling
exchanger
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02785582A
Other languages
German (de)
French (fr)
Other versions
EP1448938A1 (en
Inventor
Pierre Jeuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermagen SA
Original Assignee
Thermagen SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermagen SA filed Critical Thermagen SA
Publication of EP1448938A1 publication Critical patent/EP1448938A1/en
Application granted granted Critical
Publication of EP1448938B1 publication Critical patent/EP1448938B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans

Definitions

  • the present invention relates to a device for cooling a liquid by a method of evaporation and adsorption.
  • the principle of such a cooling method consists in evaporating a liquid under the effect of a depression maintained by pumping the vapors of said liquid.
  • the heat exchanger according to the invention is intended for use in a container in the form of a refrigerant plunger or incorporated in a self-cooling beverage package.
  • the object of the present invention is thus to allow the consumption of a drink at an ideal temperature in any place and at any time.
  • US Pat. No. 4,928,495 an illustration of which is given in FIG. 1, describes a self-refrigerating packing configuration (presented as a can) comprising a heat exchanger 16 of flattened rectangular shape immersed in a beverage to be cooled and connected to an adsorption device 22.
  • This patent describes a schematic diagram without specifying the means of making such a device taking into account the economic constraints related to an application to disposable packaging.
  • the exchanger 30 as described has several disadvantages. Indeed, the efficiency of the heat exchange between the evaporator and the beverage to be cooled, which conditions the cooling rate of the beverage, depends mainly on the geometry of the exchanger. However, to obtain a satisfactory cooling efficiency, these patent applications propose to increase the size of the exchanger 30 to the maximum that it is possible to insert into the can, namely a diameter of 50 mm for a height of 100mm. The volume of the resulting exchanger is 80ml for a consumable drink volume of 300ml, which represents more than 25%.
  • Document FR 2 011 939 also discloses a self-cooling device for beverage packaging comprising a conical exchanger containing a fluid under pressure such as liquefied freon.
  • a conical exchanger containing a fluid under pressure such as liquefied freon.
  • the expansion of the gas to the outside atmosphere causes the cooling of the beverage in contact with the exchanger.
  • the adiabatic expansion of gas under pressure causes a very large drop in temperature which allows efficient cooling of the drink despite a reduced contact surface with the beverage to be cooled.
  • this method of cooling is not compatible with industrial manufacturing techniques, the pressurized gas being delicate handling. This method is also contrary to certain environmental protection standards aimed at reducing the emission of gases into the atmosphere.
  • the objective of the present invention is to solve the disadvantages of the prior art.
  • the present invention provides a heat exchanger whose geometry and arrangement allows to promote the cooling rate of a beverage on the principle of evaporation of a refrigerant liquid at reduced pressure.
  • the geometry of the exchanger favors the establishment of large convection currents in the beverage to ensure rapid cooling.
  • This geometry also makes it possible to ensure a maximum heat exchange surface with the beverage for a minimum space requirement of the exchanger.
  • Another object of the invention is to generalize the principle of refrigeration by evaporation under the effect of a vacuum to any refrigeration device of a liquid by the use of a heat exchanger according to the invention, for example used as a diver in a container containing the beverage to be cooled.
  • the invention relates to a cooling device according to claim 1.
  • the first wall of the cavity has a ribbed structure.
  • At least a portion of the ribs of the first wall have a zero width inside the cavity.
  • the first wall of the cavity has a section whose cross-sectional area is constant or the cross-sectional area of the first wall decreases progressively from the base to the top.
  • the conical cavity has a rounded or flattened top.
  • the volume of the cavity is less than 2/3 of the volume delimited by the surface of revolution enveloping said cavity.
  • the internal walls of the cavity are at least partially covered with a hydrophilic porous material.
  • the cooling liquid is water and / or water containing an additive having a saturation vapor pressure higher than that of water.
  • the cavity contains a liquid-gas state separator device.
  • At least the first wall of the cavity is composed of a thermally conductive material.
  • the associated pumping means are selected from the means consisting of an adsorbent material conditioned under vacuum, a mechanical vacuum pump, a cryogenic vacuum pump.
  • the invention also relates to a self-cooling beverage package according to claim 16.
  • the second cavity has a volume-to-surface ratio at least twice as small as the volume-to-surface ratio of the first cavity.
  • the first wall of the cavity of the heat exchanger is in contact with the beverage contained in the first cavity.
  • the first wall of the cavity of the heat exchanger is adjacent to a wall of the first cavity
  • the second wall of the cavity of the exchanger constitutes a wall of the third cavity and integrates the means for placing said second and third cavities into communication.
  • the exchanger is connected to the pumping means by a tube or the exchanger is integral with the pumping means, the second wall of the cavity of the exchanger being integrated with said pumping means.
  • the heat exchanger according to the invention comprises a cavity 2 containing a refrigerant liquid capable of evaporating under the effect of a depression maintained by pumping means.
  • the heat exchanger is intended to be immersed in a beverage to be cooled.
  • the heat exchanger according to the invention has at least a first wall 21 in contact with the beverage to be cooled and at least one second wall 22 which incorporates communication means 30 with pumping means 31. .
  • the wall 21 of the cavity 2 in contact with the liquid to be cooled is of substantially conical shape such that its sectional area decreases from base to top.
  • This particular geometry of the cavity 2 of the exchanger in fact favors the establishment of large convection currents in the beverage to ensure rapid cooling. It is important that the overall shape of the cavity is conical, in particular that its sectional area gradually decreases from base to top. Nevertheless, a cross-section which does not modify the cross-sectional area of the exchanger may possibly be carried out over part of the height of the exchanger without affecting its proper functioning.
  • the conical shapes covered by this definition may take several possible configurations. and concern both a pointed cone (3b) and a dome cylinder (3d).
  • FIGs 4a to 4d are sectional views from above of the cavity 2 of the exchanger according to the invention and the embodiments shown in these figures can be interchangeably combined with the embodiments shown in Figures 3a to 3d.
  • the wall 21 of the cavity 2 of the heat exchanger in contact with the beverage to be cooled may have a ribbed structure in order to increase the surface area of the heat exchange between the exchanger and the drink.
  • Figure 4c illustrates an embodiment in which the first wall 21 has no rib.
  • At least a portion of the ribs of the first wall 21 have a zero width inside the cavity 2 so as to create fins 23 on the cavity 2.
  • the first wall 21 of the exchanger may be defined as being included between two surfaces of internal and external revolution (referenced i and e in FIGS. 3a to 3d) merged at the base of the cone, that is to say at the junction line with the second wall 22 of the exchanger incorporating communication means 30 with pumping means.
  • These surfaces i and e may advantageously consist of an assembly of cones, cylinders, cores, spheres or any other more complex surface, made by stamping for example.
  • the vertex 24 of the cone is also defined as being the point of the wall 21 furthest from the base 22 situated substantially on the axis of revolutions of the previously described surfaces.
  • the top 24 of the cone 21 of the exchanger according to the invention may have a rounding without impairing the efficiency of the heat exchange. This rounding is motivated by a concern to avoid any incident when the empty packaging containing this exchanger is overwritten.
  • the exchanger according to the invention is oriented with the top of the cone downwards.
  • the lower heat exchange surface area than the known heat exchangers is largely compensated by an acceleration of the convection currents produced in the axis of revolution of the cone according to a so-called "inverted chimney” effect by which all the cooling water streams are cooled. contact of the wall of the exchanger flow towards the axis of the cone.
  • This column Cold liquid produced strengthens the pressure gradient and creates cold convection currents rising through an "inverted chimney” effect without being braked by the surface of the heat exchanger.
  • a heat exchange area of about 100cm 2 achieves equivalent performance to known heat exchangers having an exchange surface of more than 300 cm 2 with a planar geometry. Due to its geometry, the exchanger according to the invention allows the establishment of a strong axial convection current rather than the formation of cells of non-axial secondary convection currents.
  • the ribbed cone structure makes it possible in particular to obtain a significant heat exchange surface in a limited space, specifically a limited height, which allows an advantageous application to closed beverage packages.
  • the height of the ribbed cone exchanger may be limited to less than half the height of the package containing the beverage to be cooled.
  • the cavity of the exchanger is composed of a thermally conductive material, such as steel or aluminum, for example.
  • a thermally conductive material such as steel or aluminum, for example.
  • this structure allows good resistance to the external pressure exerted on the cavity of the exchanger by the beverage to be cooled.
  • the metal thickness constituting the cavity can therefore be reduced.
  • a thickness of the order of 0.2 to 0.4 mm may be sufficient.
  • the coolant contained in the cavity of the exchanger may be water, or preferably water containing an additive, for example methanol, having a high saturation vapor pressure to trigger the boiling of the coolant more quickly and reduce the projections of drops that may be violent at the beginning of the pumping process.
  • an additive for example methanol
  • the liquid only partially fills the cavity, for example halfway.
  • the cavity of the exchanger contains only the coolant and the vapors of said liquid, that is to say that the liquid has previously been degassed before being introduced into the cavity.
  • This degassing can be ensured, in particular, by boiling at atmospheric pressure followed by boiling by reducing pressure to a few millibars.
  • the coolant is then placed in the cavity of the vacuum exchanger.
  • the partial pressure, in the exchanger, of gases other than the vapor of the coolant, before it is put in communication with the pumping means is less than or equal to 1mb.
  • the internal walls of the cavity 2 of the exchanger are covered, at least partially, with a hydrophilic porous material, such as cellulose, a fabric or a polymer for example.
  • a hydrophilic porous material such as cellulose, a fabric or a polymer for example.
  • This porous layer can be glued for example.
  • the wall 21 of heat exchange is thus wetted on its inner surface which promotes better evaporation and therefore better cooling on the exchange surface.
  • a fabric with spaced meshes is used to promote the evaporation of the coolant in contact with the metal of the exchanger while allowing the vapor of said liquid to escape through the porous layer. This removes the thermal resistance of the porous layer.
  • the cavity 2 of the exchanger may contain a liquid-gas separation device 50.
  • This embodiment is possible due to the particular geometry of the cavity 2 constituting the exchanger according to the invention. Indeed, a large volume is available at the base of the cone, precisely near the second wall 22 incorporating the connection means 30 to the pumping means 31. It is thus possible to arrange the inside of the exchanger a liquid-gas separation device 50 near the opening of said connecting means 30. Such a device is described below and could not be easily implemented in a geometry exchanger known from the prior art.
  • the state separation device 50 disposed in the exchanger according to the invention occupies a volume of less than 20 cm 3 .
  • Such a liquid-gas state separator 50 makes it possible to separate the vapor molecules from the pumped refrigerant liquid from drops of said liquid entrained by the vapor of said liquid. Indeed, according to the physical principle of cooling carried out by evaporation, the refrigerant liquid evaporates under the effect of a vacuum initiated by a vacuum rupture and maintained by a pumping of the vapors of said liquid. However, the pumping force can be such that drops of liquid can be driven to the pump 31 and thus adversely affect its proper operation. It is therefore necessary to provide a liquid-gas state separator 50 which passes the vapors of the coolant to be pumped and which returns the drops of liquid in the cavity 2 of the heat exchanger.
  • Such a state separator comprises a vapor baffle which consists of at least one baffle wall 51 imposing one or more sudden changes of direction to the vapor flow.
  • the vapor molecules have a very low average free path, of the order of a micrometer, which means that they can change direction very quickly.
  • the drops of liquid have a mass such that they are driven by their inertia and thus separated from the gas flow. This mechanism advantageously allows a liquid-gas separation without significant slowdown of the vapor flow and therefore does not require the occupation of a large volume.
  • the state-separating device also comprises, in addition, a drops collector 60 making it possible to extend the drops of liquid separated from the vapor gas flow towards the bottom of the cavity of the evaporator 2.
  • the collector 60 comprises a funnel and at the less a tube of flow drops.
  • the funnel may advantageously contribute to forming the baffle 51 of the steam deflector.
  • the vapor deflector 51 is advantageously arranged around the communication means 30 with the pumping means 31 and the funnel of the drop collector 60 defines a solid angle which includes the said communication means 30 and the steam deflector 51.
  • the flow tube drops collector 60 has a length greater than or equal to the pressure drop of the steam in the baffle 51 to prevent the projection of drops through said flow tube.
  • This pressure drop is advantageously measured in height of volume of water. If we consider, for example, a pressure drop of steam V of 1mb (corresponding to 1 cm of water column height) the tube will be at least 1 cm long.
  • the state-separating device further comprises a protection 55 for direct projections of drops which completes the steam deflector 51.
  • This protection 55 is arranged facing the communication means 30 in order to avoid pollution. direct pumping means 31 especially during the initiation of the adsorption reaction.
  • the pumping means 31 associated with the heat exchanger 2 according to the invention may consist of a mechanical vacuum pump, or cryogenic pumping means such as cold traps which condense the water vapor, or a vacuum cartridge containing reagents (desiccants) capable of triggering and maintaining the adsorption of the liquid.
  • cryogenic pumping means such as cold traps which condense the water vapor
  • reagents desiccants
  • the implementation of cooling is therefore initiated by an implementation communication 30 of the heat exchanger 2 according to the invention with pumping means 31.
  • it is the wall of the cavity forming the base 22 of the cone which comprises the connecting means Integrated in said wall 22.
  • the invention also relates to a beverage package containing a heat exchanger according to the invention as previously described.
  • Such a self-cooling beverage package 10 comprises a first cavity 1 containing a drinking beverage.
  • This first cavity 1 may have the shapes and dimensions of a standardized can.
  • a second cavity 2 is contiguous with the first cavity and constitutes a heat exchanger according to the forms and features already described of the invention.
  • the first conical wall 21 of the second cavity 2 is in contact with the beverage contained in the first cavity 1.
  • the first wall 21, conical, of the second cavity 2 is adjacent to a wall of the first cavity 1.
  • These walls are thus in close contact to ensure good heat transfer. They may nevertheless be made of different materials, for example the wall 21 of the cavity of the heat exchanger 2 is made of metal while the wall of the cavity 1 containing the beverage is PET plastic (Poly Ethylene Terephthalate).
  • PET plastic Poly Ethylene Terephthalate
  • the second cavity 2 forming the heat exchanger has a volume-to-surface ratio at least two times lower than the volume-to-surface ratio of the first cavity 1 containing the beverage to be cooled.
  • the cooling of the beverage contained in the first cavity 1 is obtained by evaporation of the coolant contained in the second cavity 2 (the heat exchanger).
  • This evaporation is initiated by a depression caused in the cavity 2 of the exchanger by actuating means for placing the cavity forming the heat exchanger in communication with pumping means 31, and this depression is maintained by pumping the vapors. said liquid.
  • the self-cooling beverage package according to the invention comprises a third cavity 3 containing pumping means 31, in this case a desiccant reservoir able to adsorb the vapors of the refrigerant liquid according to a known physical principle mentioned previously.
  • the conical wall 21 of the second cavity 2 forming the exchanger also constitutes a wall of the first cavity 1 containing the liquid to be cooled.
  • the wall forming the base 22 of the cone of the second cavity 2 forming the heat exchanger also constitutes a wall of the third cavity 3 containing the desiccants, this common wall 22 incorporating the communication means 30 of said second and third cavities.
  • the third cavity 3 may comprise actuating means 32 communication means 30 such as a rod triggering the opening of said communication means 30.
  • the heat exchanger according to the invention can be used in a cooling device of a beverage contained in an open container as a cooling plunger.
  • the cooling plunger comprises a heat exchanger according to the invention with a substantially conical cavity 2 connected to pumping means 31 by placing means 30. integrated in the wall 22 forming the base of the cavity 2.
  • the heat exchanger is then provided alone with its integrated communication means 30 and must be connected to adapted pumping means 31, such as a mechanical or cryogenic vacuum pump or vacuum cartridge containing air desiccants, by a flexible or rigid tube, fixed or removable.
  • the cooling plunger comprises a heat exchanger according to the invention with a substantially conical cavity 2 secured to pumping means by the wall 22 forming the base of the cavity 2.
  • the exchanger The thermal device is then provided with integrated communication means 30 and adapted pumping means 31, such as an air-vacuum cartridge containing desiccants.
  • the plunger thus constitutes a disposable autonomous cooling device or possibly reusable after regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger for cooling a liquid comprising a cavity ( 2 ) containing a refrigerating liquid capable of evaporation under the effect of a depression maintained by a pump. The cavity includes at least a first wall ( 21 ) in contact with the liquid to be cooled, the first wall ( 21 ) being substantially conical such that its cross-sectional surface tapers from the base towards the top, and at least a second wall ( 22 ) forming the base of the conical shape and incorporating communication ( 30 ) between the cavity ( 2 ) of the exchanger and the pump.

Description

La présente invention se rapporte à un dispositif de refroidissement d'un liquide par une méthode d'évaporation et adsorption. Le principe d'une telle méthode de refroidissement consiste à évaporer un liquide sous l'effet d'une dépression entretenue par pompage des vapeurs dudit liquide.The present invention relates to a device for cooling a liquid by a method of evaporation and adsorption. The principle of such a cooling method consists in evaporating a liquid under the effect of a depression maintained by pumping the vapors of said liquid.

L'échangeur thermique selon l'invention est destiné à être utilisé dans un récipient sous la forme d'un plongeur réfrigérant ou incorporé dans un emballage de boisson auto-réfrigérant. L'objet de la présente invention est ainsi de permettre la consommation d'une boisson à une température idéale en tout lieu et à toute heure.The heat exchanger according to the invention is intended for use in a container in the form of a refrigerant plunger or incorporated in a self-cooling beverage package. The object of the present invention is thus to allow the consumption of a drink at an ideal temperature in any place and at any time.

La mise en oeuvre de la méthode de refroidissement par évaporation et adsorption est connue et a fait l'objet de nombreuses recherches dans l'art antérieur. De nombreux dispositifs ont été proposés, associant un échangeur thermique contenant un liquide à évaporer à un réservoir contenant un adsorbant, en particulier pour des applications à des emballages de boisson auto-réfrigérants.The implementation of the method of cooling by evaporation and adsorption is known and has been the subject of much research in the prior art. Numerous devices have been proposed associating a heat exchanger containing a liquid to be evaporated to a tank containing an adsorbent, in particular for applications to self-cooling beverage containers.

Ainsi, le brevet US 4 928 495, dont une illustration est donnée sur la figure 1, décrit une configuration d'emballage 10 (présenté comme une canette) auto réfrigérant comportant un échangeur thermique 16 de forme rectangulaire aplatie plongé dans une boisson à refroidir et connecté à un dispositif d'adsorption 22. Ce brevet décrit un schéma de principe sans préciser les moyens de réalisation d'un tel dispositif tenant compte des contraintes économiques liées à une application à des emballages jetables.Thus, US Pat. No. 4,928,495, an illustration of which is given in FIG. 1, describes a self-refrigerating packing configuration (presented as a can) comprising a heat exchanger 16 of flattened rectangular shape immersed in a beverage to be cooled and connected to an adsorption device 22. This patent describes a schematic diagram without specifying the means of making such a device taking into account the economic constraints related to an application to disposable packaging.

En outre, les demandes de brevets internationales WO 01/10738 et WO 01/11297 des mêmes inventeurs, dont une illustration est donnée sur la figure 2, décrivent également un emballage de boisson 10 auto réfrigérant comportant un échangeur 30 de forme de U cylindrique. Ces demandes de brevets précisent la géométrie de l'échangeur 30 ainsi que le procédé de fabrication et d'assemblage d'un, tel dispositif compatible avec les contraintes industrielles de grandes cadences de fabrication des canettes de boisson.In addition, International Patent Applications WO 01/10738 and WO 01/11297 of the same inventors, an illustration of which is given in Figure 2, also disclose a self-cooling beverage package having a cylindrical U-shaped exchanger. These patent applications specify the geometry of the exchanger 30 as well as the manufacturing and assembly process. of such a device compatible with the industrial constraints of high production rates of beverage cans.

Cependant, l'échangeur 30 tel qu'il est décrit présente plusieurs inconvénients. En effet, l'efficacité de l'échange thermique entre l'évaporateur et la boisson à refroidir, qui conditionne la vitesse de refroidissement de la boisson, dépend principalement de la géométrie de l'échangeur. Or, pour obtenir une efficacité de refroidissement satisfaisante, ces demandes de brevets proposent d'augmenter la dimension de l'échangeur 30 au maximum de ce qu'il est possible d'insérer dans la canette, à savoir un diamètre de 50mm pour une hauteur de 100mm. Le volume de l'échangeur résultant est de 80ml pour un volume de boisson consommable de 300ml, ce qui représente plus de 25%.However, the exchanger 30 as described has several disadvantages. Indeed, the efficiency of the heat exchange between the evaporator and the beverage to be cooled, which conditions the cooling rate of the beverage, depends mainly on the geometry of the exchanger. However, to obtain a satisfactory cooling efficiency, these patent applications propose to increase the size of the exchanger 30 to the maximum that it is possible to insert into the can, namely a diameter of 50 mm for a height of 100mm. The volume of the resulting exchanger is 80ml for a consumable drink volume of 300ml, which represents more than 25%.

Un autre incoavénient du dispositif décrit dans les demandes internationales ci-dessus mentionnées concerne la quantité de métal nécessaire pour réaliser cet échangeur 30, donc son prix de revient. En particulier, l'eau à évaporer contenue dans l'échangeur pour la mise en oeuvre de la méthode de réfrigération par évaporation adsorption doit être conservée sous vide dans l'échangeur, et la différence de pression entre l'intérieur et l'extérieur de l'échangeur 30 impose une épaisseur significative de métal constituant les parois de l'échangeur.Another disadvantage of the device described in the international applications mentioned above relates to the amount of metal needed to make this exchanger 30, so its cost. In particular, the water to be evaporated contained in the exchanger for the implementation of the evaporative adsorption refrigeration method must be kept under vacuum in the exchanger, and the pressure difference between the inside and the outside of the exchanger the exchanger 30 imposes a significant thickness of metal constituting the walls of the exchanger.

En outre, un autre inconvénient, lié à la géométrie particulière de l'échangeur 30 décrit dans ces demandes internationales, consiste dans l'obligation d'utiliser un gel pour fixer le liquide réfrigérant dans l'échangeur afin d'éviter l'entraînement du liquide par ses propres vapeurs lors du fonctionnement du dispositif.In addition, another drawback, related to the particular geometry of the exchanger 30 described in these international applications, consists in the obligation to use a gel to fix the coolant in the exchanger in order to avoid the entrainment of the liquid by its own vapors during operation of the device.

On connaît par ailleurs du document FR 2 011 939 un dispositif auto-réfrigérant pour emballage de boisson comportant un échangeur de forme conique contenant un fluide sous pression tel que du fréon liquéfié. La détente du gaz vers l'atmosphère extérieur provoque le refroidissement de la boisson en contact avec l'échangeur. La détente adiabatique de gaz sous pression provoque une très forte baisse de température qui permet un refroidissement efficace de la boisson malgré une surface de contact réduite avec la boisson à refroidir. Cependant, cette méthode de refroidissement n'est pas compatible avec les techniques industrielles de fabrication, le gaz sous pression étant de manipulation délicate. Cette méthode est également contraire à certaines normes de protection de l'environnement qui visent à réduire les émanations de gaz dans l'atmosphère.Document FR 2 011 939 also discloses a self-cooling device for beverage packaging comprising a conical exchanger containing a fluid under pressure such as liquefied freon. The expansion of the gas to the outside atmosphere causes the cooling of the beverage in contact with the exchanger. The adiabatic expansion of gas under pressure causes a very large drop in temperature which allows efficient cooling of the drink despite a reduced contact surface with the beverage to be cooled. However, this method of cooling is not compatible with industrial manufacturing techniques, the pressurized gas being delicate handling. This method is also contrary to certain environmental protection standards aimed at reducing the emission of gases into the atmosphere.

L'objectif de la présente invention est de résoudre les inconvénients de l'art antérieur.The objective of the present invention is to solve the disadvantages of the prior art.

A cet effet, la présente invention propose un échangeur thermique dont la géométrie et l'agencement permet de favoriser la vitesse de refroidissement d'une boisson sur le principe de l'évaporation d'un liquide réfrigérant à pression réduite. Ainsi, la géométrie de l'échangeur privilégie l'établissement de courants de convection importants dans la boisson afin d'en assurer le refroidissement rapide. Cette géométrie permet en outre d'assurer une surface d'échange thermique maximale avec la boisson pour un encombrement de l'échangeur minimal.For this purpose, the present invention provides a heat exchanger whose geometry and arrangement allows to promote the cooling rate of a beverage on the principle of evaporation of a refrigerant liquid at reduced pressure. Thus, the geometry of the exchanger favors the establishment of large convection currents in the beverage to ensure rapid cooling. This geometry also makes it possible to ensure a maximum heat exchange surface with the beverage for a minimum space requirement of the exchanger.

Un autre objectif de l'invention est de généraliser le principe de la réfrigération par évaporation sous l'effet d'une dépression à tout dispositif de réfrigération d'un liquide par l'usage d'un échangeur thermique selon l'invention, par exemple utilisé comme plongeur dans un récipient contenant la boisson à refroidir.Another object of the invention is to generalize the principle of refrigeration by evaporation under the effect of a vacuum to any refrigeration device of a liquid by the use of a heat exchanger according to the invention, for example used as a diver in a container containing the beverage to be cooled.

Plus particulièrement, l'invention concerne un dispositif de refroidissement selon la revendication 1.More particularly, the invention relates to a cooling device according to claim 1.

Selon une caractéristique, la première paroi de la cavité présente une structure nervurée.According to one characteristic, the first wall of the cavity has a ribbed structure.

Selon une particularité, au moins une partie des nervures de la première paroi ont une largeur nulle à l'intérieur de la cavité.According to a feature, at least a portion of the ribs of the first wall have a zero width inside the cavity.

Selon des particularités de réalisation, la première paroi de la cavité comporte une section dont la surface en coupe est constante ou la surface en coupe de la première paroi de diminue progressivement de la base au sommet.According to particular features, the first wall of the cavity has a section whose cross-sectional area is constant or the cross-sectional area of the first wall decreases progressively from the base to the top.

Selon une autre particularité, la cavité conique présente un sommet arrondi ou aplati.According to another feature, the conical cavity has a rounded or flattened top.

Selon une caractéristique, le volume de la cavité est inférieur à 2/3 du volume délimité par la surface de révolution enveloppant ladite cavité.According to one characteristic, the volume of the cavity is less than 2/3 of the volume delimited by the surface of revolution enveloping said cavity.

Selon une caractéristique avantageuse, les parois internes de la cavité sont au moins partiellement recouvertes d'un matériau poreux hydrophile.According to an advantageous characteristic, the internal walls of the cavity are at least partially covered with a hydrophilic porous material.

Selon une caractéristique, le liquide réfrigérant est de l'eau et/ou de l'eau contenant un additif ayant une pression de vapeur saturante plus élevée que celle de l'eau.According to one characteristic, the cooling liquid is water and / or water containing an additive having a saturation vapor pressure higher than that of water.

Selon un mode de réalisation, la cavité contient un dispositif séparateur d'état liquide-gaz.According to one embodiment, the cavity contains a liquid-gas state separator device.

Selon une caractéristique, au moins la première paroi de la cavité est composée d'un matériau thermiquement conducteur.According to one characteristic, at least the first wall of the cavity is composed of a thermally conductive material.

Selon les modes de réalisation, les moyens de pompage associés sont choisis parmi les moyens constitués par un matériau adsorbant conditionné sous vide d'air, une pompe à vide mécanique, une pompe à vide cryogénique.According to the embodiments, the associated pumping means are selected from the means consisting of an adsorbent material conditioned under vacuum, a mechanical vacuum pump, a cryogenic vacuum pump.

L'invention concerne également un emballage de boisson auto-réfrigérant selon la revendication 16.The invention also relates to a self-cooling beverage package according to claim 16.

Selon une caractéristique, la seconde cavité présente un rapport volume sur surface au moins deux fois plus faible que le rapport volume sur surface de la première cavité.According to one characteristic, the second cavity has a volume-to-surface ratio at least twice as small as the volume-to-surface ratio of the first cavity.

Selon un mode de réalisation, la première paroi de la cavité de l'échangeur thermique est en contact avec la boisson contenue dans la première cavité.According to one embodiment, the first wall of the cavity of the heat exchanger is in contact with the beverage contained in the first cavity.

Selon un autre mode de réalisation, la première paroi de la cavité de l'échangeur thermique est adjacente à une paroi de la première cavitéAccording to another embodiment, the first wall of the cavity of the heat exchanger is adjacent to a wall of the first cavity

Selon une caractéristique, la seconde paroi de la cavité de l'échangeur constitue une paroi de la troisième cavité et intègre les moyens de mise en communication desdites seconde et troisième cavités.According to one characteristic, the second wall of the cavity of the exchanger constitutes a wall of the third cavity and integrates the means for placing said second and third cavities into communication.

Selon les modes de réalisation, l'échangeur est relié aux moyens de pompages par un tube ou l'échangeur est solidaire des moyens de pompage, la seconde paroi de la cavité de l'échangeur étant intégrée aux dits moyens de pompage.According to the embodiments, the exchanger is connected to the pumping means by a tube or the exchanger is integral with the pumping means, the second wall of the cavity of the exchanger being integrated with said pumping means.

Les particularités et avantages de la présente invention apparaîtront au cours de la description qui suit donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures dans lesquelles :

  • La figure 1, déjà décrite, est un schéma d'une canette de boisson auto-réfrigérante selon une variante de l'art antérieur ;
  • La figure 2, déjà décrite, est un schéma d'une canette de boisson auto-réfrigérante selon une autre variante de l'art antérieur ;
  • Les figure 3a à 3c sont des vues schématiques en coupe transversale d'un échangeur thermique selon plusieurs variantes de réalisation de l'invention ;
  • Les figures 4a à 4c sont des vues schématiques de dessus en coupe selon plusieurs variantes de réalisation des échangeurs selon l'invention ;
  • La figure 5 est une vue schématique en coupe d'une réalisation particulière de l'échangeur thermique selon l'invention ;
  • La figure 6 est une vue schématique en coupe d'un emballage de boisson comprenant un échangeur thermique selon l'invention.
  • La figure 7 est une vue schématique en coupe d'un plongeur réfrigérant comprenant un échangeur thermique selon l'invention.
The features and advantages of the present invention will become apparent from the following description given by way of illustrative and nonlimiting example, and with reference to the figures in which:
  • FIG. 1, already described, is a diagram of a self-cooling beverage can according to a variant of the prior art;
  • FIG. 2, already described, is a diagram of a self-cooling beverage can according to another variant of the prior art;
  • FIGS. 3a to 3c are diagrammatic cross-sectional views of a heat exchanger according to several embodiments of the invention;
  • Figures 4a to 4c are schematic top views in section according to several embodiments of the exchangers according to the invention;
  • Figure 5 is a schematic sectional view of a particular embodiment of the heat exchanger according to the invention;
  • Figure 6 is a schematic sectional view of a beverage package comprising a heat exchanger according to the invention.
  • Figure 7 is a schematic sectional view of a refrigerant plunger comprising a heat exchanger according to the invention.

L'échangeur thermique selon l'invention comprend une cavité 2 contenant un liquide réfrigérant apte à s'évaporer sous l'effet d'une dépression entretenue par des moyens de pompage. L'échangeur thermique est destiné à être immergé dans une boisson à refroidir. Ainsi, il est essentiel que l'échangeur thermique selon l'invention présente au moins une première paroi 21 en contact avec la boisson à refroidir et au moins une seconde paroi 22 qui intègre des moyens de mise en communication 30 avec des moyens de pompage 31.The heat exchanger according to the invention comprises a cavity 2 containing a refrigerant liquid capable of evaporating under the effect of a depression maintained by pumping means. The heat exchanger is intended to be immersed in a beverage to be cooled. Thus, it is essential that the heat exchanger according to the invention has at least a first wall 21 in contact with the beverage to be cooled and at least one second wall 22 which incorporates communication means 30 with pumping means 31. .

Comme illustré sur les séries de figures 3 et selon une caractéristique essentielle de l'invention, la paroi 21 de la cavité 2 en contact avec le liquide à refroidir est de forme substantiellement conique telle que sa surface en coupe diminue de la base au sommet. Cette géométrie particulière de la cavité 2 de l'échangeur privilégie en effet l'établissement de courants de convection importants dans la boisson afin d'en assurer le refroidissement rapide. D est important que la forme globale de la cavité soit conique, en particulier que sa surface en coupe diminue progressivement de la base au sommet. Néanmoins, une section droite, qui ne modifie pas la surface en coupe de l'échangeur peut éventuellement être réalisée sur une partie de la hauteur de l'échangeur sans nuire à son bon fonctionnement Les formes coniques couvertes par cette définition peuvent prendre plusieurs configurations possibles et concernent aussi bien un cône pointu (3b) qu'un cylindre en dôme (3d).As illustrated in the series of FIGS. 3 and according to an essential characteristic of the invention, the wall 21 of the cavity 2 in contact with the liquid to be cooled is of substantially conical shape such that its sectional area decreases from base to top. This particular geometry of the cavity 2 of the exchanger in fact favors the establishment of large convection currents in the beverage to ensure rapid cooling. It is important that the overall shape of the cavity is conical, in particular that its sectional area gradually decreases from base to top. Nevertheless, a cross-section which does not modify the cross-sectional area of the exchanger may possibly be carried out over part of the height of the exchanger without affecting its proper functioning. The conical shapes covered by this definition may take several possible configurations. and concern both a pointed cone (3b) and a dome cylinder (3d).

Les figures 4a à 4d sont des vues en coupe de dessus de la cavité 2 de l'échangeur selon l'invention et les modes de réalisations illustrés sur ces figures peuvent être indifféremment combinés avec les modes de réalisations illustrés sur les figures 3a à 3d.Figures 4a to 4d are sectional views from above of the cavity 2 of the exchanger according to the invention and the embodiments shown in these figures can be interchangeably combined with the embodiments shown in Figures 3a to 3d.

Comme illustré sur les séries de figures 4 et selon une caractéristique avantageuse de l'invention, la paroi 21 de la cavité 2 de l'échangeur thermique en contact avec la boisson à refroidir peut présenter une structure nervurée afin d'augmenter la surface d'échange thermique entre l'échangeur et la boisson. La figure 4c illustre un mode de réalisation dans lequel la première paroi 21 ne présente aucune nervure.As illustrated in the series of FIGS. 4 and according to an advantageous characteristic of the invention, the wall 21 of the cavity 2 of the heat exchanger in contact with the beverage to be cooled may have a ribbed structure in order to increase the surface area of the heat exchange between the exchanger and the drink. Figure 4c illustrates an embodiment in which the first wall 21 has no rib.

Selon un mode de réalisation particulier, illustré figure 4b, au moins une partie des nervures de la première paroi 21 ont une largeur nulle à l'intérieur de la cavité 2 de manière à créer des ailettes 23 sur la cavité 2.According to a particular embodiment, illustrated in FIG. 4b, at least a portion of the ribs of the first wall 21 have a zero width inside the cavity 2 so as to create fins 23 on the cavity 2.

Ainsi, la première paroi 21 de l'échangeur peut être définie comme étant incluse entre deux surfaces de révolution interne et externe (référencée i et e sur les figures 3a à 3d) confondues à la base du cône, c'est à dire à la ligne de jonction avec la seconde paroi 22 de l'échangeur intégrant des moyens de mise en communication 30 avec des moyens de pompage. Ces surfaces i et e peuvent avantageusement être constituées d'un assemblage de cônes, cylindres, tores, sphères ou toute autre surface plus complexe, réalisé par emboutissage par exemple. On définit également le sommet 24 du cône comme étant le point de la paroi 21 le plus éloigné de la base 22 se situant sensiblement sur l'axe de révolutions des surfaces précédemment décrites.Thus, the first wall 21 of the exchanger may be defined as being included between two surfaces of internal and external revolution (referenced i and e in FIGS. 3a to 3d) merged at the base of the cone, that is to say at the junction line with the second wall 22 of the exchanger incorporating communication means 30 with pumping means. These surfaces i and e may advantageously consist of an assembly of cones, cylinders, cores, spheres or any other more complex surface, made by stamping for example. The vertex 24 of the cone is also defined as being the point of the wall 21 furthest from the base 22 situated substantially on the axis of revolutions of the previously described surfaces.

Le sommet 24 du cône 21 de l'échangeur selon l'invention peut présenter un arrondi sans nuire à l'efficacité de l'échange thermique. Cet arrondi est motivé par un souci d'éviter tout incident lorsque l'emballage vidé contenant cet échangeur est écrasé.The top 24 of the cone 21 of the exchanger according to the invention may have a rounding without impairing the efficiency of the heat exchange. This rounding is motivated by a concern to avoid any incident when the empty packaging containing this exchanger is overwritten.

Les avantages procurés par une telle géométrie de l'échangeur thermique selon l'invention sont multiples. En fonctionnement, l'échangeur selon l'invention est orienté avec le sommet du cône vers le bas. La surface d'échange thermique plus faible que les échangeurs connus est largement compensée par une accélération des courants de convection produits dans l'axe de révolution du cône selon un effet dit de « cheminée inversée » par lequel tous les filets d'eau refroidis au contact de la paroi de l'échangeur s'écoulent vers l'axe du cône. Cette colonne de liquide froid produite renforce le gradient de pression et crée des courants de convection froids remontant par un effet de « cheminée inversée » sans être freinés par la surface de l'échangeur. Ainsi, une surface d'échange de l'ordre de 100cm2 permet d'atteindre des performances équivalentes à des échangeurs connus ayant une surface d'échange de plus de 300cm2 avec une géométrie plane. De par sa géométrie, l'échangeur selon l'invention permet l'établissement d'un fort courant de convection axial plutôt que la formation de cellules de courants de convexion secondaires non axiales.The advantages provided by such a geometry of the heat exchanger according to the invention are multiple. In operation, the exchanger according to the invention is oriented with the top of the cone downwards. The lower heat exchange surface area than the known heat exchangers is largely compensated by an acceleration of the convection currents produced in the axis of revolution of the cone according to a so-called "inverted chimney" effect by which all the cooling water streams are cooled. contact of the wall of the exchanger flow towards the axis of the cone. This column Cold liquid produced strengthens the pressure gradient and creates cold convection currents rising through an "inverted chimney" effect without being braked by the surface of the heat exchanger. Thus, a heat exchange area of about 100cm 2 achieves equivalent performance to known heat exchangers having an exchange surface of more than 300 cm 2 with a planar geometry. Due to its geometry, the exchanger according to the invention allows the establishment of a strong axial convection current rather than the formation of cells of non-axial secondary convection currents.

La structure de cône nervuré permet en particulier d'obtenir une surface d'échange thermique significative dans un encombrement limité, spécifiquement une hauteur limitée, ce qui permet une application avantageuse aux emballages de boisson fermés. Par exemple, la hauteur de l'échangeur en cône nervuré peut être limitée à moins de la moitié de la hauteur de l'emballage contenant la boisson à refroidir.The ribbed cone structure makes it possible in particular to obtain a significant heat exchange surface in a limited space, specifically a limited height, which allows an advantageous application to closed beverage packages. For example, the height of the ribbed cone exchanger may be limited to less than half the height of the package containing the beverage to be cooled.

Des valeurs typiques de la géométrie d'un échangeur selon l'invention peuvent être les suivantes, données sans caractère limitatif mais seulement à titre d'exemple de réalisation :

  • Surface d'échange = 100 cm2
  • Volume interne = 40 cm3
  • Encombrement = 60 cm3 (défini par la surface de révolution de l'enveloppe de l'échangeur)
  • Hauteur = 5cm
Typical values of the geometry of an exchanger according to the invention can be as follows, data without limitation but only as an example embodiment:
  • Exchange surface = 100 cm 2
  • Internal volume = 40 cm 3
  • Size = 60 cm 3 (defined by the surface of revolution of the heat exchanger envelope)
  • Height = 5cm

La cavité de l'échangeur est composée d'un matériau thermiquement conducteur, tel que de l'acier ou de l'aluminium par exemple. La surface de l'échangeur selon l'invention étant réduite, la quantité de métal nécessaire à sa fabrication est réduite, ce qui réduit également son prix de revient.The cavity of the exchanger is composed of a thermally conductive material, such as steel or aluminum, for example. The surface of the exchanger according to the invention being reduced, the quantity of metal necessary for its manufacture is reduced, which also reduces its cost price.

De plus, cette structure permet une bonne résistance à la pression externe exercée sur la cavité de l'échangeur par la boisson à refroidir. L'épaisseur de métal constituant la cavité peut en conséquence être réduite. En particulier, une épaisseur de l'ordre de 0.2 à 0.4 mm peut être suffisante.In addition, this structure allows good resistance to the external pressure exerted on the cavity of the exchanger by the beverage to be cooled. The metal thickness constituting the cavity can therefore be reduced. In particular, a thickness of the order of 0.2 to 0.4 mm may be sufficient.

Le liquide réfrigérant contenu dans la cavité de l'échangeur peut être de l'eau, ou préférentiellement de l'eau contenant un additif, par exemple du méthanol, ayant une pression de vapeur saturante élevée permettant de déclencher l'ébullition du liquide réfrigérant plus rapidement et de réduire les projections de gouttes qui peuvent être violentes au début du processus de pompage.The coolant contained in the cavity of the exchanger may be water, or preferably water containing an additive, for example methanol, having a high saturation vapor pressure to trigger the boiling of the coolant more quickly and reduce the projections of drops that may be violent at the beginning of the pumping process.

Selon une particularité avantageuse, le liquide ne remplit que partiellement la cavité, par exemple à moitié.According to an advantageous feature, the liquid only partially fills the cavity, for example halfway.

Selon une autre particularité de l'invention, la cavité de l'échangeur ne contient que le liquide réfrigérant ainsi que les vapeurs dudit liquide, c'est à dire que le liquide a préalablement été dégazé avant d'être introduit dans la cavité. Ce dégazage peut être assuré, en particulier, par une ébullition à pression atmosphérique suivie d'une ébullition par réduction de pression jusqu'à quelques millibars. Le liquide réfrigérant est ensuite placé dans la cavité de l'échangeur sous vide d'air. En d'autres termes, la pression partielle, dans l'échangeur, des gaz autres que la vapeur du liquide réfrigérant, avant sa mise en communication avec les moyens de pompage, est inférieure ou égale à 1mb. Cette particularité permet d'assurer une bonne vitesse d'évaporation en évitant de limiter la réaction d'évaporation avec des gaz non adsorbables qui seraient contenus dans la cavité.According to another feature of the invention, the cavity of the exchanger contains only the coolant and the vapors of said liquid, that is to say that the liquid has previously been degassed before being introduced into the cavity. This degassing can be ensured, in particular, by boiling at atmospheric pressure followed by boiling by reducing pressure to a few millibars. The coolant is then placed in the cavity of the vacuum exchanger. In other words, the partial pressure, in the exchanger, of gases other than the vapor of the coolant, before it is put in communication with the pumping means, is less than or equal to 1mb. This feature ensures a good rate of evaporation by avoiding limiting the evaporation reaction with non-adsorbable gases that would be contained in the cavity.

Selon une autre particularité avantageuse, les parois internes de la cavité 2 de l'échangeur sont recouvertes, au moins partiellement, d'un matériau poreux hydrophile, comme de la cellulose, un tissu ou un polymère par exemple. Cette couche poreuse peut être collée par exemple. La paroi 21 d'échange thermique est ainsi mouillée sur sa surface interne ce qui favorise une meilleure évaporation et donc un meilleur refroidissement sur la surface d'échange. Préférentiellement, un tissu à mailles espacées est utilisé afin de favoriser l'évaporation du liquide réfrigérant au contact du métal de l'échangeur tout en laissant échapper la vapeur dudit liquide à travers la couche poreuse. On supprime ainsi la résistance thermique de la couche poreuse.According to another advantageous feature, the internal walls of the cavity 2 of the exchanger are covered, at least partially, with a hydrophilic porous material, such as cellulose, a fabric or a polymer for example. This porous layer can be glued for example. The wall 21 of heat exchange is thus wetted on its inner surface which promotes better evaporation and therefore better cooling on the exchange surface. Preferably, a fabric with spaced meshes is used to promote the evaporation of the coolant in contact with the metal of the exchanger while allowing the vapor of said liquid to escape through the porous layer. This removes the thermal resistance of the porous layer.

Selon un mode de mise en oeuvre, illustré sur la figure 5, la cavité 2 de l'échangeur peut contenir un dispositif de séparation liquide-gaz 50. Ce mode de réalisation est possible de par la géométrie particulière de la cavité 2 constituant l'échangeur selon l'invention. En effet, un grand volume est disponible à la base du cône, précisément à proximité de la seconde paroi 22 intégrant les moyens de connexion 30 aux moyens de pompage 31. Il est ainsi possible de disposer, à l'intérieur même de l'échangeur un dispositif de séparation liquide-gaz 50 à proximité de l'ouverture desdits moyens de connexion 30. Un tel dispositif est décrit ci-après et ne pourrait être implémenté facilement dans un échangeur de géométrie connue de l'art antérieur. Le dispositif de séparation d'état 50 disposé dans l'échangeur selon l'invention occupe un volume inférieur à 20cm3.According to an embodiment, illustrated in FIG. 5, the cavity 2 of the exchanger may contain a liquid-gas separation device 50. This embodiment is possible due to the particular geometry of the cavity 2 constituting the exchanger according to the invention. Indeed, a large volume is available at the base of the cone, precisely near the second wall 22 incorporating the connection means 30 to the pumping means 31. It is thus possible to arrange the inside of the exchanger a liquid-gas separation device 50 near the opening of said connecting means 30. Such a device is described below and could not be easily implemented in a geometry exchanger known from the prior art. The state separation device 50 disposed in the exchanger according to the invention occupies a volume of less than 20 cm 3 .

Un tel séparateur d'état liquide-gaz 50 permet de séparer les molécules de vapeur du liquide réfrigérant pompé des gouttes dudit liquide entraînées par la vapeur dudit liquide. En effet, selon le principe physique de refroidissement mis en oeuvre par évaporation, le liquide réfrigérant s'évapore sous l'effet d'une dépression initiée par une rupture du vide et entretenue par un pompage des vapeurs dudit liquide. Or, la force de pompage peut être telle que des gouttes de liquide peuvent être entraînées vers la pompe 31 et nuire ainsi à son bon fonctionnement. Il est donc nécessaire de prévoir un séparateur d'état liquide-gaz 50 qui laisse passer les vapeurs du liquide réfrigérant à pomper et qui renvoie les gouttes de liquide dans la cavité 2 de l'échangeur thermique.Such a liquid-gas state separator 50 makes it possible to separate the vapor molecules from the pumped refrigerant liquid from drops of said liquid entrained by the vapor of said liquid. Indeed, according to the physical principle of cooling carried out by evaporation, the refrigerant liquid evaporates under the effect of a vacuum initiated by a vacuum rupture and maintained by a pumping of the vapors of said liquid. However, the pumping force can be such that drops of liquid can be driven to the pump 31 and thus adversely affect its proper operation. It is therefore necessary to provide a liquid-gas state separator 50 which passes the vapors of the coolant to be pumped and which returns the drops of liquid in the cavity 2 of the heat exchanger.

Un tel séparateur d'état comporte un déflecteur de vapeur qui se compose d'au moins une paroi formant chicane 51 imposant un ou des changements de direction brusques au flux de vapeur. Les molécules de vapeur ont un libre parcours moyen très faible, de l'ordre du micromètre, ce qui signifie qu'elles peuvent changer de direction très rapidement. En revanche, les gouttes de liquide ont une masse telle qu'elles sont entraînées par leur inertie et séparées ainsi du flux gazeux. Ce mécanisme permet avantageusement une séparation liquide-gaz sans ralentissement important du flux de vapeur et ne nécessite donc pas l'occupation d'un volume important.Such a state separator comprises a vapor baffle which consists of at least one baffle wall 51 imposing one or more sudden changes of direction to the vapor flow. The vapor molecules have a very low average free path, of the order of a micrometer, which means that they can change direction very quickly. On the other hand, the drops of liquid have a mass such that they are driven by their inertia and thus separated from the gas flow. This mechanism advantageously allows a liquid-gas separation without significant slowdown of the vapor flow and therefore does not require the occupation of a large volume.

Le dispositif séparateur d'état comporte également, en complément, un collecteur de gouttes 60 permettant de reconduire les gouttes de liquide séparées du flux gazeux de vapeur vers le bas de la cavité de l'évaporateur 2. Le collecteur 60 comporte un entonnoir et au moins un tube d'écoulement des gouttes. L'entonnoir peut avantageusement contribuer à former la chicane 51 du déflecteur de vapeur.The state-separating device also comprises, in addition, a drops collector 60 making it possible to extend the drops of liquid separated from the vapor gas flow towards the bottom of the cavity of the evaporator 2. The collector 60 comprises a funnel and at the less a tube of flow drops. The funnel may advantageously contribute to forming the baffle 51 of the steam deflector.

Selon un mode de réalisation avantageux, le déflecteur de vapeur 51 est avantageusement disposée autour des moyens de mise en communication 30 avec les moyens de pompage 31 et l'entonnoir du collecteur de gouttes 60 définit un angle solide qui inclut lesdits moyens de mise en communication 30 et le déflecteur de vapeur 51.According to an advantageous embodiment, the vapor deflector 51 is advantageously arranged around the communication means 30 with the pumping means 31 and the funnel of the drop collector 60 defines a solid angle which includes the said communication means 30 and the steam deflector 51.

Préférentiellement, le tube d'écoulement des gouttes du collecteur 60 présente une longueur supérieure ou égale à la perte de charge de la vapeur dans la chicane 51 afin d'éviter la projection de gouttes à travers ledit tube d'écoulement. Cette perte de charge est avantageusement mesurée en hauteur de volume d'eau. Si on considère, par exemple, une perte de charge de la vapeur V de 1mb (correspondant à 1cm de hauteur de colonne d'eau) le tube aura au moins 1cm de long.Preferably, the flow tube drops collector 60 has a length greater than or equal to the pressure drop of the steam in the baffle 51 to prevent the projection of drops through said flow tube. This pressure drop is advantageously measured in height of volume of water. If we consider, for example, a pressure drop of steam V of 1mb (corresponding to 1 cm of water column height) the tube will be at least 1 cm long.

Selon une particularité avantageuse, le dispositif séparateur d'état comprend en outre une protection 55 des projections directes de gouttes qui complète le déflecteur de vapeur 51. Cette protection 55 est disposée en regard des moyens de mise en communication 30 afin d'éviter une pollution directe des moyens de pompage 31 en particulier lors de l'initiation de la réaction d'adsorption.According to an advantageous feature, the state-separating device further comprises a protection 55 for direct projections of drops which completes the steam deflector 51. This protection 55 is arranged facing the communication means 30 in order to avoid pollution. direct pumping means 31 especially during the initiation of the adsorption reaction.

Selon les applications, les moyens de pompage 31 associés à l'échangeur thermique 2 selon l'invention peuvent être constitués d'une pompe à vide mécanique, ou de moyens de pompage cryogéniques tels que des pièges froids qui condensent les vapeurs d'eau, ou encore d'une cartouche sous vide d'air contenant des réactifs (des dessicants) aptes à déclencher et entretenir l'adsorption du liquide. La mise en oeuvre du refroidissement est donc initiée par une mise en communication 30 de l'échangeur thermique 2 selon l'invention avec des moyens de pompage 31. Selon une particularité avantageuse de l'invention, c'est la paroi de la cavité formant la base 22 du cône qui comporte les moyens de mise en communication 30 intégrés dans ladite paroi 22.According to the applications, the pumping means 31 associated with the heat exchanger 2 according to the invention may consist of a mechanical vacuum pump, or cryogenic pumping means such as cold traps which condense the water vapor, or a vacuum cartridge containing reagents (desiccants) capable of triggering and maintaining the adsorption of the liquid. The implementation of cooling is therefore initiated by an implementation communication 30 of the heat exchanger 2 according to the invention with pumping means 31. According to an advantageous feature of the invention, it is the wall of the cavity forming the base 22 of the cone which comprises the connecting means Integrated in said wall 22.

Comme illustré sur la figure 6, l'invention se rapporte également à un emballage de boisson 10 contenant un échangeur thermique selon l'invention tel que précédemment décrit.As illustrated in FIG. 6, the invention also relates to a beverage package containing a heat exchanger according to the invention as previously described.

Un tel emballage 10 de boisson auto-réfrigérant comprend une première cavité 1 contenant une boisson de consommation. Cette première cavité 1 peut présenter les formes et dimensions d'une canette standardisée. Une seconde cavité 2 est contiguë à la première cavité et constitue un échangeur thermique selon les formes et particularités déjà décrites de l'invention.Such a self-cooling beverage package 10 comprises a first cavity 1 containing a drinking beverage. This first cavity 1 may have the shapes and dimensions of a standardized can. A second cavity 2 is contiguous with the first cavity and constitutes a heat exchanger according to the forms and features already described of the invention.

Selon un mode de réalisation avantageux, la première paroi 21, conique, de la seconde cavité 2 est en contact avec la boisson contenue dans la première cavité 1.According to an advantageous embodiment, the first conical wall 21 of the second cavity 2 is in contact with the beverage contained in the first cavity 1.

Selon un autre mode de réalisation, la première paroi 21, conique, de la seconde cavité 2 est adjacente à une paroi de la première cavité 1. Ces parois sont ainsi en contact intime afin d'assurer un bon transfert thermique. Elles peuvent néanmoins être constituées de matériaux différents, par exemple la paroi 21 de la cavité de l'échangeur thermique 2 est en métal alors que la paroi de la cavité 1 contenant la boisson est en plastique PET (Poly Ethylène Téréphtalate). Bien que ce mode de réalisation soit moins avantageux pour ce qui est de l'efficacité de l'échange thermique entre l'échangeur 2 et la boisson, il permet par exemple de bien maîtriser un environnement stérile de la cavité 1 contenant la boisson, par exemple pour une application à des produits lactés.According to another embodiment, the first wall 21, conical, of the second cavity 2 is adjacent to a wall of the first cavity 1. These walls are thus in close contact to ensure good heat transfer. They may nevertheless be made of different materials, for example the wall 21 of the cavity of the heat exchanger 2 is made of metal while the wall of the cavity 1 containing the beverage is PET plastic (Poly Ethylene Terephthalate). Although this embodiment is less advantageous as regards the efficiency of the heat exchange between the exchanger 2 and the beverage, it makes it possible, for example, to control a sterile environment of the cavity 1 containing the beverage by example for an application to dairy products.

Avantageusement, la seconde cavité 2 formant l'échangeur thermique présente un rapport volume sur surface au moins deux fois plus faible que le rapport volume sur surface de la première cavité 1 contenant la boisson à refroidir.Advantageously, the second cavity 2 forming the heat exchanger has a volume-to-surface ratio at least two times lower than the volume-to-surface ratio of the first cavity 1 containing the beverage to be cooled.

Le refroidissement de la boisson contenue dans la première cavité 1 (la canette) est obtenu par l'évaporation du liquide réfrigérant contenu dans la seconde cavité 2 (l'échangeur thermique). Cette évaporation est initiée par une dépression provoquée dans la cavité 2 de l'échangeur par actionnement de moyens de mise en communication 30 de la cavité formant l'échangeur thermique avec des moyens de pompage 31, puis cette dépression est entretenue par un pompage des vapeurs dudit liquide.The cooling of the beverage contained in the first cavity 1 (the can) is obtained by evaporation of the coolant contained in the second cavity 2 (the heat exchanger). This evaporation is initiated by a depression caused in the cavity 2 of the exchanger by actuating means for placing the cavity forming the heat exchanger in communication with pumping means 31, and this depression is maintained by pumping the vapors. said liquid.

A cet effet, l'emballage de boisson auto-réfrigérant selon l'invention comporte une troisième cavité 3 contenant des moyens de pompage 31, en l'occurrence un réservoir de dessicants aptes à adsorber les vapeurs du liquide réfrigérant selon un principe physique connu mentionné précédemment.For this purpose, the self-cooling beverage package according to the invention comprises a third cavity 3 containing pumping means 31, in this case a desiccant reservoir able to adsorb the vapors of the refrigerant liquid according to a known physical principle mentioned previously.

Selon un mode de réalisation préférentiel, la paroi conique 21 de la seconde cavité 2 formant l'échangeur constitue également une paroi de la première cavité 1 contenant le liquide à refroidir. De même, la paroi formant la base 22 du cône de la seconde cavité 2 formant l'échangeur thermique constitue également une paroi de la troisième cavité 3 contenant les dessicants, cette paroi 22 commune intégrant les moyens de mise en communication 30 desdites seconde et troisième cavités. Avantageusement, la troisième cavité 3 peut comporter des moyens d'actionnement 32 des moyens de mise en communication 30 tel qu'une tige déclenchant l'ouverture desdits moyens de mise en communication 30.According to a preferred embodiment, the conical wall 21 of the second cavity 2 forming the exchanger also constitutes a wall of the first cavity 1 containing the liquid to be cooled. Similarly, the wall forming the base 22 of the cone of the second cavity 2 forming the heat exchanger also constitutes a wall of the third cavity 3 containing the desiccants, this common wall 22 incorporating the communication means 30 of said second and third cavities. Advantageously, the third cavity 3 may comprise actuating means 32 communication means 30 such as a rod triggering the opening of said communication means 30.

Selon une autre application, l'échangeur thermique selon l'invention peut être utilisé dans un dispositif de refroidissement d'une boisson contenue dans un récipient ouvert en tant que plongeur refroidissant.According to another application, the heat exchanger according to the invention can be used in a cooling device of a beverage contained in an open container as a cooling plunger.

Dans une première variante de réalisation, dont une illustration peut être donnée par la figure 5, le plongeur refroidissant comporte un échangeur thermique selon l'invention avec une cavité 2 substantiellement conique reliée à des moyens de pompage 31 par des moyens de mise en communication 30 intégrés dans la paroi 22 formant la base de la cavité 2. L'échangeur thermique est alors fourni seul avec ses moyens de mise en communication 30 intégrés et doit être relié à des moyens de pompage 31 adaptés, tels qu'une pompe à vide mécanique ou cryogénique ou une cartouche sous vide d'air contenant des dessicants, par un tube pouvant être souple ou rigide, fixe ou amovible.In a first variant embodiment, an illustration of which may be given in FIG. 5, the cooling plunger comprises a heat exchanger according to the invention with a substantially conical cavity 2 connected to pumping means 31 by placing means 30. integrated in the wall 22 forming the base of the cavity 2. The heat exchanger is then provided alone with its integrated communication means 30 and must be connected to adapted pumping means 31, such as a mechanical or cryogenic vacuum pump or vacuum cartridge containing air desiccants, by a flexible or rigid tube, fixed or removable.

Dans une deuxième variante de réalisation, illustrée sur la figure 7, le plongeur refroidissant comporte un échangeur thermique selon l'invention avec une cavité 2 substantiellement conique solidaire de moyens de pompage par la paroi 22 formant la base de la cavité 2. L'échangeur thermique est alors fourni avec des moyens de mise en communication 30 intégrés et des moyens de pompage 31 adaptés, tels qu'une cartouche sous vide d'air contenant des dessicants. Le plongeur constitue ainsi un dispositif de refroidissement autonome jetable ou éventuellement réutilisable après régénération.In a second variant embodiment, illustrated in FIG. 7, the cooling plunger comprises a heat exchanger according to the invention with a substantially conical cavity 2 secured to pumping means by the wall 22 forming the base of the cavity 2. The exchanger The thermal device is then provided with integrated communication means 30 and adapted pumping means 31, such as an air-vacuum cartridge containing desiccants. The plunger thus constitutes a disposable autonomous cooling device or possibly reusable after regeneration.

Claims (21)

  1. A liquid cooling device comprising:
    - a heat exchanger comprising a cavity (2) containing a cooling liquid capable of evaporating under the effect of a reduced pressure and the vapors of said cooling liquid at a pressure below atmospheric pressure,
    - pumping means (31) adapted to pump the vapors of said cooling liquid so as to maintain a sub-atmospheric pressure in said cavity (2),
    - said cavity (2) of the heat exchanger having at least a first wall (21) substantially conical in shape, such that its surface area in section diminishes from the base to the top, and at least a second wall (22) forming the base of said conical shape, said first conical wall (21) being designed to be in contact with the liquid to be cooled and said second wall (22) incorporating means of connecting (30) the cavity (2) of the exchanger to the pumping means (31).
  2. The cooling device according to claim 1, characterized in that the first wall (21) of the cavity (2) has a ribbed structure.
  3. The cooling device according to claim 2, characterized in that at least some of the ribs of the first wall have a zero width inside the cavity.
  4. The cooling device according to claims 1 to 3, characterized in that the first wall (21) of the cavity (2) comprises a section the surface area of which in section is constant.
  5. The cooling device according to claims 1 to 3, characterized in that the surface area in cross-section of the first wall (21) of the conical cavity (2) gradually reduces from the base (22) to the top (24).
  6. The cooling device according to one of the preceding claims, characterized in that the conical cavity (2) has a rounded or flattened top (24).
  7. The cooling device according to one of the preceding claims, characterized in that the volume of the cavity (2) is less than 2/3 of the volume delimited by the surface of revolution enveloping said cavity.
  8. The cooling device according to one of the preceding claims, characterized in that the internal walls of the cavity (2) are at least partially covered with a hydrophilic porous material.
  9. The cooling device according to one of the preceding claims, characterized in that the cooling liquid is water and/or water containing an additive having a saturated vapor pressure higher than that of water.
  10. The cooling device according to one of the preceding claims, characterized in that the cavity (2) contains a liquid-gas state separating device (50).
  11. The cooling device according to one of the preceding claims, characterized in that at least the first wall (21) of the cavity (2) is made of a heat-conducting material.
  12. The cooling device according to one of the preceding claims, characterized in that the associated pumping means (31) are chosen from the means constituted by an adsorbent air vacuum-packed material, a mechanical vacuum pump, a cryogenic vacuum pump.
  13. The cooling device according to one of the preceding claims, characterized in that the cavity (2) of the heat exchanger constitutes a dip tube immersed in the liquid to be cooled.
  14. The cooling device according to claim 13, characterized in that the cavity (2) of the exchanger is linked to the pumping means (31) by a tube.
  15. The cooling device according to claim 13, characterized in that the cavity (2) of the exchanger is integral with the pumping means, the second wall (22) of the cavity of the exchanger being integrated into said pumping means.
  16. A self-cooling drink container (10) comprising:
    - a first cavity (1) containing a consumer drink,
    - a second cavity (2) constituted by a heat exchanger containing a cooling liquid capable of evaporating under the effect of a reduced pressure and the vapors of said cooling liquid at a pressure below atmospheric pressure,
    - a third cavity (3) containing pumping means (31) adapted to absorb the vapors of said cooling liquid so as to maintain a sub-atmospheric pressure in said second cavity (2),
    - said cavity (2) of the heat exchanger having at least a first wall (21) substantially conical in shape, such that its surface area in section diminishes from the base to the top, and at least a second wall (22) forming the base of said conical shape, said first conical wall (21) being designed to be in contact with the drink contained in said first cavity (1), and said second wall (22) incorporating means of connecting (30) the cavity (2) of the exchanger to the pumping means (31).
  17. The self-cooling drink container according to claim 16, characterized in that the top of the conical shape of the second cavity (2) is directed downwards so as to create at least one convection current in the axis of the cone in the first cavity (1) during the adsorption of the vapor of the cooling liquid .
  18. The self-cooling drink container according to one of claims 16 to 17, characterized in that the second cavity (2) has a volume-to-surface area ratio at least two times smaller than the volume-to-surface area ratio of the first cavity (1).
  19. The self-cooling drink container according to one of claims 16 to 17, characterized in that the first wall (21) of the cavity (2) of the heat exchanger is in contact with the drink contained in the first cavity (1).
  20. The self-cooling drink container according to one of claims 16 to 18, characterized in that the first wall (21) of the cavity (2) of the heat exchanger is adjacent to a wall of the first cavity (1).
  21. The self-cooling drink container according to one of claims 16 to 20, characterized in that the second wall (22) of the cavity (2) of the exchanger constitutes a wall of the third cavity (3) and incorporates means of communication (31) with said second and third cavities (2, 3).
EP02785582A 2001-11-16 2002-11-04 Heat exchanger Expired - Lifetime EP1448938B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0114854 2001-11-16
FR0114854A FR2832495B1 (en) 2001-11-16 2001-11-16 HEAT EXCHANGER
PCT/FR2002/003772 WO2003042610A1 (en) 2001-11-16 2002-11-04 Heat exchanger

Publications (2)

Publication Number Publication Date
EP1448938A1 EP1448938A1 (en) 2004-08-25
EP1448938B1 true EP1448938B1 (en) 2006-04-05

Family

ID=8869479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02785582A Expired - Lifetime EP1448938B1 (en) 2001-11-16 2002-11-04 Heat exchanger

Country Status (11)

Country Link
US (1) US7240507B2 (en)
EP (1) EP1448938B1 (en)
JP (1) JP4065430B2 (en)
CN (1) CN100467977C (en)
AT (1) ATE322657T1 (en)
AU (1) AU2002350872B2 (en)
CA (1) CA2466296A1 (en)
DE (1) DE60210496T2 (en)
FR (1) FR2832495B1 (en)
RU (1) RU2299382C2 (en)
WO (1) WO2003042610A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875587B1 (en) * 2004-09-20 2007-03-30 Thermagen Sa AUTO-REFRIGERANT PACKAGING
DE602004014504D1 (en) * 2004-10-18 2008-07-31 Thermagen Self-cooling bottle
AT501614B1 (en) * 2005-07-08 2006-10-15 Peter Dipl Ing Lang HEAT EXCHANGERS AND TEMPERATURE CONTAINERS WITH HEAT EXCHANGERS
US20070125362A1 (en) * 2005-11-14 2007-06-07 Heat Wave Technologies Llc Self-heating container
US8556108B2 (en) * 2007-09-26 2013-10-15 Heat Wave Technologies, Llc Self-heating systems and methods for rapidly heating a comestible substance
US8360048B2 (en) 2009-03-09 2013-01-29 Heat Wave Technologies, Llc Self-heating systems and methods for rapidly heating a comestible substance
US8578926B2 (en) * 2009-03-09 2013-11-12 Heat Wave Technologies, Llc Self-heating systems and methods for rapidly heating a comestible substance
US9879897B2 (en) 2010-12-02 2018-01-30 Frosty Cold, Llc Cooling agent for cold packs and food and beverage containers
US9039924B2 (en) 2010-12-02 2015-05-26 Frosty Cold, Llc Cooling agent for cold packs and food and beverage containers
US10155698B2 (en) 2010-12-02 2018-12-18 Frosty Cold, Llc Cooling agent for cold packs and food and beverage containers
US9170053B2 (en) 2013-03-29 2015-10-27 Tokitae Llc Temperature-controlled portable cooling units
US11105556B2 (en) 2013-03-29 2021-08-31 Tokitae, LLC Temperature-controlled portable cooling units
US9657982B2 (en) 2013-03-29 2017-05-23 Tokitae Llc Temperature-controlled medicinal storage devices
US10941971B2 (en) 2013-03-29 2021-03-09 Tokitae Llc Temperature-controlled portable cooling units
EP3102897B1 (en) * 2014-01-31 2021-09-15 The Coca-Cola Company Systems and methods for vacuum cooling a beverage

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR322802A (en) * 1902-07-07 1903-02-13 Theodore Paul Portable refrigerating device
FR528092A (en) * 1917-03-23 1921-11-05 Anton Von Codelli Portable cooler
US1857887A (en) * 1929-01-22 1932-05-10 Stein Frantisek Water separator
CH182955A (en) 1935-06-03 1936-03-15 Till F G Method and device for separating oil mist or other mist-like suspended substances from a gaseous medium.
DE1929734A1 (en) * 1968-06-14 1970-02-05 Lincoln Hall Res Company Caloric cartridge that can be used in containers with food or beverages to warm or cool the contents of the container
US3726106A (en) 1970-01-07 1973-04-10 W Jaeger Self-refrigerating and heating food containers and method for same
US3970068A (en) * 1973-05-29 1976-07-20 Shotaro Sato Heat exchange package for food
US4126016A (en) * 1977-07-27 1978-11-21 Leonard Greiner Vacuum interconnect for heating and cooling unit
US4319464A (en) * 1980-07-25 1982-03-16 Dodd N Ray Refrigerated container
SU1135919A1 (en) 1983-06-23 1985-01-23 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Холодильной Промышленности Cryogenic vacuum pump
SU1291183A1 (en) 1985-04-01 1987-02-23 Предприятие П/Я Р-6956 Separating apparatus
US4688395A (en) * 1985-10-03 1987-08-25 Superior Marketing Research Corp. Self-contained cooling device for food containers
US4669273A (en) * 1986-05-07 1987-06-02 Liquid Co2 Engineering Inc. Self-cooling beverage container
JPH0788996B2 (en) * 1986-09-24 1995-09-27 品川燃料株式会社 Cooling method
US4736599A (en) * 1986-12-12 1988-04-12 Israel Siegel Self cooling and self heating disposable beverage cans
US4784678A (en) * 1987-04-06 1988-11-15 The Coca-Cola Company Self-cooling container
DE3901558A1 (en) * 1989-01-20 1990-07-26 Zeolith Tech SORPTION CONTAINER FOR SOLID SORPTION AGENTS
SU1643897A1 (en) 1989-02-22 1991-04-23 Челябинский Электролитный Цинковый Завод Им.С.М.Кирова Vacuum evaporator for cooling zinc element
US4928495A (en) 1989-06-22 1990-05-29 Israel Siegel Self cooling and self heating container
US5018368A (en) * 1989-10-12 1991-05-28 International Thermal Packaging, Inc. Multi-staged desiccant refrigeration device
DE4003107A1 (en) * 1990-02-02 1991-08-08 Zeolith Tech ICE PRODUCER ACCORDING TO THE SORPTION PRINCIPLE
US5265036A (en) * 1991-02-25 1993-11-23 United Technologies Corporation Turbine pyrometer system for correction of combustor fireball interference
US5273182A (en) * 1991-10-09 1993-12-28 Laybourne Sidney C Coaster
DE4138114A1 (en) * 1991-11-19 1993-05-27 Zeolith Tech COOLING DEVICE AND COOLING METHOD FOR COOLING A MEDIUM WITHIN A VESSEL
US5214933A (en) * 1992-01-29 1993-06-01 Envirochill International Ltd. Self-cooling fluid container
US5201183A (en) * 1992-04-29 1993-04-13 Ramos John F Cooling device for beverage cans
FR2696533A1 (en) 1992-10-06 1994-04-08 Blaizat Claude Portable heating or cooling appts. acting on drink - uses closed tube with divider that can be opened and closed to allow chemical reaction that generates heat or cools
US5331817A (en) * 1993-05-28 1994-07-26 The Joseph Company Portable self-cooling and self-heating device for food and beverage containers
US5447039A (en) * 1994-03-29 1995-09-05 Allison; Robert S. Beverage can cooling system
DE19504081A1 (en) 1995-02-08 1996-08-14 Zeolith Tech Cooler
GB9513606D0 (en) * 1995-07-04 1995-09-06 Boc Group Plc Apparatus for chilling fluids
US5865036A (en) 1995-09-27 1999-02-02 Anthony; Michael Self-cooling beverage and food container and manufacturing method
AU4190796A (en) 1995-12-08 1997-07-03 Ho Kyun Kim Beverage container with an enclosed cooling system
US5765385A (en) * 1996-05-29 1998-06-16 Childs; Michael A. Self-cooling beverage container
US5946930A (en) * 1997-03-26 1999-09-07 Anthony; Michael M. Self-cooling beverage and food container using fullerene nanotubes
FR2762076A1 (en) 1997-04-14 1998-10-16 Georges Maury Refrigerating capsule for inclusion in drinks can
US6103280A (en) * 1997-09-20 2000-08-15 Bass Public Limited Company Self-cooling containers of beverage and foodstuffs
US5943875A (en) * 1997-12-08 1999-08-31 Envirochill International, Ltd. Self-cooling fluid container with nested refrigerant and fluid chambers
GB9801436D0 (en) 1998-01-24 1998-03-18 Bass Plc Improvements in & relating to cooling containers of beverages
AU2288199A (en) * 1998-01-24 1999-08-09 University Of Nottingham, The Heat transfer device
US5845499A (en) * 1998-04-20 1998-12-08 Montesanto; Michael Beverage chilling and insulating device
US6089519A (en) * 1998-05-22 2000-07-18 Laybourne; Sidney C. Liquid control and storage system
US6065300A (en) * 1999-02-08 2000-05-23 Anthony; Michael M. Self-cooling container with internal beverage vessel having a vessel wall with reversible wall bulges
WO2000077462A1 (en) * 1999-06-11 2000-12-21 Schieder Hans B Pressure responsive valve for use in a self-contained cooling device
AU774931B2 (en) 1999-08-04 2004-07-15 Crown Cork & Seal Technologies Corporation Self-cooling can
AU762116B2 (en) 1999-08-04 2003-06-19 Crown Cork & Seal Technologies Corporation Self-cooling can
US6338252B1 (en) 2000-03-13 2002-01-15 Smartcup International Heat transfer container
FR2810021B1 (en) * 2000-06-13 2004-05-21 Thermagen SELF-REFRIGERATING BEVERAGE PACKAGING
FR2810015B1 (en) * 2000-06-13 2004-05-28 Thermagen METHOD FOR MANUFACTURING A SELF-REFRIGERATING BEVERAGE PACKAGE AND EQUIPMENT FOR CARRYING OUT SAID METHOD

Also Published As

Publication number Publication date
JP2005509830A (en) 2005-04-14
CN1615419A (en) 2005-05-11
JP4065430B2 (en) 2008-03-26
FR2832495B1 (en) 2004-02-20
RU2004118069A (en) 2005-05-10
DE60210496D1 (en) 2006-05-18
FR2832495A1 (en) 2003-05-23
DE60210496T2 (en) 2006-11-23
US7240507B2 (en) 2007-07-10
US20050039485A1 (en) 2005-02-24
EP1448938A1 (en) 2004-08-25
WO2003042610A1 (en) 2003-05-22
RU2299382C2 (en) 2007-05-20
AU2002350872B2 (en) 2007-10-04
CN100467977C (en) 2009-03-11
ATE322657T1 (en) 2006-04-15
CA2466296A1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
EP1448938B1 (en) Heat exchanger
EP1164341B1 (en) Self-cooled beverage packing
CA2159901C (en) Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor
EP1481204B1 (en) Self-refrigerating packaging and associated actuation device
EP1290387B1 (en) Method for making a self-refrigerating drink package and equipment therefor
WO2006042934A1 (en) Self-refrigerating bottle
WO2010089493A1 (en) Cryogenic tank and space launcher including such a tank
JP2007531669A (en) Self-cooling packaging actuator
EP0022391A1 (en) Acceleration-proof cryostatic device
EP0177416A1 (en) Cryostatic apparatus for radiation detectors
WO2001077594A1 (en) Cooling device
EP1334320A1 (en) Adsorption refrigerating device
EP3045837B1 (en) Heat pipe comprising a heat-transfer fluid and an absorbable or adsorbable gas, and a porous material
FR2875587A1 (en) AUTO-REFRIGERANT PACKAGING
FR2780955A1 (en) Stopper assembly for bottle containing liquid, e.g. beverage, under pressure comprises internally threaded cap and pressure resistant seal having orifice and shaped as a cup
BE722312A (en)
WO2008074944A2 (en) Autonomous cooling device
BE478087A (en)
BE689979A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060405

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60210496

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060716

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060905

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071113

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071129

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081029

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

BERE Be: lapsed

Owner name: S.A. *THERMAGEN

Effective date: 20091130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130