EP1443298B1 - Heating element for initiating pyrotechnical charges - Google Patents

Heating element for initiating pyrotechnical charges Download PDF

Info

Publication number
EP1443298B1
EP1443298B1 EP04100151A EP04100151A EP1443298B1 EP 1443298 B1 EP1443298 B1 EP 1443298B1 EP 04100151 A EP04100151 A EP 04100151A EP 04100151 A EP04100151 A EP 04100151A EP 1443298 B1 EP1443298 B1 EP 1443298B1
Authority
EP
European Patent Office
Prior art keywords
heating element
glass
base body
ceramic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04100151A
Other languages
German (de)
French (fr)
Other versions
EP1443298A1 (en
Inventor
Markus Ing. Forsthuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirtenberger Schaffler Automotive Zunder GmbH
Original Assignee
Hirtenberger Schaffler Automotive Zunder GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirtenberger Schaffler Automotive Zunder GmbH filed Critical Hirtenberger Schaffler Automotive Zunder GmbH
Publication of EP1443298A1 publication Critical patent/EP1443298A1/en
Application granted granted Critical
Publication of EP1443298B1 publication Critical patent/EP1443298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge

Definitions

  • the present invention relates to a heating element for igniting pyrotechnic charges comprising a base body, a patterned resistive layer disposed on the base body, and contact pads overlapped on both ends of the resistance layer. It further relates to a method for producing a heating element, in which optionally first glass or glass ceramic is printed by screen printing on a base body and then dried and sintered, these steps are repeated until the desired overall layer thickness is reached; after which the resistive paste is screen printed on the glass-ceramic substrate or coating and then dried and sintered; and after that the conductor paste for forming the contact pads is screen printed over the resistive layer and then dried and sintered.
  • the company Dynamit Nobel AG has been producing heating elements in thin-layer, sputtered-on heating technology for detonators in military use and in mining for many years. DE 2020016 A1 ). This type of heating element can be used in the automotive sector only with additional effort (external wiring).
  • the specifications to be met are e.g. the USCAR (Chrysler, General Motors and Ford) and the VW80150 (Volkswagen).
  • the electrical requirements are of utmost importance for the heating element. These tests are to be carried out on igniters (heating element with pyrotechnic kit installed according to the requirements of the automotive industry).
  • Ignition sensitivity is determined by so-called “all-fire” and “no-fire” tests (e.g., Bruceton, Logit, Run-Down).
  • all-fire and "no-fire” tests (e.g., Bruceton, Logit, Run-Down).
  • the igniter In the “All-Fire” test, the igniter must fire with a constant current pulse of 1.2 A for 2 ms (with a certain statistical probability).
  • the ignitor In the "no-fire” test, the ignitor must not ignite (with a certain statistical probability) with a constant current pulse of 0.5 A for 10 s.
  • Interference pulses are predetermined amounts of energy which are introduced within a defined time and with a specific repetition frequency.
  • Example ESC interference pulse according to USCAR Charge capacitor with 150 pF to 25 kV via a series resistor with 500 ⁇ via the igniter with installed heating element (2 ⁇ ).
  • Transient pulse according to USCAR Current pulses with 5.3 A, a pulse duration of 4 ⁇ s (rise time 1 ⁇ s, decay time 3 ⁇ s) and a duty ratio 1: 1000 applied to the igniter with installed heating element (2 ⁇ ) for 24 h.
  • a heating element of the type mentioned in the present invention characterized in that the mass of the heating element of 1.0 ⁇ 10 -9 kg to 4.0 ⁇ 10 -9 kg, the resistivity of 1 ⁇ 10 -6 ⁇ m to 2 ⁇ 10 -6 ⁇ m and the specific heat capacity of the heating element is from 100 W / (kg ⁇ K) to 400 W / (kg ⁇ K).
  • the main difference to the heating element according to the AT 405591 B is that the mass is much larger (more than 10 times) and the resistivity is also much higher (more than 20 times). In this way, a similar total resistance (which is predetermined by the automotive industry) results, but due to the higher mass, the temperature of the heating element increases less if energy is released in the heating element by interference, so that the pyrotechnic charge can not ignite or the heating element can not be destroyed.
  • the cross section of the heating element is preferably 3.5 ⁇ 10 -10 m 2 to 7.0 ⁇ 10 -10 m 2 .
  • This cross section is favorable in order to achieve usual resistance values, eg 2 ⁇ .
  • These materials are particularly suitable for providing suitable resistance values in the composition according to the invention.
  • the rest contains oxidic additives and glass phase.
  • the resistor paste normally also contains an organic agent before sintering.
  • the base body consists of a high temperature resistant glass or a glass ceramic or a ceramic with thermal thermal conductivity of at most 2 W / (m ⁇ K); or if the base body consists of a high-temperature-resistant glass or a glass ceramic or a ceramic with thermal heat conductivity of at most 3 W / (m ⁇ K) and on the body a heat barrier is applied, consisting of glass or glass ceramic coating with 20-80 ⁇ m thickness and with a thermal thermal conductivity of at most 1.5 W / (m ⁇ K).
  • the preferred material for the contact pads is sintered AgPd or AgPt thick-film conductor paste with a Pd or Pt content of between 1 and 10% by mass.
  • the rest contains oxidic additives and glass phase.
  • the conductor paste normally also contains an organic agent before sintering.
  • the resistance layer is patterned only after the application of the contact fields by means of a programmable laser source.
  • the heating rate energy transfer
  • This structuring can relate both to the basic shape of the Glüh Kunststoff by cutting out the corresponding geometry and to the height by areal removal.
  • shaping with a laser source is much more flexible. A change of the production is possible in a very short time only by a program change, whereas the etching a new etching mask must be created.
  • the ignition element by post-sintering at 800 ° C-900 ° C peak temperature over 10-20 minutes after sintering of the resistive layer or after sintering of the contact pads or after structuring the ignition element is improved in its stability to high electrical and thermal loads.
  • the speed of the ignition increases as a result of resintering. This makes it possible to use a larger volume (thereby decreasing the firing speed per se), so that the sensitivity to electrical interference can be reduced.
  • the present invention provides a heating element and a method with corresponding material combinations, which have not yet been realized in layer technology and meets the specifications of the automotive industry without additional electronics.
  • the proof of the resistance to ESD interference pulses and transient pulse according to USCAR can be carried out by means of thermodynamic calculation and subsequent numerical simulation.
  • thermodynamic heat equation Due to the analogy of the thermodynamic heat equation with the differential equations of an electrical conductor (telegraph equation), an exact one-dimensional simulation of the thermal conditions (temperature and heat quantities) can be performed over time after transformation of the thermodynamic quantities into electrical quantities.
  • the temperature of the heating element T (in ° C) is shown as a function of the time t (in s).
  • the solid line refers to the heating element "hitherto", the dotted line to the heating element "new”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air Bags (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Heating element for igniting pyrotechnical charges comprises a structured resistance layer arranged on a base body, and contact fields arranged in an overlapping manner on the two ends of the resistance path. The heating element has a weight of 1.0 x 10-9-4.0 x 10-9 kg, a specific resistance of 1 x 10-6-2 x 10-6 omega m, and a specific heat capacity of 100-400 W/(kgK). An independent claim is also included for the production of the above heating element comprising pressing glass or a glass ceramic in a screen printing process on a base body, and drying and sintering the base body.

Description

Die vorliegende Erfindung betrifft ein Heizelement zum Zünden pyrotechnischer Ladungen bestehend aus einem Grundkörper, einer strukturierten Widerstandsschicht, die auf dem Grundkörper angeordnet ist, und Kontaktfeldern, die überlappend auf den beiden Enden der Widerstandsschicht angeordnet sind. Sie betrifft weiters ein Verfahren zur Herstellung eines Heizelements, bei dem gegebenenfalls zunächst Glas oder Glaskeramik mittels Siebdruckverfahrens auf einen Grundkörper gedruckt wird und danach getrocknet und gesintert wird, wobei diese Schritte wiederholt werden, bis die gewünschte Gesamtschichtstärke erreicht ist; wobei danach die Widerstandspaste mittels Siebdruckverfahrens auf das Glaskeramiksubstrat bzw. Beschichtung gedruckt wird und danach getrocknet und gesintert wird; und wobei danach die Leiterpaste zur Bildung der Kontaktfelder mittels Siebdruckverfahrens überlappend über die Widerstandsschicht gedruckt wird und danach getrocknet und gesintert wird.The present invention relates to a heating element for igniting pyrotechnic charges comprising a base body, a patterned resistive layer disposed on the base body, and contact pads overlapped on both ends of the resistance layer. It further relates to a method for producing a heating element, in which optionally first glass or glass ceramic is printed by screen printing on a base body and then dried and sintered, these steps are repeated until the desired overall layer thickness is reached; after which the resistive paste is screen printed on the glass-ceramic substrate or coating and then dried and sintered; and after that the conductor paste for forming the contact pads is screen printed over the resistive layer and then dried and sintered.

Die Fa. Dynamit Nobel AG stellt seit vielen Jahren Heizelemente in Schichttechnik (Dünnschicht, aufgesputtert) für Zünder im militärischen Einsatz und den Bergbau her ( DE 2020016 A1 ). Diese Art von Heizelement kann im automotiven Bereich nur mit Zusatzaufwand (externe Beschaltung) eingesetzt werden.The company Dynamit Nobel AG has been producing heating elements in thin-layer, sputtered-on heating technology for detonators in military use and in mining for many years. DE 2020016 A1 ). This type of heating element can be used in the automotive sector only with additional effort (external wiring).

Von der Fa. LifeSparc Inc. und der Auburn University wurde ebenfalls ein Heizelement in Schichttechnik (Dünnschicht, aufgesputtert) auf einem Halbleitersubstrat vorgestellt ( US 4708060 A , welche die Grundlage für den Oberbegriff des Anspruchs 1 bildet, und US 4976200 A ). Auch hier muss ein Zusatzaufwand (externe Beschaltung mit Dioden im Halbleitersubstrat) das Heizelement gegen äußere Einflüsse schützen, will man es im automotiven Bereich einsetzen.LifeSparc Inc. and Auburn University also presented a laminar heating element (thin film, sputtered) on a semiconductor substrate ( US 4708060 A , which forms the basis for the preamble of claim 1, and US 4976200 A ). Here, too, an additional effort (external wiring with diodes in the semiconductor substrate) must protect the heating element against external influences if it is to be used in the automotive sector.

In dem gattungsbildenden Patent der Fa. Schaffler & Co. ( AT 405591 B ) wird ein Heizelement in Dickschichttechnik vorgestellt. Dieses kann bei entsprechender Anwendung zum Anzünden pyrotechnischer Sätze verwendet werden, erfüllt aber ohne Zusatzaufwand (externe Beschaltung) ebenfalls nicht die geforderten Spezifikationen der Automobilindustrie in Hinblick auf ESD (Elektrostatic Discharge) und Transient Puls bei gleichzeitiger Einhaltung des geforderten elektrischen Widerstandes (z.B. 2 Ω) sowie der Zündverzugszeit (z.B. höchstens 2 ms).In the generic patent of the company. Schaffler & Co. ( AT 405591 B ) introduces a thick-film heating element. This can be used with appropriate application for igniting pyrotechnic sets, but also meets without additional effort (external wiring) also not the required specifications of the automotive industry in With regard to ESD (electrostatic discharge) and transient pulse while maintaining the required electrical resistance (eg 2 Ω) as well as the ignition delay time (eg maximum 2 ms).

Die zu erfüllenden Spezifikationen sind z.B. die USCAR (Chrysler, General Motors und Ford) sowie die VW80150 (Volkswagen). Neben den Forderungen der Umweltsimulation (Klima-Wechseltests und mechanische Belastung) sind für das Heizelement die elektrischen Anforderungen (Empfindlichkeit beim Zünden und Widerstandsfähigkeit gegenüber Störpulsen) von größter Bedeutung. Diese Prüfungen sind an Zündern durchzuführen (Heizelement mit pyrotechnischem Satz gemäß Anforderungen der Automobilindustrie verbaut).The specifications to be met are e.g. the USCAR (Chrysler, General Motors and Ford) and the VW80150 (Volkswagen). In addition to the demands of environmental simulation (climate change tests and mechanical stress), the electrical requirements (sensitivity during ignition and resistance to interference pulses) are of utmost importance for the heating element. These tests are to be carried out on igniters (heating element with pyrotechnic kit installed according to the requirements of the automotive industry).

Die Empfindlichkeit beim Zünden wird durch sogenannte "All-Fire"- und "No-Fire"-Tests bestimmt (z.B. Bruceton, Logit, Run-Down). Beim "All-Fire"-Test muß der Zünder mit einem Konstantstrompuls von 1,2 A über 2 ms zünden (mit einer bestimmten statistischen Wahrscheinlichkeit). Beim "No-Fire"-Test darf der Zünder mit einem Konstantstrompuls von 0,5 A über 10 s nicht zünden (mit einer bestimmten statistischen Wahrscheinlichkeit).Ignition sensitivity is determined by so-called "all-fire" and "no-fire" tests (e.g., Bruceton, Logit, Run-Down). In the "All-Fire" test, the igniter must fire with a constant current pulse of 1.2 A for 2 ms (with a certain statistical probability). In the "no-fire" test, the ignitor must not ignite (with a certain statistical probability) with a constant current pulse of 0.5 A for 10 s.

Wenn der Zünder mit den vorgeschriebenen Störpulsen beaufschlagt wird, darf es zu keiner Zündung kommen. Störpulse sind vorgegebene Energiemengen, welche innerhalb einer definierten Zeit und mit einer bestimmten Wiederholfrequenz eingebracht werden.If the igniter is subjected to the prescribed interference pulses, ignition must not occur. Interference pulses are predetermined amounts of energy which are introduced within a defined time and with a specific repetition frequency.

Beispiel ESD-Störpuls nach USCAR: Kondensator mit 150 pF auf 25 kV geladen über einen Vorwiderstand mit 500 Ω über den Zünder mit verbautem Heizelement (2 Ω) entladen.Example ESC interference pulse according to USCAR: Charge capacitor with 150 pF to 25 kV via a series resistor with 500 Ω via the igniter with installed heating element (2 Ω).

Beispiel Transient Puls nach USCAR: Strompulse mit 5,3 A, einer Pulsdauer von 4 µs (Anstiegszeit 1 µs, Abklingzeit 3 µs) und einem Tastverhältnis 1:1000 über 24 h auf den Zünder mit verbautem Heizelement (2 Ω) eingebracht.Example: Transient pulse according to USCAR: Current pulses with 5.3 A, a pulse duration of 4 μs (rise time 1 μs, decay time 3 μs) and a duty ratio 1: 1000 applied to the igniter with installed heating element (2 Ω) for 24 h.

Das Problem bei Zündern mit all diesen bekannten Heizelementen ist, dass sie diese Spezifikationen nur mit zusätzlicher Elektronik erfüllen. Bisher gibt es noch kein Heizelement in Schichttechnik (Dickschicht, Dünnschicht, Halbleiter), welches die Anforderungen der Automobilindustrie gemäß Spezifikation ohne Zusatzaufwand (externe Beschaltung) erfüllt.The problem with detonators with all these known heating elements is that they only comply with these specifications fulfill additional electronics. So far there is no heating element in layer technology (thick film, thin film, semiconductor), which meets the requirements of the automotive industry according to specification without additional effort (external wiring).

Es ist Aufgabe der vorliegenden Erfindung, ein Heizelement in Schichttechnik zu schaffen, sodass ein damit ausgestatteter Zünder ohne zusätzliche Elektronik im automotiven Bereich eingesetzt werden kann.It is an object of the present invention to provide a heating element in layer technology, so that a detonator equipped with it can be used without additional electronics in the automotive sector.

Diese Aufgabe wird durch ein Heizelement der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Masse des Heizelements von 1,0·10-9 kg bis 4,0·10-9 kg, der spezifische Widerstand von 1·10-6 Ωm bis 2·10-6 Ωm und die spezifische Wärmekapazität des Heizelements von 100 W/(kg·K) bis 400 W/(kg·K) beträgt.This object is achieved by a heating element of the type mentioned in the present invention, characterized in that the mass of the heating element of 1.0 · 10 -9 kg to 4.0 · 10 -9 kg, the resistivity of 1 · 10 -6 Ωm to 2 · 10 -6 Ωm and the specific heat capacity of the heating element is from 100 W / (kg · K) to 400 W / (kg · K).

Der wesentliche Unterschied zu dem Heizelement gemäß der AT 405591 B ist, dass die Masse wesentlich größer (mehr als 10 Mal) und der spezifische Widerstand ebenfalls wesentlich höher ist (mehr als 20 Mal). Auf diese Weise ergibt sich ein ähnlicher Gesamtwiderstand (der von der Automobilindustrie vorgegeben ist), aber auf Grund der höheren Masse erhöht sich die Temperatur des Heizelements weniger, wenn durch Einstreuungen Energie im Heizelement freigesetzt wird, sodass sich die pyrotechnische Ladung nicht entzünden kann bzw. das Heizelement nicht zerstört werden kann.The main difference to the heating element according to the AT 405591 B is that the mass is much larger (more than 10 times) and the resistivity is also much higher (more than 20 times). In this way, a similar total resistance (which is predetermined by the automotive industry) results, but due to the higher mass, the temperature of the heating element increases less if energy is released in the heating element by interference, so that the pyrotechnic charge can not ignite or the heating element can not be destroyed.

Vorzugsweise beträgt der Querschnitt des Heizelements 3,5·10-10 m2 bis 7,0·10-10 m2. Dieser Querschnitt ist günstig, um übliche Widerstandswerte, z.B. 2 Ω, zu erzielen.The cross section of the heating element is preferably 3.5 × 10 -10 m 2 to 7.0 × 10 -10 m 2 . This cross section is favorable in order to achieve usual resistance values, eg 2 Ω.

Es ist zweckmäßig, wenn die Widerstandsschicht aus gesinterter Ag/Pd-Widerstandspaste oder gesinterter Ag/Au/Pd-Widerstandspaste mit 30-50 Masse-% Ag und 35-50 Masse-% Pd oder aus gesinterter Pt/W-Widerstandspaste mit 70-90 Masse-% Pt und 5-20 Masse-% W besteht. Diese Materialien sind besonders geeignet, bei der erfindungsgemäßen Masse geeignete Widerstandswerte zu liefern. Der Rest enthält oxidische Zusätze und Glasphase. Die Widerstandspaste enthält vor dem Sintern normalerweise auch noch ein Organikum.It is useful if the resistance layer of sintered Ag / Pd resistor paste or sintered Ag / Au / Pd resistor paste with 30-50 mass% Ag and 35-50 mass% Pd or sintered Pt / W resistor paste with 70- 90 mass% Pt and 5-20 mass% W exists. These materials are particularly suitable for providing suitable resistance values in the composition according to the invention. The rest contains oxidic additives and glass phase. The resistor paste normally also contains an organic agent before sintering.

Es ist weiters für eine zuverlässige Zündung wichtig, dass nicht zu viel Wärme abgeleitet werden kann. Es ist deshalb günstig, wenn der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 2 W/(m·K) besteht; oder wenn der Grundkörper aus einem hochtemperaturfesten Glas oder einer Glaskeramik oder einer Keramik mit thermischer Wärmeleitfähigkeit von höchstens 3 W/(m·K) besteht und auf dem Grundkörper eine Wärmebarriere aufgebracht ist, bestehend aus Glas- oder Glaskeramikbeschichtung mit 20-80µm Dicke und mit einer thermischen Wärmeleitfähigkeit von höchstens 1,5 W/(m·K).It is also important for reliable ignition that too much heat can not be dissipated. It is therefore advantageous if the base body consists of a high temperature resistant glass or a glass ceramic or a ceramic with thermal thermal conductivity of at most 2 W / (m · K); or if the base body consists of a high-temperature-resistant glass or a glass ceramic or a ceramic with thermal heat conductivity of at most 3 W / (m · K) and on the body a heat barrier is applied, consisting of glass or glass ceramic coating with 20-80μm thickness and with a thermal thermal conductivity of at most 1.5 W / (m · K).

Bevorzugtes Material für die Kontaktfelder ist gesinterte AgPd- oder AgPt-Dickschichtleiterpaste mit einem Pd- bzw. Pt-Anteil zwischen 1 und 10 Masse-%. Der Rest enthält oxidische Zusätze und Glasphase. Die Leiterpaste enthält vor dem Sintern normalerweise auch noch ein Organikum.The preferred material for the contact pads is sintered AgPd or AgPt thick-film conductor paste with a Pd or Pt content of between 1 and 10% by mass. The rest contains oxidic additives and glass phase. The conductor paste normally also contains an organic agent before sintering.

Herstellen kann man das erfindungsgemäße Heizelement analog wie in der AT 405591 B beschrieben. Es wird jedoch bevorzugt, dass die Widerstandsschicht erst nach dem Aufbringen der Kontaktfelder mittels programmierbarer Laserquelle strukturiert wird. Durch entsprechende Formgebung der Widerstandsschicht mittels programmierbarer Laserquelle ist durch individuelle Formgebung die Aufheizrate (Energieübertragung) individuell einstellbar. Diese Strukturierung kann sich sowohl auf die Grundform der Glühbrücke durch Ausschneiden der entsprechenden Geometrie als auch auf die Höhe durch flächenhaftes Abtragen beziehen. Im Vergleich zum Ätzen ist die Formgebung mit einer Laserquelle wesentlich flexibler. Eine Änderung der Produktion ist in kürzester Zeit lediglich durch eine Programmänderung möglich, wogegen beim Ätzen eine neue Ätzmaske erstellt werden muss.You can produce the heating element according to the invention analogously as in the AT 405591 B described. However, it is preferred that the resistance layer is patterned only after the application of the contact fields by means of a programmable laser source. By appropriate shaping of the resistive layer by means of a programmable laser source, the heating rate (energy transfer) can be set individually by individual shaping. This structuring can relate both to the basic shape of the Glühbrücke by cutting out the corresponding geometry and to the height by areal removal. Compared to etching, shaping with a laser source is much more flexible. A change of the production is possible in a very short time only by a program change, whereas the etching a new etching mask must be created.

Vorzugsweise wird durch Nachsintern mit 800°C-900°C Spitzentemperatur über 10-20 min nach dem Sintern der Widerstandsschicht oder nach dem Sintern der Kontaktfelder oder nach der Strukturierung das Zündelement in seiner Stabilität gegenüber hohen elektrischen und thermischen Belastungen verbessert. Überraschender Weise steigt durch das Nachsintern die Geschwindigkeit des Zündens. Dadurch ist es möglich, ein größeres Volumen zu verwenden (wodurch die Zündgeschwindigkeit an sich verringert wird), sodass auf diese Weise die Empfindlichkeit gegen elektrische Einstreuungen verringert werden kann.Preferably, by post-sintering at 800 ° C-900 ° C peak temperature over 10-20 minutes after sintering of the resistive layer or after sintering of the contact pads or after structuring the ignition element is improved in its stability to high electrical and thermal loads. Surprisingly, the speed of the ignition increases as a result of resintering. This makes it possible to use a larger volume (thereby decreasing the firing speed per se), so that the sensitivity to electrical interference can be reduced.

Die vorliegende Erfindung schafft ein Heizelement und ein Verfahren mit entsprechenden Materialkombinationen, welche bisher in Schichttechnik noch nicht realisiert wurden und den Spezifikationen der Automobilindustrie ohne zusätzliche Elektronik gerecht wird.The present invention provides a heating element and a method with corresponding material combinations, which have not yet been realized in layer technology and meets the specifications of the automotive industry without additional electronics.

Berechnungen und Simulation:Calculations and simulation:

Der Nachweis der Festigkeit gegenüber ESD-Störpulsen und Transient Puls nach USCAR kann mittels thermodynamischer Berechnung und nachfolgender numerischer Simulation durchgeführt werden.The proof of the resistance to ESD interference pulses and transient pulse according to USCAR can be carried out by means of thermodynamic calculation and subsequent numerical simulation.

Aufgrund der Analogie der thermodynamischen Wärmeleitungsgleichungen mit den Differentialgleichungen eines elektrischen Leiters (Telegrafengleichung) kann nach Transformation der thermodynamischen Größen in elektrische Größen eine exakte eindimensionale Simulation der thermischen Verhältnisse (Temperatur und Wärmemengen) über die Zeit durchgeführt werden.Due to the analogy of the thermodynamic heat equation with the differential equations of an electrical conductor (telegraph equation), an exact one-dimensional simulation of the thermal conditions (temperature and heat quantities) can be performed over time after transformation of the thermodynamic quantities into electrical quantities.

Begleitende Versuche und Messungen mit entsprechender Rückführung der Testergebnisse in die Rechnersimulation ergaben im Rahmen der Meßgenauigkeiten und der idealisierten Randparameter (eindimensional) Übereinstimmung.Accompanying experiments and measurements with corresponding feedback of the test results in the computer simulation resulted in the measurement accuracy and the idealized boundary parameters (one-dimensional) agreement.

Vergleich eines Heizelements gemäß AT 405591 B ("bisher") mit einem erfindungsgemäßen Heizelement ("neu") am Beispiel der ESD-Störpulsfestigkeit nach USCAR:
Thermische Abschätzung des Heizelements ohne Wärmeableitung über Q = m c p ΔT bzw . ΔT = Q / m c p

Figure imgb0001

Q
eingebrachte Energiemenge in J (Störpuls)
m
Masse Heizelement in kg
cp .
spezifische Wärmekapazität Heizelement in W/(kg·K)
ΔT
Temperaturänderung durch eingebrachte Energiemenge in °C
Comparison of a heating element according to AT 405591 B ("hitherto") with a heating element according to the invention ("new") using the example of the ESD interference pulse strength according to USCAR:
Thermal estimation of the heating element without heat dissipation via Q = m c p .DELTA.T respectively , .DELTA.T = Q / m c p
Figure imgb0001
Q
introduced amount of energy in J (interference pulse)
m
Mass heating element in kg
c p .
specific heat capacity heating element in W / (kg · K)
.DELTA.T
Temperature change due to introduced amount of energy in ° C

Die Geometrie und damit die Masse der Heizelemente wurde so gewählt, dass Bedingungen wie Widerstandswert, "All-Fire"und "No-Fire"-Werte gemäß Spezifikation der Automobilindustrie erfüllt werden. Daraus errechnet sich die für die Berechnung zu betrachtende Energiemenge, die aufgrund der verwendeten Materialien und im Hinblick auf die Erfüllung notwendiger Spezifikationen folgende Werte annimmt:

  • "bisher": wirksames Volumen 5,74 10-15 m3, mit spezifischem elektrischen Widerstand von 4,3 10-8 Ω·m.
  • "neu": wirksames Volumen 1,92 10-13 m3, mit spezifischem elektrischen Widerstand von 1,4 10-6 Ω·m.
Material Q [J] Masse [kg] cp
[W/(kg·K)]
ΔT [°C]
"bisher": Au/Pd-Resinat 7,48 10-5 1,09 10-10 129 5319 "neu": Ag/Pd-Widerstand 1,40 10-4 1,92 10-9 337 217
The geometry, and therefore the mass, of the heaters has been chosen to meet conditions such as resistance, all-fire, and no-fire according to the automotive industry specification. From this, the amount of energy to be considered for the calculation is calculated, which assumes the following values on the basis of the materials used and with regard to the fulfillment of the necessary specifications:
  • "hitherto": effective volume 5.74 10 -15 m 3 , with a specific electrical resistance of 4.3 10 -8 Ω · m.
  • "new": effective volume 1.92 10 -13 m 3 , with specific electrical resistance of 1.4 10 -6 Ω · m.
material Q [J] Mass [kg] c p
[W / (kg · K)]
ΔT [° C]
"so far": Au / Pd resinate 7.48 10 -5 1.09 10 -10 129 5319 "new": Ag / Pd resistance 1.40 10 -4 1.92 10 -9 337 217

Die oben angeführte Temperaturänderung bei Beaufschlagung des Heizelements mit ESD-Störpulsen zeigt, dass aufgrund der Schmelztemperatur von Au (1063°C) das Heizelement "bisher" zerstört wird. Dies wurde nicht nur theoretisch, sondern auch durch eine Versuchsreihe bestätigt.The above-mentioned temperature change when the heating element is subjected to ESD interference pulses shows that due to the melting temperature of Au (1063 ° C.), the heating element is "destroyed" so far. This was confirmed not only theoretically, but also by a series of experiments.

In der einzigen Fig. ist die Temperatur des Heizelements T (in °C) in Abhängigkeit von der Zeit t (in s) dargestellt. Die durchgezogene Linie bezieht sich auf das Heizelement "bisher", die strichlierte Linie auf das Heizelement "neu".In the single figure, the temperature of the heating element T (in ° C) is shown as a function of the time t (in s). The solid line refers to the heating element "hitherto", the dotted line to the heating element "new".

Unter Berücksichtigung der Wärmeleitung der einzelnen Materialien ergeben sich durch Simulation annähernd identische Werte, da es sich hier um einen nahezu adiabatischen Vorgang handelt.Taking into account the heat conduction of the individual materials, simulation yields approximately identical values, since this is an almost adiabatic process.

Bei der Beaufschlagung des Heizelements mit Transient Puls nach USCAR zeigt sich sowohl theoretisch als auch in praktischen Versuchen ein ähnliches Verhalten, welches auch zur Zerstörung des Heizelements "bisher" führt.When applying the heating element with transient pulse according to USCAR shows a similar behavior both theoretically and in practical experiments, which also leads to the destruction of the heating element "so far".

Claims (8)

  1. Heating element for igniting pyrotechnic charges, consisting of a base body, a structured resistance layer arranged on the base body, and contact fields arranged in an overlapping fashion on both ends of the resistance layer, the resistivity of the heating element ranging from 1·10-6 Ω·m to 2·10-6 Ω·m, characterized in that the mass of the heating element ranges from 1.0·10-9 kg to 4.0·10-9 kg and the specific heat capacity of the heating element ranges from 100 W/(kg·K) to 400 W/(kg·K).
  2. Heating element according to claim 1, characterized in that the area of cross-section of the heating element ranges from 3.5·10-10 m2 to 7.0·10-10 m2.
  3. Heating element according to claim 1 or claim 2, characterized in that the resistance layer consists of sintered silver/palladium resistance paste or sintered silver/gold/palladium resistance paste with a 30-50 mass% silver and 35-50 mass% palladium, or of sintered platinum/tungsten resistance paste with 70-90 mass% platinum and 5-20 mass% tungsten.
  4. Heating element according to any one of claims 1 to 3, characterized in that the base body consists of a high temperature glass or a glass-ceramic or a ceramic with a thermal conductivity of not more than 2 W/(m·K).
  5. Heating element according to any one of claims 1 to 4, characterized in that the base body consists of a high temperature glass or a glass-ceramic or a ceramic with a thermal conductivity of not more than 3 W/(m·K) and the base body is coated with a thermal barrier consisting of a glass or glass-ceramic coating with a thickness of 20-80 µm and with a thermal conductivity of not more than 1.5 W/(m·K).
  6. Heating element according to any one of claims 1 to 5, characterized in that the contact fields consist of sintered silver-palladium or silver-platinum thick-layer conductor paste with a palladium or platinum content of between 1 and 10 mass%.
  7. Method for the manufacture of a heating element according to any one of claims 1 to 6, wherein (if applicable) glass or glass-ceramic is initially printed on a base body by the screen printing process and then dried and sintered, these steps being repeated until the desired total film thickness is obtained; wherein the resistance paste is then printed on to the glass-ceramic substrate or coating by the screen printing process and then dried and sintered; and wherein the conductor paste to form the contact fields is then printed in an overlapping fashion over the resistance layer by the screen printing process and then dried and sintered; characterized in that the resistance layer is then structured by means of a programmable laser source.
  8. Method according to claim 7, characterized in that the stability of the igniter element under high electrical and thermal loading is improved by post-sintering for 10 to 20 min with a peak temperature of 800°C-900°C after sintering the resistance layer or after sintering the contact fields or after structuring.
EP04100151A 2003-01-28 2004-01-19 Heating element for initiating pyrotechnical charges Expired - Lifetime EP1443298B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1172003 2003-01-28
AT0011703A AT413150B (en) 2003-01-28 2003-01-28 HEATING ELEMENT FOR IGNITION OF PYROTECHNICAL CHARGES

Publications (2)

Publication Number Publication Date
EP1443298A1 EP1443298A1 (en) 2004-08-04
EP1443298B1 true EP1443298B1 (en) 2007-10-10

Family

ID=32601373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04100151A Expired - Lifetime EP1443298B1 (en) 2003-01-28 2004-01-19 Heating element for initiating pyrotechnical charges

Country Status (4)

Country Link
US (1) US7089861B2 (en)
EP (1) EP1443298B1 (en)
AT (2) AT413150B (en)
DE (1) DE502004005169D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL176454A0 (en) * 2006-06-21 2007-06-03 Benjamin Keren Explosive material sensitivity control
CN109222685B (en) * 2018-09-27 2022-03-18 九阳股份有限公司 Control method of soybean milk machine
CN111521070A (en) * 2020-04-29 2020-08-11 西安工业大学 Preparation method of carbon-based low-voltage ignition switch
CN113140381A (en) * 2021-04-07 2021-07-20 深圳顺络电子股份有限公司 Method for manufacturing ignition resistor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE405591C (en) 1921-07-08 1924-11-04 Siemens Schuckertwerke G M B H Equipment for the operation of power plants with several units
US3753403A (en) * 1968-09-19 1973-08-21 Us Navy Static discharge for electro-explosive devices
DE2002016A1 (en) 1970-01-17 1971-07-22 Messerschmitt Boelkow Blohm Double-acting vane pump
DE2020016C3 (en) 1970-04-24 1974-12-12 Dynamit Nobel Ag, 5210 Troisdorf Metal film igniter
FR2538099B1 (en) * 1982-12-15 1986-10-03 France Etat RESISTIVE ELEMENT ELECTRIC PRIMER
US4522665A (en) * 1984-03-08 1985-06-11 Geo Vann, Inc. Primer mix, percussion primer and method for initiating combustion
US4708060A (en) 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
US4893563A (en) * 1988-12-05 1990-01-16 The United States Of America As Represented By The Secretary Of The Navy Monolithic RF/EMI desensitized electroexplosive device
US4976200A (en) 1988-12-30 1990-12-11 The United States Of America As Represented By The United States Department Of Energy Tungsten bridge for the low energy ignition of explosive and energetic materials
AT405591B (en) 1997-10-03 1999-09-27 Schaffler & Co HEATING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
JP2971439B2 (en) * 1998-04-21 1999-11-08 東芝ホクト電子株式会社 Ignition device and method of manufacturing the same
FR2790078B1 (en) * 1999-02-18 2004-11-26 Livbag Snc ELECTROPYROTECHNIC IGNITER WITH ENHANCED IGNITION SAFETY
US6230624B1 (en) * 1999-08-13 2001-05-15 Trw Inc. Igniter having a hot melt ignition droplet
FR2800865B1 (en) * 1999-11-05 2001-12-07 Livbag Snc PYROTECHNIC INITIATOR WITH PHOTOGRAVE FILAMENT PROTECTED AGAINST ELECTROSTATIC DISCHARGES
US6324979B1 (en) * 1999-12-20 2001-12-04 Vishay Intertechnology, Inc. Electro-pyrotechnic initiator
US6341562B1 (en) * 2000-02-22 2002-01-29 Autoliv Asp, Inc. Initiator assembly with activation circuitry
US20020069780A1 (en) * 2000-12-07 2002-06-13 Bos Laurence W. Thin film resistor fabricated on header
FR2827377B1 (en) * 2001-07-13 2003-12-05 Poudres & Explosifs Ste Nale IGNITION DEVICE FOR PYROTECHNIC MICROCHARGES

Also Published As

Publication number Publication date
DE502004005169D1 (en) 2007-11-22
US20040200371A1 (en) 2004-10-14
EP1443298A1 (en) 2004-08-04
ATE375494T1 (en) 2007-10-15
ATA1172003A (en) 2005-04-15
US7089861B2 (en) 2006-08-15
AT413150B (en) 2005-11-15

Similar Documents

Publication Publication Date Title
DE19629009C2 (en) Electromagnetic igniter with non-linear resistance that is insensitive to high frequency and electrostatic discharge
DE960787C (en) Electrical ignition device and method of making the same
DE2020016C3 (en) Metal film igniter
DE3119924C2 (en)
CH635673A5 (en) ELECTRICAL TOOL.
DE1221947B (en) Safety bridge igniter
DE2816300A1 (en) ELECTRIC IGNITER
DE3717149A1 (en) BLASTING IGNITION ELEMENT
CH634915A5 (en) ELECTRIC IGNITION DEVICE.
DE102010045641A1 (en) Process for producing a ring-shaped or plate-shaped element
EP1443298B1 (en) Heating element for initiating pyrotechnical charges
EP1377791A1 (en) Bridge igniter
DE69105393T2 (en) Ignition system for a pyrotechnic composition.
DE102005031673A1 (en) Ignition system for detonation has data bus and logic and control circuit over data line for control and monitoring of ignition levels with which detonator is connected over the line for transmission of ignition signal
DE973070C (en) Method of manufacturing a spark generator
EP2824414A1 (en) Method and device for controlling the performance of an active system
DE2104273B2 (en) APPLICATION OF EXPLOSIVE WELDING WITH INITIAL EXPLOSIVE SUBSTANCE TO THE MANUFACTURE OF MICRO COMPONENTS
DE1215566B (en) Electrically triggered ignition
DE1005884B (en) Electric ignition pill and method of making the same
EP2549220A1 (en) EFI ignition module
DE19609118B4 (en) Resistance paste, glass overlay paste, and a ceramic circuit substrate using the same
EP0185875B1 (en) Actuating device
DE2937373A1 (en) RESISTANCE MATERIAL
DE102006000206A1 (en) Spark plug manufacturing apparatus and spark plug manufacturing method
EP0859377A2 (en) Pillar-like, high current stable resistor, especially varistor based on metal oxide, and manufacturing process of such a resistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050120

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004005169

Country of ref document: DE

Date of ref document: 20071122

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
BERE Be: lapsed

Owner name: HIRTENBERGER-SCHAFFLER AUTOMOTIVE ZUNDER GESMBH

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20080711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090128

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080411

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181217

Year of fee payment: 16

Ref country code: FR

Payment date: 20181219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181214

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005169

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200119

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200119

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200120