EP1438707A2 - Method for characterizing the timbre of a sound signal in accordance with at least a descriptor - Google Patents

Method for characterizing the timbre of a sound signal in accordance with at least a descriptor

Info

Publication number
EP1438707A2
EP1438707A2 EP02799430A EP02799430A EP1438707A2 EP 1438707 A2 EP1438707 A2 EP 1438707A2 EP 02799430 A EP02799430 A EP 02799430A EP 02799430 A EP02799430 A EP 02799430A EP 1438707 A2 EP1438707 A2 EP 1438707A2
Authority
EP
European Patent Office
Prior art keywords
signal
harmonic
harm
hss
hsd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02799430A
Other languages
German (de)
French (fr)
Inventor
Geoffroy Peeters
Stephen Mcadams
Jochen Krimphoff
Patrick Susini
Nicolas Misdaris
Bennett Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1438707A2 publication Critical patent/EP1438707A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H7/00Instruments in which the tones are synthesised from a data store, e.g. computer organs
    • G10H7/08Instruments in which the tones are synthesised from a data store, e.g. computer organs by calculating functions or polynomial approximations to evaluate amplitudes at successive sample points of a tone waveform
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/125Extracting or recognising the pitch or fundamental frequency of the picked up signal

Definitions

  • the invention relates to a method for characterizing the timbre of a sound signal, according to at least one descriptor.
  • the field of the invention is that of characterizing the timbre of a sound signal varying as a function of time.
  • the timbre of a sound signal is intuitively characterized by all the perceptual properties excluding the pitch, the perceived intensity and the subjective duration of the sound signal.
  • harmonic sound signals such as those produced by a violin, a flute, etc.
  • percussive sound signals such as those produced by a drum, etc.
  • harmonic sound signals such as those produced by a violin, a flute, etc.
  • percussive sound signals such as those produced by a drum, etc.
  • timbre measurements were carried out: each of these sets of measurements constitute a timbre space, respectively harmonic or percussive.
  • timbre of a sound signal s (t) we seek to model the timbre of a sound signal s (t), more precisely its characteristics also called descriptors, in order to be able for example to recognize or locate the timbre of an unknown signal among those known to a sound database.
  • the models of these characteristics are generally expressed as a function of the spectral and temporal envelopes of the sound signal s (t) and their variation.
  • the sound signal s (t) and the time envelope AND (t) are illustrated in FIG. 1; the spectral envelope ES (f) is illustrated in FIG. 3: it is generally obtained following a first step consisting in analyzing the signal according to a sliding time window of which an example is represented in FIG. 2 then in a second step consisting in calculate the fast Fourier transform of the signal resulting from the previous step.
  • the logarithmic attack time (lat or LT) defined as the logarithm of the difference between the instant t0 at which the signal starts and the instant tl at which the signal stabilizes as in the case of harmonic sound signals or reaches its maximum as in the case of percussive sound signals: lat - log ⁇ o (tl-t ⁇ ); these instants t0 and tl are shown in FIG.
  • tO is the instant when the signal amplitude reaches 2% of the maximum amplitude
  • - the harmonic spectral centroid or hsc or SC defined as the average over the duration of the signal, of the instantaneous spectral centroid, that is to say considered in a sliding analysis window
  • the instantaneous spectral centroid is itself defined by the weighted average of the harmonic peaks of the spectrum of the signal represented in FIG. 3 and corresponds in a way to the equilibrium point of all the harmonic peaks.
  • a simple method consists firstly in extracting the fundamental frequency fO from the sound signal s (t), then in a second step in detecting the peaks of harmonic, located around multiples of the fundamental frequency fO as illustrated in FIG. 3.
  • the local fundamental frequency is for example obtained by calculating the normalized auto-correlation function of the local signal s (t); the local fundamental frequency fO then corresponds to the inverse of the time T0 of the first maximum of this function; - the harmonic spectral deviation or hsd representative of the spectral irregularity, defined as the average over the duration of the signal, of the instantaneous harmonic spectral deviation considered in a sliding analysis window; the instantaneous harmonic spectral deviation is itself defined as the spectral deviation of the amplitude peaks (in logarithmic scale) of the spectrum with respect to the spectral envelope.
  • An example of instantaneous harmonic spectral deviation “ihsd” corresponding to the sound signal of a clarinet is illustrated in FIG.
  • the harmonic spectral variation or hsv representative of the spectral flux defined as the average over the duration of the signal of the instantaneous harmonic spectral variation considered in an analysis window
  • the instantaneous harmonic spectral variation is itself defined as the complement to 1 of the normalized correlation between the amplitude of the harmonics of two adjacent windows.
  • the aim of the present invention is therefore to define new characteristics or descriptors so that, when combined with already known descriptors, they best apply to different timbre spaces and make it possible to best calculate the distance between two sound signals of the same stamp space.
  • the subject of the invention is a method for characterizing the timbre of a sound signal s (t) varying as a function of time, for a duration D, according to at least one descriptor, mainly characterized in that it consists in defining said descriptor by the "hss" harmonic spectral range of the signal.
  • the calculation of the harmonic spectral range of the signal comprises the following steps: a) memorizing the signal s (t), b) extracting its fundamental frequency fO, c) calculate and store the harmonics of the signal s (t) truncated according to a time window h (t) of duration less than or equal to D, as a function of the frequency by means of a device for transforming Fast Fourier, and by sliding said time window h (t) over the duration D of the signal s (t), d) for each time window h (t), calculate the harmonic spectral range of the truncated signal hss (s (t ) .h (t)) according to the following formula:
  • .A (s. H, harm) being the amplitude of the peak of the harmonic number harm of the spectrum of the truncated signal s.h,
  • .nbh being the number of harmonics of the spectrum of the truncated signal sh
  • .hsc (sh) being the harmonic spectral centroid of the truncated signal sh memorize each hss (sh) e) calculate the harmonic spectral range of the signal hss (s) according to the following formula:
  • nbf being the number of windows obtained by sliding the window h (t) over the duration D of the signal s (t).
  • step d) also consists in calculating the harmonic spectral deviation of the truncated signal hsd (s (t) .h (t)) according to the following formula :
  • step e then consists in also calculate the harmonic spectral deviation of the signal hsd (s):
  • ⁇ hsd (s.h) hsd (s) - ⁇ nbf
  • the duration of the window h (t) is equal to or almost equal to D and the number of windows nbf is equal to 1.
  • the sound signal is a harmonic signal.
  • the invention also relates to a method for measuring the "dist" distance between two harmonic sound signals, characterized in that it consists in using the characterization of the signals as described above.
  • the characterization of the sound signals being based on the following descriptors, the logarithmic attack time (lat), the harmonic spectral centroid (hsc), the harmonic spectral deviation (hsd) and the harmonic spectral variation (hsv), the distance "dist "is of the form
  • xi, x 2 , x 3 / x 4 , x 5 being predetermined coefficients.
  • the logarithmic attack time (lat) is calculated on a logarithmic decimal scale and 5 ⁇ X ⁇ ⁇ ll, 10 "5 ⁇ x 2 ⁇ 5.10 -5 , 10 ⁇ ⁇ x 3 ⁇ 5.10 ⁇ 4 , 5 ⁇ x 4 ⁇ 15 and -30 ⁇ x 5 ⁇ -90.
  • FIG. 1 schematically represents an audible signal s (t) and its time envelope AND (t) as a function of time t
  • FIG. 2 schematically represents a time window for sliding analysis h (t)
  • FIG. 3 schematically represents harmonic peaks and a spectral envelope ES (f) as a function of the frequency f
  • FIG. 4 schematically illustrates the instantaneous harmonic spectral deviation of a clarinet.
  • the sound signal s (t) varying as a function of time t and of a duration D, represented in FIG. 1 is analyzed according to a sliding time window h (t) represented in FIG. 2, which can for example be a Hamming window.
  • the duration D of the signal is generally of the order of a few seconds, in the case for example of sound samples to be located among those of a database; but it can be much longer.
  • a new descriptor, representative of the harmonic spectral range is used to contribute to the description of the timbre of a preferably harmonic sound signal and to make it possible to calculate more precisely the distance between two sound signals of a same harmonic timbre space.
  • the harmonic spectral range corresponds to a frequency spreading coefficient of the energy of the harmonic part of the signal, around the spectral centroid.
  • f (s. H, harm) being the frequency of the harmonic number harm of the spectrum of the truncated signal sh
  • nbh being the number of harmonics of the spectrum of the truncated signal sh
  • hsc (sh) being the harmonic spectral centroid of the truncated signal sh calculated according to a method of the prior art of which an example is given below, the hss ( s (t) .h (t)) thus obtained are memorized
  • the harmonic spectral range of the signal s (t) is calculated as follows:
  • nbf being the number of windows obtained by sliding the window h (t) over the duration D of the signal s (t).
  • the harmonic spectral range of the signal s (t) is directly calculated over the duration D of the signal. This amounts to saying that the duration of the analysis window h (t) is equal to or almost equal to the duration D of the signal and that the number of windows is then equal to 1.
  • this new descriptor it can advantageously be combined with the other descriptors lat, hsc, hsd and hsv of the prior art and calculate for example the distance "dist" between two sound signals of a same harmonic timbre space according to the following formula:
  • is the difference between the values of the same descriptor for the two sound signals considered and i, x 2 , X3 r X and X5 are predetermined coefficients.
  • step d) of the calculation of hss will advantageously be completed by the following calculation:
  • SE s. H, harm
  • SE being the local spectral envelope of the truncated signal (with an amplitude on a logarithmic scale), around the peak of the harmonic number harm obtained according to a method known to those skilled in the art.
  • ⁇ hsd (s.h) hsd (s) ⁇ nbf
  • step d) of the calculation of hss by the following calculation known to those skilled in the art:
  • the distance was notably measured by calculating the descriptors according to the aforementioned formulas, the logarithmic attack time, lat, being calculated on a logarithmic decimal scale, and by taking the coefficients in the following ranges:

Abstract

The invention concerns a method for characterizing in accordance with at least a descriptor, the timbre of a time-variable sound signal (s(t) for a duration D, which consists in defining said descriptor by the harmonic spectral scope of the signal.

Description

PROCEDE DE CARACTERISATION DU TIMBRE D'UN SIGNAL SONORE SELON AU MOINS UN DESCRIPTEUR METHOD FOR CHARACTERIZING THE TIMBRE OF A SOUND SIGNAL ACCORDING TO AT LEAST ONE DESCRIPTOR
L'invention concerne un procédé de caractérisation du timbre d'un signal sonore, selon au moins un descripteur.The invention relates to a method for characterizing the timbre of a sound signal, according to at least one descriptor.
Le domaine de l'invention est celui de la caractérisation du timbre d'un signal sonore variant en fonction du temps.The field of the invention is that of characterizing the timbre of a sound signal varying as a function of time.
Le timbre d'un signal sonore est caractérisé de façon intuitive par toutes les propriétés perceptives à l'exclusion de la hauteur tonale, de l'intensité perçue et de la durée subjective du signal sonore.The timbre of a sound signal is intuitively characterized by all the perceptual properties excluding the pitch, the perceived intensity and the subjective duration of the sound signal.
Les caractéristiques varient en fonction de diverses catégories de signaux sonores. On distingue par exemple les signaux sonores harmoniques tels que ceux produits par un violon, une flûte, etc, des signaux sonores percussifs, tels que ceux produits par un tambour, etc. Il existe bien sûr d'autres catégories .Specifications vary based on various categories of audio signals. We distinguish for example the harmonic sound signals such as those produced by a violin, a flute, etc., percussive sound signals, such as those produced by a drum, etc. There are of course other categories.
Pour les catégories des signaux sonores harmoniques et percussifs, des mesures de timbre ont été effectuées : chacun de ces ensembles de mesures constituent un espace de timbre, respectivement harmonique ou percussif.For the categories of harmonic and percussive sound signals, timbre measurements were carried out: each of these sets of measurements constitute a timbre space, respectively harmonic or percussive.
On cherche à modéliser le timbre d'un signal sonore s(t), plus précisément ses caractéristiques aussi dénommés descripteurs, pour pouvoir par exemple reconnaître ou situer le timbre d'un signal inconnu parmi ceux connus d'une base de données sonores. Les modélisations de ces caractéristiques sont en général exprimées en fonction des enveloppes spectrale et temporelle du signal sonore s(t) et de leur variation.We seek to model the timbre of a sound signal s (t), more precisely its characteristics also called descriptors, in order to be able for example to recognize or locate the timbre of an unknown signal among those known to a sound database. The models of these characteristics are generally expressed as a function of the spectral and temporal envelopes of the sound signal s (t) and their variation.
Le signal sonore s(t) et l'enveloppe temporelle ET(t) sont illustrés figure 1 ; l'enveloppe spectrale ES(f) est illustrée figure 3 : elle est généralement obtenue à la suite d'une première étape consistant à analyser le signal selon une fenêtre temporelle glissante dont un exemple est représenté figure 2 puis d'une seconde étape consistant à calculer la transformée de Fourier rapide du signal résultant de l' étape précédente .The sound signal s (t) and the time envelope AND (t) are illustrated in FIG. 1; the spectral envelope ES (f) is illustrated in FIG. 3: it is generally obtained following a first step consisting in analyzing the signal according to a sliding time window of which an example is represented in FIG. 2 then in a second step consisting in calculate the fast Fourier transform of the signal resulting from the previous step.
Des exemples de modélisation de caractéristiques et de calcul en fonction de ces caractéristiques, de la distance entre les timbres de deux signaux sonores du même espace de timbre, sont proposés dans la publication "Validation of a multidimensional distance model for perceptual dissimilarities among musical timbres" N. Misdariis et al., Proceedings 16th International Congress on Acoustics and 135th Meeting Acoustical Society of America, Seattle, Washington, 20- 26 June 1998.Examples of modeling of characteristics and calculation according to these characteristics, of the distance between the timbres of two sound signals of the same timbre space, are proposed in the publication "Validation of a multidimensional distance model for perceptual dissimilarities among musical timbres" N. Misdariis et al., Proceedings 16 th International Congress on Acoustics and 135 th Meeting Acoustical Society of America, Seattle, Washington, June 20-26, 1998.
Parmi ces caractéristiques dont certaines sont présentées dans la publication indiquée, on peut citer : le temps d'attaque logarithmique (lat ou LT) défini comme le logarithme de la différence entre l'instant tO auquel le signal démarre et l'instant tl auquel le signal se stabilise comme dans le cas des signaux sonores harmoniques ou atteint son maximum comme dans le cas des signaux sonores percussifs : lat - logιo(tl-tθ) ; ces instants tO et tl sont représentés figure 1 ; dans la publication citée, tO est l'instant où l'amplitude du signal atteint 2% de l'amplitude maximale ; - le centroïde spectral harmonique ou hsc ou SC défini comme la moyenne sur la durée du signal, du centroïde spectral instantané, c'est-à-dire considéré dans une fenêtre d'analyse glissante ; le centroïde spectral instantané est lui-même défini par la moyenne pondérée des pics d'harmonique du spectre du signal représentés figure 3 et correspond en quelque sorte au point d'équilibre de l'ensemble des pics d'harmonique.Among these characteristics, some of which are presented in the publication indicated, we can cite: the logarithmic attack time (lat or LT) defined as the logarithm of the difference between the instant t0 at which the signal starts and the instant tl at which the signal stabilizes as in the case of harmonic sound signals or reaches its maximum as in the case of percussive sound signals: lat - logιo (tl-tθ); these instants t0 and tl are shown in FIG. 1; in the cited publication, tO is the instant when the signal amplitude reaches 2% of the maximum amplitude; - the harmonic spectral centroid or hsc or SC defined as the average over the duration of the signal, of the instantaneous spectral centroid, that is to say considered in a sliding analysis window; the instantaneous spectral centroid is itself defined by the weighted average of the harmonic peaks of the spectrum of the signal represented in FIG. 3 and corresponds in a way to the equilibrium point of all the harmonic peaks.
Parmi les méthodes permettant d'obtenir les pics d'harmonique d'un signal, une méthode simple consiste dans un premier temps à extraire la fréquence fondamentale fO du signal sonore s(t), puis dans un deuxième temps à détecter les pics d'harmonique, situés autour des multiples de la fréquence fondamentale fO comme illustré sur la figure 3. La fréquence fondamentale locale est par exemple obtenue en calculant la fonction d' auto-corrélation normalisée du signal s(t) local ; la fréquence fondamentale locale fO correspond alors à l'inverse du temps T0 du premier maximum de cette fonction ; - la déviation spectrale harmonique ou hsd représentative de l'irrégularité spectrale, définie comme la moyenne sur la durée du signal, de la déviation spectrale harmonique instantanée considérée- dans une fenêtre d'analyse glissante ; la déviation spectrale harmonique instantanée est elle-même définie comme la déviation spectrale des pics d'amplitude (en échelle logarithmique) du spectre par rapport à l'enveloppe spectrale. Un exemple de déviation spectrale harmonique instantanée «ihsd » correspondant au signal sonore d'une clarinette est illustrée figure 4; la variation spectrale harmonique ou hsv représentative du flux spectral, définie comme la moyenne sur la durée du signal de la variation spectrale harmonique instantanée considérée dans une fenêtre d'analyse ; la variation spectrale harmonique instantanée est elle-même définie comme le complément à 1 de la corrélation normalisée entre l'amplitude des harmoniques de deux fenêtres adjacentes.Among the methods making it possible to obtain the harmonic peaks of a signal, a simple method consists firstly in extracting the fundamental frequency fO from the sound signal s (t), then in a second step in detecting the peaks of harmonic, located around multiples of the fundamental frequency fO as illustrated in FIG. 3. The local fundamental frequency is for example obtained by calculating the normalized auto-correlation function of the local signal s (t); the local fundamental frequency fO then corresponds to the inverse of the time T0 of the first maximum of this function; - the harmonic spectral deviation or hsd representative of the spectral irregularity, defined as the average over the duration of the signal, of the instantaneous harmonic spectral deviation considered in a sliding analysis window; the instantaneous harmonic spectral deviation is itself defined as the spectral deviation of the amplitude peaks (in logarithmic scale) of the spectrum with respect to the spectral envelope. An example of instantaneous harmonic spectral deviation “ihsd” corresponding to the sound signal of a clarinet is illustrated in FIG. 4; the harmonic spectral variation or hsv representative of the spectral flux, defined as the average over the duration of the signal of the instantaneous harmonic spectral variation considered in an analysis window; the instantaneous harmonic spectral variation is itself defined as the complement to 1 of the normalized correlation between the amplitude of the harmonics of two adjacent windows.
Le but de la présente invention est donc de définir de nouvelles caractéristiques ou descripteurs pour que combinés à des descripteurs déjà connus, ils s'appliquent au mieux à des espaces de timbres différents et permettent de calculer au mieux la distance entre deux signaux sonores d'un même espace de timbre.The aim of the present invention is therefore to define new characteristics or descriptors so that, when combined with already known descriptors, they best apply to different timbre spaces and make it possible to best calculate the distance between two sound signals of the same stamp space.
L'invention a pour objet un procédé de caractérisation du timbre d'un signal sonore s (t) variant en fonction du temps, pendant une durée D, selon au moins un descripteur, principalement caractérisé en ce qu'il consiste à définir ledit descripteur par l'étendue spectrale harmonique « hss » du signal. Selon une caractéristique de l'invention, l'un des descripteurs étant le centroïde spectral harmonique hsc, le calcul de l'étendue spectrale harmonique du signal comporte les étapes suivantes : a) mémoriser le signal s(t), b) en extraire sa fréquence fondamentale fO, c) calculer et mémoriser les harmoniques du signal s(t) tronqué selon une fenêtre temporelle h(t) d'une durée inférieure ou égale à D, en fonction de la fréquence au moyen d'un dispositif de transformation de Fourier rapide, et en faisant glisser ladite fenêtre temporelle h(t) sur la durée D du signal s(t), d) pour chaque fenêtre temporelle h(t), calculer l'étendue spectrale harmonique du signal tronqué hss (s (t) .h (t) ) selon la formule suivante :The subject of the invention is a method for characterizing the timbre of a sound signal s (t) varying as a function of time, for a duration D, according to at least one descriptor, mainly characterized in that it consists in defining said descriptor by the "hss" harmonic spectral range of the signal. According to a characteristic of the invention, one of the descriptors being the harmonic spectral centroid hsc, the calculation of the harmonic spectral range of the signal comprises the following steps: a) memorizing the signal s (t), b) extracting its fundamental frequency fO, c) calculate and store the harmonics of the signal s (t) truncated according to a time window h (t) of duration less than or equal to D, as a function of the frequency by means of a device for transforming Fast Fourier, and by sliding said time window h (t) over the duration D of the signal s (t), d) for each time window h (t), calculate the harmonic spectral range of the truncated signal hss (s (t ) .h (t)) according to the following formula:
.A (s. h, harm) étant l'amplitude du pic de l'harmonique numéro harm du spectre du signal tronqué s.h,.A (s. H, harm) being the amplitude of the peak of the harmonic number harm of the spectrum of the truncated signal s.h,
. f (s.h, harm) étant la fréquence de l'harmonique numéro harm du spectre du signal tronqué,. f (s.h, harm) being the frequency of the harmonic number harm of the spectrum of the truncated signal,
.nbh étant le nombre d'harmoniques du spectre du signal tronqué s.h, .hsc (s.h) étant le centroïde spectral harmonique du signal tronqué s.h. mémoriser chaque hss (s.h) e) calculer l'étendue spectrale harmonique du signal hss (s) selon la formule suivante :.nbh being the number of harmonics of the spectrum of the truncated signal sh, .hsc (sh) being the harmonic spectral centroid of the truncated signal sh memorize each hss (sh) e) calculate the harmonic spectral range of the signal hss (s) according to the following formula:
∑hss(s.h) hss(s) = -a nbf∑hss (s.h) hss (s) = -a nbf
nbf étant le nombre de fenêtres obtenues en faisant glisser la fenêtre h(t) sur la durée D du signal s(t).nbf being the number of windows obtained by sliding the window h (t) over the duration D of the signal s (t).
Selon une caractéristique additionnelle, un deuxième descripteur appelé déviation spectrale harmonique « hsd » étant utilisé, l'étape d) consiste également à calculer la déviation spectrale harmonique du signal tronqué hsd (s (t) .h (t) ) selon la formule suivante :According to an additional characteristic, a second descriptor called harmonic spectral deviation "hsd" being used, step d) also consists in calculating the harmonic spectral deviation of the truncated signal hsd (s (t) .h (t)) according to the following formula :
SE (s. h, harm) étant l'enveloppe spectrale locale du signal tronqué s.h (avec une amplitude à l'échelle logarithmique) autour du pic de l'harmonique numéro harm, et en ce que l'étape e) consiste alors à calculer également la déviation spectrale harmonique du signal hsd(s) :SE (s. H, harm) being the local spectral envelope of the truncated signal sh (with an amplitude on a logarithmic scale) around the peak of the harmonic number harm, and in that step e) then consists in also calculate the harmonic spectral deviation of the signal hsd (s):
∑hsd(s.h) hsd(s) = -^ nbf∑hsd (s.h) hsd (s) = - ^ nbf
Selon un mode de réalisation particulier de l'invention, la durée de la fenêtre h(t) est égale ou quasiment égale à D et le nombre de fenêtres nbf est égal à 1.According to a particular embodiment of the invention, the duration of the window h (t) is equal to or almost equal to D and the number of windows nbf is equal to 1.
De préférence, le signal sonore est un signal harmonique . L'invention concerne également un procédé de mesure de la distance "dist" entre deux signaux sonores harmoniques, caractérisé en ce qu'il consiste à utiliser la caractérisation des signaux telle que décrite précédemment. La caractérisation des signaux sonores étant basée sur les descripteurs suivants, le temps d'attaque logarithmique (lat) , le centroïde spectral harmonique (hsc) , la déviation spectrale harmonique (hsd) et la variation spectrale harmonique (hsv) , la distance "dist" est de la formePreferably, the sound signal is a harmonic signal. The invention also relates to a method for measuring the "dist" distance between two harmonic sound signals, characterized in that it consists in using the characterization of the signals as described above. The characterization of the sound signals being based on the following descriptors, the logarithmic attack time (lat), the harmonic spectral centroid (hsc), the harmonic spectral deviation (hsd) and the harmonic spectral variation (hsv), the distance "dist "is of the form
xi, x2, x3/ x4, x5 étant des coefficients prédéterminés .xi, x 2 , x 3 / x 4 , x 5 being predetermined coefficients.
Selon un mode de réalisation préférentiel, le temps d'attaque logarithmique (lat) est calculé en échelle logarithmique décimale et 5<Xχ<ll, 10"5<x2<5.10-5, 10~<x3<5.10~4, 5<x4<15 et -30<x5<-90.According to a preferred embodiment, the logarithmic attack time (lat) is calculated on a logarithmic decimal scale and 5 <Xχ <ll, 10 "5 <x 2 <5.10 -5 , 10 ~ <x 3 <5.10 ~ 4 , 5 <x 4 <15 and -30 <x 5 <-90.
D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description faite à titre d'exemple non limitatif et en regard des dessins annexés sur lesquels : la figure 1 représente schématiquement un signal sonore s(t) et son enveloppe temporelle ET(t) en fonction du temps t ; la figure 2 représente schématiquement une fenêtre temporelle d'analyse glissante h(t); la figure 3 représente schématiquement des pics d'harmonique et une enveloppe spectrale ES(f) en fonction de la fréquence f ; la figure 4 illustre schématiquement la déviation spectrale harmonique instantanée d'une clarinette.Other features and advantages of the invention will appear clearly on reading the description given by way of nonlimiting example and with reference to the appended drawings in which: FIG. 1 schematically represents an audible signal s (t) and its time envelope AND (t) as a function of time t; FIG. 2 schematically represents a time window for sliding analysis h (t); FIG. 3 schematically represents harmonic peaks and a spectral envelope ES (f) as a function of the frequency f; FIG. 4 schematically illustrates the instantaneous harmonic spectral deviation of a clarinet.
Le signal sonore s(t) variant en fonction du temps t et d'une durée D, représenté figure 1 est analysé selon une fenêtre temporelle glissante h(t) représentée figure 2, qui peut être par exemple une fenêtre de Hamming.The sound signal s (t) varying as a function of time t and of a duration D, represented in FIG. 1 is analyzed according to a sliding time window h (t) represented in FIG. 2, which can for example be a Hamming window.
La durée D du signal est en général de l'ordre de quelques secondes, dans le cas par exemple d'échantillons sonores à situer parmi ceux d'une base de données ; mais elle peut être beaucoup plus longue. Selon l'invention un nouveau descripteur, représentatif de l'étendue spectrale harmonique est utilisé pour contribuer à la description du timbre d'un signal sonore de préférence harmonique et pour permettre de calculer de manière plus précise la distance entre deux signaux sonores d'un même espace de timbre harmonique.The duration D of the signal is generally of the order of a few seconds, in the case for example of sound samples to be located among those of a database; but it can be much longer. According to the invention, a new descriptor, representative of the harmonic spectral range is used to contribute to the description of the timbre of a preferably harmonic sound signal and to make it possible to calculate more precisely the distance between two sound signals of a same harmonic timbre space.
L'étendue spectrale harmonique correspond à un coefficient d'étalement fréquentiel de l'énergie de la partie harmonique du signal, autour du centroïde spectral.The harmonic spectral range corresponds to a frequency spreading coefficient of the energy of the harmonic part of the signal, around the spectral centroid.
Le calcul de l'étendue spectrale harmonique « hss » comporte les étapes suivantes réalisées au moyen d'un ordinateur comportant notamment une ou plusieurs mémoires et une unité centrale comprenant au moins un microprocesseur, une mémoire de programme et une mémoire de travail : a) le signal s(t) d'une durée D est mémorisé, b) sa période fondamentale fO est extraite selon un procédé connu présenté précédemment dans l'état de la technique, c) les harmoniques du signal s(t) tronqué selon une fenêtre temporelle h(t) telle qu'une fenêtre de Hamming d'une durée de N.T0 par exemple, T0 étant la période fondamentale (durée de h(t) égale 80 millisecondes par exemple avec N=8 et T0=10 millisecondes) , sont calculées à partir de la fonction obtenue au moyen d'un programme de transformation de Fourier rapide et en faisant glisser la fenêtre h(t) sur la durée D : la position et l'amplitude des maxima de cette fonction considérés autour d'un multiple de la fréquence fondamentale fO, déterminent respectivement la fréquence et l'amplitude des harmoniques ; ces harmoniques sont mémorisées ; d) pour chaque fenêtre h(t), l'étendue spectrale harmonique du signal tronqué hss (s (t) .h (t) ) est calculée selon la formule suivante : £ A2 (s.h, harm)[f(s.h, harm) - hsc(s.h)]2 hss(s.h) = nbh hsc(s.h) 1 ∑ A2 (s.h, harm) nbhThe calculation of the harmonic spectral range "hss" comprises the following steps carried out by means of a computer comprising in particular one or more memories and a central unit comprising at least a microprocessor, a program memory and a working memory: a) the signal s (t) of duration D is memorized, b) its fundamental period fO is extracted according to a known method presented previously in the prior art, c) the harmonics of the signal s (t) truncated according to a window temporal h (t) such as a Hamming window with a duration of N.T0 for example, T0 being the fundamental period (duration of h (t) equal 80 milliseconds for example with N = 8 and T0 = 10 milliseconds) , are calculated from the function obtained by means of a fast Fourier transformation program and by dragging the window h (t) over the duration D: the position and the amplitude of the maxima of this function considered around a multiple of the frequency this fundamental fO, respectively determine the frequency and the amplitude of the harmonics; these harmonics are memorized; d) for each window h (t), the harmonic spectral range of the truncated signal hss (s (t) .h (t)) is calculated according to the following formula: £ A 2 (sh, harm) [f (sh, harm) - hsc (sh)] 2 hss (sh) = nbh hsc (sh) 1 ∑ A 2 (sh, harm) nbh
A (s. h, harm) étant l'amplitude du pic de l'harmonique numéro harm du spectre du signal tronqué s.h, f (s. h, harm) étant la fréquence de l'harmonique numéro harm du spectre du signal tronqué s.h, nbh étant le nombre d'harmoniques du spectre du signal tronqué s.h, hsc (s.h) étant le centroïde spectral harmonique du signal tronqué s.h calculé selon une méthode de l'état de la technique dont on donne un exemple plus loin, les hss (s (t) .h (t) ) ainsi obtenus sont mémorisés e) l'étendue spectrale harmonique du signal s(t) est calculée de la façon suivante :A (s. H, harm) being the amplitude of the peak of the harmonic number harm of the spectrum of the truncated signal sh, f (s. H, harm) being the frequency of the harmonic number harm of the spectrum of the truncated signal sh , nbh being the number of harmonics of the spectrum of the truncated signal sh, hsc (sh) being the harmonic spectral centroid of the truncated signal sh calculated according to a method of the prior art of which an example is given below, the hss ( s (t) .h (t)) thus obtained are memorized e) the harmonic spectral range of the signal s (t) is calculated as follows:
∑hss(s.h) hss(s) = nbf nbf∑hss (s.h) hss (s) = nbf nbf
nbf étant le nombre de fenêtres obtenues en faisant glisser la fenêtre h(t) sur la durée D du signal s(t).nbf being the number of windows obtained by sliding the window h (t) over the duration D of the signal s (t).
Dans le cas particulier d'un signal stationnaire ou quasi-stationnaire, l'étendue spectrale harmonique du signal s(t) est directement calculée sur la durée D du signal. Cela revient à dire que la durée de la fenêtre d'analyse h(t) est égale ou quasiment égale à la durée D du signal et que le nombre de fenêtres est alors égal à 1. Dès lors que l'on dispose de ce nouveau descripteur, on peut avantageusement le combiner aux autres descripteurs lat, hsc, hsd et hsv de l'état de la technique et calculer par exemple la distance "dist" entre deux signaux sonores d'un même espace de timbre harmonique selon la formule suivante :In the particular case of a stationary or quasi-stationary signal, the harmonic spectral range of the signal s (t) is directly calculated over the duration D of the signal. This amounts to saying that the duration of the analysis window h (t) is equal to or almost equal to the duration D of the signal and that the number of windows is then equal to 1. As soon as this new descriptor is available, it can advantageously be combined with the other descriptors lat, hsc, hsd and hsv of the prior art and calculate for example the distance "dist" between two sound signals of a same harmonic timbre space according to the following formula:
dist = x,(Δlat)2 +x2(Δhsc)2 +x3(Δhsd)2 +(x4Δhss + x5Δhsv)2 dist = x, (Δlat) 2 + x 2 (Δhsc) 2 + x 3 (Δhsd) 2 + (x 4 Δhss + x 5 Δhsv) 2
où Δ est la différence entre les valeurs d'un même descripteur pour les deux signaux sonores considérés et i, x2, X3 r X et X5 sont des coefficients prédéterminés.where Δ is the difference between the values of the same descriptor for the two sound signals considered and i, x 2 , X3 r X and X5 are predetermined coefficients.
Le calcul du temps d'attaque logarithmique, lat, est obtenu par la formule indiquée dans l'état de la technique : lat (s)=logι0(tl-t0) Pour le calcul du centroïde spectral harmonique hsc du signal tronqué, on complétera l'étape d) du calcul de hss par le calcul suivant connu de l'homme du métierThe calculation of the logarithmic attack time, lat, is obtained by the formula indicated in the state of the art: lat (s) = logι 0 (tl-t0) For the calculation of the harmonic spectral centroid hsc of the truncated signal, we will complete step d) of the calculation of hss by the following calculation known to those skilled in the art
De la même manière que pour le descripteur hss (s) (étape e) , on obtient pour le centroïde spectral harmonique du signal s(t):In the same way as for the descriptor hss (s) (step e), we obtain for the harmonic spectral centroid of the signal s (t):
∑hsc(s.h) hsc(s) = nbf Pour le calcul de la déviation spectrale harmonique hsd du signal tronqué, on complétera avantageusement l'étape d) du calcul de hss par le calcul suivant :∑hsc (sh) hsc (s) = nbf For the calculation of the harmonic spectral deviation hsd of the truncated signal, step d) of the calculation of hss will advantageously be completed by the following calculation:
∑|A(s.h, harm) - SE(s.h, harm)| hsd(s.h) = nbh∑ | A (s.h, harm) - SE (s.h, harm) | hsd (s.h) = nbh
∑A(s.h,harm) nbh∑A (s.h, harm) nbh
SE (s. h, harm) étant l'enveloppe spectrale locale du signal tronqué (avec une amplitude en échelle logarithmique), autour du pic de l'harmonique numéro harm obtenue selon une méthode connue de l'homme du métier.SE (s. H, harm) being the local spectral envelope of the truncated signal (with an amplitude on a logarithmic scale), around the peak of the harmonic number harm obtained according to a method known to those skilled in the art.
De la même manière que pour le descripteur hss (s) (étape e) , on obtient pour la déviation spectrale harmonique du signal s(t):In the same way as for the descriptor hss (s) (step e), we obtain for the harmonic spectral deviation of the signal s (t):
∑hsd(s.h) hsd(s) = ^ nbf∑hsd (s.h) hsd (s) = ^ nbf
Pour le calcul de la variation spectrale harmonique hsv du signal tronqué, on complétera l'étape d) du calcul de hss par le calcul suivant connu de l'homme du métier :For the calculation of the harmonic spectral variation hsv of the truncated signal, we will complete step d) of the calculation of hss by the following calculation known to those skilled in the art:
De la même manière que pour le descripteur hss (s) (étape e) , on obtient pour la variation spectrale harmonique du signal s(t): In the same way as for the descriptor hss (s) (step e), we obtain for the harmonic spectral variation of the signal s (t):
∑hsv(s.h) hsv(s) = -i nbf∑hsv (s.h) hsv (s) = -i nbf
La distance a notamment été mesurée en calculant les descripteurs selon les formules précitées, le temps d'attaque logarithmique, lat, étant calculé en échelle logarithmique décimale, et en prenant les coefficients dans les fourchettes suivantes :The distance was notably measured by calculating the descriptors according to the aforementioned formulas, the logarithmic attack time, lat, being calculated on a logarithmic decimal scale, and by taking the coefficients in the following ranges:
5<xα<ll, 10~5<x2<5.10"5, 10~4<x3<5.10~4, 5<x4<15 et -30<xs<- 90. 5 <x α <ll, 10 ~ 5 <x 2 <5.10 "5 , 10 ~ 4 <x 3 <5.10 ~ 4 , 5 <x 4 <15 and -30 <x s <- 90.

Claims

REVENDICATIONS
1. Procédé de caractérisation selon au moins un descripteur, du timbre d'un signal sonore s(t) variant en fonction du temps pendant une durée D, caractérisé en ce qu'il consiste à définir ledit descripteur par l'étendue spectrale harmonique « hss » du signal.1. Method for characterizing, according to at least one descriptor, the timbre of a sound signal s(t) varying as a function of time for a duration D, characterized in that it consists of defining said descriptor by the harmonic spectral range " hss” of the signal.
2. Procédé selon la revendication précédente, l'un des descripteurs étant le centroïde spectral harmonique hsc, caractérisé en ce que le calcul de l'étendue spectrale harmonique du signal comporte les étapes suivantes : a) mémoriser le signal s(t), b) en extraire sa fréquence fondamentale fO, c) calculer et mémoriser les harmoniques du signal s(t) tronqué selon une fenêtre temporelle h(t) d'une durée inférieure ou égale à D, en fonction de la fréquence au moyen d'un dispositif de transformation de Fourier rapide, et en faisant glisser ladite fenêtre temporelle h(t) sur la durée D du signal s(t), d) pour chaque fenêtre temporelle h(t), calculer l'étendue spectrale harmonique du signal tronqué hss (s (t) . h (t) ) selon la formule suivante :2. Method according to the preceding claim, one of the descriptors being the harmonic spectral centroid hsc, characterized in that the calculation of the harmonic spectral range of the signal comprises the following steps: a) memorizing the signal s(t), b ) extract its fundamental frequency fO, c) calculate and store the harmonics of the signal s(t) truncated according to a time window h(t) of a duration less than or equal to D, as a function of the frequency by means of a fast Fourier transform device, and by sliding said time window h(t) over the duration D of the signal s(t), d) for each time window h(t), calculate the harmonic spectral extent of the truncated signal hss (s (t) . h (t) ) according to the following formula:
∑ A2 (s.h, harm)[f(s.h, harm) - hsc(s.h)]2 hss(s.h) nbh hsc(s.h) ∑ A2 (s.h, harm) nbh ∑ A 2 (sh, harm)[f(sh, harm) - hsc(sh)] 2 hss(sh) nbh hsc(sh) ∑ A 2 (sh, harm) nbh
.A (s. h, harm) étant l'amplitude du pic de l'harmonique numéro harm du spectre du signal tronqué s.h,.A (s. h, harm) being the amplitude of the peak of the harmonic harmonic number of the spectrum of the truncated signal s.h,
. f (s.h, harm) étant la fréquence de l'harmonique numéro harm du spectre du signal tronqué,. f (s.h, harm) being the frequency of the harmonic harm number of the spectrum of the truncated signal,
.nbh étant le nombre d'harmoniques du spectre du signal tronqué s.h,.nbh being the number of harmonics of the spectrum of the truncated signal s.h,
.hsc (s.h) étant le centroïde spectral harmonique du signal tronqué s.h. mémoriser chaque hss (s.h) e) calculer l'étendue spectrale harmonique du signal hss (s) selon la formule suivante :.hsc (s.h) being the harmonic spectral centroid of the truncated signal s.h. memorize each hss (s.h) e) calculate the harmonic spectral range of the hss signal (s) according to the following formula:
∑hss(s.h) hss(s) _ nbf nbf∑hss(s.h) hss(s) _ nbf nbf
nbf étant le nombre de fenêtres obtenues en faisant glisser la fenêtre h(t) sur la durée D du signal s(t).nbf being the number of windows obtained by sliding the window h(t) over the duration D of the signal s(t).
3. Procédé selon la revendication précédente et selon lequel un deuxième descripteur est utilisé, ce descripteur étant la déviation spectrale harmonique « hsd », caractérisé en ce que l'étape d) consiste également à calculer la déviation spectrale harmonique du signal tronqué hsd(s (t) .h (t) ) selon la formule suivante :3. Method according to the preceding claim and according to which a second descriptor is used, this descriptor being the harmonic spectral deviation “hsd”, characterized in that step d) also consists of calculating the harmonic spectral deviation of the truncated signal hsd(s (t).h (t)) according to the following formula:
∑|A(s.h, harm) - SE(s.h, harm)| hsd(s.h) = ^~∑|A(s.h, harm) - SE(s.h, harm)| hsd(s.h) = ^~
∑A(s.h,harm) nbh SE (s. h, harm) étant l'enveloppe spectrale locale du signal tronqué s.h (avec une amplitude à l'échelle logarithmique) autour du pic de l'harmonique numéro harm, et en ce que l'étape e) consiste alors à calculer également la déviation spectrale harmonique du signal hsd(s) :∑A(sh,harm) nbh SE (s. h, harm) being the local spectral envelope of the truncated signal sh (with an amplitude on the logarithmic scale) around the peak of the harmonic number harm, and in that step e) then consists of also calculate the harmonic spectral deviation of the signal hsd(s):
∑hsd(s.h) hsd(s) =^ nbf∑hsd(s.h) hsd(s) =^ nbf
4. Procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que la durée de la fenêtre h(t) est égale ou quasiment égale à D et en ce que le nombre de fenêtres nbf est égal à 1.4. Method according to any one of claims 2 or 3, characterized in that the duration of the window h(t) is equal or almost equal to D and in that the number of windows nbf is equal to 1.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le signal sonore est un signal harmonique.5. Method according to one of the preceding claims, characterized in that the sound signal is a harmonic signal.
6. Procédé de mesure de la distance "dist" entre deux signaux sonores harmoniques, caractérisé en ce qu'il consiste à utiliser la caractérisation des signaux selon l'une quelconque des revendications 2 à6. Method for measuring the distance "dist" between two harmonic sound signals, characterized in that it consists of using the characterization of the signals according to any one of claims 2 to
4.4.
7. Procédé de mesure de la distance "dist" selon la revendication précédente la caractérisation des signaux sonores étant basée sur les descripteurs suivants, le temps d'attaque logarithmique (lat), le centroïde spectral harmonique (hsc) , la déviation spectrale harmonique (hsd) et la variation spectrale harmonique (hsv) , caractérisé en ce que la distance "dist" est de la forme7. Method for measuring the distance "dist" according to the preceding claim, the characterization of the sound signals being based on the following descriptors, the logarithmic attack time (lat), the centroid harmonic spectral deviation (hsc), harmonic spectral deviation (hsd) and harmonic spectral variation (hsv), characterized in that the distance "dist" is of the form
dist = x, (Δlat)2 + x2(Δhsc)2 + x3(Δhsd)2 + (x4Δhss + x5Δhsv)2 dist = x, (Δlat) 2 + x 2 (Δhsc) 2 + x 3 (Δhsd) 2 + (x 4 Δhss + x 5 Δhsv) 2
xi, x2 x3, x, x5 étant des coefficients prédéterminés .xi, x 2 x 3 , x, x 5 being predetermined coefficients.
8. Procédé selon la revendication précédente, caractérisé en ce que le temps d'attaque logarithmique8. Method according to the preceding claim, characterized in that the logarithmic attack time
(lat) est calculé en échelle logarithmique décimale et en ce que 5<xι<ll, 10"5<x2<5.10"5, 10"<x3<5.10"4, 5<x4<15 et -30<x5<-90. (lat) is calculated in decimal logarithmic scale and in that 5<xι<ll, 10 "5 <x 2 <5.10 "5 , 10 " <x 3 <5.10 "4 , 5<x 4 <15 and -30< x 5 <-90.
EP02799430A 2001-09-26 2002-09-26 Method for characterizing the timbre of a sound signal in accordance with at least a descriptor Withdrawn EP1438707A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0112384 2001-09-26
FR0112384A FR2830118B1 (en) 2001-09-26 2001-09-26 METHOD FOR CHARACTERIZING THE TIMBRE OF A SOUND SIGNAL ACCORDING TO AT LEAST ONE DESCRIPTOR
PCT/FR2002/003291 WO2003028005A2 (en) 2001-09-26 2002-09-26 Method for characterizing the timbre of a sound signal in accordance with at least a descriptor

Publications (1)

Publication Number Publication Date
EP1438707A2 true EP1438707A2 (en) 2004-07-21

Family

ID=8867628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799430A Withdrawn EP1438707A2 (en) 2001-09-26 2002-09-26 Method for characterizing the timbre of a sound signal in accordance with at least a descriptor

Country Status (5)

Country Link
US (1) US7406356B2 (en)
EP (1) EP1438707A2 (en)
JP (1) JP4242281B2 (en)
FR (1) FR2830118B1 (en)
WO (1) WO2003028005A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090048828A1 (en) * 2007-08-15 2009-02-19 University Of Washington Gap interpolation in acoustic signals using coherent demodulation
US8126578B2 (en) * 2007-09-26 2012-02-28 University Of Washington Clipped-waveform repair in acoustic signals using generalized linear prediction
US8247677B2 (en) * 2010-06-17 2012-08-21 Ludwig Lester F Multi-channel data sonification system with partitioned timbre spaces and modulation techniques
US10186247B1 (en) 2018-03-13 2019-01-22 The Nielsen Company (Us), Llc Methods and apparatus to extract a pitch-independent timbre attribute from a media signal
US11158297B2 (en) 2020-01-13 2021-10-26 International Business Machines Corporation Timbre creation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL177950C (en) * 1978-12-14 1986-07-16 Philips Nv VOICE ANALYSIS SYSTEM FOR DETERMINING TONE IN HUMAN SPEECH.
GB2230132B (en) * 1988-11-19 1993-06-23 Sony Corp Signal recording method
EP0527527B1 (en) * 1991-08-09 1999-01-20 Koninklijke Philips Electronics N.V. Method and apparatus for manipulating pitch and duration of a physical audio signal
US5327518A (en) * 1991-08-22 1994-07-05 Georgia Tech Research Corporation Audio analysis/synthesis system
DE19505435C1 (en) * 1995-02-17 1995-12-07 Fraunhofer Ges Forschung Tonality evaluation system for audio signal
US6182042B1 (en) * 1998-07-07 2001-01-30 Creative Technology Ltd. Sound modification employing spectral warping techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03028005A3 *

Also Published As

Publication number Publication date
FR2830118B1 (en) 2004-07-30
WO2003028005A2 (en) 2003-04-03
US7406356B2 (en) 2008-07-29
JP4242281B2 (en) 2009-03-25
US20040220799A1 (en) 2004-11-04
WO2003028005A3 (en) 2003-09-25
JP2005504347A (en) 2005-02-10
FR2830118A1 (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US8140331B2 (en) Feature extraction for identification and classification of audio signals
EP2659481B1 (en) Scene change detection around a set of seed points in media data
US8440900B2 (en) Intervalgram representation of audio for melody recognition
JP4795934B2 (en) Analysis of time characteristics displayed in parameters
US20140330556A1 (en) Low complexity repetition detection in media data
CN112394224B (en) Audio file generation time tracing dynamic matching method and system
AU2022275486A1 (en) Methods and apparatus to fingerprint an audio signal via normalization
EP1438707A2 (en) Method for characterizing the timbre of a sound signal in accordance with at least a descriptor
US20230350943A1 (en) Methods and apparatus to identify media that has been pitch shifted, time shifted, and/or resampled
WO2006032751A1 (en) Method and device for evaluating the efficiency of a noise reducing function for audio signals
Rauhala et al. F0 estimation of inharmonic piano tones using partial frequencies deviation method
CN117714960A (en) Detection method and detection device for microphone module, vehicle and storage medium
EP3155609A1 (en) Frequency analysis by demodulation of the phase of an acoustic signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040415

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20060814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120331