EP1438619A1 - OPTICAL SWITCH SYSTEMS USING WAVEGUIDE GRATING−BASED WAVELENGTH SELECTIVE SWITCH MODULES - Google Patents

OPTICAL SWITCH SYSTEMS USING WAVEGUIDE GRATING−BASED WAVELENGTH SELECTIVE SWITCH MODULES

Info

Publication number
EP1438619A1
EP1438619A1 EP02789215A EP02789215A EP1438619A1 EP 1438619 A1 EP1438619 A1 EP 1438619A1 EP 02789215 A EP02789215 A EP 02789215A EP 02789215 A EP02789215 A EP 02789215A EP 1438619 A1 EP1438619 A1 EP 1438619A1
Authority
EP
European Patent Office
Prior art keywords
wavelength
selective
waveguide
switch
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02789215A
Other languages
German (de)
French (fr)
Other versions
EP1438619A4 (en
Inventor
Jianjun Zhang
Peiching Ling
Jinliang Chen
Ming Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Optics Communications Corp
Original Assignee
Integrated Optics Communications Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Optics Communications Corp filed Critical Integrated Optics Communications Corp
Publication of EP1438619A1 publication Critical patent/EP1438619A1/en
Publication of EP1438619A4 publication Critical patent/EP1438619A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • G02B6/29319With a cascade of diffractive elements or of diffraction operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
    • G02B6/29334Grating-assisted evanescent light guide couplers, i.e. comprising grating at or functionally associated with the coupling region between the light guides, e.g. with a grating positioned where light fields overlap in the coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3536Optical coupling means having switching means involving evanescent coupling variation, e.g. by a moving element such as a membrane which changes the effective refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0032Construction using static wavelength routers (e.g. arrayed waveguide grating router [AWGR] )
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Definitions

  • optical switching and signal transmission systems are limited to optical switching of an entire spectrum without wavelength differentiation or selection. Due to the lack of wavelength selection, an optical switch must frequently operate in conjunction with a demultiplexer and multiplexer to achieve routing of optical signals having different wavelengths to different ports. This requirement leads to more complicated system configurations, higher manufacture and maintenance costs, and lower system reliability. For this reason, even though optical switches are advantageous because the optical signals are switched entirely in the optical domain without converting them into the electrical domain, the cost and size of such optical switches can be prohibitive for many applications.
  • MEMS micro electromechanical systems
  • liquid crystals thermal-optics
  • holograms acousto-optic
  • acousto-optic acousto-optic
  • MEMS is emerging to be the most promising technology, thanks to its potential for economical mass production, as well as its reliability in a wide range of applications.
  • the other technologies are still in the experimental stage and will require years of development to become reliable enough for commercial applications.
  • Mechanical-type MEMS-based switches use arrays of miniaturized mirrors fabricated on a single chip. The optical signal is reflected off this tiny mirror in order to change the transmission channel.
  • Micro-fluidic-type MEMS-based switches on the other hand, have no moving mirrors. Rather, they rely on the movement of bubbles in micro-machined channels.
  • Mechanical-type MEMS-based switches can be further classified into two categories according to mirror movement: two-dimensional (2-D) switches and three-dimensional (3-D) switches.
  • 2-D switches the mirrors are only able to execute a two-position operation - that is, the mirrors can move either up and down or side by side.
  • 3-D switches the mirrors can assume a variety of positions by swiveling along multiple axes.
  • micro-fluidic-type, MEMS-based switches by combining its micro-fluidics and ink-jet printing technology.
  • an index-matching fluid is used to select and switch wavelengths. This fluid enables transmission in a first, normal condition.
  • a thermal ink-jet element creates a bubble in the fluid in a trench located at the intersection between the input wave-guide and the desired output wave-guide, reflecting the light by total internal reflection.
  • a common drawback of both of these two types of MEMS-based switches is the requirement to work with external de-multiplexing and re-multiplexing systems in order to function properly in an optical networking system.
  • the requirements of implementing de-multiplexing and re-multiplexing functions add tremendous complexities to the system configuration and significantly increase the cost of manufacture, system installation, and maintenance of the optical network systems.
  • Another drawback of both of these two types of MEMS-based switches is that these prior art switching systems are not wavelength selective switches. In other words, the switching systems cannot selectively switch a particular wavelength from an input waveguide to a desired output waveguide. In short, they are not wavelength discriminating devices.
  • a Bragg grating In order to have wavelength discrimination, a Bragg grating has been shown to have excellent wavelength selection characteristics. A Bragg grating behaves as a wavelength-selective filter, reflecting a narrow band of wavelengths, while transmitting all other wavelengths.
  • the Massachusetts Institute of Technology (MIT) has developed a technology for building Bragg grating devices in planar optical waveguides. These so-called integrated Bragg gratings offer many advantages over the fiber Bragg grating, according to MIT. Therefore, a need exists to provide an innovative method for constructing
  • the improved optical switch be able to eliminate unbalanced power loss, be simple to manufacture,, have low insertion loss and power consumption, and be reliable.
  • the present invention discloses methods and apparatus for constructing optical switch systems. These methods and apparatus greatly simplify the structure of large-scale optical switches, compared with known approaches. The methods and apparatus also provide advantages of configuration flexibility, modular construction, constant signal loss, and minimal required numbers of switch units.
  • the optical switch systems are built upon the optical switch modules - another embodiment of this invention.
  • the switch systems comprise MxN switch modules and the switch module in turn comprises a two-dimensional waveguide array and a number of waveguide grating-based wavelength selective switches.
  • the optical switch module is very flexible in its applications. It can be used as a matrix switch, a de-multiplexer, or a re-multiplexer.
  • the optical switch systems disclosed in this invention requires a relatively small amount of switch units to extend into a very-large-scale switch system.
  • the optical switch systems also eliminate unbalanced power loss, simplify the fabrication and packaging processes, reduce the insertion loss and power consumption, and further improve overall reliability.
  • the switch system constructed by the method disclosed performs the de-multiplexing and re-multiplexing functions inherently. Therefore, in one embodiment, no external de-multiplexers and complicated re-multiplexers are needed to form an optical switching functional block. The size and cost of the optical switches are significantly reduced. BRIEF DESCRIPTIONS OF THE DRAWINGS
  • Figure 1A illustrates the coupling principle of the Bragg grating-based wavelength-selective optical switch, which is used in this invention as a switch unit;
  • Figure IB is a diagram showing the operation and functions of the Bragg grating-based, wavelength-selective optical switch;
  • Figures 2A and 2B are schematic diagrams of a wavelength selective switch module of this invention;
  • a MEMS-actuated highly integrated wavelength intelligent switch is described in commonly assigned and co-pending U.S. Patent Application Serial No. 60/338,927 entitled "WAVEGUIDE GRATING-BASED WAVELENGTH SELECTIVE SWITCH ACTUATED BY MICRO-ELECTROMECHANICAL SYSTEM” to Zhang et al., which is incorporated by reference in its entirety herein.
  • the switch is fabricated on a silicon substrate using planar-lightwave-circuit (PLC) and MEMS technologies.
  • PLC planar-lightwave-circuit
  • the switching action is based on electrostatic bending of a part of waveguide with built-in integrated Bragg gratings.
  • the waveguide with integrated Bragg gratings referred to as a "Bridge Waveguide", functions as a switching element.
  • FIG. 1A shows the coupling between a first waveguide WG-1 and a coupling waveguide WG-C.
  • the coupling waveguide has reflective-type Bragg gratings on a portion coupled to the first waveguide WG-1.
  • An optical signal with multiplexed channels represented by wavelengths ⁇ i, ⁇ _, ⁇ 3 , ..., ⁇ i, ..., ⁇ tile is transmitted in the first waveguide WG-1.
  • an optical signal of wavelength ⁇ j is reflected to the coupling waveguide WG-C while the remaining portion of the optical signal ⁇ i, _, ⁇ 3 , ..., ⁇ i. ⁇ , ⁇ ; + ⁇ ,..., ⁇ utilizated
  • Figure IB illustrates the operation and function of the optical switch.
  • a multiplexed optical signal is transmitted from WG-1 is wavelength selectively reflected to the coupling waveguide WG-C with an optical transmission of ⁇ i.
  • the reflected signal ⁇ ; transmitted into the coupling waveguide WG-C is again reflected and transmitted into the second waveguide WG-2.
  • the switching action is based on electrostatically moving WG-C close to or away from WG-1 and WG-2.
  • the coupling waveguide WG-C is electrostatically bent close enough to WG-1 and WG-2, the wavelength, which meets the Bragg phase-matching condition, is coupled from WG-1 to WG-2. Through WG- C, the selected wavelength is then directed into WG-2.
  • the switch described in Figure IB can be fabricated on a silicon substrate using planar-lightwave-circuit (PLC) and MEMS technologies. A plurality of these switch units can be built and integrated on the same substrate. Therefore, a compact optical switch system can be built based on these switches.
  • FIGS. 2A and 2B are planar-lightwave-circuit (PLC) and MEMS technologies. A plurality of these switch units can be built and integrated on the same substrate. Therefore, a compact optical switch system can be built based on these switches.
  • Figure 2A is a schematic diagram for showing the functions of a two- dimensional wavelength selective switching system by using a 4 x 5 (4 columns and 5 row matrix) optical switch module 10.
  • the horizontal waveguide 110(0) is an input waveguide for receiving an input optical signal that includes four multiplexed wavelengths ⁇ i, ⁇ , ⁇ , and >.
  • a grating-based switch 130(i, j) is disposed on each of the switching intersections between a horizontal and vertical waveguides 110(j) and
  • Figure 2 A shows the grating switches 130(4, 1), 130(2, 2) and 130(3, 3) and 130(4, 4) are activated.
  • the output signal on waveguide 110(2) has a signal with wavelength ⁇ .
  • the output signal on waveguide 110(3) has a signal with wavelength ⁇ 3 .
  • the output signal on waveguide 110(4) has a signal with wavelength ⁇ i and ⁇ -t.
  • an optical switch operator is provided a large degree of flexibility to alternatively activating different combinations of grating switches to generate output signals of different combination of wavelengths without requiring a re-multiplexing (REMUX) process
  • FIG. 2B is a schematic diagram of another optical switch using the same optical switch module 10.
  • additional optical signals represented by four wavelengths ° ⁇ , ° 2, ° ⁇ 3 , and ° ⁇ 4
  • the primary input signals ⁇ i, ⁇ _, ⁇ 3 , and X* can be switched and combined with those pass-through signals , , ° ⁇ 3 , and ° ⁇ 4.
  • This simple optical switch system demonstrates the functional flexibility of the optical switch module.
  • FIG. 3 A An arrangement of constructing a larger optical switch system is shown in Figure 3 A. In this arrangement each output port of a given optical switch module is connected to the pass-through inputs of next optical switch module. This is referred to as a series connection.
  • Each optical switch module shown in Figure 3 A performs similar functions as the optical switch module 10 described in Figures 2 A and 2B. With this serial-type of connecting, an optical switch system can be expanded easily.
  • FIG. 3B An example of implementation of this arrangement is shown in Figure 3B.
  • This optical switch system 3 comprises two optical switch modules 30, which function as 4x2 switches. With the ON-OFF setting indicated on Figure 3B, it can 1 1 1 1 1 "7 be seen that the input signals ⁇ i, ⁇ , ⁇ 3 , and ⁇ 4 on input 1 and ⁇ i, ⁇ 2 , ⁇ , and 2 ⁇ 4 on input 2 can be randomly selected and combined into output 1 and output 2.
  • This optical switch system 3 clearly demonstrates the flexibility and simplicity of the arrangement of this invention.
  • Another scale-up arrangement of constructing a larger optical switch system is shown in Figure 4A. This is referred to as a parallel connection. In this arrangement each output port of a given optical switch module is connected to the input ports of a particular output combiner.
  • the arrangement is to connect all the first outputs of all the optical switch modules to Output Combiner 1, all the second outputs of all the optical switch modules to Output Combiner 2, etc.
  • each optical switch module shown in Figure 4A performs similar functions as the optical switch module 10 described in Figures 2 A and 2B.
  • the output combiners function as multiplexers and therefore an optical switch module, with proper size, of this invention can be used to perform the function.
  • An example of implementation of this arrangement is shown in Figure 4B.

Abstract

The present invention discloses methods and apparatus for constructing optical switch systems, in which any input optical signals can be routed to any output ports. The methods and apparatus provide advantages of configuration flexibility, modular construction, constant signal loss, and minimal numbers of switch units required. The switch systems comprise MxN switch modules (10). The switch module (10) in turn comprises a two-dimensional waveguide array and a number of waveguide grating-based wavelength selective switches (130). With the capability of wavelength-selective routing provided by the switch modules, the optical switch systems requires a relatively small amount of switch units to extend into a very- large- scale switch system.

Description

OPTICAL SWITCH SYSTEMS USING WAVEGUIDE GRATING-BASED WAVELENGTH SELECTIVE S\^
CROSS-REFERENCE TO RELATI
This application claims the benefit of U.S. Provisional Application JNo. 60/338,927 filed October 22, 2001 entitled "WAVEGUIDE GRATING-BASED WAVELENGTH SELECTIVE SWITCH ACTUATED BY MICRO- ELECTROMECHANICAL SYSTEM," which is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to optical switching systems, and more particularly, to a method and apparatus for routing input signals into all possible output combinations by using waveguide grating-based wavelength selective switch modules.
2. Description of the Related Art
Current optical switching and signal transmission systems are limited to optical switching of an entire spectrum without wavelength differentiation or selection. Due to the lack of wavelength selection, an optical switch must frequently operate in conjunction with a demultiplexer and multiplexer to achieve routing of optical signals having different wavelengths to different ports. This requirement leads to more complicated system configurations, higher manufacture and maintenance costs, and lower system reliability. For this reason, even though optical switches are advantageous because the optical signals are switched entirely in the optical domain without converting them into the electrical domain, the cost and size of such optical switches can be prohibitive for many applications.
Thus, there is a need to further improve optical switches, since they are considered critical enabling technology for optical-fiber networks. In the wavelength division multiplex (WDM) networks of the past, the adding, dropping or cross-connecting of individual wavelengths has involved conversion of the signal into the electrical domain. Development of all-optical switches for applications ranging from add-drop functionality to large-scale cross-connects is key to efficient optical networking systems. However, with current technical limitations, an all fiber network implemented with optical switches are still quite expensive.
The primary optical switching technologies being developed today are: micro electromechanical systems (MEMS), liquid crystals, thermal-optics, holograms, acousto-optic, etc. Among all these optical switching technologies, MEMS is emerging to be the most promising technology, thanks to its potential for economical mass production, as well as its reliability in a wide range of applications. The other technologies are still in the experimental stage and will require years of development to become reliable enough for commercial applications. There are two types of optical MEMS switch architectures under development, or commercially available: mechanical and micro-fluidic. Mechanical-type MEMS-based switches use arrays of miniaturized mirrors fabricated on a single chip. The optical signal is reflected off this tiny mirror in order to change the transmission channel. Micro-fluidic-type MEMS-based switches, on the other hand, have no moving mirrors. Rather, they rely on the movement of bubbles in micro-machined channels.
Mechanical-type MEMS-based switches can be further classified into two categories according to mirror movement: two-dimensional (2-D) switches and three-dimensional (3-D) switches. In 2-D switches, the mirrors are only able to execute a two-position operation - that is, the mirrors can move either up and down or side by side. In 3-D switches, the mirrors can assume a variety of positions by swiveling along multiple axes. These products (2-D switches or 3-D switches) are able to offer such benefits as excellent optical performance, minimal cross-talk, and the promise of improved integration, scalability, and reliability.
However, in these switches, light travels through free space, which causes unbalanced power loss. Further, in order to steer each mirror, multiple electrodes need to be connected to each mirror, which increases manufacturing complexity, particularly for large-scale mechanical-type MEMS-based switches. Finally, alignment and packaging are problematical for large-scale switches.
While the above-mentioned micro-mirror-based approach is widely pursued by many manufacturers to build their MEMS-based optical switches, Agilent Technology, Inc. has developed micro-fluidic-type, MEMS-based switches by combining its micro-fluidics and ink-jet printing technology. In these switches, an index-matching fluid is used to select and switch wavelengths. This fluid enables transmission in a first, normal condition. To redirect light from an input to another output, a thermal ink-jet element creates a bubble in the fluid in a trench located at the intersection between the input wave-guide and the desired output wave-guide, reflecting the light by total internal reflection. The advantages of these switches are that they have no moving mechanical parts and are polarization independent.
However, these types of switches have not been proven to be completely reliable. Further, these switches often result in insertion loss for large-scale switches.
A common drawback of both of these two types of MEMS-based switches is the requirement to work with external de-multiplexing and re-multiplexing systems in order to function properly in an optical networking system. The requirements of implementing de-multiplexing and re-multiplexing functions add tremendous complexities to the system configuration and significantly increase the cost of manufacture, system installation, and maintenance of the optical network systems. Another drawback of both of these two types of MEMS-based switches is that these prior art switching systems are not wavelength selective switches. In other words, the switching systems cannot selectively switch a particular wavelength from an input waveguide to a desired output waveguide. In short, they are not wavelength discriminating devices.
In order to have wavelength discrimination, a Bragg grating has been shown to have excellent wavelength selection characteristics. A Bragg grating behaves as a wavelength-selective filter, reflecting a narrow band of wavelengths, while transmitting all other wavelengths. The Massachusetts Institute of Technology (MIT) has developed a technology for building Bragg grating devices in planar optical waveguides. These so-called integrated Bragg gratings offer many advantages over the fiber Bragg grating, according to MIT. Therefore, a need exists to provide an innovative method for constructing
MEMS-actuated highly integrated wavelength selective switches. It is desirable that the improved optical switch be able to eliminate unbalanced power loss, be simple to manufacture,, have low insertion loss and power consumption, and be reliable.
Current optical switch systems have serious drawbacks and practical limitations. An example is the optical switch system disclosed in U.S. Patent No. 6,253,000, in which the building block is a traditional multiport coupler. Drawbacks of this type of switch system include: (1) a large number of couplers are required to scale up the matrix and (2) the insertion loss of signals at various input ports varies greatly. A similar example is described in U.S. Patent No. 6,208,778. Therefore, a need exists to provide a wavelength intelligent optical switch capable of routing various incoming wavelengths and also capable of scaling up with a relatively simple yet flexible structure. Once fully developed, they will be the building block of various modules used in the optical communication network.
SUMMARY OF THE INVENTION
The present invention discloses methods and apparatus for constructing optical switch systems. These methods and apparatus greatly simplify the structure of large-scale optical switches, compared with known approaches. The methods and apparatus also provide advantages of configuration flexibility, modular construction, constant signal loss, and minimal required numbers of switch units.
The optical switch systems are built upon the optical switch modules - another embodiment of this invention. The switch systems comprise MxN switch modules and the switch module in turn comprises a two-dimensional waveguide array and a number of waveguide grating-based wavelength selective switches.
The optical switch module is very flexible in its applications. It can be used as a matrix switch, a de-multiplexer, or a re-multiplexer. With the capability of wavelength-selective routing provided by the switch modules, the optical switch systems disclosed in this invention requires a relatively small amount of switch units to extend into a very-large-scale switch system. The optical switch systems also eliminate unbalanced power loss, simplify the fabrication and packaging processes, reduce the insertion loss and power consumption, and further improve overall reliability. In accordance with the invention, the switch system constructed by the method disclosed performs the de-multiplexing and re-multiplexing functions inherently. Therefore, in one embodiment, no external de-multiplexers and complicated re-multiplexers are needed to form an optical switching functional block. The size and cost of the optical switches are significantly reduced. BRIEF DESCRIPTIONS OF THE DRAWINGS
The present invention can be better understood with reference to the following drawings. The components within the drawings are not necessarily to scale relative to each other, emphasis instead being placed upon clearly illustrating the principles of the present invention.
Figure 1A illustrates the coupling principle of the Bragg grating-based wavelength-selective optical switch, which is used in this invention as a switch unit;
Figure IB is a diagram showing the operation and functions of the Bragg grating-based, wavelength-selective optical switch; Figures 2A and 2B are schematic diagrams of a wavelength selective switch module of this invention;
Figures 3 A and 3B illustrate an arrangement of serial configurations of optical switch systems of this invention; and Figures 4A, 4B, and 4C illustrate an alterative embodiment of parallel configurations of optical switch systems of this invention.
Detailed Description of the Preferred Embodiment
In the following description, numerous specific details are provided, such as the identification of various system components, to provide a thorough understanding of embodiments of the invention. One skilled in the art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In still other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the invention.
Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
A MEMS-actuated highly integrated wavelength intelligent switch is described in commonly assigned and co-pending U.S. Patent Application Serial No. 60/338,927 entitled "WAVEGUIDE GRATING-BASED WAVELENGTH SELECTIVE SWITCH ACTUATED BY MICRO-ELECTROMECHANICAL SYSTEM" to Zhang et al., which is incorporated by reference in its entirety herein. The switch is fabricated on a silicon substrate using planar-lightwave-circuit (PLC) and MEMS technologies. The switching action is based on electrostatic bending of a part of waveguide with built-in integrated Bragg gratings. The waveguide with integrated Bragg gratings, referred to as a "Bridge Waveguide", functions as a switching element. When the bridge waveguide is electro-statically bent close enough to an input waveguide, the wavelength, which meets the Bragg phase- matching condition, is coupled into the bridge waveguide. Through the bridge waveguide, the selected wavelength is then directed into a desired output waveguide. With the development of this powerful optical switch unit, a practical optical switch system is feasible. The description below describes an optical system constructed by using this type of optical switch units. Figure 1A shows the coupling between a first waveguide WG-1 and a coupling waveguide WG-C. The coupling waveguide has reflective-type Bragg gratings on a portion coupled to the first waveguide WG-1. An optical signal with multiplexed channels represented by wavelengths λi, λ_, λ3, ...,λi, ..., λ„ is transmitted in the first waveguide WG-1. At the coupling portion to a coupling waveguide WG-C with wavelength-selective Bragg gratings, an optical signal of wavelength λj is reflected to the coupling waveguide WG-C while the remaining portion of the optical signal λi, _, λ3, ...,λi.ι, λ;+ι,..., λ„ maintains the original transmission path along the first waveguide WG-1.
Figure IB illustrates the operation and function of the optical switch. As shown in Figure IB, a multiplexed optical signal is transmitted from WG-1 is wavelength selectively reflected to the coupling waveguide WG-C with an optical transmission of λi. Then, the reflected signal λ; transmitted into the coupling waveguide WG-C is again reflected and transmitted into the second waveguide WG-2. The switching action is based on electrostatically moving WG-C close to or away from WG-1 and WG-2. . When the coupling waveguide WG-C is electrostatically bent close enough to WG-1 and WG-2, the wavelength, which meets the Bragg phase-matching condition, is coupled from WG-1 to WG-2. Through WG- C, the selected wavelength is then directed into WG-2.
The switch described in Figure IB can be fabricated on a silicon substrate using planar-lightwave-circuit (PLC) and MEMS technologies. A plurality of these switch units can be built and integrated on the same substrate. Therefore, a compact optical switch system can be built based on these switches. FIGS. 2A and
2B show simple optical switch systems based on a single optical switch module 10.
Figure 2A is a schematic diagram for showing the functions of a two- dimensional wavelength selective switching system by using a 4 x 5 (4 columns and 5 row matrix) optical switch module 10. With four input signals, λi, 1%, λ3, and λ4, on the primary input port 110(0) and having four output ports, this system functions as a 4 x 4 switch. However, it can be appreciated that the switch may be made to any arbitrary size as required by particular system requirements. The optical signal switching module 10 includes a two dimensional array of waveguides shown as horizontal waveguides 110(i) where i=0, 1, 2, 3, and 4 and vertical waveguides 120 (j) where j = 1, 2, 3, and 4. The horizontal waveguide 110(0) is an input waveguide for receiving an input optical signal that includes four multiplexed wavelengths λi, λα, λ , and >. Advantageously, there is no requirement to de-multiplex (DEMUX) the multiplexed optical signals. The horizontal waveguides H0(i) and the vertical waveguide intersect each other to form a plurality of wavelength selective switching intersections disposed with a wavelength selective grating-based switch 130(i, j) where i=0, 1, 2, 3, and 4, and j = 1, 2, 3, and 4. A grating-based switch 130(i, j) is disposed on each of the switching intersections between a horizontal and vertical waveguides 110(j) and
1200).
Still referring to Figure 2 A, where the input waveguide 110(0) receives a multiple-channel optical signal is represented by λi, λα, λ3, and The input optical signal is then wavelength selectively switched by a wavelength selective grating switch 130(0, j) to a vertical waveguide 120(j) each transmitting an optical signal of a specific wavelength λj where j =1 , 2, 3, and 4. The wavelength selective grating switches 130(i, j) disposed on the intersections of waveguides 110(i) and 120(j) may be selectively activated. The method and configuration for activating the grating switches will be further described below. The grating switches 130(i, j) are selectively activated to switch optical signals of particular wavelength or combination of wavelengths to output from each of the horizontal waveguides H0(i), where i =1, 2, 3, and 4 implemented as output waveguides. For example, Figure 2 A shows the grating switches 130(4, 1), 130(2, 2) and 130(3, 3) and 130(4, 4) are activated. By activating these grating switches, the output signal on waveguide 110(2) has a signal with wavelength λ^. The output signal on waveguide 110(3) has a signal with wavelength λ3. The output signal on waveguide 110(4) has a signal with wavelength λi and λ-t.
By selectively activating the grating switches 130 (i, j), an optical switch operator is provided a large degree of flexibility to alternatively activating different combinations of grating switches to generate output signals of different combination of wavelengths without requiring a re-multiplexing (REMUX) process
In addition to the flexibility of selectively switching the optical signals of different wavelengths through different combinations of output waveguides, the wavelength-selective optical switch module 10 is further provided with optical ports for connecting to residual signal detectors 170(j), where j=l, 2, 3, 4 An optical port is also provided for connecting to residual input signal detector 175 As shown in Figure 2A, the residual signal detectors are disposed at the terminations of the vertical waveguides 120(j) and at the termination of input horizontal waveguide 110(0) The residual signal detectors are typically employed for detecting the conditions of operation to determine the functionality of the switching operations and signal levels through the residual signals
According to above descriptions, this switch system includes an input waveguide designated as waveguide WG(0), e g , 110(0), for receiving a multiplexed optical signal comprising optical signals transmitted over a plurality of wavelength channels represented by λi, λ2, λ3, ,λ„ , λ„, where N is a positive integer wherein the input waveguide extending over a first direction The switching system further includes a two dimensional waveguide array comprising a plurality of first direction waveguides WG(i), i=l, 2, 3, , M extending over the first direction substantially parallel to the input waveguide WG(0) where M is a positive integer and a plurality of second direction waveguides WG'(j), j=l, 2, 3,
N, extending over a second direction substantially perpendicular to the first direction and intersecting with the input waveguide and each of the first direction waveguide WG(i), i = 0, 1, 2, 3, ,M, thus forming (M+l) x N intersections The switching system further includes a plurality of wavelength selective grating switches SW(i, j) where i= 0, 1,2, 3....M and j=l ,2 ,3,...,N, each disposed on one of the (M+1) x N intersections for selectively transmitting an optical signal of wavelength λj into a waveguide WG'(j) and for selectively transmitting an optical signal of a predefined combination of wavelengths into at least one of the waveguide WG(i) for i= 1 , 2, 3, ... M.
Figure 2B is a schematic diagram of another optical switch using the same optical switch module 10. The basic configuration and wavelength-selective switching operations of the optical switch module 10 are the same as described in Figure 2A except that additional optical signals represented by four wavelengths °λι, ° 2, °λ3, and °λ4 are input from a corresponding horizontal waveguides 110(j) where j = 1, 2, 3, and 4. By turning on or off these switch units, the primary input signals λi, λ_, λ3, and X* can be switched and combined with those pass-through signals , , °λ3, and °λ4. This simple optical switch system demonstrates the functional flexibility of the optical switch module. To scale up the size of the optical switch systems, two or more optical switch modules can be used in a larger optical switch system. An arrangement of constructing a larger optical switch system is shown in Figure 3 A. In this arrangement each output port of a given optical switch module is connected to the pass-through inputs of next optical switch module. This is referred to as a series connection. Each optical switch module shown in Figure 3 A performs similar functions as the optical switch module 10 described in Figures 2 A and 2B. With this serial-type of connecting, an optical switch system can be expanded easily.
An example of implementation of this arrangement is shown in Figure 3B. This optical switch system 3 comprises two optical switch modules 30, which function as 4x2 switches. With the ON-OFF setting indicated on Figure 3B, it can 1 1 1 1 1 "7 be seen that the input signals λi, λ∑, λ3, and λ4 on input 1 and λi, λ2, λ , and 2λ4 on input 2 can be randomly selected and combined into output 1 and output 2. This optical switch system 3 clearly demonstrates the flexibility and simplicity of the arrangement of this invention. Another scale-up arrangement of constructing a larger optical switch system is shown in Figure 4A. This is referred to as a parallel connection. In this arrangement each output port of a given optical switch module is connected to the input ports of a particular output combiner. The arrangement is to connect all the first outputs of all the optical switch modules to Output Combiner 1, all the second outputs of all the optical switch modules to Output Combiner 2, etc. Again, each optical switch module shown in Figure 4A performs similar functions as the optical switch module 10 described in Figures 2 A and 2B. The output combiners function as multiplexers and therefore an optical switch module, with proper size, of this invention can be used to perform the function. An example of implementation of this arrangement is shown in Figure 4B.
This optical switch system 4 comprises two optical switch modules 30, which function as 4x2 switches and two output combiners 35, which function as multiplexers. With the ON-OFF setting indicated on Figure 4B, it can be seen that the input signals λi, , λ3, and λ4 on input 1 and λi, λ2, λ3, and λ4 on input 2 can be randomly selected and combined into output 1 and output 2. The major advantages of this arrangement is that any input signal will pass exactly two "ON" switches of its wavelength and therefore keep the insertion loss of each signal close to identical regardless of the size of the optical switch system. The power loss is also lower because the short optical path for all the input signals. Figure 4C shows a full implementation of the parallel-type example as described in Figure 4B. In this implementation the same optical switch modules 30 are used as outputs combiners. This implementation by using only one type of optical switch module demonstrates another advantage of simplicity of fabrication and flexibility of configurations.
Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is not to be interpreted as limiting. Various alternations and modifications will no doubt become apparent to those skilled in the art after reading the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alternations and modifications as fall within the true spirit and scope of the invention.

Claims

Claims We claim:
1. An optical wavelength-selective switching system comprising: a plurality of optical wavelength-selective switch modules that are connected together, wherein at least two of said wavelength-selective switch modules comprise:
(a) a waveguide array comprising a plurality of first direction waveguides extending over a first direction, one of said plurality of first direction waveguides being an input waveguide carrying an optical signal having a plurality of wavelengths, and a plurality of second direction waveguides intersecting with said input waveguide and at least one of said first direction waveguides to form a plurality of intersections; and
(b) a plurality of wavelength-selective grating-based switch disposed on at least one of said plurality of intersections.
2. The system of Claim 1 wherein said wavelength-selective grating switch disposed on said intersection selectively switches one of said plurality of wavelength channels into said second direction waveguide and for selectively transmitting the remaining ones of said plurality of wavelength channels.
2. The system of Claim 1 wherein said wavelength-selective grating switch comprises Bragg gratings that have a periodicity suitable for switching said one of said plurality of wavelength channels from said first direction waveguide into said second direction waveguide.
3. The system of Claim 1 wherein said wavelength selective grating switch can be engaged or disengaged to said input waveguide and said second direction waveguide.
4. The system of Claim 1 wherein said first waveguides and said second waveguides are substantially perpendicular to each other.
5. The system of Claim 1 wherein said wavelength-selective switch modules are connected in series.
6. The system of Claim 1 wherein said wavelength-selective switch modules are connected in parallel.
7. An optical wavelength-selective switching system comprising: a plurality of optical wavelength-selective switch modules connected together, wherein at least two of said connected wavelength-selective switch modules each comprise:
(a) a two dimensional waveguide array comprising a plurality of first direction waveguides WG(i), i=l, 2, 3, . . . , M extending in a first direction substantially parallel to an input waveguide WG(0) and a plurality of second direction waveguides WG'(j), j=l, 2, 3, . . . , N, extending in a second direction substantially perpendicular to said first direction and intersecting with said input waveguide and each of said first direction waveguides WG(i) to form (M+1) x N intersections; and (b) a plurality of wavelength selective grating switching means
SW(i, j) where i= 0, 1, 2, 3, . . . , M and j=l ,2 , 3, . . . , N, each disposed on one of said (M+1) x N intersections for selectively switching a selected optical signal into a second direction waveguide WG'(j) and for selectively transmitting other optical signal of different wavelengths.
8. The system of Claim 7 wherein: each of said plurality of wavelength selective grating switching means
SW(i, j) are Bragg gratings provided for wavelength selectively transmitting an optical signal of a central wavelength particular to said Bragg grating from a first direction waveguide WG(i) to a second direction waveguide WG'(j) intersecting said first direction waveguide WG(i).
9. A method for wavelength-selective optical switching comprising: connecting at least one output port of a first wavelength-selective switching module to at least one input port of a second wavelength-selective switching module, said wavelength-selective switch modules comprising:
(a) a waveguide array comprising a plurality of first direction waveguides extending over a first direction, one of said plurality of first direction waveguides being an input port, and a plurality of second direction waveguides intersecting with said input port and at least one of said first direction waveguides to form a plurality of intersections; and
(b) a plurality of wavelength-selective grating switching means disposed on at least one of said plurality of intersections; and connecting multiplexed input optical signals to at least one of the input ports of at least one of the wavelength-selective switching modules.
10. A method for constructing a wavelength-selective optical switch system comprising: connecting multiplexed optical signals to at least one of the input ports of at least one of the wavelength-selective switching modules, said wavelength-selective switching modules having N output ports; connecting the first output ports of each optical switch to the input ports of a first output summing module; connecting the second output ports of each optical switch to the input ports of a second output summing module; continuing connecting until the N output port of each wavelength- selective switching modules are connected to the input ports of an Nth output summing module.
11. A method for wavelength-selective optical switching comprising: providing a multiplexed input optical signal to an input port of at least two wavelength-selective switching modules, said wavelength-selective switching modules including said input port and at least two output ports; providing a first of said output ports of each wavelength-selective switching modules to the input ports of a first output summing module; and providing a second of said output ports of each wavelength-selective switching modules to the input ports of a second output summing module.
12. The method of Claim 11 further including continuing until the last output ports of each optical switch are connected to the input ports of the last second output summing module.
13. A wavelength-selective switch module comprising: (a) a waveguide array comprising a plurality of first direction waveguides extending over a first direction, one of said plurality of first direction waveguides being an input waveguide carrying an optical signal having a plurality of wavelengths, and a plurality of second direction waveguides intersecting with said input waveguide and at least one of said first direction waveguides to form a plurality of intersections; and
(b) wavelength-selective grating switches disposed on said plurality of intersections.
14. The module of Claim 13 wherein said wavelength-selective grating switch disposed on said intersection selectively switches one of said plurality of wavelength channels into said second direction waveguide and for selectively transmitting the remaining ones of said plurality of wavelength channels.
15. The system of Claim 14 wherein said wavelength- selective grating switch comprises Bragg gratings that have a periodicity suitable for switching said one of said plurality of wavelength channels from said first direction waveguide into said second direction waveguide.
16. The system of Claim 13 wherein said wavelength selective grating switch can be engaged or disengaged to said input waveguide and said second direction waveguide.
17. The system of Claim 13 wherein said first waveguides and said second waveguides are substantially perpendicular to each other.
EP02789215A 2001-10-22 2002-10-18 Optical switch systems using waveguide grating-based wavelength selective switch modules Withdrawn EP1438619A4 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34892701P 2001-10-22 2001-10-22
US348927P 2001-10-22
US37380302P 2002-04-19 2002-04-19
US373803P 2002-04-19
PCT/US2002/033341 WO2003036355A1 (en) 2001-10-22 2002-10-18 Optical switch systems using waveguide grating-based wavelength selective switch modules

Publications (2)

Publication Number Publication Date
EP1438619A1 true EP1438619A1 (en) 2004-07-21
EP1438619A4 EP1438619A4 (en) 2006-01-04

Family

ID=26995962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02789215A Withdrawn EP1438619A4 (en) 2001-10-22 2002-10-18 Optical switch systems using waveguide grating-based wavelength selective switch modules

Country Status (2)

Country Link
EP (1) EP1438619A4 (en)
WO (1) WO2003036355A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732688B (en) * 2017-04-24 2020-02-21 华为技术有限公司 Optical switch chip, control method thereof and optical switch matrix

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835458A (en) * 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
US5915051A (en) * 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
WO2001020379A1 (en) * 1999-09-15 2001-03-22 Ho Seng Tiong Photon transistors
WO2001073481A2 (en) * 2000-03-30 2001-10-04 K2 Optronics, Inc. Optical routing element for use in fiber optic systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013000A (en) * 1975-11-20 1977-03-22 Bell Telephone Laboratories, Incorporated Optical crossbar switching network
US6389189B1 (en) * 1998-10-23 2002-05-14 Corning Incorporated Fluid-encapsulated MEMS optical switch
US6404943B1 (en) * 1999-10-08 2002-06-11 Agilent Technologies, Inc. Apparatus and method for directing optical signals using a movable optical switching element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835458A (en) * 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
US5915051A (en) * 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
WO2001020379A1 (en) * 1999-09-15 2001-03-22 Ho Seng Tiong Photon transistors
WO2001073481A2 (en) * 2000-03-30 2001-10-04 K2 Optronics, Inc. Optical routing element for use in fiber optic systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03036355A1 *

Also Published As

Publication number Publication date
WO2003036355A1 (en) 2003-05-01
EP1438619A4 (en) 2006-01-04

Similar Documents

Publication Publication Date Title
US6842563B2 (en) Waveguide grating-based wavelength selective switch actuated by micro-electromechanical system
JP3662754B2 (en) Wavelength selective add-drop device
US7469080B2 (en) Modular all-optical cross-connect
US6631222B1 (en) Reconfigurable optical switch
WO2004015459A2 (en) Compact wavelength-selective optical crossconnect
US6449407B1 (en) Optical switch having equalized beam spreading in all connections
US7003190B2 (en) Switching matrix configuration for reducing loss
CA2372536C (en) Planar lightwave wavelength blocker devices using micromachines
CA2419971C (en) Fiber optic switch and associated methods
EP1089479B1 (en) Wavelength division add/drop multiplexer
US6891989B2 (en) Optical switch systems using waveguide grating-based wavelength selective switch modules
WO2001089128A2 (en) A reconfigurable optical switch
US20030108290A1 (en) Optical add/drop devices employing waveguide grating-based wavelength selective switches
EP1438619A1 (en) OPTICAL SWITCH SYSTEMS USING WAVEGUIDE GRATING−BASED WAVELENGTH SELECTIVE SWITCH MODULES
EP1090471B1 (en) Method and wavelength selective switching for switching optical wavelengths
US20040086218A1 (en) Apparatus and method for optical signal processing system
US6879754B2 (en) Drop-before-add optical switching and routing system employing grating-based wavelength selective switches
CN1751254A (en) Optical switch systems using waveguide grating-based wavelength selective switch modules
JPS6330092A (en) Wavelength split type optical exchange channel
Yu et al. Volume phase grating based flat-top passband response dense wavelength division multiplexers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20051117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060202