EP1436362B2 - Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section - Google Patents

Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section Download PDF

Info

Publication number
EP1436362B2
EP1436362B2 EP02774912A EP02774912A EP1436362B2 EP 1436362 B2 EP1436362 B2 EP 1436362B2 EP 02774912 A EP02774912 A EP 02774912A EP 02774912 A EP02774912 A EP 02774912A EP 1436362 B2 EP1436362 B2 EP 1436362B2
Authority
EP
European Patent Office
Prior art keywords
hydrodesulphurisation
section
stripping
vacuum
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02774912A
Other languages
German (de)
French (fr)
Other versions
EP1436362B1 (en
EP1436362A1 (en
Inventor
Renaud Galeazzi
Alain Dunet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8868213&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1436362(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to DE60226156T priority Critical patent/DE60226156T3/en
Publication of EP1436362A1 publication Critical patent/EP1436362A1/en
Application granted granted Critical
Publication of EP1436362B1 publication Critical patent/EP1436362B1/en
Publication of EP1436362B2 publication Critical patent/EP1436362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the US Patent 3,737,260 discloses a gas oil hydrodesulphurization process comprising a hydrodesulfurization reaction section, a separation of the effluent of this section into a gaseous fraction and a first high temperature and high pressure liquid fraction, a partial condensation of said vapor phase into a fraction comprising essentially hydrogen and a second liquid fraction, stripping of the H 2 S and light hydrocarbons of the first and second liquid fractions by means of the previously treated hydrogen, separation of the stripped hydrocarbons into a naphtha and a diesel fuel and recycling said naphtha to the condensation stage.
  • the request for WO 98/42804 discloses a composition comprising paraffinic, naphthenic and alkylbenzene fractions and processes for producing such composition.
  • One of the processes described comprises a heavy molecule cracking reactor in the presence of hydrogen followed by a gas / liquid separation, a stripping and a vacuum fractionation after reheating the stripped effluent by means of an oven .
  • the US Patent 4,808,289 discloses a process for hydrotreating residues comprising mixing said residue with lighter hydrocarbons from a separator flask, sending said mixture to a series of reactors operated as a bubbling bed, separating in a separator flask from effluent obtained in 2 gaseous and liquid fractions, the fractionation of the liquid in an atmospheric distillation tower into a naphtha and a residue, then a vacuum fractionation of this residue into a gas, a naphtha and a vacuum residue
  • the present invention relates to a process for hydrodesulfurization of gas oil or vacuum distillate, preferably vacuum gas oil and / or vacuum distillates, comprising at least one hydrodesulfurization reaction section, at least one stripping section and at least one a fractionation section in which the main fractionating column is operated under a moderate vacuum.
  • the method according to the invention makes it possible to reduce the amount of heat to be supplied to the charge of the fractionation section and thus to operate said section at moderate temperature levels.
  • the method according to the invention therefore makes it possible to desulphurize a gas oil and or a vacuum distillate without the need to implant a furnace between the stripping section and the fractionation section, which represents a significant economic advantage over the processes of the prior art.
  • the present invention relates to a process according to claim 1 for hydrodesulfurization of gas oil or vacuum distillate, preferably vacuum gas oil and / or vacuum distillates, comprising at least one hydrodesulfurization reaction section, at least one section of stripping and at least one fractionation section in which the main fractionating column is operated under a moderate vacuum.
  • the plant used in the process according to the invention also comprises a hot separator flask.
  • the hydrodesulfurization reaction section may comprise one or more reactors arranged in series or in parallel, for example two reactors arranged in series.
  • Each reactor of the reaction section comprises at least one catalyst bed.
  • the catalyst can be used in a fixed bed or in an expanded bed, or in a bubbling bed. In the case of a catalyst implemented in fixed bed, it is possible to have several catalyst beds in at least one reactor.
  • Any catalyst known to those skilled in the art can be used in the process according to the invention, for example a catalyst comprising at least one element selected from the elements of Group VIII of the periodic table (Groups 8, 9 and 10 of the new periodic classification) and possibly at least one element selected from Group VIB elements of the Periodic Table (Group 6 of the new Periodic Table).
  • the temperature is typically between about 200 and about 460 ° C.
  • the total pressure is typically between about 1 MPa and about 20 MPa, typically between 2 and 20 MPa, preferably between 2.5 and 18 MPa, and most preferably between 3 and 18 MPa.
  • the overall hourly space velocity of liquid charge for each catalytic step is typically from about 0.1 to about 12, and generally from about 0.4 to about 10.
  • the purity of the hydrogen used in the process according to the invention is typically between 50 and 99.9.
  • the amount of hydrogen relative to the liquid feed is typically from about 50 to about 1200 Nm3 / m3.
  • the fractionation and stripping sections may be equipped with any type of stripping column at any pressure or moderate vacuum fractionation known to those skilled in the art. Steam is used to carry out said stripping.
  • the vacuum column is also preferably fed by means of any stripping gas, preferably steam.
  • the plant used in the process according to the invention comprises a hot separator flask.
  • the additional heat required for this vaporization may possibly be provided by increasing the temperature of said separator tank relative to the current practice which corresponds to a temperature generally between 240 ° C and 280 ° C. Generally this increase is less than 60 ° C, preferably less than 50 ° C, more preferably less than 40 ° C.
  • This mode of operation also differs significantly from that of the prior art in which the temperature of the hot flask is set for the operation of the H2S stripper column.
  • the temperature of said separator flask is between 280 ° C and 350 ° C, preferably between 300 ° C and 340 ° C and very preferably between 300 ° C and 330 ° C.
  • This rise in temperature is then used to distil a maximum of naphtha in the stripper so as to send to the main fractionation column compounds whose boiling point is generally greater than about 100 ° C.
  • the absence of light compounds in the vacuum column thus makes it possible to obtain complete condensation of the overhead product with a very moderate vacuum (for example 0.1 to 0.5 bar abs).
  • any other method of supplying additional heat other than a furnace may, however, be envisaged in the method according to the invention, in particular those known to those skilled in the art, such as, for example, an additional heat exchanger.
  • the temperature of the vacuum system is generally governed by the condensing temperature of the water coming from the stripping steam of the column.
  • the complete condensation of hydrocarbons and water vapor makes it possible to use a very simple vacuum system that consumes little energy.
  • this process therefore makes it possible to gain most often about 2/3 of the energy consumption of the furnace used in the processes of the prior art. The remaining 1/3 is transferred to the furnace of the reaction loop.
  • Another notable simplification is the preferred possibility of eliminating the lateral strippers of this column, because the extraction of a large quantity of naphtha in the stripper makes it possible to obtain kerosene and diesel fractions having the correct flashpoint specification, generally understood. between 50 and 70 ° C.
  • the Figure 1 describes one of the possible embodiments of the method according to the invention. This embodiment is particularly well suited to the case where the conversion of the charge in the hydrodesulphurization reaction section is limited to less than 50% (ie less than 50% by weight of the charge is converted into this section), preferably less than 30%.
  • the feed for example a vacuum gas oil comprising hydrocarbons with boiling points between 370 and 565 ° C
  • the hydrogen preferably in excess of the feed, is fed via line 3 and compressor 4 and then line 5, and mixed with the charge 1 before being admitted into a charge-effluent exchanger (6) via line 2.
  • the exchanger 6 preheats the load by means of the effluent from the hydrodesulphurization reactor 10.
  • the feedstock is fed via line 7 into an oven that makes it possible to reach the temperature level necessary for the hydrodesulfurization reaction, and then the hot feed is sent via the line 9, in the hydrodesulfurization section 10, constituted by at least one hydrodesulfurization reactor comprising at least one hydrodesulphurization catalyst.
  • the effluent from the reactor 10 is then sent to the exchanger 6, then via the line 12 to the separator tank 13.
  • a gaseous fraction is separated in this flask and recovered via the line 14.
  • the desulfurized liquid fraction is recovered in the bottom via line 27.
  • Said gaseous fraction comprises unreacted hydrogen, the hydrogen sulphide (H2S) formed during the reaction, as well as generally light hydrocarbons resulting from the conversion of the hydrocarbons of the charge into the reaction section. hydrodesulfurization.
  • H2S hydrogen sulphide
  • the liquid hydrocarbon phase is recycled via lines 20 and 26 to the liquid effluent from the flask 13 and mixed with this liquid effluent before being sent via line 28 to the stripping column (stripper) 29.
  • the gaseous fraction from the flash tank 19 is sent via line 21 to an amine absorber or a washing column 22 for removing at least a portion of the H 2 S, and then the gaseous fraction containing hydrogen is recycled. via lines 23 and 25 to the hydrodesulphurization reactor, after compression by means of the compressor 24 and mixing with the load 1.
  • Stripper 29 is preferably fed with stripping steam via line 32.
  • a gaseous fraction (generally called acid gas) is recovered via line 30 and via line 31 a naphtha having a dot of final boiling most often above 100 ° C.
  • the liquid recovered at the bottom of the stripper via the line 33 is sent via the fractionation column 34, without it being necessary to reheat it in an oven or exchanger.
  • the fractionation column 34 is operated under vacuum. This is usually a moderate vacuum (for example about 0.25 bar in flash zone). The operation of the column under a moderate vacuum considerably reduces the heat to be supplied to the charge of this column to vaporize the fraction having a boiling point below 370 ° C.
  • the additional heat is preferably provided by an increase in the temperature of the hot separator tank (13) relatively moderate compared to the current practice (for example about 310 ° C instead of 270 ° C).
  • This vacuum column is also fed with stripping steam via line 44.
  • the vacuum separation and maintenance section 37 In the vacuum separation and maintenance section 37, the details of which are not shown because they are known to those skilled in the art, it is possible to separate an aqueous liquid fraction and a hydrocarbon fraction which one does not wish to recover. via line 38.
  • the product obtained line 38 is for example constituted by sections naphtha and / or kerosene and / or gas oil having an initial boiling point greater than 100 ° C.
  • Said section 37 also includes equipment for generating a partial vacuum and maintain it in the column, any equipment known to those skilled in the art can be used, for example an ejector and a condenser or a vacuum pump.
  • the intermediate fraction from the fractionation column via the line 39 is cooled, for example by means of an exchanger (40) and an air condenser (42), and then recovered via the line 43.
  • a gas oil fraction having a final boiling point of less than 370 ° C.
  • the heavy fraction from the fractionation column via the line 45 is also cooled by means of, for example, the exchanger 46 and the aerocondenser 48.
  • the fraction thus obtained via the line 49 is a hydrotreated vacuum gas oil with cooling points. adjacent to the initial charge (eg, initial and final boiling points of 370 ° C and 565 ° C respectively).

Abstract

The invention concerns a facility and a process for hydrodesulphurizing gas oil or vacuum distillate comprising at least one hydrodesulphurization reaction section, at least one stripping section and at least one fractionation section in which the fractionation section comprises at least one fractionation column operated under moderate vacuum.

Description

ART ANTERIEUR :PRIOR ART:

Les procédés conventionnels d'hydrodésulfuration de gazoles ou de distillats sous vide comprennent un four généralement situé entre le stripeur d'H2S et la colonne de fractionnement principale. La présence de ce four permet de remonter les températures en après le stripage et d'obtenir un fractionnement efficace dans la colonne de fractionnement située en aval. Par contre, la présence de ce four engendre des consommations énergétiques importantes et représente un investissement et un coût opératoire importants à la fois dans l'absolu et par rapport à l'ensemble du procédé.Conventional hydrodesulfurization processes for gas oils or vacuum distillates comprise an oven generally located between the H 2 S stripper and the main fractionator. The presence of this furnace makes it possible to raise the temperatures after the stripping and to obtain an effective fractionation in the fractionation column situated downstream. On the other hand, the presence of this furnace generates important energy consumptions and represents an investment and an important operating cost both in absolute and in relation to the whole process.

Le brevet US 3,733260 décrit un procédé d'hydrodésulfuration de gazoles comprenant une section réactionnelle d'hydrodésulfuration, une séparation de l'effluent de cette section en une fraction gazeuse et une première fraction liquide à haute température et haute pression, une condensation partielle de ladite phase vapeur en une fraction comprenant essentiellement de l'hydrogène et une seconde fraction liquide, un stripage de l'H2S et des hydrocarbures légers de la première et la seconde fractions liquide au moyen de l'hydrogène préalablement traité, une séparation des hydrocarbures strippés en un naphta et un gazole et un recyclage dudit naphta à l'étape de condensation.The US Patent 3,737,260 discloses a gas oil hydrodesulphurization process comprising a hydrodesulfurization reaction section, a separation of the effluent of this section into a gaseous fraction and a first high temperature and high pressure liquid fraction, a partial condensation of said vapor phase into a fraction comprising essentially hydrogen and a second liquid fraction, stripping of the H 2 S and light hydrocarbons of the first and second liquid fractions by means of the previously treated hydrogen, separation of the stripped hydrocarbons into a naphtha and a diesel fuel and recycling said naphtha to the condensation stage.

La demande de brevet WO 98/42804 décrit une composition comprenant des fractions paraffiniques, naphténiques et des alkylbenzénes et des procédés de production de cette composition. Un des procédés décrit comprend un réacteur de craquage de molécules lourdes en présence d'hydrogène suivi d'une séparation gaz/liquide, d'un stripage et d'un fractionnement sous vide après réchauffage de l'effluent strippé au moyen d'un four.The request for WO 98/42804 discloses a composition comprising paraffinic, naphthenic and alkylbenzene fractions and processes for producing such composition. One of the processes described comprises a heavy molecule cracking reactor in the presence of hydrogen followed by a gas / liquid separation, a stripping and a vacuum fractionation after reheating the stripped effluent by means of an oven .

Le brevet US 4,808,289 décrit un procédé d'hydrotraitement de résidus comprenant le mélange dudit résidu avec des hydrocarbures plus légers issus d'un ballons séparateur, l'envoi de ce mélange dans une série de réacteurs opérés en lit bouillonnant, la séparation dans un ballon séparateur de l'effluent obtenu en 2 fractions gazeuses et liquides, le fractionnement du liquide dans une tour de distillation atmosphérique en un naphta et un résidu, puis un fractionnement sous vide de ce résidu en un gaz, un naphta et un résidu sous videThe US Patent 4,808,289 discloses a process for hydrotreating residues comprising mixing said residue with lighter hydrocarbons from a separator flask, sending said mixture to a series of reactors operated as a bubbling bed, separating in a separator flask from effluent obtained in 2 gaseous and liquid fractions, the fractionation of the liquid in an atmospheric distillation tower into a naphtha and a residue, then a vacuum fractionation of this residue into a gas, a naphtha and a vacuum residue

OBJET DE L'INVENTION :OBJECT OF THE INVENTION:

La présente invention concerne un procédé d'hydrodésulfuration de gazole ou de distillat sous vide, de préférence de gazole sous vide et/ou de distillats sous vide, comprenant au moins une section réactionnelle d'hydrodésulfuration, au moins une section de stripage et au moins une section de fractionnement dans lequel la colonne de fractionnement principale est opérée sous un vide modéré. Le procédé selon l'invention permet de réduire la quantité de chaleur à apporter à la charge de la section de fractionnement et donc d'opérer ladite section à des niveaux de température modérés. Le procédé selon l'invention permet donc de désulfurer un gazole et ou un distillat sous vide sans qu'il soit nécessaire d'implanter un four entre la section de stripage et la section de fractionnement, ce qui représente un avantage économique important par rapport aux procédés de l'art antérieur.The present invention relates to a process for hydrodesulfurization of gas oil or vacuum distillate, preferably vacuum gas oil and / or vacuum distillates, comprising at least one hydrodesulfurization reaction section, at least one stripping section and at least one a fractionation section in which the main fractionating column is operated under a moderate vacuum. The method according to the invention makes it possible to reduce the amount of heat to be supplied to the charge of the fractionation section and thus to operate said section at moderate temperature levels. The method according to the invention therefore makes it possible to desulphurize a gas oil and or a vacuum distillate without the need to implant a furnace between the stripping section and the fractionation section, which represents a significant economic advantage over the processes of the prior art.

DESCRIPTION DETAILLEE DE L'INVENTION :DETAILED DESCRIPTION OF THE INVENTION

La présente invention concerne un procédé selon la revendication 1 d'hydrodésulfuration de gazole ou de distillat sous vide, de préférence de gazole sous vide et/ou de distillats sous vide, comprenant au moins une section réactionnelle d'hydrodésulfuration, au moins une section de stripage et au moins une section de fractionnement dans lequel la colonne de fractionnement principale est opérée sous un vide modéré. L'installation utilisée dans le procédé selon l'invention comprend également un ballon séparateur chaud.The present invention relates to a process according to claim 1 for hydrodesulfurization of gas oil or vacuum distillate, preferably vacuum gas oil and / or vacuum distillates, comprising at least one hydrodesulfurization reaction section, at least one section of stripping and at least one fractionation section in which the main fractionating column is operated under a moderate vacuum. The plant used in the process according to the invention also comprises a hot separator flask.

Dans le procédé et l'installation selon l'invention, la section réactionnelle d'hydrodésulfuration peut comprendre un ou plusieurs réacteurs disposés en série ou en parallèle, par exemple deux réacteurs disposés en série. Chaque réacteur de la section réactionnelle comprend au moins un lit de catalyseur. Le catalyseur peut être mis en oeuvre en lit fixe ou en lit expansé, ou encore en lit bouillonnant. Dans le cas d'un catalyseur mis en oeuvre en lit fixe, il est possible de disposer plusieurs lits de catalyseurs dans au moins un réacteur.In the process and the plant according to the invention, the hydrodesulfurization reaction section may comprise one or more reactors arranged in series or in parallel, for example two reactors arranged in series. Each reactor of the reaction section comprises at least one catalyst bed. The catalyst can be used in a fixed bed or in an expanded bed, or in a bubbling bed. In the case of a catalyst implemented in fixed bed, it is possible to have several catalyst beds in at least one reactor.

Tout catalyseur connu de l'homme du métier peut être utilisé dans le procédé selon l'invention, par exemple un catalyseur comprenant au moins un élément choisi parmi les éléments du Groupe VIII de la classification périodique (groupes 8, 9 et 10 de la nouvelle classification périodique) et éventuellement au moins un élément choisi parmi les éléments du Groupe VIB de la classification périodique (groupe 6 de la nouvelle classification périodique).Any catalyst known to those skilled in the art can be used in the process according to the invention, for example a catalyst comprising at least one element selected from the elements of Group VIII of the periodic table (Groups 8, 9 and 10 of the new periodic classification) and possibly at least one element selected from Group VIB elements of the Periodic Table (Group 6 of the new Periodic Table).

Les conditions opératoires de cette section réactionnelle d'hydrodésulfuration sont généralement comprises dans les fourchettes de conditions opératoires décrites dans l'art antérieure. Ces conditions opératoires utilisables en hydrotraitement sont bien connus de l'homme de l'art :The operating conditions of this hydrodesulfurization reaction section are generally within the operating condition ranges described in the prior art. These operating conditions that can be used in hydrotreatment are well known to those skilled in the art:

La température est typiquement comprise entre environ 200 et environ 460 °C.The temperature is typically between about 200 and about 460 ° C.

La pression totale est typiquement comprise entre environ 1 MPa et environ 20 MPa, généralement entre 2 et 20 MPa, de préférence entre 2,5 et 18 MPa, et de façon très préférée entre 3 et 18 MPa.The total pressure is typically between about 1 MPa and about 20 MPa, typically between 2 and 20 MPa, preferably between 2.5 and 18 MPa, and most preferably between 3 and 18 MPa.

La vitesse spatiale horaire globale de charge liquide pour chaque étape catalytique est typiquement comprise entre environ 0,1 et environ 12, et généralement entre environ 0,4 et environ 10.The overall hourly space velocity of liquid charge for each catalytic step is typically from about 0.1 to about 12, and generally from about 0.4 to about 10.

La pureté de l'hydrogène utilisé dans le procédé selon l'invention est typiquement comprise entre 50 et 99,9.The purity of the hydrogen used in the process according to the invention is typically between 50 and 99.9.

La quantité d'hydrogène par rapport à la charge liquide est typiquement comprise entre environ 50 et environ 1200 Nm3/m3.The amount of hydrogen relative to the liquid feed is typically from about 50 to about 1200 Nm3 / m3.

Les sections de fractionnement et de stripage peuvent être équipées de tout type de colonne de stripage à toute pression ou de fractionnement sous vide modéré connu de l'homme du métier. On utilise de la vapeur pour réaliser ledit stripage. La colonne sous vide est également de préférence alimentée au moyen de tout gaz de stripage, de préférence de la vapeur.The fractionation and stripping sections may be equipped with any type of stripping column at any pressure or moderate vacuum fractionation known to those skilled in the art. Steam is used to carry out said stripping. The vacuum column is also preferably fed by means of any stripping gas, preferably steam.

Le passage de la colonne à un vide modéré, c'est-à-dire compris en zone de flash entre 0,05 bar et 0,95 bar (1 bar = 0,1 MPa), de préférence compris entre 0,1 bar et 0,90 bar, de manière plus préféré compris entre 0,1 bar et 0,7 bar et de manière plus préféré compris entre 0,15 bar et 0,5 bar, permet de réduire considérablement la chaleur à apporter à la charge de cette colonne pour vaporiser la fraction légère issue des réactions de conversion des hydrocarbures dans le réacteur d'hydrodésulfuration.Passing the column to a moderate vacuum, that is to say included in the flash zone between 0.05 bar and 0.95 bar (1 bar = 0.1 MPa), preferably between 0.1 bar and 0.90 bar, more preferably between 0.1 bar and 0.7 bar and more preferably between 0.15 bar and 0.5 bar, can significantly reduce the heat to be brought to the load of this column for vaporizing the light fraction resulting from hydrocarbon conversion reactions in the hydrodesulfurization reactor.

L'installation utilisée dans le procédé selon l'invention comprend un ballon séparateur chaud. La chaleur complémentaire nécessaire à cette vaporisation peut éventuellement être apportée par l'augmentation de la température dudit ballon séparateur par rapport à la pratique courante qui correspond à une température généralement comprise entre 240°C et 280°C. Généralement cette augmentation est inférieure à 60°C, de préférence inférieure à 50°C, de manière plus préférée inférieure à 40°C. Ce mode de fonctionnement diffère également notablement de celui de l'art antérieur dans lequel, la température du ballon chaud est fixée pour le fonctionnement de la colonne de stripeur d'H2S. La température dudit ballon séparateur, est comprise entre 280°C et 350°C, de préférence entre 300°C et 340°C et de manière très préférée entre 300°C et 330°C.The plant used in the process according to the invention comprises a hot separator flask. The additional heat required for this vaporization may possibly be provided by increasing the temperature of said separator tank relative to the current practice which corresponds to a temperature generally between 240 ° C and 280 ° C. Generally this increase is less than 60 ° C, preferably less than 50 ° C, more preferably less than 40 ° C. This mode of operation also differs significantly from that of the prior art in which the temperature of the hot flask is set for the operation of the H2S stripper column. The temperature of said separator flask is between 280 ° C and 350 ° C, preferably between 300 ° C and 340 ° C and very preferably between 300 ° C and 330 ° C.

On profite alors de cette élévation de température pour distiller un maximum de naphta dans le stripeur de façon à envoyer vers la colonne de fractionnement principale des composés dont la température d'ébullition est généralement supérieure à environ 100°C. L'absence de composés légers dans la colonne sous vide permet ainsi d'obtenir la condensation complète du produit de tête avec à un vide très modérée (par exemple 0,1 à 0,5 bar abs).This rise in temperature is then used to distil a maximum of naphtha in the stripper so as to send to the main fractionation column compounds whose boiling point is generally greater than about 100 ° C. The absence of light compounds in the vacuum column thus makes it possible to obtain complete condensation of the overhead product with a very moderate vacuum (for example 0.1 to 0.5 bar abs).

Tout autre mode d'apport de la chaleur complémentaire autre qu'un four peut toutefois être envisagé dans le procédé selon l'invention, en particulier ceux connus de l'homme du métier, tel que par exemple un échangeur de chaleur supplémentaire.Any other method of supplying additional heat other than a furnace may, however, be envisaged in the method according to the invention, in particular those known to those skilled in the art, such as, for example, an additional heat exchanger.

Dans le procédé selon l'invention, la température du système de vide est généralement gouvernée par la température de condensation de l'eau provenant de la vapeur de stripage de la colonne. La condensation complète des hydrocarbures et de la vapeur d'eau permet d'utiliser un système de vide très simple et peu consommateur d'énergie.In the process according to the invention, the temperature of the vacuum system is generally governed by the condensing temperature of the water coming from the stripping steam of the column. The complete condensation of hydrocarbons and water vapor makes it possible to use a very simple vacuum system that consumes little energy.

Au niveau énergétique ce procédé permet donc de gagner le plus souvent environ les 2/3 de la consommation énergétique du four utilisé dans les procédés de l'art antérieur. Le 1/3 restant est reporté sur le four de la boucle réactionnelle.At the energy level, this process therefore makes it possible to gain most often about 2/3 of the energy consumption of the furnace used in the processes of the prior art. The remaining 1/3 is transferred to the furnace of the reaction loop.

Au niveau équipement ce procédé permet d'économiser le four ainsi que de nombreux échangeurs de refroidissement habituellement nécessaires avant recueil des produits issus du procédé. La colonne sous vide opère sous un vide modéré, c'est-à-dire compris entre 0,05 bar et 0,95 bar en zone de flash (1 bar = 0,1 MPa). Ces opérations sous vide n'induisent donc pas de surcoût important. Une autre simplification notable est la possibilité préférée de supprimer les stripeurs latéraux de cette colonne, car l'extraction d'une grande quantité de naphta dans le stripeur permet d'obtenir des coupes kérosène et gazole présentant la bonne spécification de point éclair, généralement compris entre 50 et 70 °C.At the equipment level this process saves the furnace as well as many cooling exchangers usually necessary before collecting products from the process. The vacuum column operates under a moderate vacuum, that is to say between 0.05 bar and 0.95 bar flash zone (1 bar = 0.1 MPa). These vacuum operations do not induce significant additional cost. Another notable simplification is the preferred possibility of eliminating the lateral strippers of this column, because the extraction of a large quantity of naphtha in the stripper makes it possible to obtain kerosene and diesel fractions having the correct flashpoint specification, generally understood. between 50 and 70 ° C.

La Figure 1 décrit un des modes de réalisation possible du procédé selon l'invention. Ce mode de réalisation est particulièrement bien adapté au cas ou la conversion de la charge dans la section réactionnelle d'hydrodésulfuration est limitée inférieure à 50% (c'est-à-dire que moins de 50% poids de la charge est convertie dans cette section), de préférence inférieure à 30%.The Figure 1 describes one of the possible embodiments of the method according to the invention. This embodiment is particularly well suited to the case where the conversion of the charge in the hydrodesulphurization reaction section is limited to less than 50% (ie less than 50% by weight of the charge is converted into this section), preferably less than 30%.

La charge, par exemple un gazole sous vide comprenant des hydrocarbures avec des points d'ébullition compris entre 370 et 565°C, est alimenté via la ligne 1. L'hydrogène, de préférence en excès par rapport à la charge, est alimenté via la ligne 3 et le compresseur 4 puis la ligne 5, et mélangé avec la charge 1 avant d'être admis dans un échangeur charge-effluent (6) via la ligne 2. L'échangeur 6 permet de préchauffer la charge au moyen de l'effluent du réacteur d'hydrodésulfuration 10. Après cet échange, la charge est amenée via la ligne 7 dans un four permettant d'atteindre le niveau de température nécessaire à la réaction d'hydrodésulfuration, puis la charge chaude est envoyée, via la ligne 9, dans la section d'hydrodésulfuration 10, constituée par au moins un réacteur d'hydrodésulfuration comprenant au moins un catalyseur d'hydrodésulfuration.The feed, for example a vacuum gas oil comprising hydrocarbons with boiling points between 370 and 565 ° C, is fed via line 1. The hydrogen, preferably in excess of the feed, is fed via line 3 and compressor 4 and then line 5, and mixed with the charge 1 before being admitted into a charge-effluent exchanger (6) via line 2. The exchanger 6 preheats the load by means of the effluent from the hydrodesulphurization reactor 10. After this exchange, the feedstock is fed via line 7 into an oven that makes it possible to reach the temperature level necessary for the hydrodesulfurization reaction, and then the hot feed is sent via the line 9, in the hydrodesulfurization section 10, constituted by at least one hydrodesulfurization reactor comprising at least one hydrodesulphurization catalyst.

L'effluent du réacteur 10 est envoyé ensuite vers l'échangeur 6, puis via la ligne 12 vers le ballon séparateur 13. Une fraction gazeuse est séparée dans ce ballon et récupérée via la ligne 14. La fraction liquide désulfurée est récupérée en fond via la ligne 27. Ladite fraction gazeuse comprend de l'hydrogène n'ayant pas réagit, l'hydrogène sulfuré (H2S) formé lors de la réaction, ainsi que généralement des hydrocarbures légers issus de la conversion des hydrocarbures de la charge dans la section réactionnelle d'hydrodésulfuration. Après refroidissement dans un échangeur 15 et un aérocondenseur 17, cette fraction est amenée, via la ligne 18, dans un ballon de flash permettant à la fois de réaliser une séparation gaz-liquide et une décantation de la phase liquide aqueuse. La phase hydrocarbonée liquide est recyclée via les lignes 20 et 26 vers l'effluent liquide issu du ballon 13 et mélangée à cet effluent liquide avant d'être envoyée via la ligne 28 vers la colonne de stripage (stripeur) 29.The effluent from the reactor 10 is then sent to the exchanger 6, then via the line 12 to the separator tank 13. A gaseous fraction is separated in this flask and recovered via the line 14. The desulfurized liquid fraction is recovered in the bottom via line 27. Said gaseous fraction comprises unreacted hydrogen, the hydrogen sulphide (H2S) formed during the reaction, as well as generally light hydrocarbons resulting from the conversion of the hydrocarbons of the charge into the reaction section. hydrodesulfurization. After cooling in an exchanger 15 and an air condenser 17, this fraction is fed, via the line 18, into a flash balloon allowing both a gas-liquid separation and a decantation of the aqueous liquid phase. The liquid hydrocarbon phase is recycled via lines 20 and 26 to the liquid effluent from the flask 13 and mixed with this liquid effluent before being sent via line 28 to the stripping column (stripper) 29.

La fraction gazeuse issu du ballon de flash 19 est envoyée via la ligne 21 vers un absorbeur aux amines ou une colonne de lavage 22 permettant d'éliminer au moins une partie de l'H2S, puis la fraction gazeuse contenant de l'hydrogène est recyclée via les lignes 23 et 25 vers le réacteur d'hydrodésulfuration, après compression au moyen du compresseur 24 et mélange avec la charge 1.The gaseous fraction from the flash tank 19 is sent via line 21 to an amine absorber or a washing column 22 for removing at least a portion of the H 2 S, and then the gaseous fraction containing hydrogen is recycled. via lines 23 and 25 to the hydrodesulphurization reactor, after compression by means of the compressor 24 and mixing with the load 1.

Le stripeur 29 est alimenté de préférence par de la vapeur de stripage via la ligne 32. En tête du stripeur, on récupère une fraction gazeuse (généralement appelée gaz acide) via la ligne 30 et via la ligne 31 un naphta présentant un point d'ébullition final le plus souvent supérieur à 100°C. Le liquide récupéré en fond de stripeur via la ligne 33 est envoyé via la colonne de fractionnement 34, sans qu'il soit nécessaire de le réchauffer dans un four ou un échangeur.Stripper 29 is preferably fed with stripping steam via line 32. At the top of the stripper, a gaseous fraction (generally called acid gas) is recovered via line 30 and via line 31 a naphtha having a dot of final boiling most often above 100 ° C. The liquid recovered at the bottom of the stripper via the line 33 is sent via the fractionation column 34, without it being necessary to reheat it in an oven or exchanger.

La colonne de fractionnement 34 est opérée sous vide. Il s'agit généralement d'un vide modéré (par exemple environ 0,25 bar en zone de flash). Le fonctionnement de la colonne sous un vide modéré permet de réduire considérablement la chaleur à apporter à la charge de cette colonne pour vaporiser la fraction présentant un point d'ébullition inférieur à 370°C. La chaleur complémentaire est préférentiellement apportée par une augmentation de la température du ballon séparateur chaud (13) relativement modérée par rapport à la pratique courante (par exemple environ 310°C au lieu de 270°C). Cette colonne sous vide est également alimentée par de la vapeur de stripage via la ligne 44.The fractionation column 34 is operated under vacuum. This is usually a moderate vacuum (for example about 0.25 bar in flash zone). The operation of the column under a moderate vacuum considerably reduces the heat to be supplied to the charge of this column to vaporize the fraction having a boiling point below 370 ° C. The additional heat is preferably provided by an increase in the temperature of the hot separator tank (13) relatively moderate compared to the current practice (for example about 310 ° C instead of 270 ° C). This vacuum column is also fed with stripping steam via line 44.

La fraction de tête récupérée via la ligne 35 est essentiellement exempte de produits légers et après refroidissement via l'aérocondenseur 36, cette fraction peut être aisément condensée sous un vide modéré : environ 0,1 à 0,7 bar abs, de préférence environ 0,1 à 0,5 bar absolu (1 bar = 0,1 MPa). On pourra par exemple opérer avec une température en sortie de l'aérocondenseur (36) de 52°C soit 0,14 bar de tension de vapeur de l'eau.The overhead fraction recovered via the line 35 is essentially free of light products and after cooling via the aerocondenser 36, this fraction can be easily condensed under a moderate vacuum: about 0.1 to 0.7 bar abs, preferably about 0 , 1 to 0.5 bar absolute (1 bar = 0.1 MPa). For example, it will be possible to operate with a temperature at the outlet of the air condenser (36) of 52 ° C., ie 0.14 bar of vapor pressure of the water.

Dans la section de séparation et de maintien du vide 37 dont les détails ne sont pas représentés car ils sont connus de l'homme du métier, il est possible de séparer une fraction liquide aqueuse et une fraction hydrocarbonée que l'on ne désire pas récupérer via la ligne 38. Le produit obtenu ligne 38 est par exemple constitué de coupes naphta et/ou kérosène et/ou gazole présentant un point d'ébullition initial supérieur à 100°C. Ladite section 37 comprend également les équipements permettant de générer un vide partiel et de le maintenir dans la colonne, tout équipement connu de l'homme du métier peut être utilisé, par exemple un éjecteur et un condenseur ou une pompe à vide.In the vacuum separation and maintenance section 37, the details of which are not shown because they are known to those skilled in the art, it is possible to separate an aqueous liquid fraction and a hydrocarbon fraction which one does not wish to recover. via line 38. The product obtained line 38 is for example constituted by sections naphtha and / or kerosene and / or gas oil having an initial boiling point greater than 100 ° C. Said section 37 also includes equipment for generating a partial vacuum and maintain it in the column, any equipment known to those skilled in the art can be used, for example an ejector and a condenser or a vacuum pump.

La fraction intermédiaire issue de la colonne de fractionnement via la ligne 39 est refroidie par exemple au moyen d'un échangeur (40) et d'un aérocondenseur (42), puis récupérée via la ligne 43. Il s'agit par exemple d'une coupe gazole présentant un point d'ébullition final inférieur à 370°C.The intermediate fraction from the fractionation column via the line 39 is cooled, for example by means of an exchanger (40) and an air condenser (42), and then recovered via the line 43. a gas oil fraction having a final boiling point of less than 370 ° C.

La fraction lourde issue de la colonne de fractionnement via la ligne 45 est également refroidie au moyen par exemple de l'échangeur 46 et de l'aérocondenseur 48. La fraction ainsi obtenu via la ligne 49 est un gazole sous vide hydrotraité présentant des points de coupe voisins de la charge initiale (par exemple des points d'ébullition initiaux et finaux de 370°C et 565°C respectivement).The heavy fraction from the fractionation column via the line 45 is also cooled by means of, for example, the exchanger 46 and the aerocondenser 48. The fraction thus obtained via the line 49 is a hydrotreated vacuum gas oil with cooling points. adjacent to the initial charge (eg, initial and final boiling points of 370 ° C and 565 ° C respectively).

Selon un autre mode de fonctionnement préféré, il est possible de récupérer via la ligne 38 une fraction allant du naphta au gazole léger (par exemple présentant un point final d'ébullition inférieur à 370°C), et via la ligne 49 une fraction gazole lourd complémentaire (par exemple présentant un point initial d'ébullition supérieur à 370°C). Dans ce cas, la colonne de fractionnement ne comprend pas de fractionnement intermédiaire et les lignes 39 à 43 sont absentes.According to another preferred mode of operation, it is possible to recover via line 38 a fraction ranging from naphtha to light gas oil (for example having a boiling point of less than 370 ° C.), and via line 49 a diesel fraction. additional heavy product (eg having an initial boiling point above 370 ° C). In this case, the fractionation column does not include intermediate fractionation and lines 39 to 43 are absent.

Claims (9)

  1. Hydrodesulphurisation method implemented in a hydrodesulphurisation installation for gas oil or distillate under vacuum, including:
    - a hydrodesulphurisation section including et least one hydrodesulphurisation reactor,
    - at least one supply (1, 2) supplying said hydrodesulphurisation reaction section with the load,
    - at least one supply (3, 5, 2) supplying said hydrodesulphurisation section with a gas including hydrogen,
    - a load-effluent exchanger (6) which enables the preheating of the load by means of the effluent from the hydrodesulphurisation reactor,
    - a furnace (8) situated upstream of said hydrodesulphurisation section,
    - at least one separating vessel (13) situated downstream of the hydrodesulphurisation section and enabling the separation of the effluent coming from said section into a gaseous fraction (14) and a desulphurised liquid fraction (27),
    - at least one stripping column (29) supplied by said desulphurised liquid fraction (27, 28) and by the stripping vapour (32),
    - at least one fractionating column (34) supplied by the liquid fraction (33) coming from the stripping column (32), without the introduction of a furnace between said stripping section and said fractionating section,
    - at least one vacuum-generating and vacuum-maintaining section (37),
    wherein said hot separating vessel is operated at a temperature of between 280°C and 350°C and the fractionating section includes a fractionating column operated at a pressure of between 0.05 and 0.95 bar.
  2. Hydrodesulphurisation method according to Claim 1, wherein said fractionating section enables the separation of the desulphurised liquid effluent coming from the stripping section into at least 2 fractions: one fraction making the transition from naphtha to light gas oil and a heavy gas oil fraction.
  3. Hydrodesulphurisation method according to one of Claims 1 or 2, wherein the reaction section includes 2 hydrodesulphurisation reactors in series.
  4. Hydrodesulphurisation method according to one of Claims 1 to 3 further including a means (22) for removing at least a part of the H2S formed in the hydrodesulphurisation section and present in said gaseous phase.
  5. The installation according to Claim 4, wherein said removal means (22) is an amine absorber or a washing column.
  6. Hydrodesulphurisation method according to one of Claims 1 to 5, wherein said hot separating vessel is operated at a temperature of between 300°C and 340°C.
  7. Hydrodesulphurisation method according to one of Claims 1 to 6, wherein the fractionating section includes a fractionating column operated at a pressure of between 0.10 and 0.90 bar.
  8. The hydrodesulphurisation method according to one of claims 1 to 7, wherein the hydrodesulphurisation reaction section includes at least one reactor loaded with at least one hydrodesulphurisation catalyst.
  9. The method according to claim 8, wherein said catalyst includes at least one element selected from the elements of Group VIII and the elements of Group VIB of the periodic table.
EP02774912A 2001-10-12 2002-09-09 Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section Expired - Lifetime EP1436362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE60226156T DE60226156T3 (en) 2001-10-12 2002-09-09 METHOD OF HYDRODESULFURIZATION WITH STRING AND FRACTIONATION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0113151 2001-10-12
FR0113151A FR2830869B1 (en) 2001-10-12 2001-10-12 HYDRODESULFURING METHOD COMPRISING A STRIPING SECTION AND A VACUUM FRACTION SECTION
PCT/FR2002/003051 WO2003042332A1 (en) 2001-10-12 2002-09-09 Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section

Publications (3)

Publication Number Publication Date
EP1436362A1 EP1436362A1 (en) 2004-07-14
EP1436362B1 EP1436362B1 (en) 2008-04-16
EP1436362B2 true EP1436362B2 (en) 2011-03-02

Family

ID=8868213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02774912A Expired - Lifetime EP1436362B2 (en) 2001-10-12 2002-09-09 Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section

Country Status (7)

Country Link
US (1) US7959794B2 (en)
EP (1) EP1436362B2 (en)
AT (1) ATE392460T1 (en)
DE (1) DE60226156T3 (en)
ES (1) ES2305303T5 (en)
FR (1) FR2830869B1 (en)
WO (1) WO2003042332A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250435B (en) * 2008-03-31 2011-07-20 中国石油化工集团公司 Hydrocarbons hydrogenation conversion method
CN102471701A (en) * 2009-07-15 2012-05-23 国际壳牌研究有限公司 Process for the conversion of a hydrocarbonaceous feedstock
WO2012066572A2 (en) 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Process for deep desulfurization of cracked gasoline with minimum octane loss
US20140091010A1 (en) * 2012-09-28 2014-04-03 Uop, Llc Process and apparatus for removing hydrogen sulfide
US9266056B2 (en) * 2013-05-07 2016-02-23 Uop Llc Process for initiating operations of a separation apparatus
EP2955216A1 (en) * 2014-06-11 2015-12-16 Shell International Research Maatschappij B.V. Process for producing a middle distillate product
WO2016099787A1 (en) 2014-12-17 2016-06-23 Exxonmobil Chemical Patents Inc. Methods and systems for treating a hydrocarbon feed
FR3046176A1 (en) * 2015-12-23 2017-06-30 Axens HYDROPROCESSING OR HYDROCONVERSION PROCESS WITH STRIPER AND LOW PRESSURE SEPARATOR BALL ON THE FRACTION SECTION

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1320768A (en) 1970-11-09 1973-06-20 Universal Oil Prod Co Jet fuel kerosene and gasoline production from gas oils
GB1353950A (en) 1970-04-02 1974-05-22 Universal Oil Prod Co Lubricating oil base stock production
US4006076A (en) 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4394249A (en) 1981-08-03 1983-07-19 Mobil Oil Corporation Catalytic dewaxing process
US4925573A (en) 1988-03-31 1990-05-15 Shell Internationale Research Maatschappij, B.V. Process for separating hydroprocessed effluent streams
US4973396A (en) 1989-07-10 1990-11-27 Exxon Research And Engineering Company Method of producing sweet feed in low pressure hydrotreaters
US4990242A (en) 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5972202A (en) 1996-03-15 1999-10-26 Petro--Canada Hydrotreating of heavy hydrocarbon oils with control of particle size of particulate additives

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003950A (en) * 1958-10-09 1961-10-10 Socony Mobil Oil Co Inc Producing stabilized kerosene and the like with reduced hydrogen circulation
US3382168A (en) * 1965-03-01 1968-05-07 Standard Oil Co Process for purifying lubricating oils by hydrogenation
US3471397A (en) * 1967-02-27 1969-10-07 Universal Oil Prod Co Black oil conversion process
US3472758A (en) * 1967-08-02 1969-10-14 Universal Oil Prod Co Multiple-stage hydrocarbon hydrocracking process
US3718577A (en) * 1971-07-16 1973-02-27 Mobil Oil Corp Control of hydrocracking process for constant conversion
US3733260A (en) * 1972-02-04 1973-05-15 Texaco Inc Hydrodesulfurization process
US3926784A (en) * 1973-08-22 1975-12-16 Gulf Research Development Co Plural stage residue hydrodesulfurization process with hydrogen sulfide addition and removal
US4062762A (en) * 1976-09-14 1977-12-13 Howard Kent A Process for desulfurizing and blending naphtha
DE3114990A1 (en) * 1980-04-21 1982-02-04 Institut Français du Pétrole, 92502 Rueil-Malmaison, Hauts-de-Seine METHOD FOR CONVERTING HEAVY DUTY HYDROCARBON OILS TO LIGHTER FRACTIONS
US4521295A (en) * 1982-12-27 1985-06-04 Hri, Inc. Sustained high hydroconversion of petroleum residua feedstocks
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil
US5120427A (en) * 1988-05-23 1992-06-09 Uop High conversion high vaporization hydrocracking process
US5338436A (en) * 1991-10-21 1994-08-16 Mobil Oil Corp. Dewaxing process
DE69507633T2 (en) * 1994-11-25 1999-08-26 Kvaerner Process Tech Ltd MULTI-STAGE HYDRODESULFURING PROCESS
US5908548A (en) * 1997-03-21 1999-06-01 Ergon, Incorporated Aromatic solvents having aliphatic properties and methods of preparation thereof
US5976985A (en) * 1997-08-14 1999-11-02 Micron Technology, Inc. Processing methods of forming contact openings and integrated circuitry
US6083378A (en) * 1998-09-10 2000-07-04 Catalytic Distillation Technologies Process for the simultaneous treatment and fractionation of light naphtha hydrocarbon streams

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353950A (en) 1970-04-02 1974-05-22 Universal Oil Prod Co Lubricating oil base stock production
GB1320768A (en) 1970-11-09 1973-06-20 Universal Oil Prod Co Jet fuel kerosene and gasoline production from gas oils
US4006076A (en) 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4394249A (en) 1981-08-03 1983-07-19 Mobil Oil Corporation Catalytic dewaxing process
US4925573A (en) 1988-03-31 1990-05-15 Shell Internationale Research Maatschappij, B.V. Process for separating hydroprocessed effluent streams
US4990242A (en) 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US4973396A (en) 1989-07-10 1990-11-27 Exxon Research And Engineering Company Method of producing sweet feed in low pressure hydrotreaters
US5972202A (en) 1996-03-15 1999-10-26 Petro--Canada Hydrotreating of heavy hydrocarbon oils with control of particle size of particulate additives

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography", ASTM INTERNATIONAL, vol. D2887-02, 2003, pages 1 - 13
"Standard Test Method for Distillation af Petroleum Products at Reduced Pressure", ASTM INTERNATIONAL, vol. D1160-99, 2003, pages 1 - 18
"Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure", ASTM INTERNATIONAL, vol. D86, 2003, pages 1 - 23
"The Petroleum Handbook", vol. 6, 1983, ELSEVIER SCIENCE PUBLISHERS, ISBN: 0-444-42118-1, article "P 248-249", pages: 256 - 257
"The Petroleum Handbook", vol. 6, 1983, ELSEVIER SCIENCE PUBLISHERS, ISBN: 0-444-42118-1, article "P308 (Fig.5.33)P297(Fig.5.28)", pages: 298
"The Petroleum Handbook", vol. 6, 1983, ELSEVIER SCIENCE PUBLISHERS, ISBN: 0-444-42118-1, pages: 311 - 313

Also Published As

Publication number Publication date
ATE392460T1 (en) 2008-05-15
FR2830869B1 (en) 2004-07-09
ES2305303T5 (en) 2011-06-24
WO2003042332A1 (en) 2003-05-22
EP1436362B1 (en) 2008-04-16
US20050035028A1 (en) 2005-02-17
ES2305303T3 (en) 2008-11-01
FR2830869A1 (en) 2003-04-18
DE60226156T3 (en) 2012-01-26
US7959794B2 (en) 2011-06-14
DE60226156D1 (en) 2008-05-29
EP1436362A1 (en) 2004-07-14
DE60226156T2 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
CN1263827C (en) Integrated bitumen prodn. and gas conversion
KR101577082B1 (en) Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
KR100311429B1 (en) Process and apparatus for recovering product from hydrogenation reactor reactor stream
US6454932B1 (en) Multiple stage ebullating bed hydrocracking with interstage stripping and separating
US6726832B1 (en) Multiple stage catalyst bed hydrocracking with interstage feeds
JP5528681B2 (en) Method for producing high-grade lubricating base oil feedstock from unconverted oil
CN1455809A (en) Asphalt and resin production to integration of solent deasphalting and gasification
EP3339400B1 (en) Method and device for hydrocracking with reduction of the aromatic polynuclear compounds
AU2009299336B2 (en) Starting-up method of fractionator
EP1063275B1 (en) Process for hydrotreatment of middle distillate in two stages with intermediate stripping
EP1436362B2 (en) Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section
EP4189038A1 (en) Method for the treatment of plastic pyrolysis oils including two-stage hydrocracking
AU2009299341B2 (en) Method for starting-up naphtha fraction hydrotreating reactor
EP3184607A1 (en) Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section
CA1191805A (en) Process for converting heavy oils or slop oil into gaseous and distillable hydrocarbons
JP2011504517A (en) Method for producing high-grade lubricating base oil feedstock from coker gas oil
JP4564176B2 (en) Crude oil processing method
MXPA01002304A (en) Process and apparatus for upgrading hydrocarbon feeds containing sulfur, metals, and asphaltenes.
CA2607252A1 (en) Method and installation for fixed bed conversion of heavy petroleum fractions with integrated production of middle distillates with a very low sulphur content
KR20020051940A (en) Petroleum processing method and device therefor
CA3028314A1 (en) Coil heat exchanger for hydrotreatment or hydroconversion
FR3039562A1 (en) OPTIMIZATION OF THE USE OF HYDROGEN FOR THE HYDROTREATMENT OF HYDROCARBON LOADS
EP4105300A1 (en) Hydrocracking method
WO2023241930A1 (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
CN112725024A (en) System and method for producing naphthenic base oil products and phenolic compounds by directly converting coal into liquid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041230

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60226156

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2305303

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080717

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20110302

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60226156

Country of ref document: DE

Effective date: 20110302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60226156

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2305303

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20110624

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210927

Year of fee payment: 20

Ref country code: IT

Payment date: 20210922

Year of fee payment: 20

Ref country code: FR

Payment date: 20210927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210927

Year of fee payment: 20

Ref country code: GB

Payment date: 20210927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211012

Year of fee payment: 20

Ref country code: DE

Payment date: 20211126

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60226156

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220908

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220908

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220908

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220910