EP1433835A1 - Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number - Google Patents

Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number Download PDF

Info

Publication number
EP1433835A1
EP1433835A1 EP03293026A EP03293026A EP1433835A1 EP 1433835 A1 EP1433835 A1 EP 1433835A1 EP 03293026 A EP03293026 A EP 03293026A EP 03293026 A EP03293026 A EP 03293026A EP 1433835 A1 EP1433835 A1 EP 1433835A1
Authority
EP
European Patent Office
Prior art keywords
effluent
ethers
cut
fraction
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03293026A
Other languages
German (de)
French (fr)
Other versions
EP1433835B1 (en
Inventor
Patrick Briot
Vincent Coupard
Alain Forstiere
Eric Llido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1433835A1 publication Critical patent/EP1433835A1/en
Application granted granted Critical
Publication of EP1433835B1 publication Critical patent/EP1433835B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • C10G57/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process with polymerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition

Definitions

  • the present invention relates to a method allowing a simple and economical way of modulate the respective productions of gasoline and diesel for example within the refinery. More precisely, according to the method that is the subject of the present invention, it is possible to transforming an initial charge of hydrocarbons comprising from 4 to 15 carbon atoms, included terminals, preferably from 4 to 11 carbon atoms, inclusive, or even from 4 to 10 carbon atoms, limits included, in at least one hydrocarbon fraction having a improved octane number and a hydrocarbon fraction with a high cetane number.
  • the processes for adding to isobutane (branched alkane) alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 6 and 9 carbon atoms and generally characterized by high octane numbers.
  • Other possible transformations using methods for etherification of branched olefins, such as for example described in US Pat. No. 5,633,416 and EP-A-0451989, are known.
  • oligomerization processes based essentially on the dimerization and trimerization of light olefins resulting from catalytic cracking process and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates.
  • a method is for example described in the patent application EP-A-0734766.
  • the effluents resulting from the processes of conversion of more or less heavy residues resulting from the atmospheric or vacuum distillation of the crude oil within the refinery contain an olefin content between 10 and 80%.
  • These effluents are used in the composition of commercial species at a rate of 20 to 40% depending on the geographical origin (about 27% in Western Europe and about 36% in the USA). This content varies mainly depending on the final boiling point of the petrol cut and the refinery. It is likely that in the context of environmental protection, the standards for commercial species will be oriented in the coming years towards a reduction of the olefin content allowed in these species.
  • One of the aims of the present invention is to separate linear olefins from branched olefins from an initial gasoline feedstock.
  • Another goal of the The present invention is to provide an alternative allowing increased flexibility of management products from the refinery. More specifically, the process according to the present invention advantageously makes it possible to modulate the gasoline / diesel proportions obtained at the output of refinery according to the needs of the market.
  • step a) of the process according to the invention at least 50% of the branched olefins, preferably at least 70% and very preferably at least 90% of said olefins are etherified.
  • the final boiling point of the ⁇ -cut most often corresponds to the initial boiling point of the ⁇ cut.
  • the totality of the effluent resulting from step a) is treated in step b) and the ⁇ -cut comprises the ethers formed during step a).
  • the method further comprises a step for separating the ethers from the remainder of the effluent resulting from stage a), said effluent freed from said ethers is treated according to step b) and said ethers are treated with the ⁇ cut according to step d).
  • All the ethers included in the ⁇ -cut can be cracked during step d).
  • the experimental conditions are selected in such a way that a variable part of the ethers included in the ⁇ section can be cracked during step d).
  • said portion can be between 85 and 99.9% molar, even between 90 and 99.9 mol%.
  • said oligomerization is carried out at a pressure of between 0.2 and 10. MPa, a charge rate ratio on catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C.
  • said oligomerization can be carried out in the presence of a catalyst comprising at least one Group VIB metal of the Periodic Table.
  • said etherification is carried out at a pressure of between 0.2 and 10 MPa, a charge flow rate on catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C.
  • the present method may further include a step of removing at least a portion nitrogen or basic impurities contained in the initial charge of hydrocarbons.
  • the initial hydrocarbon feedstock treated by the present process may be a process for catalytic cracking, catalytic reforming or dehydrogenation of paraffins.
  • the initial hydrocarbon feedstock is conveyed by line 1 to a unit A.
  • This unit A eliminates a large part, that is at least 90% by weight, of nitrogen and / or basic compounds contained in the feedstock. This elimination, although optional, is necessary when the load includes a high rate, that is at least 5 ppm, said nitrogen compounds and / or basic because they constitute a poison for catalysts of the following steps of the process according to the invention. Said compounds can be removed by adsorption on an acidic solid.
  • This solid can be chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-oxide titanium, clays, resins, mixed oxides obtained by grafting at least one compound organometallic, organosoluble or water-soluble, and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (forms gamma, delta, eta, alone or in admixture), silica, silica-aluminas, silica-oxides, titanium, zirconia silicas, ion exchange resins, for example styrene-divinylbenzene resins sulfonated resins such as Amberlyst® type resins or any other acidic resin.
  • a particular embodiment of the invention may consist in implementing a physical mixture of minus two of the previously described solids.
  • the pressure is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is in the liquid state.
  • the ratio of the charge rate to the volume of solid catalytic is most often between 0.05 l / l / h and 50 l / l / h and preferably included between 0.1 l / l / h and 20 l / l / h, or even between 0.2 and 10 l / l / h.
  • the temperature is between 15 and 300 ° C, preferably between 15 and 150 ° C and very preferably between 15 ° C and 60 ° C.
  • the elimination of nitrogen and / or basic compounds contained in the feed can also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.
  • the purified feed is conveyed via line 2 to an etherifying unit B corresponding to step a) of the process according to the invention.
  • etherifying unit B corresponding to step a) of the process according to the invention.
  • olefins preferentially react with an alcohol to form an ether.
  • Alcohol is preferably methanol or ethanol and can be added via line 3 to the feedstock.
  • of hydrocarbons in an alcohol / olefins molar ratio generally between 0.5 and 3 and preferably about 1.
  • the pressure of the unit is such that in the temperature conditions of the catalyst used in said step a) of the process according to the invention, the charge is in the liquid state, i.e. the pressure is generally between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa or between 0.3 and 4 MPa.
  • the ratio of the charge rate to the volume of catalyst is generally between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h or between 0.2 and 10 l / l / h.
  • the temperature is between 15 and 300 ° C, preferably between 30 and 150 ° C and very often between 30 ° C and 100 ° C.
  • the etherifying unit B advantageously contains an acid catalyst.
  • the acid catalyst may be a catalyst of the same nature as those conventionally used for the production of MTBE, ETBE or TAME.
  • it may be chosen from the group consisting of zeolites, silicoaluminates, titanosilicates, mixed alumina-titanium oxide oxides, clays, resins and mixed oxides obtained by grafting and comprising at least one element selected from the group consisting of group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), the silica, alumina silicas, titanium dioxide silicas, zirconia silicas, Amberlyst type ion exchange resins or any other acidic resin.
  • a particular embodiment of the invention may consist in using a physical mixture of at least two of the previously described catalysts.
  • the effluent from the etherification unit B is then optionally treated under conditions of elimination of at least a portion of the excess alcohol contained in the mixture obtained. This elimination can be done conventionally by washing with water or by any equivalent means known to those skilled in the art.
  • all of the effluent from the etherification unit B is sent to an oligomerization unit C corresponding to step b) of the process according to the invention, without intermediate separation of the ethers.
  • linear olefins present in the initial hydrocarbon feedstock and unreacted during the previous etherification step will undergo moderate oligomerization reactions, that is to say in general dimerizations or trimerizations, the conditions of said reaction being optimized for the production of a majority of hydrocarbons whose carbon number is between 9 and 25, preferably between 10 and 20.
  • the catalyst of the oligomerization unit C can be chosen in the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-titanium oxides, clays, resins, mixed oxides obtained by grafting at least one organo-metallic organosoluble or water-soluble compound and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support and alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, silica-titanium oxides, zirconia silicas or any other solid having any acidity.
  • the catalyst used to carry out said oligomerization comprises at least one Group VIB metal of the periodic classification and advantageously an oxide of said metal.
  • This catalyst may furthermore comprise an oxide support selected from the group of aluminas, titanates, silicas, zirconiums, aluminosilicates.
  • a particular embodiment of the invention may consist in using a physical mixture of at least two of the catalysts mentioned above. It has surprisingly been found that the experimental conditions used in the oligomerization unit C have a very significant influence not only on the final yield of the various products of the oligomerization reaction but also on the quality of said products. in particular on the cetane number of the gasoil section and on the octane number of the gasoline section finally obtained.
  • the RON octane number of the petrol fraction finally obtained is advantageously at least 93, preferably at least 95.
  • the cetane number of the gasoil fraction is advantageously at least 40, preferably at least 50 and most preferably at least 55.
  • the pressure of the oligomerization unit C is most often selected so that the charge is in a liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and still between 0.3 and 4 MPa.
  • the ratio of the feed rate to the volume of catalyst can be between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and even more preferably between 0.2 and 10 l / l / h. It was found by the applicant that, under the prevailing pressure and VVH conditions, the oligomerization reaction temperature should be between 15 and 300 ° C, preferably between 60 and 250 ° C and more particularly between 100 and 200 ° C to optimize the quality of the products finally obtained.
  • the heavy cut ⁇ is a cut whose initial boiling point corresponds to a cut diesel.
  • This cup can be mixed with hydrogen, conveyed by line 8, to be hydrogenated in a hydrogenation unit E of conventional structure in the presence of a catalyst and under operating conditions known to those skilled in the art.
  • the effluent hydrocarbon recovered by line 9 is an improved cetane number gas oil, that is to say having a cetane number of at least 40, preferably at least 50 and preferably at least 55.
  • the light cut ⁇ is a gasoline cut and is conveyed via line 6 to a cracking unit F corresponding to step d) of the process according to the invention.
  • the conditions are selected such that all the ethers present in the ⁇ -section are cracked to a hydrocarbon fraction comprising olefins, mainly branched olefins. , and a fraction comprising the initial alcohol.
  • the cracking conditions can be adjusted in such a way that only a part of said ethers is cracked. This mode advantageously makes it possible to further improve the octane number of the gasoline fraction finally obtained, but is however limited by the current legislation of many countries concerning the content of oxygenated compounds in gasolines.
  • said portion may be between 85 and 99.9 mol%, or even between 90 and 99.9 mol%.
  • the pressure of the cracking unit F is between 0.2 and 10 MPa, preferably between 0.3 and 6 MPa, or even between 0.3 and 4 MPa.
  • the ratio of the feed rate to the catalyst volume is between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and again between 0.2 and 10 l / l / h.
  • the temperature is generally above 15 ° C, and most often between 15 ° C and 350 ° C, preferably between 100 ° C and 350 ° C.
  • the catalyst used in the cracking unit F may be an acid catalyst chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-titanium oxides, clays, resins, mixed oxides obtained by grafting of least an organometallic, organosoluble or water-soluble compound, and comprising at least an element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide such as alumina (forms gamma, delta, eta, alone or in admixture), silica, silica aluminas, silica-oxides titanium, zirconia silicas, Amberlyst type ion exchange resins or any other solid having any acidity.
  • a particular embodiment of the invention may consist of a physical mixture of at least two of the previously described catalysts is used.
  • the effluent from the cracking unit F is conveyed via line 11 to a unit G allowing separate the alcohols from the hydrocarbons and uncracked ethers during the previous step.
  • This unit G may be a distillation column, a thermal diffusion column or a known means of washing with water or any other means known to those skilled in the art for the separation of alcohols and hydrocarbons.
  • Alcohol can be recycled through line 13 to the inlet of the etherification unit B or sent to a storage tank via the line 12.
  • the hydrocarbon effluent recovered by line 14 is an improved octane gasoline whose olefin content is lower than that of the initial hydrocarbon feedstock. Content in olefins is advantageously reduced by at least 40% by weight, very advantageously at least 50% by weight.
  • the ethers contained in the effluent from the etherification unit B can be separated from the hydrocarbon fraction.
  • Units C and D then treat in this mode an effluent freed of substantially all the ethers.
  • the gasoline obtained in this case at the outlet of the unit D can be mixed with the ethers in the case where the ethers have been removed after the etherification unit B. This section can then be sent to the cracking unit F and then to the separation unit G.
  • the initial charge I is a boiling point FCC gasoline between 40 ° C and 150 ° C. This essence contains 10 ppm of basic nitrogen.
  • This feed is sent to a reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the unit is 0.2 MPa, the ratio of the liquid flow rate of the feedstock to the volume of acidic solid is 1 liter / liter / hour.
  • the temperature of the reactor is 20 ° C. Table 1 gives the composition of the initial charge I and that of the effluent A from unit A. composition of the feedstock and the effluent of step A.
  • the effluent A is then sent to an etherification reactor B containing an Amberlyst 15 ion exchange resin sold by Rohm & Haas. To this product is added methanol in a ratio of 1 mole of methanol per mole of olefin.
  • the pressure of unit B is 3 MPa.
  • the ratio of the feed rate to the catalyst volume is 1 liter / liter / hour.
  • the temperature is 90 ° C.
  • Table 2 gives the composition of effluent B from unit B relative to that of effluent A. composition of effluents A and B.
  • the effluent B is injected into an oligomerization reactor C containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the unit is 2 MPa, the ratio of the feed rate on the catalyst volume is equal to 1.5 liter / liter / hour.
  • the temperature is set at 170 ° C.
  • An effluent C is obtained at the outlet of unit C.
  • the respective olefin contents of effluents A, B and C as a function of the number of carbon atoms are given in Table 3. olefin content of effluents A, B, C.
  • Figure 2 shows the comparison of simulated distillations of the initial charge (round black) and effluent C (white squares). It is observed that 24% by weight of the effluent boils at a temperature above 150 ° C, end point of distillation of the initial charge.
  • the light fraction ⁇ distillation interval 40 ° C-200 ° C and from the unit D is injected into a cracking reactor F containing Deloxan marketed by the company Degussa.
  • This catalyst is a polysiloxane grafted with alkylsulphonic acid groups (of the -CH2-CH2-CH2-SO3H type).
  • the pressure of the unit is 3 MPa.
  • the ratio of the feed rate to the catalyst volume is 3 liters / liter.
  • the temperature is 200 ° C.
  • the characteristics of the gasoline cut G, resulting from the unit F and after separation of the methanol by extraction with water, can be compared with those of the initial charge I with reference to Table 5.
  • the present process makes it possible to obtain from a petrol cut in a manner simple and economical, that is to say by the use of conventional and inexpensive technologies a gasoline cut (G effluent) with a low olefin content and an octane number improved and a diesel cut (effluent E) with a high cetane number; compatible with a marketing.
  • G effluent gasoline cut
  • effluent E diesel cut
  • the same initial charge I is processed by the units A and B in identical conditions to those of Example 1.
  • the effluent B obtained is introduced into the reactor C comprising the same catalyst and under the same conditions as for Example 1 to difference that the temperature in said reactor C is this time raised to 350 ° C.
  • Figure 3 shows the comparison of simulated distillations of the initial charge (round black) and effluent C '(white squares). This time, it is observed that 32% by weight of the effluent C ' end at a temperature above 150 ° C, end point of distillation of the initial charge.

Abstract

The transformation of a 4-15C hydrocarbon charge containing linear and branched olefins comprises stages of selective etherification and moderate oligomerization followed by separation.

Description

La présente invention se rapporte à un procédé permettant de façon simple et économique de moduler les productions respectives d'essence et de gazole par exemple au sein de la raffinerie. Plus précisément, selon le procédé objet de la présente invention, il est possible de transformer une charge initiale d'hydrocarbures comprenant de 4 à 15 atomes de carbone, bornes incluses, de préférence de 4 à 11 atomes de carbone, bornes incluses, voire de 4 à 10 atomes de carbone, bornes incluses, en au moins une fraction d'hydrocarbures présentant un indice d'octane amélioré et une fraction d'hydrocarbures à fort indice de cétane.The present invention relates to a method allowing a simple and economical way of modulate the respective productions of gasoline and diesel for example within the refinery. More precisely, according to the method that is the subject of the present invention, it is possible to transforming an initial charge of hydrocarbons comprising from 4 to 15 carbon atoms, included terminals, preferably from 4 to 11 carbon atoms, inclusive, or even from 4 to 10 carbon atoms, limits included, in at least one hydrocarbon fraction having a improved octane number and a hydrocarbon fraction with a high cetane number.

Il est connu ("Carburants et Moteurs" de J.C. Guibet, Editions Technip, tome 1 (1987)) que la nature chimique des oléfines contenues dans les essences contribuent fortement à l'indice d'octane desdites essences. En général, lesdites oléfines peuvent être classées pour cette raison en deux catégories distinctes :

  • a) les oléfines ramifiées : elles possèdent de bons indices d'octane. Cet indice d'octane augmente avec le nombre de ramifications et diminue avec la longueur de chaíne.
  • b) les oléfines linéaires : elles possèdent un faible indice d'octane et cet indice d'octane diminue fortement avec la longueur de chaíne.
  • It is known ("Carburants et Engeurs" by JC Guibet, Technip Publishing, Volume 1 (1987)) that the chemical nature of the olefins contained in the species contributes significantly to the octane number of said gasolines. In general, said olefins can be classified for this reason in two distinct categories:
  • a) branched olefins: they have good octane numbers. This octane number increases with the number of branches and decreases with the chain length.
  • b) linear olefins: they have a low octane number and this octane number decreases strongly with chain length.
  • On connaít par ailleurs différents procédés de transformation des oléfines permettant d'augmenter leur indice d'octane.
    Par exemple, on peut citer l'alkylation aliphatique entre des paraffines et des oléfines afin de produire des coupes essences à haut indice d'octane. Ce procédé peut utiliser des acides minéraux tels que l'acide sulfurique ("Symposium on Hydrogen Transfer in Hydrocarbon Processing", 208th National Meeting, American Chemical Society -Août 1994), des catalyseurs solubles dans un solvant (EP-A-0714871) ou des catalyseurs hétérogènes (US 4,956,518). A titre d'exemple, les procédés d'addition sur l'isobutane (alcane ramifié) d'alcènes possédant entre 2 et 5 atomes de carbone permettent de produire des molécules très ramifiées possédant entre 6 et 9 atomes de carbone et en général caractérisées par de hauts indices d'octane.
    On connaít d'autres transformations possibles mettant en oeuvre des procédés d'éthérification des oléfines ramifiées, tels que par exemple décrits dans le brevets US 5,633,416 et la demande de brevet EP-A-0451989. Ces procédés permettent de produire des éthers de type MTBE (méthyl tertio butyl éther), ETBE (éthyl tertio butyl éther) et TAME (tertioamylméthyléther), composés bien connus pour améliorer l'indice d'octane des essences. Selon une troisième voie, les procédés d'oligomérisation, basés essentiellement sur la dimérisation et la trimérisation d'oléfines légères issues de procédé de craquage catalytique et possédant entre 2 et 4 atomes de carbone permettent la production de coupes essences ou de distillats. Un tel procédé est par exemple décrit dans la demande de brevet EP-A-0734766. Il permet d'obtenir principalement des produits ayant 6 atomes de carbone quand l'oléfine utilisée est du propylène (ou propène) et 8 atomes de carbone quand l'oléfine est du butène linéaire. Ces procédés d'oligomérisation sont connus pour donner des coupes essences possédant de bons indices d'octane mais génèrent, lorsqu'ils sont réalisés dans des conditions favorisant la formation de coupes plus lourdes, des coupes gasoils à très faible indice de cétane. De tels exemples sont par ailleurs illustrés par les brevets US 4,456,779 et US 4,211,640.
    Le brevet US 5,382,705 propose de coupler les procédés d'oligomérisation et d'éthérification précédemment décrits afin de produire à partir d'une coupe C4 des éthers alkyls tertiaires tels que le MTBE ou l'ETBE et des lubrifiants.
    Par ailleurs, les effluents issus des procédés de conversion de résidus plus ou moins lourds issus de la distillation atmosphérique ou sous vide du pétrole brut au sein de la raffinerie (telle que par exemple les coupes essences issues d'un procédé de craquage catalytique en lit fluidisé (FCC)) contiennent une teneur en oléfines comprise entre 10 et 80%. Lesdits effluents entrent dans la composition des essences commerciales à hauteur de 20 à 40% selon l'origine géographique (environ 27% en Europe de l'Ouest et environ 36% aux USA). Cette teneur varie essentiellement en fonction du point d'ébullition final de la coupe essence et de la raffinerie.
    Il est vraisemblable que dans le cadre de la protection de l'environnement, les normes concernant les essences commerciales soient orientées dans les années à venir vers une réduction de la teneur en oléfines permises dans lesdites essences.
    Il découle des différents points qui précèdent que la production d'essence à faible taux d'oléfines mais conservant un indice d'octane acceptable ne pourra se faire qu'en sélectionnant comme base pour ladite essence, exclusivement ou en de très fortes proportions, les oléfines ramifiées à fort indice d'octane. L'un des buts de la présente invention est de séparer d'une charge essence initiale les oléfines linéaires des oléfines ramifiées.
    There are also different processes for converting olefins to increase their octane number.
    For example, there may be mentioned aliphatic alkylation between paraffins and olefins to produce high octane gasoline cuts. This process can use mineral acids such as sulfuric acid (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208th National Meeting, American Chemical Society - August 1994), solvent-soluble catalysts (EP-A-0714871) or heterogeneous catalysts (US 4,956,518). By way of example, the processes for adding to isobutane (branched alkane) alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 6 and 9 carbon atoms and generally characterized by high octane numbers.
    Other possible transformations using methods for etherification of branched olefins, such as for example described in US Pat. No. 5,633,416 and EP-A-0451989, are known. These processes make it possible to produce ethers of the MTBE (methyl tertio-butyl ether), ETBE (ethyl tertio-butyl ether) and TAME (tert-amyl methyl ether) type, compounds well known for improving the octane number of gasolines. According to a third route, the oligomerization processes, based essentially on the dimerization and trimerization of light olefins resulting from catalytic cracking process and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates. Such a method is for example described in the patent application EP-A-0734766. It makes it possible to obtain mainly products having 6 carbon atoms when the olefin used is propylene (or propene) and 8 carbon atoms when the olefin is linear butene. These oligomerization processes are known to give gasoline cuts having good octane numbers but generate, when they are produced under conditions favoring the formation of heavier cuts, gasoil cuts with a very low cetane number. Such examples are further illustrated by US Patents 4,456,779 and US 4,211,640.
    US Pat. No. 5,382,705 proposes to couple the previously described oligomerization and etherification processes in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.
    Moreover, the effluents resulting from the processes of conversion of more or less heavy residues resulting from the atmospheric or vacuum distillation of the crude oil within the refinery (such as for example the gasoline cuts resulting from a process of catalytic cracking in bed fluidized (FCC)) contain an olefin content between 10 and 80%. These effluents are used in the composition of commercial species at a rate of 20 to 40% depending on the geographical origin (about 27% in Western Europe and about 36% in the USA). This content varies mainly depending on the final boiling point of the petrol cut and the refinery.
    It is likely that in the context of environmental protection, the standards for commercial species will be oriented in the coming years towards a reduction of the olefin content allowed in these species.
    It follows from the foregoing points that the production of gasoline with low olefins but maintaining an acceptable octane number can be achieved only by selecting as the basis for said gasoline, exclusively or in very large proportions, the branched olefins with a high octane number. One of the aims of the present invention is to separate linear olefins from branched olefins from an initial gasoline feedstock.

    D'autre part, le parc automobile actuel tend à s'orienter vers une plus grande proportion de véhicules diesels, ceci entraínant une demande accrue en carburant gazole. Un autre but de la présente invention est de fournir une alternative permettant une flexibilité accrue de la gestion des produits issus la raffinerie. Plus précisément, le procédé selon la présente invention permet de façon avantageuse de moduler les proportions essence/gazole obtenues en sortie de raffinerie suivant les besoins du marché.On the other hand, the current car fleet tends to move towards a greater proportion of diesel vehicles, resulting in increased demand for diesel fuel. Another goal of the The present invention is to provide an alternative allowing increased flexibility of management products from the refinery. More specifically, the process according to the present invention advantageously makes it possible to modulate the gasoline / diesel proportions obtained at the output of refinery according to the needs of the market.

    L'invention concerne un procédé de transformation d'une charge d'hydrocarbures comprenant des oléfines linéaires et ramifiées comprenant de 4 à 15 atomes de carbone, ledit procédé comprenant les étapes suivantes :

  • a) une éthérification sélective de la majorité des oléfines ramifiées présentes dans ladite charge,
  • b) un traitement des oléfines linéaires contenues dans ladite charge dans des conditions d'oligomérisation modérée,
  • c) une séparation de l'effluent issu de l'étape b) en au moins deux coupes :
    • une coupe β comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150 et 200°C,
    • une coupe γ comprenant au moins une partie des hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150 et 200°C,
  • d) un traitement de la fraction hydrocarbonée contenant les éthers formés au cours de l'étape a) dans des conditions de craquage au moins partiel des éthers, ledit traitement étant suivie d'une séparation en une fraction essence à indice d'octane amélioré et en une fraction contenant l'alcool initial,
  • e) une hydrogénation de la coupe γ dans des conditions d'obtention d'un gazole à fort indice de cétane.
  • The invention relates to a process for converting a hydrocarbon feedstock comprising linear and branched olefins comprising from 4 to 15 carbon atoms, said process comprising the following steps:
  • a) selective etherification of the majority of the branched olefins present in said feed,
  • b) a treatment of linear olefins contained in said feed under moderate oligomerization conditions,
  • c) a separation of the effluent from step b) into at least two sections:
    • a β-cut comprising hydrocarbons whose final boiling point is below a temperature of between 150 and 200 ° C.
    • a cut γ comprising at least a portion of the hydrocarbons whose initial boiling point is greater than a temperature of between 150 and 200 ° C,
  • d) treating the hydrocarbon fraction containing the ethers formed in step a) under at least partial cracking conditions of the ethers, said treatment being followed by separation into an improved octane gasoline fraction and in a fraction containing the initial alcohol,
  • e) a hydrogenation of the γ cut under conditions of obtaining a gas oil with a high cetane number.
  • Dans l'étape a) du procédé selon l'invention, au moins 50% des oléfines ramifiées, de préférence au moins 70% et de manière très préférée au moins 90% desdites oléfines sont éthérifiées.In step a) of the process according to the invention, at least 50% of the branched olefins, preferably at least 70% and very preferably at least 90% of said olefins are etherified.

    Le point d'ébullition final de la coupe β correspond le plus souvent au point d'ébullition initial de la coupe γ. The final boiling point of the β-cut most often corresponds to the initial boiling point of the γ cut.

    Selon un premier mode de réalisation de l'invention, la totalité de l'effluent issu de l'étape a) est traitée dans l'étape b) et la coupe β comprend les éthers formés au cours de l'étape a).According to a first embodiment of the invention, the totality of the effluent resulting from step a) is treated in step b) and the β-cut comprises the ethers formed during step a).

    Selon un deuxième mode de réalisation de l'invention, le procédé comprend en outre une étape de séparation des éthers du reste de l'effluent issu de l'étape a), ledit effluent débarrassé desdits éthers est traité selon l'étape b) et lesdits éthers sont traités avec la coupe β selon l'étape d).According to a second embodiment of the invention, the method further comprises a step for separating the ethers from the remainder of the effluent resulting from stage a), said effluent freed from said ethers is treated according to step b) and said ethers are treated with the β cut according to step d).

    La totalité des éthers compris dans la coupe β peut être craquée au cours de l'étape d). Selon un autre mode de réalisation de la présente invention, les conditions expérimentales sont sélectionnées de telle façon qu'une partie variable des éthers compris dans la coupe β peut être craquée au cours de l'étape d). Typiquement, ladite partie peut être comprise entre 85 et 99,9% molaire, voire entre 90 et 99,9% molaire.All the ethers included in the β-cut can be cracked during step d). according to another embodiment of the present invention, the experimental conditions are selected in such a way that a variable part of the ethers included in the β section can be cracked during step d). Typically, said portion can be between 85 and 99.9% molar, even between 90 and 99.9 mol%.

    Le plus souvent, ladite oligomérisation est effectuée à une pression comprise entre 0,2 et 10 MPa, un rapport de débit de charge sur volume de catalyseur compris entre 0,05 et 50 l/l/h et une température comprise entre 15 et 300°C.Most often, said oligomerization is carried out at a pressure of between 0.2 and 10. MPa, a charge rate ratio on catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C.

    Par exemple, ladite oligomérisation peut être effectuée en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.For example, said oligomerization can be carried out in the presence of a catalyst comprising at least one Group VIB metal of the Periodic Table.

    Le plus souvent, ladite éthérification est effectuée à une pression comprise entre 0,2 et 10MPa, un rapport de débit de charge sur volume de catalyseur compris entre 0,05 et 50 l/l/h et une température comprise entre 15 et 300°C.Most often, said etherification is carried out at a pressure of between 0.2 and 10 MPa, a charge flow rate on catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C.

    Le présent procédé peut en outre comprendre une étape d'élimination d'au moins une partie des impuretés azotées ou basiques contenues dans la charge initiale d'hydrocarbures.The present method may further include a step of removing at least a portion nitrogen or basic impurities contained in the initial charge of hydrocarbons.

    Par exemple, la charge initiale d'hydrocarbures traitée par le présent procédé peut être issue d'un procédé de craquage catalytique, de reformage catalytique ou de déshydrogénation des paraffines.For example, the initial hydrocarbon feedstock treated by the present process may be a process for catalytic cracking, catalytic reforming or dehydrogenation of paraffins.

    L'invention sera mieux comprise à la lecture de la description qui suit d'un mode de réalisation non limitatif de ladite invention, illustré par la figure 1. The invention will be better understood on reading the following description of a mode of non-limiting embodiment of said invention, illustrated by Figure 1.

    Selon la figure 1, la charge hydrocarbonée initiale est acheminée par la ligne 1 vers une unité A. Cette unité A permet d'éliminer une grande partie, c'est-à-dire au moins 90% poids, des composés azotés et/ou basiques contenus dans la charge. Cette élimination, bien que facultative, est nécessaire lorsque la charge comprend un fort taux, c'est-à-dire au moins 5 ppm, desdits composés azotés et/ou basiques car ceux-ci constituent un poison pour les catalyseurs des étapes suivantes du procédé selon l'invention. Lesdits composés peuvent être éliminés par adsorption sur un solide acide. Ce solide peut être choisi dans le groupe formé par les zéolithes, les silicoaluminates, les titanosilicates, les oxydes mixtes alumine-oxyde de titane, les argiles, les résines, les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquosoluble, et comprenant au moins un élément sélectionné dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale et le niobium sur au moins un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, lès silices-oxydes de titane, les silices zircone, les résines échangeuses d'ions par exemple les résines styrène-divinylbenzène sulfonées comme les résines de type Amberlyst® ou tout autre résine acide. Un mode particulier de l'invention peut consister à mettre en oeuvre un mélange physique d'au moins deux des solides précédemment décrits.According to FIG. 1, the initial hydrocarbon feedstock is conveyed by line 1 to a unit A. This unit A eliminates a large part, that is at least 90% by weight, of nitrogen and / or basic compounds contained in the feedstock. This elimination, although optional, is necessary when the load includes a high rate, that is at least 5 ppm, said nitrogen compounds and / or basic because they constitute a poison for catalysts of the following steps of the process according to the invention. Said compounds can be removed by adsorption on an acidic solid. This solid can be chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-oxide titanium, clays, resins, mixed oxides obtained by grafting at least one compound organometallic, organosoluble or water-soluble, and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (forms gamma, delta, eta, alone or in admixture), silica, silica-aluminas, silica-oxides, titanium, zirconia silicas, ion exchange resins, for example styrene-divinylbenzene resins sulfonated resins such as Amberlyst® type resins or any other acidic resin. A particular embodiment of the invention may consist in implementing a physical mixture of minus two of the previously described solids.

    La pression est comprise entre la pression atmosphérique et 10 MPa, de préférence entre la pression atmosphérique et 5 MPa, et on choisira de préférence une pression sous laquelle la charge se trouve à l'état liquide. Le rapport du débit de charge sur le volume de solide catalytique est le plus souvent compris entre 0,05 l/l/h et 50 l/l/h et de préférence compris entre 0,1 l/l/h et 20 l/l/h, voire entre 0,2 et 10 l/l/h. La température est comprise entre 15 et 300°C, de préférence entre 15 et 150°C et très préférentiellement entre 15°C et 60°C.The pressure is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is in the liquid state. The ratio of the charge rate to the volume of solid catalytic is most often between 0.05 l / l / h and 50 l / l / h and preferably included between 0.1 l / l / h and 20 l / l / h, or even between 0.2 and 10 l / l / h. The temperature is between 15 and 300 ° C, preferably between 15 and 150 ° C and very preferably between 15 ° C and 60 ° C.

    Sans sortir du cadre de l'invention, l'élimination des composés azotés et/ou basiques contenus dans la charge peut également être effectuée par lavage par une solution aqueuse acide, ou par tout moyen équivalent connu de l'homme de l'art.Without departing from the scope of the invention, the elimination of nitrogen and / or basic compounds contained in the feed can also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.

    La charge purifiée est acheminée par la ligne 2 à une unité B d'éthérification correspondant à l'étape a) du procédé selon l'invention. Au sein de cette unité B, les oléfines ramifiées réagissent préférentiellement avec un alcool pour former un éther. L'alcool est préférentiellement du méthanol ou de l'éthanol et peut être ajouté, par la ligne 3, à la charge d'hydrocarbures, dans un rapport molaire alcool/oléfines généralement compris entre 0,5 et 3 et de préférence environ de 1. Le plus souvent, la pression de l'unité est telle que dans les conditions de température du catalyseur utilisé dans ladite étape a) du procédé selon l'invention, la charge se trouve à l'état liquide, c'est-à-dire que la pression est généralement comprise entre 0,2 MPa et 10 MPa, de préférence entre 0,3 et 6 MPa voire entre 0,3 et 4 MPa. Le rapport du débit de charge sur le volume de catalyseur est généralement compris entre 0,05 l/l/h et 50 l/l/h, de préférence entre 0,1 l/l/h et 20 l/l/h ou encore entre 0,2 et 10 l/l/h. La température est comprise entre 15 et 300°C de préférence entre 30 et 150°C et très souvent entre 30°C et 100°C.The purified feed is conveyed via line 2 to an etherifying unit B corresponding to step a) of the process according to the invention. Within this unit B branched olefins preferentially react with an alcohol to form an ether. Alcohol is preferably methanol or ethanol and can be added via line 3 to the feedstock. of hydrocarbons, in an alcohol / olefins molar ratio generally between 0.5 and 3 and preferably about 1. Most often, the pressure of the unit is such that in the temperature conditions of the catalyst used in said step a) of the process according to the invention, the charge is in the liquid state, i.e. the pressure is generally between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa or between 0.3 and 4 MPa. The ratio of the charge rate to the volume of catalyst is generally between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h or between 0.2 and 10 l / l / h. The temperature is between 15 and 300 ° C, preferably between 30 and 150 ° C and very often between 30 ° C and 100 ° C.

    L'unité B d'éthérification contient avantageusement un catalyseur acide. Le catalyseur acide peut être un catalyseur de même nature que ceux classiquement utilisés pour la production de MTBE, ETBE ou TAME. Par exemple il peut être choisi dans le groupe formé par les zéolithes, les silicoaluminates, les titanosilicates, les oxydes mixtes alumine-oxyde de titane, les argiles, les résines, les oxydes mixtes obtenus par greffage et comprenant au moins un élément sélectionné dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale et le niobium sur au moins un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, les silices-oxyde de titane, les silices zircone, les résines échangeuses d'ions type Amberlyst ou tout autre résine acide. Un mode particulier de l'invention peut consister à mettre en oeuvre un mélange physique d'au moins deux des catalyseurs précédemment décrits.
    L'effluent de l'unité B d'éthérification est ensuite optionnellement traité dans des conditions d'élimination d'au moins une partie de l'alcool en excès contenu dans le mélange obtenu. Cette élimination peut se faire classiquement par un lavage à l'eau ou par tout moyen équivalent connu de l'homme de l'art.
    Selon un mode préféré de réalisation de l'invention, la totalité de l'effluent issu de l'unité B d'éthérification est envoyé vers une unité C d'oligomérisation correspondant à l'étape b) du procédé selon l'invention, sans séparation intermédiaire des éthers. Les oléfines linéaires présentes dans la charge hydrocarbonée initiale et n'ayant pas réagi lors de l'étape précédente d'éthérification vont subir des réactions d'oligomérisation modérées, c'est-à-dire en général des dimérisations ou des trimérisations, les conditions de ladite réaction étant optimisées pour la production d'une majorité d'hydrocarbures dont le nombre d'atomes de carbone est compris entre 9 et 25, de préférence entre 10 et 20. Le catalyseur de l'unité C d'oligomérisation peut être choisi dans le groupe formé par les zéolithes, les silicoaluminates, les titanosilicates, les oxydes mixtes alumine-oxydes de titane, les argiles, les résines, les oxydes mixtes obtenus par greffage d'au moins un composé organométallique organosoluble ou aquosoluble et comprenant au moins un élément sélectionné dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale et le niobium sur au moins un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, les silices-oxydes de titane, les silices zircone ou tout autre solide présentant une acidité quelconque. Préférentiellement, le catalyseur utilisé pour effectuer ladite oligomérisation comprend au moins un métal du groupe VIB de la classification périodique et avantageusement un oxyde dudit métal. Ce catalyseur peut comprendre en outre un support oxyde choisi dans le groupe des alumines, des titanates, des silices, des zircones, des aluminosilicates. Un mode particulier de l'invention peut consister à mettre en oeuvre un mélange physique d'au moins deux des catalyseurs cités précédemment.
    Il a été trouvé de façon surprenante que les conditions expérimentales mises en oeuvre dans l'unité C d'oligomérisation influaient de façon très sensible non seulement sur le rendement final des différents produits de la réaction d'oligomérisation mais également sur la qualité desdits produits, notamment sur l'indice de cétane de la coupe gazole et sur l'indice d'octane de la coupe essence finalement obtenues. L'indice d'octane RON de la coupe essence finalement obtenue est avantageusement d'au moins 93, de préférence d'au moins 95. L'indice de cétane de la coupe gazole est avantageusement d'au moins 40, de préférence d'au moins 50 et de manière très préférée d'au moins 55.
    En particulier, la pression de l'unité C d'oligomérisation est le plus souvent sélectionnée pour que la charge se trouve sous une forme liquide. Cette pression est en principe comprise entre 0,2 MPa et 10 MPa, de préférence entre 0,3 et 6 MPa, et encore entre 0,3 et 4 MPa. Le rapport du débit de charge sur le volume de catalyseur (encore appelé vitesse volumique horaire ou VVH) peut être compris entre 0,05 l/l/h et 50 l/l/h, de préférence entre 0,1 l/l/h et 20 l/l/h et de manière encore plus préférée entre 0,2 et 10 l/l/h. Il a été trouvé par le demandeur que, dans les conditions de pression et de VVH précédentes, la température de réaction d'oligomérisation devait être comprise entre 15 et 300°C, de préférence entre 60 et 250°C et plus particulièrement entre 100 et 200°C pour optimiser la qualité des produits finalement obtenus.
    The etherifying unit B advantageously contains an acid catalyst. The acid catalyst may be a catalyst of the same nature as those conventionally used for the production of MTBE, ETBE or TAME. For example, it may be chosen from the group consisting of zeolites, silicoaluminates, titanosilicates, mixed alumina-titanium oxide oxides, clays, resins and mixed oxides obtained by grafting and comprising at least one element selected from the group consisting of group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), the silica, alumina silicas, titanium dioxide silicas, zirconia silicas, Amberlyst type ion exchange resins or any other acidic resin. A particular embodiment of the invention may consist in using a physical mixture of at least two of the previously described catalysts.
    The effluent from the etherification unit B is then optionally treated under conditions of elimination of at least a portion of the excess alcohol contained in the mixture obtained. This elimination can be done conventionally by washing with water or by any equivalent means known to those skilled in the art.
    According to a preferred embodiment of the invention, all of the effluent from the etherification unit B is sent to an oligomerization unit C corresponding to step b) of the process according to the invention, without intermediate separation of the ethers. The linear olefins present in the initial hydrocarbon feedstock and unreacted during the previous etherification step will undergo moderate oligomerization reactions, that is to say in general dimerizations or trimerizations, the conditions of said reaction being optimized for the production of a majority of hydrocarbons whose carbon number is between 9 and 25, preferably between 10 and 20. The catalyst of the oligomerization unit C can be chosen in the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-titanium oxides, clays, resins, mixed oxides obtained by grafting at least one organo-metallic organosoluble or water-soluble compound and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support and alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, silica-titanium oxides, zirconia silicas or any other solid having any acidity. Preferably, the catalyst used to carry out said oligomerization comprises at least one Group VIB metal of the periodic classification and advantageously an oxide of said metal. This catalyst may furthermore comprise an oxide support selected from the group of aluminas, titanates, silicas, zirconiums, aluminosilicates. A particular embodiment of the invention may consist in using a physical mixture of at least two of the catalysts mentioned above.
    It has surprisingly been found that the experimental conditions used in the oligomerization unit C have a very significant influence not only on the final yield of the various products of the oligomerization reaction but also on the quality of said products. in particular on the cetane number of the gasoil section and on the octane number of the gasoline section finally obtained. The RON octane number of the petrol fraction finally obtained is advantageously at least 93, preferably at least 95. The cetane number of the gasoil fraction is advantageously at least 40, preferably at least 50 and most preferably at least 55.
    In particular, the pressure of the oligomerization unit C is most often selected so that the charge is in a liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and still between 0.3 and 4 MPa. The ratio of the feed rate to the volume of catalyst (also called hourly volume velocity or VVH) can be between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and even more preferably between 0.2 and 10 l / l / h. It was found by the applicant that, under the prevailing pressure and VVH conditions, the oligomerization reaction temperature should be between 15 and 300 ° C, preferably between 60 and 250 ° C and more particularly between 100 and 200 ° C to optimize the quality of the products finally obtained.

    L'effluent issu de l'unité C est alors envoyé à l'aide de la ligne 5 dans une ou plusieurs colonnes de distillation (unité D), un ballon flash ou tout autre moyen connu de l'homme de l'art permettant de séparer les effluents hydrocarbonés en au moins deux coupes distinctes par leur point d'ébullition :

    • une coupe β dite légère dont le point final de l'intervalle de distillation est compris entre 150 et 200°C, de préférence entre 150 et 180°C. Cette coupe est transportée par la ligne 6.
    • une coupe γ dite lourde dont le point initial d'ébullition est compris entre 150 et 200°C, de préférence entre 150 et 180°C. Cette coupe est transportée par la ligne 7.
    Selon l'invention, le point final de l'intervalle de distillation de la coupe β correspond avantageusement au point initial de l'intervalle de distillation de la coupe γ.The effluent from unit C is then sent using line 5 in one or more distillation columns (unit D), a flash balloon or any other means known to those skilled in the art allowing separating the hydrocarbon effluents into at least two distinct cuts by their boiling point:
    • a so-called light β cut whose end point of the distillation range is between 150 and 200 ° C, preferably between 150 and 180 ° C. This cup is transported by line 6.
    • a so-called heavy γ cut whose initial boiling point is between 150 and 200 ° C, preferably between 150 and 180 ° C. This cup is transported by line 7.
    According to the invention, the end point of the distillation interval of the β-section advantageously corresponds to the initial point of the distillation interval of the γ-section.

    La coupe lourde γ est une coupe dont le point initial d'ébullition correspond à une coupe gazole. Cette coupe peut être mélangée à de l'hydrogène, acheminé par la ligne 8, pour être hydrogénée dans une unité E d'hydrogénation de structure classique en présence d'un catalyseur et dans des conditions opératoires connues de l'homme de l'art. L'effluent hydrocarboné récupéré par la ligne 9 est un gazole à indice de cétane amélioré, c'est-à-dire ayant un indice de cétane d'au moins 40, de préférence d'au moins 50 et de manière préférée d'au moins 55.The heavy cut γ is a cut whose initial boiling point corresponds to a cut diesel. This cup can be mixed with hydrogen, conveyed by line 8, to be hydrogenated in a hydrogenation unit E of conventional structure in the presence of a catalyst and under operating conditions known to those skilled in the art. The effluent hydrocarbon recovered by line 9 is an improved cetane number gas oil, that is to say having a cetane number of at least 40, preferably at least 50 and preferably at least 55.

    La coupe légère β est une coupe essence et est acheminée par la ligne 6 vers une unité F de craquage correspondant à l'étape d) du procédé selon l'invention. Dans l'unité F, selon un mode possible de réalisation de l'invention, les conditions sont sélectionnées de telle façon que la totalité des éthers présents dans la coupe β est craquée en une fraction d'hydrocarbures comprenant les oléfines, principalement les oléfines ramifiées, et une fraction comprenant l'alcool initial. Selon un autre mode de réalisation de l'invention, les conditions de craquage peuvent être ajustées de telle manière que seule une partie desdits éthers est craquée. Ce mode permet avantageusement d'améliorer encore l'indice d'octane de la fraction essence finalement obtenue, mais est cependant limité par la législation actuelle de nombreux pays concernant la teneur en composés oxygénés dans les essences. Typiquement, ladite partie peut être comprise entre 85 et 99,9% molaire, voire entre 90 et 99,9% molaire.
    La pression de l'unité F de craquage est comprise entre 0,2 et 10 MPa, de préférence entre 0,3 et 6 MPa, voire entre 0,3 et 4 MPa. Le rapport du débit de charge sur le volume de catalyseur est compris entre 0,05 l/l/h et 50 l/l/h de préférence entre 0,1 l/l/h et 20 l/l/h et encore entre 0,2 et 10 l/l/h. La température est en général supérieure à 15°C, et le plus souvent comprise entre 15°C et 350°C, de préférence entre 100°C et 350°C.
    The light cut β is a gasoline cut and is conveyed via line 6 to a cracking unit F corresponding to step d) of the process according to the invention. In unit F, according to one possible embodiment of the invention, the conditions are selected such that all the ethers present in the β-section are cracked to a hydrocarbon fraction comprising olefins, mainly branched olefins. , and a fraction comprising the initial alcohol. According to another embodiment of the invention, the cracking conditions can be adjusted in such a way that only a part of said ethers is cracked. This mode advantageously makes it possible to further improve the octane number of the gasoline fraction finally obtained, but is however limited by the current legislation of many countries concerning the content of oxygenated compounds in gasolines. Typically, said portion may be between 85 and 99.9 mol%, or even between 90 and 99.9 mol%.
    The pressure of the cracking unit F is between 0.2 and 10 MPa, preferably between 0.3 and 6 MPa, or even between 0.3 and 4 MPa. The ratio of the feed rate to the catalyst volume is between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and again between 0.2 and 10 l / l / h. The temperature is generally above 15 ° C, and most often between 15 ° C and 350 ° C, preferably between 100 ° C and 350 ° C.

    Le catalyseur utilisé dans l'unité F de craquage peut être un catalyseur acide choisi dans le groupe formé par les zéolithes, les silicoaluminates, les titanosilicates, les oxydes mixtes alumine-oxydes de titane, les argiles, les résines, les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquosoluble, et comprenant au moins un élément sélectionné dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale et le niobium sur au moins un oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, les silices-oxydes de titane, les silices zircone, les résines échangeuses d'ions type Amberlyst ou tout autre solide présentant une acidité quelconque. Un mode particulier de l'invention peut consister à mettre en oeuvre un mélange physique d'au moins deux des catalyseurs précédemment décrits.The catalyst used in the cracking unit F may be an acid catalyst chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-titanium oxides, clays, resins, mixed oxides obtained by grafting of least an organometallic, organosoluble or water-soluble compound, and comprising at least an element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide such as alumina (forms gamma, delta, eta, alone or in admixture), silica, silica aluminas, silica-oxides titanium, zirconia silicas, Amberlyst type ion exchange resins or any other solid having any acidity. A particular embodiment of the invention may consist of a physical mixture of at least two of the previously described catalysts is used.

    L'effluent de l'unité F de craquage est acheminée par la ligne 11 à une unité G permettant de séparer les alcools des hydrocarbures et des éthers non craqués au cours de l'étape précédente. Cette unité G peut être une colonne de distillation, une colonne de diffusion thermique ou un moyen connu de lavage à l'eau ou tout autre moyen connu de l'homme de l'art pour la séparation des alcools et des hydrocarbures. L'alcool peut être recyclé par la ligne 13 à l'entrée de l'unité B d'éthérification ou envoyé vers un bac de stockage par la ligne 12. L'effluent hydrocarboné récupéré par la ligne 14 est une essence à indice d'octane amélioré dont la teneur en oléfines est inférieure à celle de la charge initiale d'hydrocarbures. La teneur en oléfines est avantageusement diminuée d'au moins 40% poids, de manière très avantageuse d'au moins 50% poids.The effluent from the cracking unit F is conveyed via line 11 to a unit G allowing separate the alcohols from the hydrocarbons and uncracked ethers during the previous step. This unit G may be a distillation column, a thermal diffusion column or a known means of washing with water or any other means known to those skilled in the art for the separation of alcohols and hydrocarbons. Alcohol can be recycled through line 13 to the inlet of the etherification unit B or sent to a storage tank via the line 12. The hydrocarbon effluent recovered by line 14 is an improved octane gasoline whose olefin content is lower than that of the initial hydrocarbon feedstock. Content in olefins is advantageously reduced by at least 40% by weight, very advantageously at least 50% by weight.

    Selon un autre mode possible de réalisation de l'invention, les éthers contenus dans l'effluent issu de l'unité B d'éthérification peuvent être séparés de la coupe hydrocarbures. Les unités C et D traitent alors selon ce mode un effluent débarrassé de sensiblement la totalité des éthers. L'essence obtenue dans ce cas en sortie de l'unité D peut être mélangée avec les éthers dans le cas où les éthers ont été retirés après l'unité B d'éthérification. Cette coupe peut être ensuite envoyée dans l'unité F de craquage puis dans l'unité G de séparation. Cependant, selon ce mode de réalisation, en raison de la similarité des propriétés physiques et notamment des températures d'ébullition des composés contenus dans l'effluent issu de l'unité B d'éthérification, la séparation des éthers du reste des hydrocarbures présents dans ledit effluent ne pourra être efficacement réalisée que grâce à des moyens généralement coûteux et/ou difficile à mettre en oeuvre. A titre d'exemples, on peut citer les procédés d'extraction liquide-liquide, qui imposent l'utilisation en grandes proportions de solvants ou l'adsorption sur solides, peu compatible avec le traitement de forts débits de charge. Selon le mode préféré de réalisation de l'invention précédemment décrit, il a été trouvé par le demandeur qu'il était possible, sous certaines conditions (telles que décrites dans la présente description), d'envoyer l'ensemble de l'effluent issu de l'unité B d'éthérification vers l'unité C d'oligomérisation. En sortie de ladite unité C, un moyen conventionnel de distillation peu coûteux telle qu'une colonne à distiller ou un ballon flash peut être alors mis en oeuvre de façon efficace pour le fractionnement du mélange.
    Les exemples qui suivent permettent d'illustrer les avantages liés à la présente invention.
    According to another possible embodiment of the invention, the ethers contained in the effluent from the etherification unit B can be separated from the hydrocarbon fraction. Units C and D then treat in this mode an effluent freed of substantially all the ethers. The gasoline obtained in this case at the outlet of the unit D can be mixed with the ethers in the case where the ethers have been removed after the etherification unit B. This section can then be sent to the cracking unit F and then to the separation unit G. However, according to this embodiment, due to the similarity of the physical properties and in particular the boiling temperatures of the compounds contained in the effluent from the etherification unit B, the separation of the ethers from the rest of the hydrocarbons present in the said effluent can be effectively achieved by means generally expensive and / or difficult to implement. By way of examples, mention may be made of liquid-liquid extraction processes, which impose the use in large proportions of solvents or adsorption on solids, which is not very compatible with the treatment of high charge rates. According to the preferred embodiment of the invention described above, it was found by the applicant that it was possible, under certain conditions (as described in the present description), to send all of the effluent from the etherification unit B to the oligomerization unit C. At the outlet of said unit C, an inexpensive conventional distillation means such as a distillation column or a flash balloon can then be used effectively for the fractionation of the mixture.
    The following examples illustrate the advantages of the present invention.

    Exemple 1 : Example 1:

    Dans cet exemple, la charge initiale I est une essence de FCC de point d'ébullition compris entre 40°C et 150°C. Cette essence contient 10 ppm d'azote basique. Cette charge est envoyée dans un réacteur A contenant un solide constitué d'un mélange de 20% d'alumine et 80% poids de zéolithe du type mordénite. La zéolithe utilisée dans le présent exemple possède un rapport silicium/aluminium de 45.
    La pression de l'unité est de 0,2 MPa, le rapport du débit liquide de la charge sur le volume de solide acide est de 1 litre/litre/heure. La température du réacteur est de 20°C.
    Le tableau 1 donne la composition de la charge initiale I et celle de l'effluent A issu de l'unité A. composition de la charge et de l'effluent de l'étape A. Charge I Effluent A Azote (ppm) 10 0,2 Paraffines (%poids) 25,2 25,1 Naphtènes (% poids) 9,6 9,8 Aromatiques (% poids) 34,9 35 Oléfines (% poids) 30,3 30,1
    In this example, the initial charge I is a boiling point FCC gasoline between 40 ° C and 150 ° C. This essence contains 10 ppm of basic nitrogen. This feed is sent to a reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type. The zeolite used in the present example has a silicon / aluminum ratio of 45.
    The pressure of the unit is 0.2 MPa, the ratio of the liquid flow rate of the feedstock to the volume of acidic solid is 1 liter / liter / hour. The temperature of the reactor is 20 ° C.
    Table 1 gives the composition of the initial charge I and that of the effluent A from unit A. composition of the feedstock and the effluent of step A. Charge I Effluent A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1

    L'effluent A est ensuite envoyé dans un réacteur d'éthérification B contenant une résine échangeuse d'ions Amberlyst 15 commercialisée par la société Rohm & Haas. A ce produit est ajouté du méthanol dans un rapport de 1 mole de méthanol par mole d'oléfine. La pression de l'unité B est de 3 MPa. Le rapport du débit de charge sur le volume de catalyseur est égal à 1 litre/litre/heure. La température est égale à 90°C. Le tableau 2 donne la composition de l'effluent B issu de l'unité B par rapport à celle de l'effluent A. composition des effluents A et B. Effluent A Effluent B Paraffines (%poids) 25,1 25,1 Naphtènes (% poids) 9,8 9,8 Aromatiques (% poids) 35 35 Oléfines (% poids) 30,1 18,5 Ethers (% poids) 0 11,8 The effluent A is then sent to an etherification reactor B containing an Amberlyst 15 ion exchange resin sold by Rohm & Haas. To this product is added methanol in a ratio of 1 mole of methanol per mole of olefin. The pressure of unit B is 3 MPa. The ratio of the feed rate to the catalyst volume is 1 liter / liter / hour. The temperature is 90 ° C. Table 2 gives the composition of effluent B from unit B relative to that of effluent A. composition of effluents A and B. Effluent A Effluent B Paraffins (% wt) 25.1 25.1 Naphthenes (% wt) 9.8 9.8 Aromatic (% by weight) 35 35 Olefins (% by weight) 30.1 18.5 Ethers (% wt) 0 11.8

    L'effluent B est injecté dans un réacteur d'oligomérisation C contenant un catalyseur constitué d'un mélange à 50% poids de zircone et à 50% poids de H3PW12O40. La pression de l'unité est de 2 MPa, le rapport du débit de charge sur le volume de catalyseur est égal à 1,5 litre/litre/heure. La température est fixée à 170°C. On obtient en sortie de l'unité C un effluent C. Les teneurs respectives en oléfines des effluents A, B et C en fonction du nombre d'atomes de carbone sont fournies par le tableau 3. teneur en oléfines des effluents A, B, C. Effluent A Effluent B Effluent C Oléfines en C5 (% poids) 1,05 0,63 0,01 Oléfines en C6 (% poids) 2,80 1,71 0,1 Oléfines en C7 (% poids) 8,75 5,34 0,3 Oléfines en C8 (% poids) 14 8,55 1,6 Oléfines en C9 (% poids) 3,7 2,26 0,68 The effluent B is injected into an oligomerization reactor C containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 . The pressure of the unit is 2 MPa, the ratio of the feed rate on the catalyst volume is equal to 1.5 liter / liter / hour. The temperature is set at 170 ° C. An effluent C is obtained at the outlet of unit C. The respective olefin contents of effluents A, B and C as a function of the number of carbon atoms are given in Table 3. olefin content of effluents A, B, C. Effluent A Effluent B Effluent C C5 olefins (% by weight) 1.05 0.63 0.01 C6 olefins (% by weight) 2.80 1.71 0.1 C7 olefins (% by weight) 8.75 5.34 0.3 C8 olefins (% by weight) 14 8.55 1.6 C9 olefins (% by weight) 3.7 2.26 0.68

    La figure 2 présente la comparaison des distillations simulées de la charge initiale (ronds noirs) et de l'effluent C (carrés blancs). On observe que 24% poids de l'effluent bout à une température supérieure à 150°C, point final de distillation de la charge initiale.Figure 2 shows the comparison of simulated distillations of the initial charge (round black) and effluent C (white squares). It is observed that 24% by weight of the effluent boils at a temperature above 150 ° C, end point of distillation of the initial charge.

    L'effluent C est distillé en 2 coupes au sein d'une unité D de distillation :

    • une coupe légère β d'intervalle de distillation 40°C-200°C avec un rendement poids de 78%,
    • une coupe lourde γ comprenant les hydrocarbures dont le point de distillation initial est supérieur à 200°C, avec un rendement poids de 22%.
    Ladite coupe lourde γ est envoyée dans un réacteur E d'hydrogénation contenant un catalyseur comprenant un support alumine sur lequel sont déposés du nickel et du molybdène. La pression de l'unité E est de 5 MPa, le rapport du débit de charge sur le volume de catalyseur est égal à 2 litres/litre/heure. Le rapport du débit d'hydrogène injecté sur le débit de charge est égal à 600 litres/litre. La température du réacteur est de 320°C. Les caractéristiques de l'effluent E issu de l'unité E sont présentés dans le tableau 4. caractéristiques de l'effluent issu de l'unité E Effluent E Densité à 20°C (kg/l) 0,787 Cétane moteur 55 Effluent C is distilled in 2 sections within a distillation unit D:
    • a slight cut β distillation range 40 ° C-200 ° C with a weight yield of 78%,
    • a heavy cut γ comprising hydrocarbons whose initial distillation point is greater than 200 ° C, with a weight yield of 22%.
    Said heavy cut γ is sent to a hydrogenation reactor E containing a catalyst comprising an alumina support on which nickel and molybdenum are deposited. The pressure of the unit E is 5 MPa, the ratio of the feed rate to the volume of catalyst is equal to 2 liters / liter / hour. The ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter. The reactor temperature is 320 ° C. The characteristics of effluent E from unit E are shown in Table 4. characteristics of effluent from unit E Effluent E Density at 20 ° C (kg / l) 0.787 Cetane engine 55

    La coupe légère β d'intervalle de distillation 40°C-200°C et issue de l'unité D est injecté dans un réacteur F de craquage contenant du Deloxan commercialisé par la société Degussa. Ce catalyseur est un polysiloxane greffé par des groupements acides de type alkylsulfonique (du type -CH2-CH2-CH2-SO3H). La pression de l'unité est de 3 MPa. Le rapport du débit de charge sur le volume de catalyseur est de 3 litres/litre. La température est égale à 200°C.
    Les caractéristiques de la coupe essence G, issue de l'unité F et après séparation du méthanol par extraction à l'eau, peuvent être comparées avec celles de la charge initiale I en se référant au tableau 5. Comparaison des caractéristiques de la charge initiale I et l'effluent final G Charge initiale I Effluent G Paraffines (%poids) 25,2 30,9 Naphtènes (% poids) 9,6 11,8 Aromatiques (% poids) 34,9 42,8 Oléfines (% poids) 30,3 14,5 Indice d'octane RON 92 95
    The light fraction β distillation interval 40 ° C-200 ° C and from the unit D is injected into a cracking reactor F containing Deloxan marketed by the company Degussa. This catalyst is a polysiloxane grafted with alkylsulphonic acid groups (of the -CH2-CH2-CH2-SO3H type). The pressure of the unit is 3 MPa. The ratio of the feed rate to the catalyst volume is 3 liters / liter. The temperature is 200 ° C.
    The characteristics of the gasoline cut G, resulting from the unit F and after separation of the methanol by extraction with water, can be compared with those of the initial charge I with reference to Table 5. Comparison of the characteristics of the initial charge I and the final effluent G Initial charge I Effluent G Paraffins (% wt) 25.2 30,9 Naphthenes (% wt) 9.6 11.8 Aromatic (% by weight) 34.9 42.8 Olefins (% by weight) 30.3 14.5 RON octane number 92 95

    On constate que le présent procédé permet d'obtenir à partir d'une coupe essence de manière simple et économique, c'est-à-dire par l'utilisation de technologies classiques et peu coûteuses une coupe essence (effluent G) présentant un faible taux d'oléfines et un indice d'octane amélioré et une coupe gazole (effluent E) à fort indice de cétane; compatible avec une commercialisation.It can be seen that the present process makes it possible to obtain from a petrol cut in a manner simple and economical, that is to say by the use of conventional and inexpensive technologies a gasoline cut (G effluent) with a low olefin content and an octane number improved and a diesel cut (effluent E) with a high cetane number; compatible with a marketing.

    Exemple 2 :Example 2

    Dans cet exemple, la même charge initiale I est traitée par les unités A et B dans des conditions identiques à celles de l'exemple 1. L'effluent B obtenu est introduit dans le réacteur C comprenant le même catalyseur et dans les mêmes conditions que pour l'exemple 1 à la différence que la température dans ledit réacteur C est cette fois portée à 350°C. On obtient en sortie du réacteur C un effluent C' contenant des taux nuls ou inférieurs à 0,02% d'oléfines C5 à C9. La figure 3 présente la comparaison des distillations simulées de la charge initiale (ronds noirs) et de l'effluent C' (carrés blancs). On observe cette fois que 32% poids de l'effluent C' bout à une température supérieure à 150°C, point final de distillation de la charge initiale.In this example, the same initial charge I is processed by the units A and B in identical conditions to those of Example 1. The effluent B obtained is introduced into the reactor C comprising the same catalyst and under the same conditions as for Example 1 to difference that the temperature in said reactor C is this time raised to 350 ° C. We obtain in leaving the reactor C an effluent C 'containing zero or less than 0.02% C5 olefins at C9. Figure 3 shows the comparison of simulated distillations of the initial charge (round black) and effluent C '(white squares). This time, it is observed that 32% by weight of the effluent C ' end at a temperature above 150 ° C, end point of distillation of the initial charge.

    L'effluent C' est ensuite distillé en 2 coupes :

    • une coupe légère β' d'intervalle de distillation 40°C-200°C avec un rendement poids de 70%,
    • une coupe lourde γ' comprenant les hydrocarbures dont le point initial de distillation est supérieur à 200°C, avec un rendement poids de 30%.
    Ladite coupe lourde γ' est envoyée dans le réacteur E contenant le même catalyseur que celui utilisé dans l'exemple 1 (support alumine sur lequel sont déposés du nickel et du molybdène). La pression de l'unité est de 5 MPa, le rapport du débit de charge sur le volume de catalyseur est égal à 2 litres/litre/heure. Le rapport du débit d'hydrogène injecté sur le débit de charge est égal à 600 litres/litre. La température du réacteur est de 320°C. Les caractéristiques de l'effluent E' issu de l'unité E sont présentés dans le tableau 6. caractéristiques de l'effluent E' issu de l'unité E Effluent E' Densité à 20°C (kg/l) 0,787 Soufre (ppm) 10 Indice cétane moteur 35 The effluent C 'is then distilled in 2 sections:
    • a light cut β 'distillation range 40 ° C-200 ° C with a weight yield of 70%,
    • a heavy cut γ 'comprising hydrocarbons whose initial point of distillation is greater than 200 ° C, with a weight yield of 30%.
    Said heavy cut γ 'is sent to the reactor E containing the same catalyst as that used in Example 1 (alumina support on which nickel and molybdenum are deposited). The pressure of the unit is 5 MPa, the ratio of the feed rate to the volume of catalyst is equal to 2 liters / liter / hour. The ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter. The reactor temperature is 320 ° C. The characteristics of the effluent E 'coming from the unit E are shown in Table 6. characteristics of effluent E 'coming from unit E Effluent E ' Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 10 Motor cetane index 35

    On constate que l'indice de cétane du gasoil obtenu lorsque l'oligomérisation est effectuée à plus haute température (350°C) est sensiblement inférieur à celui obtenu lorsque l'oligomérisation est mise en oeuvre à plus basse température (170°C). Le gasoil issu de l'oligomérisation à 350°C est impropre à la commercialisation ce qui n'est pas le cas de celui obtenu à 170°C.It is found that the cetane number of the gas oil obtained when the oligomerization is carried out at higher temperature (350 ° C) is significantly lower than when the oligomerization is carried out at a lower temperature (170 ° C.). Diesel fuel from the oligomerization at 350 ° C is unfit for marketing which is not the case of the obtained at 170 ° C.

    Claims (9)

    Procédé de transformation d'une charge d'hydrocarbures comprenant des oléfines linéaires et ramifiées comprenant de 4 à 15 atomes de carbone, ledit procédé comprenant les étapes suivantes : a) une éthérification sélective de la majorité des oléfines ramifiées présentes dans ladite charge, b) un traitement des oléfines linéaires contenues dans ladite charge dans des conditions d'oligomérisation modérée, c) une séparation de l'effluent issu de l'étape b) en au moins deux coupes : une coupe β comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150 et 200°C, une coupe γ comprenant au moins une partie des hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150 et 200°C, d) un traitement de la fraction hydrocarbonée contenant les éthers formés au cours de l'étape a) dans des conditions de craquage au moins partiel des éthers, ledit traitement étant suivie d'une séparation en une fraction essence à indice d'octane amélioré et en une fraction contenant l'alcool initial, e) une hydrogénation de la coupe γ dans des conditions d'obtention d'un gazole à fort indice de cétane. A process for converting a hydrocarbon feedstock comprising linear and branched olefins comprising from 4 to 15 carbon atoms, said process comprising the steps of: a) selective etherification of the majority of the branched olefins present in said feed, b) a treatment of linear olefins contained in said feed under moderate oligomerization conditions, c) a separation of the effluent from step b) into at least two sections: a β-cut comprising hydrocarbons whose final boiling point is below a temperature of between 150 and 200 ° C. a cut γ comprising at least a portion of the hydrocarbons whose initial boiling point is greater than a temperature of between 150 and 200 ° C, d) treating the hydrocarbon fraction containing the ethers formed in step a) under at least partial cracking conditions of the ethers, said treatment being followed by separation into an improved octane gasoline fraction and in a fraction containing the initial alcohol, e) a hydrogenation of the γ cut under conditions of obtaining a gas oil with a high cetane number. Procédé selon la revendication 1 dans lequel la totalité de l'effluent issu de l'étape a) est traitée dans l'étape b), et dans lequel la coupe β comprend les éthers formés au cours de l'étape a).The process according to claim 1 wherein all of the effluent from step a) is treated in step b), and in which the β-cut comprises the ethers formed during the step at). Procédé selon la revendication 1 comprenant une étape de séparation des éthers du reste de l'effluent issu de l'étape a), ledit effluent débarrassé desdits éthers étant traité selon l'étape b), et lesdits éthers étant traités avec la coupe β selon l'étape d) .Process according to claim 1 comprising a step of separating the ethers from the remainder of the effluent from step a), said effluent stripped of said ethers being treated according to step b), and said ethers being treated with the β cut according to step d). Procédé selon l'une des revendications 1 à 3 dans lequel la totalité des éthers compris dans la coupe β est craquée au cours de l'étape d). Process according to one of Claims 1 to 3, in which all the ethers included in the β cut is cracked during step d). Procédé selon l'une des revendications précédentes dans lequel ladite oligomérisation est effectuée à une pression comprise entre 0,2 et 10 MPa, un rapport de débit de charge sur volume de catalyseur compris entre 0,05 et 50 l/l/h et une température comprise entre 15 et 300°C.Process according to one of the preceding claims wherein said oligomerization is at a pressure of between 0.2 and 10 MPa, a ratio of catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C. Procédé selon l'une des revendications précédentes dans lequel ladite oligomérisation est effectuée en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.Process according to one of the preceding claims wherein said oligomerization is carried out in the presence of a catalyst comprising at least one Group VIB metal from the periodic classification. Procédé selon l'une des revendications précédentes dans lequel ladite éthérification est effectuée à une pression comprise entre 0,2 et 10MPa, un rapport de débit de charge sur volume de catalyseur compris entre 0,05 et 50 l/l/h et une température comprise entre 15 et 300°C.Method according to one of the preceding claims wherein said etherification is at a pressure of between 0.2 and 10 MPa, a ratio of catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C. Procédé selon l'une des revendications précédentes comprenant une étape d'élimination d'au moins une partie des impuretés azotées ou basiques contenues dans la charge initiale d'hydrocarbures.Method according to one of the preceding claims, comprising a step of removing from least part of the nitrogen or basic impurities contained in the initial charge hydrocarbons. Procédé selon l'une des revendications précédentes dans lequel la charge initiale d'hydrocarbures est issue d'un procédé de craquage catalytique, de reformage catalytique ou de déshydrogénation des paraffines.Method according to one of the preceding claims, in which the initial charge hydrocarbons is derived from a process of catalytic cracking, catalytic reforming or dehydrogenation of paraffins.
    EP03293026A 2002-12-23 2003-12-03 Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number Expired - Fee Related EP1433835B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0216474A FR2849051B1 (en) 2002-12-23 2002-12-23 PROCESS FOR PROCESSING HYDROCARBONS INTO A FRACTION HAVING IMPROVED OCTANE INDEX AND A HIGH CETANE INDEX FRACTION
    FR0216474 2002-12-23

    Publications (2)

    Publication Number Publication Date
    EP1433835A1 true EP1433835A1 (en) 2004-06-30
    EP1433835B1 EP1433835B1 (en) 2009-09-02

    Family

    ID=32406360

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03293026A Expired - Fee Related EP1433835B1 (en) 2002-12-23 2003-12-03 Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number

    Country Status (6)

    Country Link
    US (1) US7329787B2 (en)
    EP (1) EP1433835B1 (en)
    DE (1) DE60329065D1 (en)
    ES (1) ES2330513T3 (en)
    FR (1) FR2849051B1 (en)
    RU (1) RU2317317C2 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2404980A1 (en) 2010-07-08 2012-01-11 Total Raffinage Marketing Hydrocarbon feedstock average molecular weight increase
    WO2012089716A1 (en) 2010-12-28 2012-07-05 Total Raffinage Marketing Nitrile containing hydrocarbon feedstock, process for making the same and use thereof
    FR2975103A1 (en) * 2011-05-12 2012-11-16 IFP Energies Nouvelles PROCESS FOR PRODUCING KEROSENE OR GASOLINE CUT FROM AN OLEFINIC CHARGE HAVING A MAJORITY OF 4 TO 6 CARBON ATOMS
    WO2013104614A1 (en) 2012-01-09 2013-07-18 Total Raffinage Marketing Method for the conversion of low boiling point olefin containing hydrocarbon feedstock

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN101245259B (en) * 2007-02-14 2011-01-19 中国石油化工股份有限公司石油化工科学研究院 Etherification method combined with catalytic cracking absorption stable system
    FR2944027B1 (en) * 2009-04-03 2011-05-06 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT
    FR2944028B1 (en) * 2009-04-03 2011-05-06 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION FROM A FISCHER-TROPSCH EFFLUENT USING A RESIN

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4528411A (en) * 1982-09-24 1985-07-09 Phillips Petroleum Company Diesel fuel and gasoline production
    EP0237372A1 (en) * 1986-02-13 1987-09-16 Institut Français du Pétrole Process for obtaining MTBE high-grade petrol and a jet fuel from butanes and/or C4 fractions starting from a cracking or catalytic reforming operation
    EP0332243A1 (en) * 1988-02-22 1989-09-13 Shell Internationale Researchmaatschappij B.V. Process for preparing normally liquid hydrocarbonaceous products from a hydrocarbon feed containing linear-and branched olefins
    US5382705A (en) * 1989-03-20 1995-01-17 Mobil Oil Corporation Production of tertiary alkyl ethers and tertiary alkyl alcohols
    EP0659723A1 (en) * 1993-12-20 1995-06-28 Bayer Ag Process for the preparation of hydrocarbon mixtures containing alkyl tert-alkyl ethers
    US6028239A (en) * 1996-04-09 2000-02-22 Institut Francais Du Petrole Process for the production of tertiary olefin(s) by decomposition of the corresponding ether using a particular catalyst

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2925379A (en) * 1956-11-13 1960-02-16 Union Oil Co Hydrocarbon denitrogenation
    FR2760006B1 (en) * 1997-02-21 1999-04-16 Inst Francais Du Petrole PROCESS FOR PRODUCING TERTIARY OLEFIN BY DECOMPOSITION OF TERTIARY ALKYL ETHER

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4528411A (en) * 1982-09-24 1985-07-09 Phillips Petroleum Company Diesel fuel and gasoline production
    EP0237372A1 (en) * 1986-02-13 1987-09-16 Institut Français du Pétrole Process for obtaining MTBE high-grade petrol and a jet fuel from butanes and/or C4 fractions starting from a cracking or catalytic reforming operation
    EP0332243A1 (en) * 1988-02-22 1989-09-13 Shell Internationale Researchmaatschappij B.V. Process for preparing normally liquid hydrocarbonaceous products from a hydrocarbon feed containing linear-and branched olefins
    US5382705A (en) * 1989-03-20 1995-01-17 Mobil Oil Corporation Production of tertiary alkyl ethers and tertiary alkyl alcohols
    EP0659723A1 (en) * 1993-12-20 1995-06-28 Bayer Ag Process for the preparation of hydrocarbon mixtures containing alkyl tert-alkyl ethers
    US6028239A (en) * 1996-04-09 2000-02-22 Institut Francais Du Petrole Process for the production of tertiary olefin(s) by decomposition of the corresponding ether using a particular catalyst

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2404980A1 (en) 2010-07-08 2012-01-11 Total Raffinage Marketing Hydrocarbon feedstock average molecular weight increase
    WO2012004328A1 (en) 2010-07-08 2012-01-12 Total Raffinage Marketing Hydrocarbon feedstock average molecular weight increase.
    WO2012089716A1 (en) 2010-12-28 2012-07-05 Total Raffinage Marketing Nitrile containing hydrocarbon feedstock, process for making the same and use thereof
    FR2975103A1 (en) * 2011-05-12 2012-11-16 IFP Energies Nouvelles PROCESS FOR PRODUCING KEROSENE OR GASOLINE CUT FROM AN OLEFINIC CHARGE HAVING A MAJORITY OF 4 TO 6 CARBON ATOMS
    WO2012153010A3 (en) * 2011-05-12 2013-01-03 IFP Energies Nouvelles Method for the production of diesel or kerosene cuts from an olefin feed mainly having between 4 and 6 carbon atoms, using two oligomerisation units
    WO2012153011A3 (en) * 2011-05-12 2013-01-03 IFP Energies Nouvelles Method for the production of diesel or kerosene cuts from an olefin feed mainly having between 4 and 6 carbon atoms
    WO2013104614A1 (en) 2012-01-09 2013-07-18 Total Raffinage Marketing Method for the conversion of low boiling point olefin containing hydrocarbon feedstock

    Also Published As

    Publication number Publication date
    RU2003136849A (en) 2005-06-10
    FR2849051B1 (en) 2005-02-04
    FR2849051A1 (en) 2004-06-25
    EP1433835B1 (en) 2009-09-02
    ES2330513T3 (en) 2009-12-11
    DE60329065D1 (en) 2009-10-15
    US20040186331A1 (en) 2004-09-23
    RU2317317C2 (en) 2008-02-20
    US7329787B2 (en) 2008-02-12

    Similar Documents

    Publication Publication Date Title
    EP1602637B1 (en) Process for upgrading naphtha fractions and conversion to gasoils.
    EP1602705B1 (en) Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction
    EP2321385B1 (en) Method of converting a heavy charge into petrol and propylene, having a variable-yield structure
    FR2796650A1 (en) APPROPRIATE LIQUID MIXTURE AS GASOLINE, CONTAINING OXYGENIC COMPONENTS AND HAVING HIGH OCTANE INDEX
    EP1777284B1 (en) Process for the direct conversion of a cut containing C4 and/or C5 for the production of propylene and co-production of a high-octane number desulfurised gasoline
    CA1219288A (en) Process and installation for the production of higher fuel through polymerisation of c-4 cuts
    WO2006067305A1 (en) Method for direct conversion of a feedstock comprising olefins with four and/or five carbon atoms, for producing propylene with co-production of gasoline
    EP2636661B1 (en) Method for converting a heavy load using a catalytic cracking unit and a step for selective hydrogenation of gasoline from catalytic cracking
    WO2012069709A2 (en) Process for converting a heavy feedstock to a middle distillate
    WO1990015121A1 (en) Process for the production of petrol with improved octane numbers
    EP1433835B1 (en) Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number
    EP0172040B1 (en) Process for the production of a high-octane hydrocarbon cut by olefin etherification
    EP1474499B1 (en) Integral method for desulphurization of a hydrocarbon cracking or steam cracking effluent
    EP0869107B1 (en) Process for the preparation of alpha olefins, tertiary olefins and/or ethers from an insaturated hydrocarbon fraction
    EP0068981B1 (en) Process for simultaneously obtaining high-purity butene-1 and a premium grade fuel from an olefinic c4 cut
    FR2520356A1 (en) Methyl tert.-butyl ether prodn. from mixed butene feed - by reacting isobutene with methanol and isomerising n-butene(s)
    EP1396532B1 (en) Process for upgrading of a hydrocarbon feedstock and reducing the vapour pressure of said charge
    WO2012153011A2 (en) Method for the production of diesel or kerosene cuts from an olefin feed mainly having between 4 and 6 carbon atoms
    FR2885137A1 (en) PROCESS FOR THE DESULFURATION OF OLEFINIC ESSENCES
    EP0589112B1 (en) Process for the preparation of a fraction rich in tertiary amyl methyl ether free from olefins and of a paraffinic fraction rich in n-pentane
    FR2730486A1 (en) Optimal etherification of 6C olefinic cut
    EP2597135A1 (en) Method for generating middle distillates from a conventional heavy feedstock including a step of selective hydrogenation of the HCO EX FCC cut
    FR2730501A1 (en) IC engine fuel contg. octane index improvers
    FR2730487A1 (en) Optimal etherification of 6C olefinic cut

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: BRIOT, PATRICK

    Inventor name: FORSTIERE, ALAIN

    Inventor name: LLIDO, ERIC

    Inventor name: COUPARD, VINCENT

    17P Request for examination filed

    Effective date: 20041230

    AKX Designation fees paid

    Designated state(s): DE ES GB IT NL

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: COUPARD, VINCENT

    Inventor name: BRIOT, PATRICK

    Inventor name: LLIDO, ERIC

    Inventor name: FORESTIERE, ALAIN

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT NL

    REF Corresponds to:

    Ref document number: 60329065

    Country of ref document: DE

    Date of ref document: 20091015

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2330513

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20100603

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60329065

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

    Effective date: 20110331

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60329065

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

    Effective date: 20110331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20171220

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20171221

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20180117

    Year of fee payment: 15

    Ref country code: DE

    Payment date: 20171229

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20171229

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60329065

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20190101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20181203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190702

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181203

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20200131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181204