EP1432851A1 - Method for the coating of electrically conducting support materials - Google Patents

Method for the coating of electrically conducting support materials

Info

Publication number
EP1432851A1
EP1432851A1 EP02798743A EP02798743A EP1432851A1 EP 1432851 A1 EP1432851 A1 EP 1432851A1 EP 02798743 A EP02798743 A EP 02798743A EP 02798743 A EP02798743 A EP 02798743A EP 1432851 A1 EP1432851 A1 EP 1432851A1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic layer
ceramic
coating
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02798743A
Other languages
German (de)
French (fr)
Inventor
Heinrich Kern
Horst Günter KRÜGER
Uwe Schindler
Andreas Knote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Ilmenau
Original Assignee
Technische Universitaet Ilmenau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10240291A external-priority patent/DE10240291A1/en
Application filed by Technische Universitaet Ilmenau filed Critical Technische Universitaet Ilmenau
Publication of EP1432851A1 publication Critical patent/EP1432851A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to a method for coating electrically conductive carrier materials with a composite layer, in which electrophoretic and galvanic deposition are combined.
  • Electrophoretic processes for the application of layers e.g. B. electrophoretic dip painting, for which a number of patents have been registered.
  • the German patents DE 43 30 002 CI describe a process for painting metallic substrates or DE 41 42 997 CI describes a device for electrophoretic dip painting.
  • European Patent EP 0 381 179 describes the deposition of a ceramic protective layer on precious metals with the aim of reducing the loss of material in high-temperature applications.
  • Another European patent EP 0 204 339 includes the application of a glass / ceramic layer to a metal base body in order to improve the wear resistance of the component.
  • the material composition of the layer (or, in the case of multi-layer coating, the material composition of a layer) is formed in one process step.
  • No. 5,925,228 describes a method for sealing a porous coating on an electrically conductive substrate.
  • ceramic precursor components are deposited electrophoretically on the coating, whereupon the coating is heated in order to cause a chemical reaction to form the ceramic integrated in the coating.
  • the sealing layer produced consists of a single material - namely ceramic, so that the properties of this layer are determined by this ceramic layer. It is not possible to advantageously combine the properties of several materials or groups of materials.
  • the object of the invention is to produce a layer on carrier materials over several process steps, which layer consists of different substances with different properties and thus represents a composite, the resulting properties of which can be adapted to the respective requirements of the coating or sealing tasks.
  • an electrically conductive base body preferably made of metal, is immersed in a dispersion with ceramic particles and is electrophoretically coated by switching on an electric field.
  • the dispersion is composed of the dispersion medium, the powder and additives that enhance the electrophoretic effect and ensure the green strength of the layer necessary for handling.
  • Oxides such as Ti0 2 , Si0 2 , A1 2 0 3 , Zr0 2 , but also other non-metallic-inorganic compounds with grain sizes preferably ⁇ 1 ⁇ m are used as powders.
  • the organic constituents are baked out in a second process step and the particles are sintered at the grain boundaries to such an extent that a skeleton body with an open porosity of 30 to 60 percent by volume and a uniform pore structure in the submicron range is formed.
  • the temperature treatment is carried out in a vacuum or under protective gas.
  • the open porosity is filled with metal, polymer or non-metallic-inorganic materials. Electroplating is used as the preferred method for metals. Immersion infiltration, possibly with vacuum support, is suitable for filling with polymers, and the sol-gel technique can be used advantageously for non-metallic-inorganic materials, possibly in conjunction with electrophoresis.
  • measures to improve layer adhesion are carried out.
  • thermal treatment is recommended in which a cohesive connection of the layer to the substrate is achieved by means of diffusion processes. This ensures very good substrate adhesion of the composite layer to the substrate.
  • the layer is also characterized by a high damage tolerance to mechanical stress. If other filler materials are used, the layer adhesion can also be improved by multiple infiltration alternating with thermal processes.
  • this composite material over the prior art is that two or more different materials or groups of materials, for example metal and ceramic, are present side by side within a layer.
  • each component in itself represents a separate coherent layer, the porosity of which is filled up by the other component.
  • This penetration of two layers means that the components are changed over submicron dimensions.
  • the result is a new material that combines the properties of both components that connects, e.g. B. the high hardness and wear resistance of the ceramic with the ductility of the metals.
  • a dispersion is first prepared in step 1, which contains ethanol, water, stabilized Zr0 2 powder with a primary grain size of 40 nm and 4-hydroxybenzoic acid as essential components.
  • step 1 contains ethanol, water, stabilized Zr0 2 powder with a primary grain size of 40 nm and 4-hydroxybenzoic acid as essential components.
  • these should be processed in a dissolver or with the help of ultrasound.
  • the surface of the steel substrate must be cleaned with a degreasing agent before coating.
  • the actual coating of the components takes place in four essential process stages.
  • the steel part In the first stage of the process, the steel part is immersed in the dispersion after cleaning in step 2 and is electrophoretically coated with the ceramic particles in step 3 by switching on an electrical direct field.
  • the component is removed from the dispersion and air-dried in step 4.
  • the applied layer is thermally fixed.
  • the organic components are heated in step 5 and the surfaces of the particles are sintered until a stable ceramic matrix with an open porosity of approximately 50 percent by volume is formed. Due to the low oxidation resistance of steel, sintering takes place in a vacuum or under a protective gas.
  • the open porosity is galvanically filled with metal in step 6.
  • Filling with nickel has proven particularly good, to which other metals can be added to form special properties.
  • an annealing treatment takes place in step 7, with which the adhesive strength of the layer to the steel is improved.
  • the good solubility of nickel in iron is used here, which leads to the formation of a diffusion layer and thus to the formation of chemical bonds between the applied layer and the substrate.
  • the layers achieved in this way represent a metal-ceramic composite in which metal and ceramic alternate at submicron-sized intervals.

Abstract

The aim of the invention is to produce a composite material layer with several method steps and combines the advantageous material properties of the applied materials. Said aim is achieved, by the application of the method steps of electrophoretic coating, sintering, galvanic filling of the layer pores with metal and subsequent annealing to bind the layers to the support material. Said material composite layers are applied for protection against corrosion and wear amongst others, preferably to metallic conducting support materials.

Description

Verfahren zur Beschichtung von elektrisch leitfähigen Process for coating electrically conductive
TrägerwerkstoffenSupport materials
Die Erfindung betrifft ein Verfahren zur Beschichtung von elektrisch leitfähigen Trägerwerkstoffen mit einer Stoffverbundschicht, bei welchem elektrophoretische und galvanische Abscheidung miteinander kombiniert werden.The invention relates to a method for coating electrically conductive carrier materials with a composite layer, in which electrophoretic and galvanic deposition are combined.
Es ist bekannt, dass insbesondere metallische Werkstoffe zum Schutz gegen Korrosion, Verschleiß oder aus ästhetischen Gründen beschichtet werden. Hierfür gibt es je nach Art und Funktion der Schicht die unterschiedlichsten Verfahren, bspw. Lackieren, Plasmabeschichten, Galvanisieren.It is known that in particular metallic materials are coated to protect against corrosion, wear or for aesthetic reasons. Depending on the type and function of the layer, there are various methods for this, for example painting, plasma coating, galvanizing.
Bekannt sind auch elektrophoretische Verfahren für das Auftragen von Schichten, z. B. das elektrophoretische Tauchlackieren, für das eine ganze Reihe von Patenten angemeldet wurde. So werden in den deutschen Patenten DE 43 30 002 CI ein Verfahren zur Lackierung von metallischen Substraten oder in DE 41 42 997 CI eine Vorrichtung zum elektrophoretischen Tauchlackieren beschrieben.Electrophoretic processes for the application of layers, e.g. B. electrophoretic dip painting, for which a number of patents have been registered. Thus, the German patents DE 43 30 002 CI describe a process for painting metallic substrates or DE 41 42 997 CI describes a device for electrophoretic dip painting.
Stand der Technik ist auch die Anwendung der Elektrophorese für die Herstellung keramischer Schichten auf metallischen Werkstoffen. So beschreibt das europäische Patent EP 0 381 179 die Abscheidung einer keramischen Schutzschicht auf Edelmetallen, mit dem Ziel, den Materialverlust bei Anwendungen im Hochtemperaturbereich zu verringern. Ein anderes europäisches Patent EP 0 204 339 beinhaltet das Auftragen einer Glas/Keramik- Schicht auf einen Metallgrundkörper, um den Verschleißwiderstand des Bauteils zu verbessern.State of the art is also the use of electrophoresis for the production of ceramic layers on metallic materials. For example, European Patent EP 0 381 179 describes the deposition of a ceramic protective layer on precious metals with the aim of reducing the loss of material in high-temperature applications. Another European patent EP 0 204 339 includes the application of a glass / ceramic layer to a metal base body in order to improve the wear resistance of the component.
Auch die Realisierung von Mehrfachbeschichtungen ist bekannt. So beschreiben das Patent US 5,741,596 die Herstellung einer dreilagigen OxydationsSchutzschicht und das Patent JP 06 287 798 A eine mehrlagige Oberflächenbeschichtung auf einer Magnesiumlegierung.The realization of multiple coatings is also known. For example, US Pat. No. 5,741,596 describes the production of a three-layer protective layer against oxidation and JP 06 287 798 A describes a multi-layer surface coating on a magnesium alloy.
Für alle diese BeSchichtungen ist charakteristisch, dass die stoffliche Zusammensetzung der Schicht (oder bei Mehrlagenbe- schichtung, die stoffliche Zusammensetzung einer Lage) in einem Verfahrensschritt gebildet wird.It is characteristic of all of these coatings that the material composition of the layer (or, in the case of multi-layer coating, the material composition of a layer) is formed in one process step.
In der US 5,925,228 ist ein Verfahren zur Versiegelung einer porösen Beschichtung eines elektrisch leitfähigen Substrats angegeben. Dazu werden keramische Vorläuferkomponenten elektrophoretisch auf der Beschichtung abgelagert, woraufhin die Beschichtung erwärmt wird, um eine chemische Reaktion zur Ausbildung der in die Beschichtung eingebundenen Keramik hervorzurufen. Auch bei diesem Verfahren besteht die erzeugte Versiegelungsschicht aus einem einzigen Material - nämlich Keramik, so dass die Eigenschaften dieser Schicht von dieser Keramikschicht bestimmt werden. Es ist nicht möglich, die Eigenschaften mehrerer Materialien bzw. Materialgruppen vorteilhaft miteinander zu kombinieren. Die Aufgabe der Erfindung besteht demgegenüber darin, über mehrere Verfahrensschritte eine Schicht auf Trägerwerkstoffen zu erzeugen, die aus verschiedenen Stoffen mit unterschiedlichen Eigenschaften besteht und somit einen Stoffverbund darstellt, dessen resultierende Eigenschaften an die jeweiligen Anforderungen der Beschichtungs- bzw. Versiegelungsaufgaben angepasst sein können.No. 5,925,228 describes a method for sealing a porous coating on an electrically conductive substrate. For this purpose, ceramic precursor components are deposited electrophoretically on the coating, whereupon the coating is heated in order to cause a chemical reaction to form the ceramic integrated in the coating. In this method, too, the sealing layer produced consists of a single material - namely ceramic, so that the properties of this layer are determined by this ceramic layer. It is not possible to advantageously combine the properties of several materials or groups of materials. In contrast, the object of the invention is to produce a layer on carrier materials over several process steps, which layer consists of different substances with different properties and thus represents a composite, the resulting properties of which can be adapted to the respective requirements of the coating or sealing tasks.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass in einem ersten Verfahrensschritt ein elektrisch leitfähiger Grundkörper, vorzugsweise aus Metall, in eine Dispersion mit keramischen Partikeln getaucht und durch Zuschalten eines elektrischen Feldes elektrophoretisch beschichtet wird.According to the invention, the object is achieved in that, in a first method step, an electrically conductive base body, preferably made of metal, is immersed in a dispersion with ceramic particles and is electrophoretically coated by switching on an electric field.
Die Dispersion setzt sich zusammen aus dem Dispergiermedium, dem Pulver sowie Zusätzen, die den elektrophoretischen Effekt verstärken und die für das Handling notwendige Grünfestigkeit der Schicht sichern. Als Pulver werden Oxide, wie Ti02, Si02, A1203, Zr02, aber auch andere nichtmetallisch-anorganische Verbindungen mit Korngrößen vorzugsweise < 1 μm eingesetzt.The dispersion is composed of the dispersion medium, the powder and additives that enhance the electrophoretic effect and ensure the green strength of the layer necessary for handling. Oxides such as Ti0 2 , Si0 2 , A1 2 0 3 , Zr0 2 , but also other non-metallic-inorganic compounds with grain sizes preferably <1 μm are used as powders.
Nach dem Trocknen der Schicht an der Luft werden in einem zweiten Verfahrensschritt die organischen Bestandteile ausgeheizt und die Teilchen an den Korngrenzen soweit versintert, dass ein Skelettkörper mit einer offenen Porosität von 30 bis 60 Volumenprozent und einem gleichmäßigen Porengefüge im Submikrometerbereich entsteht. Bei oxydationsempfindlichen Unterlagen erfolgt die Temperaturbehandlung im Vakuum oder unter Schutzgas. In einem dritten Verfahrensschritt erfolgt das Auffüllen der offenen Porosität mit Metall, Polymer oder nichtmetallisch- anorganischen Materialien. Als bevorzugtes Verfahren kommt bei Metallen die Galvanotechnik zum Einsatz. Für die Auffül- lung mit Polymeren eignet sich die Tauchinfiltration, ggf. mit Vakuumunterstützung, und bei nichtmetallisch-anorganischen Materialien lässt sich die Sol-Gel-Technik vorteilhaft einsetzen, ggf. in Verbindung mit der Elektrophorese.After drying the layer in air, the organic constituents are baked out in a second process step and the particles are sintered at the grain boundaries to such an extent that a skeleton body with an open porosity of 30 to 60 percent by volume and a uniform pore structure in the submicron range is formed. In the case of substrates sensitive to oxidation, the temperature treatment is carried out in a vacuum or under protective gas. In a third process step, the open porosity is filled with metal, polymer or non-metallic-inorganic materials. Electroplating is used as the preferred method for metals. Immersion infiltration, possibly with vacuum support, is suitable for filling with polymers, and the sol-gel technique can be used advantageously for non-metallic-inorganic materials, possibly in conjunction with electrophoresis.
In einem weiteren Verfahrensschritt werden Maßnahmen zur Verbesserung der Schichthaftung durchgeführt. So empfiehlt sich bei den galvanisch verfüllten Keramik-Metall-Kompositschichten eine thermische Behandlung, bei der eine Stoff- schlüssige Anbindung der Schicht an das Substrat durch Diffu- sionsprozesse erreicht wird. Dadurch ist eine sehr gute Substrathaftung der KompositSchicht an das Substrat gewährleistet . Die Schicht zeichnet sich außerdem durch eine hohe Schadenstoleranz gegenüber mechanischer Beanspruchung aus. Bei der Verwendung anderer Auffüllmaterialien kann die Schichthaftung auch durch Mehrfachinfiltration im Wechsel mit thermischen Prozessen verbessert werden.In a further process step, measures to improve layer adhesion are carried out. In the case of the galvanically filled ceramic-metal composite layers, thermal treatment is recommended in which a cohesive connection of the layer to the substrate is achieved by means of diffusion processes. This ensures very good substrate adhesion of the composite layer to the substrate. The layer is also characterized by a high damage tolerance to mechanical stress. If other filler materials are used, the layer adhesion can also be improved by multiple infiltration alternating with thermal processes.
Der Vorteil dieses StoffVerbundes gegenüber dem Stand der Technik besteht darin, dass innerhalb einer Schicht zwei oder mehrere verschiedene Materialien bzw. Materialgruppen, bspw. Metall und Keramik, nebeneinander vorliegen. Jede Komponente für sich stellt bei diesem Schichtwerkstoff quasi eine eigenständige zusammenhängende Schicht dar, deren Porosität durch die andere Komponente aufgefüllt ist. Diese Durchdringung zweier Schichten bedeutet einen Wechsel der Komponenten über submikrometergroße Abmessungen. Es ergibt sich ein neuer Werkstoff, der die Eigenschaften beider Komponenten miteinan- der verbindet, z. B. die hohe Härte und Verschleißfestigkeit der Keramik mit der Duktilität der Metalle.The advantage of this composite material over the prior art is that two or more different materials or groups of materials, for example metal and ceramic, are present side by side within a layer. With this layered material, each component in itself represents a separate coherent layer, the porosity of which is filled up by the other component. This penetration of two layers means that the components are changed over submicron dimensions. The result is a new material that combines the properties of both components that connects, e.g. B. the high hardness and wear resistance of the ceramic with the ductility of the metals.
Merkmale und Einzelheiten des erfindungsgemäßen Verfahrens ergeben sich aus der nachstehenden Beschreibung eines Ausführungsbeispieles unter Bezugnahmen auf die beigefügte Fig. 1.Features and details of the method according to the invention result from the following description of an exemplary embodiment with reference to the attached FIG. 1.
Für die Herstellung von Keramik-Metall-Verbundschichten auf Stahl wird zunächst im Schritt 1 eine Dispersion hergestellt, die Ethanol, Wasser, stabilisiertes Zr02-Pulver mit einer Primärkorngröße von 40 nm sowie 4-Hydroxybenzoesäure als wesentliche Bestandteile enthält. Damit eine homogene Vertei- lung von Individualpartikeln in der Dispersion erreicht wird, sollten diese in einem Dissolver oder unter Zuhilfenahme von Ultraschall aufbereitet werden. Die Oberfläche des Stahlsubstrates ist vor der Beschichtung mit einem Entfettungsmittel zu reinigen.For the production of ceramic-metal composite layers on steel, a dispersion is first prepared in step 1, which contains ethanol, water, stabilized Zr0 2 powder with a primary grain size of 40 nm and 4-hydroxybenzoic acid as essential components. In order to achieve a homogeneous distribution of individual particles in the dispersion, these should be processed in a dissolver or with the help of ultrasound. The surface of the steel substrate must be cleaned with a degreasing agent before coating.
Die eigentliche Beschichtung der Bauteile erfolgt in vier wesentlichen Verfahrensabschnitten. Im ersten Verfahrensabschnitt wird das Stahlteil nach einer Reinigung im Schritt 2 in die Dispersion eingetaucht und durch Zuschalten eines elektrischen Gleichfeldes elektrophoretisch im Schritt 3 mit den keramischen Partikeln beschichtet.The actual coating of the components takes place in four essential process stages. In the first stage of the process, the steel part is immersed in the dispersion after cleaning in step 2 and is electrophoretically coated with the ceramic particles in step 3 by switching on an electrical direct field.
Nachdem die gewünschte Schichtdicke erreicht ist, wird das Bauteil aus der Dispersion entnommen und im Schritt 4 an der Luft getrocknet. Im zweiten Verfahrensabschnitt wird die aufgebrachte Schicht thermisch fixiert. Dazu werden im Schritt 5 die organischen Bestandteile ausgeheizt und die Oberflächen der Teilchen soweit versintert, bis eine stabile Keramikmatrix mit einer offenen Porosität von ca. 50 Volumenprozent entsteht. Wegen der geringen Oxydationsbeständigkeit von Stahl erfolgt das Sintern im Vakuum oder unter Schutzgas.After the desired layer thickness has been reached, the component is removed from the dispersion and air-dried in step 4. In the second stage of the process, the applied layer is thermally fixed. For this purpose, the organic components are heated in step 5 and the surfaces of the particles are sintered until a stable ceramic matrix with an open porosity of approximately 50 percent by volume is formed. Due to the low oxidation resistance of steel, sintering takes place in a vacuum or under a protective gas.
Im dritten Verfahrensabschnitt wird die offene Porosität im Schritt 6 galvanisch mit Metall aufgefüllt. Besonders gut bewährt hat sich das Auffüllen mit Nickel, dem weitere Metalle zur Ausbildung spezieller Eigenschaften zugesetzt sein können. Nach dem galvanischen Prozess erfolgt im Schritt 7 eine Glühbehandlung, mit der die Haftfestigkeit der Schicht zum Stahl verbessert wird. Genutzt wird hierbei die gute Löslichkeit des Nickels im Eisen, die zur Ausbildung einer Diffusionsschicht und damit zur Ausbildung von chemischen Bindungen zwischen aufgebrachter Schicht und Substrat führt.In the third stage of the process, the open porosity is galvanically filled with metal in step 6. Filling with nickel has proven particularly good, to which other metals can be added to form special properties. After the galvanic process, an annealing treatment takes place in step 7, with which the adhesive strength of the layer to the steel is improved. The good solubility of nickel in iron is used here, which leads to the formation of a diffusion layer and thus to the formation of chemical bonds between the applied layer and the substrate.
Die so erzielten Schichten stellen einen Metall-Keramik- Verbund dar, bei dem Metall und Keramik in submikrometergro- ßen Abständen wechseln. The layers achieved in this way represent a metal-ceramic composite in which metal and ceramic alternate at submicron-sized intervals.

Claims

Patentansprüche claims
1. Verfahren zur Beschichtung von elektrisch leitfähigen Trägerwerkstoffen mit Keramik-Metall-Verbundschichten, die folgenden Schritte umfassend:1. A method for coating electrically conductive carrier materials with ceramic-metal composite layers, comprising the following steps:
• elektrophoretische Abscheidung (3) einer keramischen Schicht auf dem elektrisch leitfähigen Trägerwerkstoff;• electrophoretic deposition (3) of a ceramic layer on the electrically conductive carrier material;
• thermisches Verfestigen (5) der keramischen Schicht, so dass eine offene Porosität von 30 bis 60 Volumenprozent verbleibt;• thermal solidification (5) of the ceramic layer, so that an open porosity of 30 to 60 percent by volume remains;
• Auffüllen (6) der porösen keramischen Schicht mit einer metallischen Komponente;• Filling (6) of the porous ceramic layer with a metallic component;
• Wärmebehandlung (7) der resultierenden Metall-Keramik- Verbundschicht , zur stoffschlüssigen Verbindung der Verbundschicht mit dem Trägerwerkstoff.• Heat treatment (7) of the resulting metal-ceramic composite layer, for the integral connection of the composite layer with the carrier material.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass für die Abscheidung (3) der keramischen Schicht nichtmetallisch-anorganische Partikel mit Korngrößen < 1 μm verwendet werden.2. The method according to claim 1, characterized in that non-metallic-inorganic particles with grain sizes <1 μm are used for the deposition (3) of the ceramic layer.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass das Auffüllen (6) der porösen keramischen Schicht mit der metallischen Komponente durch elektrochemische oder galvanotechnische Verfahren erfolgt .3. The method according to claim 1 or 2, characterized in that the filling (6) of the porous ceramic layer with the metallic component is carried out by electrochemical or electroplating processes.
4. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekenn- zeichnet, dass die Wärmebehandlung (7) zur Verbindung der4. The method according to any one of claims 1 to 3, characterized in that the heat treatment (7) for connecting the
Verbundschicht mit dem Trägerwerkstoff als Glühbehandlung ausgeführt wird, um eine Diffusion der Metallkomponente in das Trägersubstrat zu erzielen. Composite layer with the carrier material is carried out as an annealing treatment in order to achieve diffusion of the metal component into the carrier substrate.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass vor dem thermischen Verfestigen (5) die ausgebildete keramische Schicht an der Luft getrocknet wird (4) .5. The method according to any one of claims 1 to 4, characterized in that before the thermal solidification (5), the ceramic layer formed is dried in air (4).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor der elektrophoretisehen Abscheidung (3) der keramischen Schicht der Trägerwerkstoff gereinigt und entfettet wird (2) .6. The method according to any one of claims 1 to 5, characterized in that before the electrophoretic deposition (3) of the ceramic layer, the carrier material is cleaned and degreased (2).
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass für die elektrophoretische Abscheidung (3) eine Dispersion aus dem Dispergiermedium, Pulver sowie den elektrophoretischen Effekt verstärkenden Zusätzen verwendet wird. 7. The method according to any one of claims 1 to 6, characterized in that for the electrophoretic deposition (3) a dispersion of the dispersing medium, powder and additives which enhance the electrophoretic effect is used.
EP02798743A 2001-09-20 2002-09-19 Method for the coating of electrically conducting support materials Withdrawn EP1432851A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10146341 2001-09-20
DE10146341 2001-09-20
DE10240291A DE10240291A1 (en) 2001-09-20 2002-08-31 Process for coating electrically conductive substrates
DE10240291 2002-08-31
PCT/EP2002/010535 WO2003025258A1 (en) 2001-09-20 2002-09-19 Method for the coating of electrically conducting support materials

Publications (1)

Publication Number Publication Date
EP1432851A1 true EP1432851A1 (en) 2004-06-30

Family

ID=26010187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02798743A Withdrawn EP1432851A1 (en) 2001-09-20 2002-09-19 Method for the coating of electrically conducting support materials

Country Status (2)

Country Link
EP (1) EP1432851A1 (en)
WO (1) WO2003025258A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071141A1 (en) * 2004-01-22 2005-08-04 The University Of Manchester Ceramic coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148204A (en) * 1971-05-07 1979-04-10 Siemens Aktiengesellschaft Process of mechanically shaping metal articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1914317A1 (en) * 1968-03-21 1970-10-08 Trw Inc Process for the production of a semi-finished product designed as a composite
FR2638781B1 (en) * 1988-11-09 1990-12-21 Snecma ELECTROPHORETIC ANTI-WEAR DEPOSITION OF THE CONSOLIDATED METALLOCERAMIC TYPE BY ELECTROLYTIC NICKELING
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US5338433A (en) * 1993-06-17 1994-08-16 Mcdonnell Douglas Corporation Chromium alloy electrodeposition and surface fixation of calcium phosphate ceramics
US6059949A (en) * 1997-04-23 2000-05-09 Cerel (Ceramic Technologies) Ltd. Method of electrophoretic deposition of ceramic bodies for use in manufacturing dental appliances
JP2942823B1 (en) * 1998-02-27 1999-08-30 工業技術院長 Ceramic-metal composite and method and apparatus for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148204A (en) * 1971-05-07 1979-04-10 Siemens Aktiengesellschaft Process of mechanically shaping metal articles

Also Published As

Publication number Publication date
WO2003025258A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
EP0609795B1 (en) Ceramic insulation layer on metallic piece parts and method of manufacture
DE69531552T2 (en) PROTECTION COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
EP1383940B1 (en) Functional ceramic layers based on a support layer produced with crystalline nanoparticles
EP1624081B1 (en) Aluminium alloy for tribologically stressed surfaces
DE112006002987T5 (en) Aluminum alloy element with excellent corrosion resistance
EP0219536A1 (en) Protection layer.
EP3351290B1 (en) Electric feedthrough with contact element and method of manufacturing
DE202018103830U1 (en) Carbon layer coating structure for a product
DE102014109321A1 (en) Method for producing a bipolar plate, bipolar plate for an electrochemical cell and electrochemical cell
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
EP0798402B1 (en) Layer for protection against oxydation
DE112017004063T5 (en) Process for producing a thick coating with a layered structure
DE102013218687A1 (en) Galvanized wear protection coating and method therefor
DE10200803A1 (en) Production of a ceramic material for a thermal insulation layer and a thermal insulation layer containing the material
EP1432851A1 (en) Method for the coating of electrically conducting support materials
DE10159890A1 (en) Pretreatment process for coating aluminum materials
DE3602104A1 (en) Slide or friction element with functional part of ceramic material and process for its production
DE102011003977A1 (en) Protective coating especially for aerospace components and their manufacture
DE102015116916A1 (en) Coating, coating system and coating process
WO2015165662A1 (en) Cmas-resistant ceramic layer resulting from nanoporosity
DE10240291A1 (en) Process for coating electrically conductive substrates
DE2313104C3 (en) Process for applying a firmly adhering layer of non-metallic substances to an electrically conductive base
DE102009015176B4 (en) Process for producing open-pore metal foam bodies
DE102011089131A1 (en) Diffusion coating process and chromium layer made therewith
EP0349925A1 (en) Process for coating substrates made of high melting metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20060410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20061213