EP1432523A1 - Improvements relating to coating processes and carriers - Google Patents

Improvements relating to coating processes and carriers

Info

Publication number
EP1432523A1
EP1432523A1 EP02767680A EP02767680A EP1432523A1 EP 1432523 A1 EP1432523 A1 EP 1432523A1 EP 02767680 A EP02767680 A EP 02767680A EP 02767680 A EP02767680 A EP 02767680A EP 1432523 A1 EP1432523 A1 EP 1432523A1
Authority
EP
European Patent Office
Prior art keywords
carrier
support member
support members
carrier according
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02767680A
Other languages
German (de)
French (fr)
Inventor
Peter John Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Protective Finishing Group Ltd
Original Assignee
Protective Finishing Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0123650A external-priority patent/GB2380436B/en
Application filed by Protective Finishing Group Ltd filed Critical Protective Finishing Group Ltd
Publication of EP1432523A1 publication Critical patent/EP1432523A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/082Plant for applying liquids or other fluent materials to objects characterised by means for supporting, holding or conveying the objects
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • C25D17/08Supporting racks, i.e. not for suspending

Definitions

  • This invention relates, in general terms, to industrial processes for coating electrically conductive articles, wherein the articles are engaged with an electrically conductive support member, and are given, via the support member, an electric charge prior to being brought into contact with coating (e.g. paint) particles having an opposite electric charge.
  • coating e.g. paint
  • Such processes include electro-plating, powder-coating and electro-coating, and will henceforth be referred to generically, for the sake of convenience, as coating processes "of the kind specified".
  • a carrier for use in a coating process of the kind specified, the carrier being generally elongate and having a plurality of support members which, in use, support articles during the coating process, the support members each having an opening leading to a recess, the recess extending from the opening in a direction generally parallel to a longitudinal axis of the carrier.
  • the carrier preferably lies within a plane, with the support members conveniently lying in, or close to, the plane.
  • the carrier may be generally planar, and may be formed from sheet or sheet-like material. Preferably, the carrier is formed from sheet metal.
  • the support members may also be formed from sheet or sheet-like material, with the support members conveniently being integral with the carrier.
  • the carrier and support members may be formed using a laser cutting operation, conveniently from a single sheet.
  • the carrier and support members may lie within or close to a single plane.
  • the carrier may comprise a strengthening element to resist bending, the strengthening element conveniently comprising a lip or flange.
  • the strengthening element may comprise a deformed edge part of the carrier, and may be generally parallel to the longitudinal axis of the carrier.
  • the carrier may further comprise barriers disposed in relation to each of said plurality of support members to hinder removal or disengagement of articles therefrom.
  • the barriers may be provided by connecting limbs of the support members.
  • the connecting limbs may extend away from the carrier at an acute angle to the longitudinal axis.
  • the connecting limbs may be generally in-line with the openings of the support members.
  • the connecting limb of a support member may be located adjacent or close to the opening of a neighbouring support member.
  • Said connecting limb may be generally elongate and may lie generally parallel to the opening.
  • the connecting limbs may extend partly into the openings of neighbouring support members.
  • Distal ends of the support members may be disposed, when the axis of the carrier is generally horizontal, beneath part of a neighbouring connecting limb.
  • the connecting limbs may provide a guide surface for use during engagement or disengagement of articles with or from the support members.
  • the carrier and support members may be formed from stainless steel sheet.
  • the method may further comprise defo ⁇ ning an edge part of the carrier to provide a strengthening element.
  • the method may comprise the initial steps of designing a profile and conveying the profile, in machine-readable format, to a laser cutter.
  • the profile may be designed using a CAD package, conveyed electronically using DXF (Digital Exchange Format) and read by the laser cutter using the or a further CAD package.
  • DXF Digital Exchange Format
  • the invention also provides a rack for use in a coating process of the kind specified, comprising a plurality of carriers and support members substantially in accordance with one or more of the preceding paragraphs.
  • a method of removing surface coating material from a support member on a coating rack comprising engaging an article to be coated with a support part of the support member and vibrating the support member to induce movement of the article relative to the support member which is effective to abrade the surface coating, characterised in that the support member is attached to or integral with a carrier, the support member having a connecting limb, part of the connecting limb serving as a barrier to hinder disengagement of an article engaged with a neighbouring support member.
  • a distal end of a support member may be disposed beneath part of a neighbouring connecting limb during the vibration stage.
  • a support member for use in supporting an article during a coating process of the kind specified, the support member having a stop formation to hinder swinging movement of the article supported thereby.
  • the stop formation may be attached to or integral with a free end of the support member.
  • the stop formation comprises a protrusion extending from the free end.
  • the free end is generally “V” or “U”-shaped, with the stop formation conveniently extending from the apex of the "V” or "TJ".
  • the extension depends from the support member.
  • the stop formation may be operative, in use, to hinder suspension of the article from the support member.
  • the support member may have a support part which, in use, is in electrical contact with the article, the stop formation being operative to contact the article at a position remote from a vertical plane in which the electrical contact point is contained.
  • the stop formation may be operative, in use, to cause at least part of the article to be inclined to the vertical.
  • the invention also provides a carrier having a plurality of support members associated therewith, the support members being in accordance with the fourth aspect of the present invention.
  • the invention provides a rack for use in a coating process of the kind specified, comprising a plurality of carriers in accordance with the preceding paragraph.
  • a rack for use in a coating process of the kind specified comprising a plurality of carriers in accordance with the preceding paragraph.
  • a method of unloading a carrier in accordance with one or more of the preceding paragraphs comprising tilting the carrier towards a generally vertical axis such that the articles may fall therefrom.
  • FIGURE 1 is a plan view of a carrier and support members
  • FIGURE 2 is a plan view of part of a slightly modified carrier and support members
  • FIGURE 3 is a section along the line III-III of FIGURE 2;
  • FIGURE 4 is a perspective view of an electro-coating rack suspended from a conveyor
  • FIGURE 5 shows a carrier suspension unit
  • FIGURE 6 is a plan view of a preferred form of carrier and support members with a schematic illustration of articles supported thereby;
  • FIGURE 7A shows a preliminary unloading step
  • FIGURE 7B shows a later stage in the unloading process, with the articles being shown falling from the support members
  • FIGURE 8 shows, in side view, apparatus to impart vibrations to the carriers.
  • Figure 1 shows part of a generally elongate carrier 10 having a body 11 and a plurality of integral support members 12.
  • Each support member 12 has a somewhat hook-like configuration, in that a connecting limb 13, extending from the body 11 of the carrier 10 terminates in an upturned distal end 14. Openings 15 lead to a plurality of recesses 16, with the bottom of the "V" configuration 17 serving as a support part for suspending articles, in generally
  • Both the carrier 10 and the support members 13 are cut, using laser cutting apparatus, from stainless steel sheet material, with the accuracy of the laser cutting process allowing a very precise configuration to be arrived at.
  • the acute angle at which the connecting limbs lie, in relation to the principal longitudinal axis of the carrier provides a guide surface 18 over which part of an article to be coated can travel, as the article is engaged or disengaged from the support members.
  • the angle and relative positioning of the connecting limbs in relation to the distal ends 14 means that those parts of the limbs 19 that face towards the recesses 16 can act as barriers which hinder removal or disengagement of articles from the support members.
  • the washer 20 (shown in dotted outline) which, it will be appreciated, can only be removed by tilting it somewhat in a clockwise direction, prior to it being withdrawn from the support member through a gap 21 between the distal end 14 of a given support member and a lower part of a connecting limb of a neighbouring support member.
  • the generally planar nature of the carrier and support members allows articles or components to be loaded onto the carrier so that they lie generally transverse to its principal axis.
  • Figure 2 shows a somewhat similar part of a carrier and support members, although the shape of the support members is slightly different, in that the spacing of the support members is increased so as to accommodate larger articles or components.
  • the carrier of Figure 2 is provided with a strengthening element in the form of a folded/bent flange 30 which reduces the carrier's susceptibility to bending in the direction shown generally by arrow A. It will be understood that the downward forces exerted on the carrier when it is fully laden with metal components can be high, and it is thus important to ensure that no unwanted deformation of the carrier occurs, bearing in mind the close packing of carriers that can occur in an electro- coating rack - see Figure 4.
  • FIG 4 shows a generally conventional electro-coating rack assembly 40 having a plurality of carriers 10, carried at each end by a current carrying rod 41. Welded to the rods 41 are a plurality of diamond-shaped locator elements 42 which guide and receive indented notches 43 of the carriers, shown in Figures 1 and 2.
  • the electro-coating rack assembly is suspended from a conveyor 44 which transports the electro-coating rack assembly between the various conventional stages of the electro-coating process.
  • the electro-coating rack is suspended from a pair of parallel load-bearing bars 45, with the assembly 40 being held, via T-bars 46, by a hanger 47 which is moveable along the conveyor 44 in generally conventional manner. As shown, the T-bars 46 are releasably engageable with the hanger 47, thus enabling the electro-coat rack assembly 40 to be deposited and picked up at a number of different locations.
  • Figure 5 shows an improved construction of a carrier suspension unit, or hanger, which, as with the carriers and support members of Figures 1 to 3, is laser cut from a sheet metal material such as stainless steel.
  • the hanger 50 has a rear side.51 and an open front side 52 through which carriers may be introduced for location within one of the many notches 53 provided on the plurality of support bars 54.
  • the hanger 50 is introduced to the coating rack assembly as a replacement for a number of superposed bars (41) and locator elements (42) such as are shown in Figure 4.
  • the open side 52 of the hanger 50 would lie to the right of the construction shown in Figure 4, with two opposing hangers being used to provide a complete rack assembly.
  • the serrated nature of the carrier bars 54, in conjunction with the notch formation of the carriers 10, enables the carriers to be positioned readily and securely, in a more closely packed arrangement than is permitted, for example, by the conventional diamond- shaped locator elements shown in Figure 4.
  • Laser-cut metal sheet is also especially well-suited to uses in coating processes of the kind specified, as it allows profiles to be produced from relatively hard wearing materials (e.g. carbon steel) and corrosion resistant materials such as stainless steel.
  • Laser cutting also gives rise to relatively sharp kerfs which, as disclosed in the applicants' earlier applications (WOOO/54889 and GB 0108916.8) allows a greater degree of paint removal to be effected when the support members are vibrated with the components in situ.
  • effecting vibration of the support members with the components in situ causes the components to move, relative to the support members, with an inner surface of the components (defined by the apertures therein) being brought into vibratory (and hence abrading) contact with the support parts 17, with this being effective to remove any surface coating or paint material which may have built up in that region.
  • Vibration of the support members and components may be effected by a vibrating device of the type shown in Figure 8. With such a device, the amplitude and frequency of the vibration may be varied, with an appropriate amplitude and frequency being determined, at least in part, by the mass of the suspended components and the materials from which they are made.
  • the relatively sharp kerfs produced during a laser-cutting process can assist in the vibratory abrading process by penetrating through any build-up of coating material or paint, with the small surface area defined by the sharp kerfs serving to maximise the amount of vibrational energy which is transferred between the support members arid components, per unit area.
  • the increased strength provided by laser-cut materials such as carbon steel means that more forceful vibrations can be applied during such a cleaning process, as the support members are less susceptible to bending and damage, meaning, in turn, that the components are less likely to become dislodged during the vibration step.
  • the generally planar and unitary nature of the carriers and support members also reduces the likelihood of so-called "teddy bearing” - a phenomenon known in the relevant art relating the build up of paint and other undesired deposits at weld joints, seams and the like.
  • the generally flat upper surface of the limbs of the "V" - in particular, the bottom of the "V” configuration 17 - also reduces the tendency of relatively lightweight components to become dislodged by turbulent liquid flow in the electro-coating tanks. This, as will be appreciated, compromises the electrical contact between the components and the associated support members and can thus lead to unsatisfactory finishes which necessitates removal of the part- finished coating (such as by shot blasting or burning off) and a repeat of the coating operation. It will be appreciated that components having a generally circular aperture will be supported by such a generally flat profile at at least two (usually four) distinct areas, which hinders movement of the components in a direction transverse to the axis of the carrier.
  • FIG. 6 shows, in plan view, a somewhat modified carrier 60 having a body 61 and a plurality of modified integral support members 62.
  • Each support member 62 like the support members 12 shown in Figure 1, has a somewhat hook-like configuration comprising a connecting limb 63 and an upturned distal end 64.
  • the support members 62 are also provided, in this example, with a generally downwardly- depending stop formation 65 which extends away from the free end of each support member 62.
  • an abutment surface 66 is operative, when an article 70 is supported thereby, to come into contact with a surface of the article, and thus to cause the article to be inclined to the vertical.
  • the presence of the extended stop formation prevents - or at least hinders - any swinging movement that the article 70 could otherwise undergo (see Figure 1, for example) which in turn is effective to constrain the component 70 during a vibratory cleaning process of the type hereinbefore described.
  • the vibrational energy transmitted to the support member is concentrated in a reduced area, which, in turn, allows a greater degree of paint removal - at an appropriate location - to be effected when the support members are vibrated with the components in-situ.
  • a further advantage of the configuration shown in Figure 6 is that the components, when engaged with the distal ends 64 of the support members 62, undergo a "self-locking" action, in that each adopts a substantially similar orientation, which allows the number of components that can be supported per unit length of carrier, to be maximised. This is because the components, being “held” in position, are far less susceptible to movement during the electro- coating process and during handling of the carriers. It will of course also be understood that the inclusion of the stop formation, on the support member 62, can readily and inexpensively be effected during manufacture of the carrier 60, by modifying the CAD profile that the laser cutter employs.
  • FIGs 7A and 7B illustrate two positions adopted by the carriers described above, as the supported components are unloaded therefrom.
  • the planar nature of the carrier and support members allows unloading to be effected by a simple tilting operation, which causes the carrier to undergo angular movement from a generally horizontal orientation towards a generally vertical orientation.
  • this ' is effected by rotating the carriers 10/60 in a generally vertical plane, in an anticlockwise direction. Movement of this type causes the distal parts 14/64 to approach a generally horizontal orientation, subsequent to which the components 20/70 are free to slide along the upper surface of the distal limb, and then to fall from the support member, under gravity.
  • inventions shown in Figures 6, 7A and 7B also provide advantages where it is desirable to reduce the occurrence of air-locks in the supported components, as the coating process takes place.
  • the "off-vertical" orientation of the components allows open parts of the components to face generally upwardly, thus allowing air or other unwanted gases to float freely to the surface of the tank concerned.
  • FIG 8 shows, in somewhat schematic form, an embodiment of apparatus used to impart vibrations to the carriers 10 (see Figure 4) and hence to the support members 12.
  • the apparatus comprises a pair of generally U-shaped vibration transmission elements 160 which, as shown, are configured to locate beneath, but in contact with, the load bearing bars 45 of the electro-coating rack assembly 40.
  • a vibration element 161, powered electrically via a power lead 162, is disposed beneath a cover plate 163, the cover plate 163 being in vibration transmissible contact with the transmission elements 160.
  • Vibration insulating blocks 164 are provided beneath the cover plate 163 to ensure that the vibrational energy is transmitted primarily to the electro-coating rack, rather than to a support frame above which the vibration element is positioned.
  • vibration element 160 causes the electrorcoating rack assembly 40 to vibrate, thus causing relative movement to occur between the components and the support members, which in turn induces abrasion of the support members at the areas at which they are borne upon by the suspended components.
  • control means may be operative to alter the frequency and/or amplitude of the vibration, so that the vibration may be tuned in accordance with the loading of the rack.
  • timing means may be provided to enable the duration of the vibration to be selected, as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Specific Conveyance Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

A carrier (10) for use in a coating process of the kind specified, the carrier (10) being generally elongate and having a plurality of support members (12) which, in use, support articles during the coating process, the support members (12) each having an opening (15) leading to a recess (16), the recess (16) extending from the opening in a direction generally parallel to a longitudinal axis of the carrier.

Description

IMPROVEMENTS RELATING TO COATING PROCESSES AND CARRIERS
Description of Invention and Summary of the Prior Art
This invention relates, in general terms, to industrial processes for coating electrically conductive articles, wherein the articles are engaged with an electrically conductive support member, and are given, via the support member, an electric charge prior to being brought into contact with coating (e.g. paint) particles having an opposite electric charge.
Such processes, as will be appreciated by those well- versed in the relevant art, include electro-plating, powder-coating and electro-coating, and will henceforth be referred to generically, for the sake of convenience, as coating processes "of the kind specified".
A key requirement of such support members is that they are able to make good electrical contact with the articles supported thereby, with the applicants' prior International patent application (WOOO/54889) and prior British patent application (GB 0108916.8) disclosing a number of ways in which the support members can be cleaned in order to effect this.
An equally important factor to consider is the "packing density" of articles that the support members allow, as it is clearly desirable to coat as many articles during a given process run as possible. Furthermore, it is important to minimise the number of articles that become dislodged from the support members during the coating process, with it being an object of the present invention to provide a carrier that satisfies these and other requirements. Other objects of the present invention are the provision of an improved method of making a carrier and support members, the provision of an improved method of removing surface coating material from a support member, an improved support member and an improved method of unloading a carrier.
According to a first aspect of the present invention, there is provided a carrier for use in a coating process of the kind specified, the carrier being generally elongate and having a plurality of support members which, in use, support articles during the coating process, the support members each having an opening leading to a recess, the recess extending from the opening in a direction generally parallel to a longitudinal axis of the carrier.
The carrier preferably lies within a plane, with the support members conveniently lying in, or close to, the plane.
The carrier may be generally planar, and may be formed from sheet or sheet-like material. Preferably, the carrier is formed from sheet metal.
The support members may also be formed from sheet or sheet-like material, with the support members conveniently being integral with the carrier.
The carrier and support members may be formed using a laser cutting operation, conveniently from a single sheet.
Thus, the carrier and support members may lie within or close to a single plane.
The carrier may comprise a strengthening element to resist bending, the strengthening element conveniently comprising a lip or flange.
The strengthening element may comprise a deformed edge part of the carrier, and may be generally parallel to the longitudinal axis of the carrier.
The carrier may further comprise barriers disposed in relation to each of said plurality of support members to hinder removal or disengagement of articles therefrom.
The barriers may be provided by connecting limbs of the support members. The connecting limbs may extend away from the carrier at an acute angle to the longitudinal axis.
The connecting limbs may be generally in-line with the openings of the support members.
The connecting limb of a support member may be located adjacent or close to the opening of a neighbouring support member. Said connecting limb may be generally elongate and may lie generally parallel to the opening. The connecting limbs may extend partly into the openings of neighbouring support members.
Distal ends of the support members may be disposed, when the axis of the carrier is generally horizontal, beneath part of a neighbouring connecting limb.
The connecting limbs may provide a guide surface for use during engagement or disengagement of articles with or from the support members.
The carrier and support members may be formed from stainless steel sheet.
In accordance with a second aspect of the present invention, there is provided a method of making a carrier and support members for use in a coating process of . the kind specified, comprising procuring metal sheet material and laser cutting the sheet to obtain a desired profile.
The method may further comprise defoπning an edge part of the carrier to provide a strengthening element.
The method may comprise the initial steps of designing a profile and conveying the profile, in machine-readable format, to a laser cutter.
The profile may be designed using a CAD package, conveyed electronically using DXF (Digital Exchange Format) and read by the laser cutter using the or a further CAD package.
The invention also provides a rack for use in a coating process of the kind specified, comprising a plurality of carriers and support members substantially in accordance with one or more of the preceding paragraphs.
In accordance with a third aspect of the present invention, there is provided a method of removing surface coating material from a support member on a coating rack, comprising engaging an article to be coated with a support part of the support member and vibrating the support member to induce movement of the article relative to the support member which is effective to abrade the surface coating, characterised in that the support member is attached to or integral with a carrier, the support member having a connecting limb, part of the connecting limb serving as a barrier to hinder disengagement of an article engaged with a neighbouring support member.
To this end, a distal end of a support member may be disposed beneath part of a neighbouring connecting limb during the vibration stage.
In accordance with a fourth aspect of the present invention, there is provided a support member for use in supporting an article during a coating process of the kind specified, the support member having a stop formation to hinder swinging movement of the article supported thereby.
The stop formation may be attached to or integral with a free end of the support member.
Preferably, the stop formation comprises a protrusion extending from the free end. Convenientiy, the free end is generally "V" or "U"-shaped, with the stop formation conveniently extending from the apex of the "V" or "TJ".
Preferably, the extension depends from the support member.
The stop formation may be operative, in use, to hinder suspension of the article from the support member.
The support member may have a support part which, in use, is in electrical contact with the article, the stop formation being operative to contact the article at a position remote from a vertical plane in which the electrical contact point is contained.
The stop formation may be operative, in use, to cause at least part of the article to be inclined to the vertical.
The invention also provides a carrier having a plurality of support members associated therewith, the support members being in accordance with the fourth aspect of the present invention.
Furthermore, the invention provides a rack for use in a coating process of the kind specified, comprising a plurality of carriers in accordance with the preceding paragraph. In accordance with a fifth aspect of the present invention, there is provided a method of unloading a carrier in accordance with one or more of the preceding paragraphs, the method comprising tilting the carrier towards a generally vertical axis such that the articles may fall therefrom.
Specific and non-limiting embodiments of the invention, in its various aspects, will now be described in greater detail, strictly by way of example only, with reference to the accompanying drawings, of which:
FIGURE 1 is a plan view of a carrier and support members;
FIGURE 2 is a plan view of part of a slightly modified carrier and support members;
FIGURE 3 is a section along the line III-III of FIGURE 2;
FIGURE 4 is a perspective view of an electro-coating rack suspended from a conveyor;
FIGURE 5 shows a carrier suspension unit;
FIGURE 6 is a plan view of a preferred form of carrier and support members with a schematic illustration of articles supported thereby;
FIGURE 7A shows a preliminary unloading step;
FIGURE 7B shows a later stage in the unloading process, with the articles being shown falling from the support members; and
FIGURE 8 shows, in side view, apparatus to impart vibrations to the carriers.
Figure 1 shows part of a generally elongate carrier 10 having a body 11 and a plurality of integral support members 12. Each support member 12 has a somewhat hook-like configuration, in that a connecting limb 13, extending from the body 11 of the carrier 10 terminates in an upturned distal end 14. Openings 15 lead to a plurality of recesses 16, with the bottom of the "V" configuration 17 serving as a support part for suspending articles, in generally
I conventional manner. Both the carrier 10 and the support members 13 are cut, using laser cutting apparatus, from stainless steel sheet material, with the accuracy of the laser cutting process allowing a very precise configuration to be arrived at.
It will be appreciated from Figure 1 especially that the acute angle at which the connecting limbs lie, in relation to the principal longitudinal axis of the carrier, provides a guide surface 18 over which part of an article to be coated can travel, as the article is engaged or disengaged from the support members. Moreover, the angle and relative positioning of the connecting limbs in relation to the distal ends 14 means that those parts of the limbs 19 that face towards the recesses 16 can act as barriers which hinder removal or disengagement of articles from the support members. This is illustrated schematically by the washer 20 (shown in dotted outline) which, it will be appreciated, can only be removed by tilting it somewhat in a clockwise direction, prior to it being withdrawn from the support member through a gap 21 between the distal end 14 of a given support member and a lower part of a connecting limb of a neighbouring support member.
The generally planar nature of the carrier and support members allows articles or components to be loaded onto the carrier so that they lie generally transverse to its principal axis.
As will be understood, this enables far more components to be loaded onto a carrier of given length than prior art carrier/support member constructions which have the support members extending generally transversely of the axis, such as is shown in WOOO/54889, for example.
Figure 2 shows a somewhat similar part of a carrier and support members, although the shape of the support members is slightly different, in that the spacing of the support members is increased so as to accommodate larger articles or components. As shown in Figure 3, the carrier of Figure 2 is provided with a strengthening element in the form of a folded/bent flange 30 which reduces the carrier's susceptibility to bending in the direction shown generally by arrow A. It will be understood that the downward forces exerted on the carrier when it is fully laden with metal components can be high, and it is thus important to ensure that no unwanted deformation of the carrier occurs, bearing in mind the close packing of carriers that can occur in an electro- coating rack - see Figure 4.
Figure 4 shows a generally conventional electro-coating rack assembly 40 having a plurality of carriers 10, carried at each end by a current carrying rod 41. Welded to the rods 41 are a plurality of diamond-shaped locator elements 42 which guide and receive indented notches 43 of the carriers, shown in Figures 1 and 2. The electro-coating rack assembly is suspended from a conveyor 44 which transports the electro-coating rack assembly between the various conventional stages of the electro-coating process. The electro-coating rack is suspended from a pair of parallel load-bearing bars 45, with the assembly 40 being held, via T-bars 46, by a hanger 47 which is moveable along the conveyor 44 in generally conventional manner. As shown, the T-bars 46 are releasably engageable with the hanger 47, thus enabling the electro-coat rack assembly 40 to be deposited and picked up at a number of different locations.
Figure 5 shows an improved construction of a carrier suspension unit, or hanger, which, as with the carriers and support members of Figures 1 to 3, is laser cut from a sheet metal material such as stainless steel.
The hanger 50 has a rear side.51 and an open front side 52 through which carriers may be introduced for location within one of the many notches 53 provided on the plurality of support bars 54. In use, the hanger 50 is introduced to the coating rack assembly as a replacement for a number of superposed bars (41) and locator elements (42) such as are shown in Figure 4. Thus, the open side 52 of the hanger 50 would lie to the right of the construction shown in Figure 4, with two opposing hangers being used to provide a complete rack assembly. The serrated nature of the carrier bars 54, in conjunction with the notch formation of the carriers 10, enables the carriers to be positioned readily and securely, in a more closely packed arrangement than is permitted, for example, by the conventional diamond- shaped locator elements shown in Figure 4.
The use of laser cutting in this invention provides a number of advantages, not least in that the design and manufacture of carriers, support members and rack hangers is vastly simplified and hence reduced in cost. Laser-cut metal sheet is also especially well-suited to uses in coating processes of the kind specified, as it allows profiles to be produced from relatively hard wearing materials (e.g. carbon steel) and corrosion resistant materials such as stainless steel.
Laser cutting also gives rise to relatively sharp kerfs which, as disclosed in the applicants' earlier applications (WOOO/54889 and GB 0108916.8) allows a greater degree of paint removal to be effected when the support members are vibrated with the components in situ. As discussed in WOOO/54889, effecting vibration of the support members with the components in situ causes the components to move, relative to the support members, with an inner surface of the components (defined by the apertures therein) being brought into vibratory (and hence abrading) contact with the support parts 17, with this being effective to remove any surface coating or paint material which may have built up in that region. The vibration is continued up to the point at which metal-to-metal contact is made possible which, in practice, has been found by the applicants to take two to six minutes or thereabouts, upon application of a suitable vibration. Vibration of the support members and components may be effected by a vibrating device of the type shown in Figure 8. With such a device, the amplitude and frequency of the vibration may be varied, with an appropriate amplitude and frequency being determined, at least in part, by the mass of the suspended components and the materials from which they are made. The relatively sharp kerfs produced during a laser-cutting process can assist in the vibratory abrading process by penetrating through any build-up of coating material or paint, with the small surface area defined by the sharp kerfs serving to maximise the amount of vibrational energy which is transferred between the support members arid components, per unit area. The increased strength provided by laser-cut materials such as carbon steel means that more forceful vibrations can be applied during such a cleaning process, as the support members are less susceptible to bending and damage, meaning, in turn, that the components are less likely to become dislodged during the vibration step.
The generally planar and unitary nature of the carriers and support members also reduces the likelihood of so-called "teddy bearing" - a phenomenon known in the relevant art relating the build up of paint and other undesired deposits at weld joints, seams and the like.
In hand with that, the applicants have noticed a considerable reduction in the amount of "carry-over" of treatment solutions from tank-to-tank, which it is thought is due to the use of the generally flat carrier and support member profile. As mentioned above, laser cutting gives rise to relatively sharp kerfs, which reduces the likelihood of any paint traps being formed, which, in the case of prior art welded constructions, are produced quite commonly near welds, joints and seams. This reduced "carry-over" also reduces coating material consumption, leading to substantial operational cost savings.
The generally flat upper surface of the limbs of the "V" - in particular, the bottom of the "V" configuration 17 - also reduces the tendency of relatively lightweight components to become dislodged by turbulent liquid flow in the electro-coating tanks. This, as will be appreciated, compromises the electrical contact between the components and the associated support members and can thus lead to unsatisfactory finishes which necessitates removal of the part- finished coating (such as by shot blasting or burning off) and a repeat of the coating operation. It will be appreciated that components having a generally circular aperture will be supported by such a generally flat profile at at least two (usually four) distinct areas, which hinders movement of the components in a direction transverse to the axis of the carrier.
Referring next to Figure 6, this shows, in plan view, a somewhat modified carrier 60 having a body 61 and a plurality of modified integral support members 62. Each support member 62, like the support members 12 shown in Figure 1, has a somewhat hook-like configuration comprising a connecting limb 63 and an upturned distal end 64. However, the support members 62 are also provided, in this example, with a generally downwardly- depending stop formation 65 which extends away from the free end of each support member 62. As shown, an abutment surface 66 is operative, when an article 70 is supported thereby, to come into contact with a surface of the article, and thus to cause the article to be inclined to the vertical.
In hand with that, it will be understood that the presence of the extended stop formation prevents - or at least hinders - any swinging movement that the article 70 could otherwise undergo (see Figure 1, for example) which in turn is effective to constrain the component 70 during a vibratory cleaning process of the type hereinbefore described. What this means is that the vibrational energy transmitted to the support member is concentrated in a reduced area, which, in turn, allows a greater degree of paint removal - at an appropriate location - to be effected when the support members are vibrated with the components in-situ.
A further advantage of the configuration shown in Figure 6 is that the components, when engaged with the distal ends 64 of the support members 62, undergo a "self-locking" action, in that each adopts a substantially similar orientation, which allows the number of components that can be supported per unit length of carrier, to be maximised. This is because the components, being "held" in position, are far less susceptible to movement during the electro- coating process and during handling of the carriers. It will of course also be understood that the inclusion of the stop formation, on the support member 62, can readily and inexpensively be effected during manufacture of the carrier 60, by modifying the CAD profile that the laser cutter employs.
Figures 7A and 7B illustrate two positions adopted by the carriers described above, as the supported components are unloaded therefrom. The planar nature of the carrier and support members allows unloading to be effected by a simple tilting operation, which causes the carrier to undergo angular movement from a generally horizontal orientation towards a generally vertical orientation. Referring to Figures 1 and 6, it will be understood that this ' is effected by rotating the carriers 10/60 in a generally vertical plane, in an anticlockwise direction. Movement of this type causes the distal parts 14/64 to approach a generally horizontal orientation, subsequent to which the components 20/70 are free to slide along the upper surface of the distal limb, and then to fall from the support member, under gravity. The importance of this unloading step should not be underestimated, in that it allows a fully laden carrier to be discharged as a result of a simple movement, without an operative being required to manually release any of the components from the support members. Whilst, theoretically, it has previously been possible to discharge carriers by rotation thereof about their principal axes (see WOOO/54889, for example), unloading carriers by effecting movement thereof in a vertical plane greatly reduces the area of container that is required to receive the discharged components. This is shown in Figure 7B, where the horizontal component of the tilted carrier (a function of the cosine of the angle it adopts with the horizontal), is clearly less than the length of the carrier itself. By varying the configuration of the "V" of the support members, the carrier angle at which the components are discharged may be altered, with an increase in the angle leading to a reduced horizontal component, which in turn allows a smaller receiving container to be employed.
The embodiments shown in Figures 6, 7A and 7B also provide advantages where it is desirable to reduce the occurrence of air-locks in the supported components, as the coating process takes place. The "off-vertical" orientation of the components allows open parts of the components to face generally upwardly, thus allowing air or other unwanted gases to float freely to the surface of the tank concerned.
Should the support members require cleaning, for example to remove any unwanted paint build-up or the like, conventional burning techniques may be employed, although the applicants also consider that a stripping operation could be effected, conveniently by the use of wire brushes that could be caused to rotate, and to abrade appropriate portions of the support members. Such brushes could be disposed side-by-side, defining an aperture through which the carrier is passed.
Referring lastly to Figure 8, this shows, in somewhat schematic form, an embodiment of apparatus used to impart vibrations to the carriers 10 (see Figure 4) and hence to the support members 12. The apparatus comprises a pair of generally U-shaped vibration transmission elements 160 which, as shown, are configured to locate beneath, but in contact with, the load bearing bars 45 of the electro-coating rack assembly 40. A vibration element 161, powered electrically via a power lead 162, is disposed beneath a cover plate 163, the cover plate 163 being in vibration transmissible contact with the transmission elements 160. Vibration insulating blocks 164 are provided beneath the cover plate 163 to ensure that the vibrational energy is transmitted primarily to the electro-coating rack, rather than to a support frame above which the vibration element is positioned. As will be understood, energisation of the vibration element 160 causes the electrorcoating rack assembly 40 to vibrate, thus causing relative movement to occur between the components and the support members, which in turn induces abrasion of the support members at the areas at which they are borne upon by the suspended components. It will be understood that where flammable gases are in existence, for example, pneumatic or hydraulic operation of the vibration element may be used. As mentioned above, control means (not shown) may be operative to alter the frequency and/or amplitude of the vibration, so that the vibration may be tuned in accordance with the loading of the rack. Similarly, timing means may be provided to enable the duration of the vibration to be selected, as appropriate.
In the present specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".
The features disclosed in the. foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

Claims

CLAIMS:
1. A carrier for use in a coating process of the kind specified, the carrier being generally elongate and having a plurality of support members which, in use, support articles during the coating process, the support members each having an opening leading to a recess, the recess extending from the opening in a direction generally parallel to a longitudinal axis of the carrier.
2. A carrier according to Claim 1 wherein the carrier lies within a plane, and wherein the support members lie in, or close to, the plane.
3. A carrier according to Claim 1 or Claim 2 which is generally planar.
4. A carrier according to Claim 1, Claim 2 or Claim 3 formed from sheet or sheet-like material.
5. A carrier according to Claim 4 formed from sheet metal.
6. A carrier according to any one of the preceding claims wherein the support members are also formed from sheet or sheet-like material.
7. A carrier according to any one of the preceding claims wherein the support members are integral with the carrier.
8. A carrier according to any one of the preceding claims wherein the carrier and support members are formed using a laser cutting operation.
9. A carrier according to any one of the preceding claims wherein the carrier and support members are formed from a single sheet.
10. A carrier according to any one of the preceding claims wherein the carrier and support members he within or close to a single plane.
11. A carrier according to any one of the preceding claims further comprising a strengthening element to resist bending.
12. A carrier according to Claim 11 wherein the strengthening element comprises a lip or flange.
13. A carrier according to Claim 11 or Claim 12 wherein the strengthening element comprises a deformed edge part of the carrier.
14. A carrier according to Claim 11, Claim 12 or Claim 13 wherein the strengthening element is generally parallel to the longitudinal axis of the carrier.
15. A carrier according to any one of the preceding claims further comprising barriers disposed in relation to each of said plurality of support members to hinder removal or disengagement of articles therefrom.
16. A carrier according to Claim 15 wherein the barriers are provided by connecting limbs of the support members.
17. A carrier according to Claim 16 wherein the connecting limbs extend away from the carrier at an acute angle to the longitudinal axis.
18. A carrier according to Claim 16 or Claim 17 wherein the connecting limbs are generally in-line with the openings of the support members.
19. A carrier according to any one of Claims 16 to 18 wherein the connecting limb of a support member is located adjacent or close to the opening of a neighbouring support member.
20. A carrier according to Claim 19 wherein the connecting limb is generally elongate and wherein the limb lies generally parallel to the opening.
21. A carrier according to any one of Claims 16 to 20 wherein the connecting limbs extend partly into the openings of neighbouring support members.
22. A carrier according to any one of Claims 16 to 21 wherein distal ends of the support members are disposed, when the axis of the carrier is generally horizontal, beneath part of a neighbouring connecting limb.
23. A carrier according to any one of Claims 16 to 22 wherein the connecting limbs provide a guide surface for use during engagement or disengagement of articles from the support members.
24. A carrier according to any one of the preceding claims wherein the carrier and support member are formed from stainless steel sheet.
25. A method of making a carrier and support members for use in a coating process of the kind specified, comprising procuring metal sheet material and laser cutting the sheet to obtain a desired profile.
26. A method according to Claim 25 further comprising deforming an edge part of the carrier to provide a strengthening element.
27. A method according to Claim 25 and Claim 26 comprising the initial steps of designing a profile, and conveying the profile, in machine-readable format, to a laser cutter.
28. A method according to Claim 27 wherein the profile is designed using a CAD package, conveyed electronically using DXF (Digital Exchange Format) and read by the cutter using the or a further CAD package.
29. A rack for use in a coating process of the kind specified, comprising a plurality of carriers and support members substantially in accordance with any one of the preceding claims.
30. A method of removing surface coating material from a support member on a coating rack, comprising engaging an article to be coated with a support part of the support member and vibrating the support member to induce movement of the article relative to the support member which is effective to abrade the surface coating, characterised in that the support member is attached to or integral with a carrier, the support member having a connecting limb, part of the connecting limb serving as a barrier to hinder disengagement of an article engaged with a neighbouring support member.
31. A method according to Claim 30 wherein a distal end of the support member is disposed beneath part of a neighbouring connecting limb during the vibration stage.
32. A carrier substantially as hereinbefore described and/or as shown in the accompanying drawings.
33. A method of making a carrier and support members substantially as hereinbefore described.
34. A method of removing surface coating material from a support member substantially as hereinbefore described.
35. A support member for use in supporting an article during a coating process of the kind specified, the support member having a stop formation to hinder swinging movement of the article supported thereby.
36. A support member according to claim 35 wherein the stop formation is attached to or integral with a free end of the support member.
37. A support member according to claim 36 wherein the stop formation comprises a protrusion extending from the free end.
38. A support member according to claim 36 or claim 37 wherein the free end is generally "V" or "U"-shaped and wherein the stop formation extends from the apex of the "V" or "TJ".
39. A support member according to claim 38 wherein the extension depends from the support member.
40. A support member according to any one of claims 35 to 39 wherein the stop formation is operative, in use, to hinder suspension of the article from the support member.
41. A support member according to any one of claims 35 to 40 having a support part which, in use, is in electrical contact with the article, the stop formation being operative to contact the article at a position remote from the vertical plane in which the electrical contact point is contained.
42. A support member according to any one of claims 35 to 41 wherein the stop formation is operative, in use, to cause at least part of the article to be inclined to the vertical.
43. A carrier having a plurality of support members associated therewith, the support members being in accordance with any one of claims 35 to 42.
44. A rack for use in a coating process of the kind specified, comprising a plurality of carriers in accordance with claim 43.
45. A method of unloading the carrier of claims 1 to 24, 32 and 43, comprising tilting the carrier towards a generally vertical axis such that the articles may fall therefrom.
46. A method of unloading a carrier substantially as hereinbefore described.
47. Any novel feature or novel combination of features described herein and/or in the accompanying drawings.
EP02767680A 2001-10-03 2002-10-02 Improvements relating to coating processes and carriers Withdrawn EP1432523A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0123650 2001-10-03
GB0123650A GB2380436B (en) 2001-10-03 2001-10-03 A carrier for use in a coating process,a method of making a carrier and support members for use in a coating process and a method of removing surface coating
GB0209653 2002-04-29
GB0209653A GB2380437B (en) 2001-10-03 2002-04-29 Improvements relating to coating processes
PCT/GB2002/004457 WO2003028897A1 (en) 2001-10-03 2002-10-02 Improvements relating to coating processes and carriers

Publications (1)

Publication Number Publication Date
EP1432523A1 true EP1432523A1 (en) 2004-06-30

Family

ID=26246603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02767680A Withdrawn EP1432523A1 (en) 2001-10-03 2002-10-02 Improvements relating to coating processes and carriers

Country Status (3)

Country Link
US (1) US20040232096A1 (en)
EP (1) EP1432523A1 (en)
WO (1) WO2003028897A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940155B1 (en) * 2008-12-19 2011-03-04 Commissariat Energie Atomique METHOD FOR ABLUSING A SURFACE LAYER OF A WALL, AND ASSOCIATED DEVICE
JP6121944B2 (en) * 2014-05-23 2017-04-26 株式会社ダイワエクセル Electroplating rack

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514742A (en) * 1947-10-28 1950-07-11 Arnold J Burger Multiple garment hanger
US3923631A (en) * 1974-06-17 1975-12-02 Empire Plating Co Electroplating rack
US3945500A (en) * 1974-12-16 1976-03-23 Meckstroth Alan F Necktie hanger
US4217853A (en) * 1979-04-09 1980-08-19 Production Plus Corporation Hanging rack for finishing system
US4243146A (en) * 1979-04-09 1981-01-06 Production Plus Corporation Custom changeable hanging rack for finishing system
US4872963A (en) * 1984-10-01 1989-10-10 Horn Samuel L Van Method and apparatus for improved electroplating and painting racks
US5020677A (en) * 1990-04-06 1991-06-04 The Boeing Company Common rack system for anodizing and painting large parts
CA2018912A1 (en) * 1990-06-13 1991-12-13 Greg Whittaker Apparatus for the suspension storage of articles of clothing
US5147050A (en) * 1991-06-27 1992-09-15 Surface Sciences, Inc. Custom hanging rack with interchangeable support hooks and method therefor
US5607069A (en) * 1995-09-29 1997-03-04 Thermal Clean, Inc. Painting fixture with modular crossbars
JPH09276594A (en) * 1996-02-15 1997-10-28 N K G:Kk Hanger bar
FR2746677A1 (en) * 1996-03-28 1997-10-03 Neotec France Sa Support for rails carrying suspension hooks for electrostatic powder coating
US5908120A (en) * 1997-01-29 1999-06-01 Yates; Donnie Mitchell Hanger for supporting articles to be electrostatically painted
FR2760943B1 (en) * 1997-03-18 1999-06-18 Aquitaine Fluide Sarl HANGING TROLLEY FOR MEAT AFTER SLAUGHTERING
US5762205A (en) * 1997-03-25 1998-06-09 Production Plus Corporation Self-masking, easily reconfigurable support rack for finishing systems
US5762206A (en) * 1997-05-29 1998-06-09 Leichter; Henry S. Cap rack
US6053378A (en) * 1999-03-03 2000-04-25 Doyel; John S. Closet space saver
US6189709B1 (en) * 1999-03-05 2001-02-20 Mighty Hook, Inc. Racks and hooks for hanging workpieces in industrial coating systems
US6398086B1 (en) * 1999-10-10 2002-06-04 Erith L. Bennett Modified apparel accessories rack
US6571968B1 (en) * 1999-12-06 2003-06-03 Mighty Hook, Inc. Rack and hooks for hanging workpieces in industrial coating systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03028897A1 *

Also Published As

Publication number Publication date
WO2003028897A1 (en) 2003-04-10
US20040232096A1 (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US4243146A (en) Custom changeable hanging rack for finishing system
US4217853A (en) Hanging rack for finishing system
US8215502B1 (en) Electrically conductive attachment system and rack
US4628859A (en) Apparatus and workpiece fixture for electrostatic spray coating
US5524774A (en) Hanging rack with cantilevered support hooks
US20040232096A1 (en) Coating processes
US5226525A (en) Conveyor rack system
US5762205A (en) Self-masking, easily reconfigurable support rack for finishing systems
GB2380437A (en) Support member for electrostatic coating
US3999649A (en) Scraper bar assembly for endless conveyor belt
US5253742A (en) Conveyor hangers with articulated linkages
US6790484B2 (en) Method and apparatus for cleaning electrostatic painting hooks
JP3715043B2 (en) Hanger for workpiece mounting
EP0903084A3 (en) Process and apparatus for making battered and fried food products having an embossed surface, and product obtained
US20210348295A1 (en) System and method for coating thin elongate parts
US4883165A (en) Hanger for paint conveyor line
JPH0124018Y2 (en)
US20020137442A1 (en) Jig cleaning
US4981101A (en) Vibratory article coater
WO2002083319A1 (en) A support member for use in a coating process, a method of removing surface coating material from a support member, a method of making a plurality of support members
CA2136467A1 (en) Conveyor system with load bars
EP0278725A1 (en) Conveyor system
JPH036398A (en) Conveying mechanism and plating device having conveying mechanism
JPH0811605B2 (en) Suspended carrier
JPH0342042Y2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050503