EP1432234B1 - Systems and methods for providing hardcopy secure documents and for validation of such documents - Google Patents

Systems and methods for providing hardcopy secure documents and for validation of such documents Download PDF

Info

Publication number
EP1432234B1
EP1432234B1 EP20030029010 EP03029010A EP1432234B1 EP 1432234 B1 EP1432234 B1 EP 1432234B1 EP 20030029010 EP20030029010 EP 20030029010 EP 03029010 A EP03029010 A EP 03029010A EP 1432234 B1 EP1432234 B1 EP 1432234B1
Authority
EP
European Patent Office
Prior art keywords
document
image
hardcopy
encoded
signature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20030029010
Other languages
German (de)
French (fr)
Other versions
EP1432234A1 (en
Inventor
Grace T. Brewington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US320864 priority Critical
Priority to US10/320,864 priority patent/US7197644B2/en
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of EP1432234A1 publication Critical patent/EP1432234A1/en
Application granted granted Critical
Publication of EP1432234B1 publication Critical patent/EP1432234B1/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32128Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image
    • H04N1/32133Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image on the same paper sheet, e.g. a facsimile page header
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32144Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
    • H04N1/32149Methods relating to embedding, encoding, decoding, detection or retrieval operations
    • H04N1/32203Spatial or amplitude domain methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3226Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of identification information or the like, e.g. ID code, index, title, part of an image, reduced-size image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3233Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark
    • H04N2201/3235Checking or certification of the authentication information, e.g. by comparison with data stored independently
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3233Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark
    • H04N2201/3236Details of authentication information generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3233Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark
    • H04N2201/3236Details of authentication information generation
    • H04N2201/3238Details of authentication information generation using a coded or compressed version of the image data itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3233Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark
    • H04N2201/3239Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark using a plurality of different authentication information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3269Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3271Printing or stamping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/328Processing of the additional information
    • H04N2201/3281Encryption; Ciphering

Description

  • The present invention relates to the controlled production of a secure document on a printing or reprographic device and in particular is directed to systems and methods for providing hardcopy secure documents having integrated therein one or more encoded image signatures, and for validation of such documents.
  • Documents are a primary medium for written communications and for record keeping. Paper documents can be replicated easily by photocopying, distributed and filed in original, electronic, or photocopied form, and facsimiles of them can be transmitted to remote locations. Paper and other hardcopy documents are so pervasive that they are not only a common output product of electronic document processing systems, but also an important source of input data for such systems.
  • A variety of methods are known in the art for attempting to hinder and/or help detect forgery, alteration, or duplication of sensitive documents such as negotiable instruments, and especially for checks and bank drafts.
  • Various methods have been attempted for specially preparing the paper or substrate on which sensitive information is printed. For example, checks and banking documents are typically printed on special paper which, when copied, alter their appearance to destroy information contained thereon or to indicate that the document at hand is a copy. Other attempts to create copy-proof documents use special paper with fluorescent dyes or paper written upon in colored ink.
  • Authenticity is an important issue for official documents, such as identification cards or passports. In the example of a protected identification card, an identification number may be written in clear text on the card and hidden as a watermark in the identity photo. A counterfeit, made by replacing the photo, is detected by scanning the card and determining that the number hidden in the photo does not match the number printed on the card.
  • Other concerns include the verification of the content of the document, that is, to detect alterations and modifications in an image, and for limiting user access to the information content carried on the document.
  • Other examples of documents for which resistance to forgery, copying, or other tampering is desired include: stock or bond certificates, driver's licenses, identification cards or papers, passports, betting slips, prize or game awards, tickets, or documents that simply require validating signatures to be affixed thereto, such as electronically negotiated and/or transmitted contracts, etc.
  • Thus, it would be highly advantageous for sensitive documents such as negotiable instruments and the like to be generated on demand without requiring special paper supplies of pre-printed safety background paper. It would also be desirable to have a versatile system that digitally generates and integrates encoded image signatures in negotiable instruments with the encoded information appearing on the secure document, for integral printing.
  • Accordingly, a need exists for a system and method to control the alteration, reproduction, and counterfeiting of sensitive documents that is based on both a practical method for production of a hardcopy secure document and on a simplified method by which such a hardcopy secure document may be validated when necessary.
  • Disclosed is a system for producing tamper-resistant hardcopy secure documents. The disclosed system can digitally form and integrate, into one hardcopy secure document, the human readable information content of the original or source document, plus an encoded, machine-readable, image signature. This composite image can be printed on demand, in a single pass of the paper or other substrate, preferably in an appropriate electronic printer as described herein, so as to eliminate the problems and dangers of conventional security document printing systems requiring pre-printed "safety paper".
  • The present invention accordingly provides methods for producing a hardcopy secure document which minimize or preclude the ability to alter or reproduce the hardcopy secure document without detection of such, such as by unauthorized methods which may include copying or electronically scanning, altering, and then printing the altered version of the hardcopy secure document.
  • Specifically, the present invention provides a printing system including a controlled access electronic printing machine, wherein secure hardcopy documents may be printed with the controlled access electronic printing machine, and the secure documents have printed images formed therein that include at least one encoded image signature. The resulting hardcopy secure documents having both the original document image and the encoded image signature printed thereon cannot be easily altered or reproduced without being detected as having been altered or reproduced.
  • For example, the encoding of the image signature may be provided as digital data recorded by writing two dimensional marks on a recording medium in accordance with a pattern, which encodes data representative of the image signature.
  • The present application discloses a document processing system which may be implemented for receiving an original document and for printing a secure hardcopy version of the original document, wherein the secure hardcopy version includes a machine readable encoded representation of a segment of the original document. The integration of machine readable encoded representation of a segment of the original document with the human readable hardcopy renderings of the original document may be advantageously employed, for example, when such secure documents are validated by scanning such hardcopies into electronic document processing systems. The system offers a mechanism for enabling recipients of scanned-in versions of such secure hardcopy documents to identify and process the machine readable encoded data and for alerting the recipients of the scanned-in documents to information indicating that the document is counterfeit or that alteration(s) have been made to the document.
  • Also, The present application discloses a hardcopy secure document validation system which may be implemented to receive a secure document having therein previously embedded data representing an image signature. The secure document may be scanned in a validation process to provide a document image, whereby data representing the image segment carried in the encoded image signature (considered herein as the primary image signature) is recovered from the document image. The image segment of the hardcopy secure document is again scanned and subjected to processing according to the image signature template to provide data representing a secondary image signature. The data representative of the primary and secondary image signatures is compared and the apparatus determines whether the comparison indicates a match, and accordingly validates the secure document, or a discrepancy, and accordingly indicates that the secure document is counterfeit or has been altered.
  • In addition to encoding the data representing one or more image segments of the original document, the invention is utilized for encoding information concerning the document segment template used to capture the image segment(s) of the original document. Information concerning the level of corroboration of primary and secondary image signatures required for validation of the document may also be encoded in the encoded image signature. Additional information may be encoded and for computational purposes, such as for enhancing error-checking of the decoded image signature.
  • Provision may be made for encoding data specific to a single, given hardcopy secure document, which can include a dated or numbered version of that document, the identification of the machine which generated the document, and so on. Moreover, provision also may be made for encoding information about the encoding mechanism itself, such as information given in standard-encoded headers about subsequently compressed or encrypted digital information.
  • Furthermore, provision may be made for the encoding of specifications for image processing techniques and/or other image discrimination algorithms which are to be performed by the validation system when capturing and comparing primary and secondary image signatures, or of instructions which relate to operations which are to be performed by the validation system depending on the presence or absence of a valid/invalid condition; for example, instructions directing actions which are to be taken when a secure document is found to be counterfeit or to have been altered.
  • Provision may also be made for encrypting some or all of the information encoded in the image signature, such as for encrypting information describing the template, for purposes of enhancing the security of the hardcopy secure document and for enhancing methods for the authentication and verification of document integrity.
  • When the original document includes a scanned-in original image, this invention may be utilized for integrating the scanned-in original image into the hardcopy version of the secure document. The encoded image signature in the hardcopy rendering of such a document will accordingly represent embedded data characterizing the input scanner and the scan process responsible for inputting the original image. Accordingly, when a counterfeit document is attempted by reproducing the secure document on a light-lens or electronic copier or a facsimile system, the recovered data representing the primary image signature (which will distinguish the authorized and unauthorized reproduction equipment and processes) can be compared to the secondary image signature segment captured from the counterfeit reproduction, and the counterfeit is then discovered.
  • As will be appreciated, the image signature may be encoded and embedded in the hardcopy secure document in a variety of ways. For example, it may be distributed in a background portion of the document to ensure the inclusion and robust survival of this important information. Some or all of the encoded image signature may be redundantly recorded on differing portions of the hardcopy renderings to increase it's likelihood of surviving abrasion, mutilation or other handling problems.
  • Therefore, in accordance with the present invention as set out in the claims an apparatus and method is provided for producing a secure document having embedded machine readable data, wherein the apparatus scans an original document to provide a digitized bit map, which is then processed according to a document segment template to select and obtain data representing a primary image signature. The primary image signature data is encoded to provide a field of embedded machine readable data. The apparatus also encodes information concerning the document segment template which is to be used for recovery of the primary image segment, and inserts the encoded machine-readable data into the digitized document at an appropriate location reserved or otherwise suitable for insertion of the embedded data, such as by the use of glyph codes in the background of the digitized document. Thereafter, a hardcopy version of the digitized document is produced, including the newly-added embedded machine readable data, such that the hardcopy secure document is substantially visually identical to the source document, that is, visually identical with the exception of the added machine-readable data field which may or may not be distinguishable to the naked eye.
  • In accordance with another aspect of the present invention, the validation apparatus includes a code detector having access to a digital representation of an inputted hardcopy secure document. The code detector detects the presence of machine readable code embedded, for example, in the background of the document. A code decoder is also provided operatively connected to the code detector which decodes the previously detected machine readable code into recovered data representing the primary image signature and information concerning the document segment template previously associated with the document. A controller receives the image signature template and the recovered information and, based on further processing of the digital representation of the document, derives a secondary image signature according to the same document segment template, and compares the data representing the primary and secondary image signatures so as to allow or disallow acceptance of the hardcopy secure document. The digital representation can obtained from image capture devices, a facsimile-type or other image data transmission, and/or stored digitized data representing the document following scanning or data transmission operations.
  • According to a described embodiment, the digital image validation apparatus also includes a storage device, memory, or the like for storing data, optionally including various authorized decoding schemes, image signature templates, and signature comparison criteria selectable for distinguishing the primary and secondary image, and optionally including stored data representing image signatures known to be either valid or invalid.
  • According to a described embodiment, a processor is also provided in communication with the controller. In certain circumstances, the processor receives the decoded image signature so as to perform further processing such as image translation or character recognition in order to obtain additional data including document or personal identity information.
  • According to a described embodiment, identification data indicative of the original document and/or the proffered hardcopy secure document is transmitted to ancillary systems for various reasons including the indication of an attempt to validate an invalid document. This identity information may be passed to security or document tracking system for advantageous use, such as for display of the recovered information as human readable information to an operator at a monitoring station.
  • According to a described embodiment, the validation apparatus may be automated. Such automation may include performing conditional responses, such as impounding the scanned-in hardcopy secure document if it is determined to be invalid.
  • In accordance with a described embodiment, the validation apparatus is in operative communication with an user interface, and provides indications of document information content, validity, invalidity, and other information to an operator.
  • In accordance with a described embodiment, the machine readable code format includes at least one selected from the list of glyph coding, bar code, and/or microdot codes.
  • In accordance with a described embodiment, a method is provided for making a tamper-resistant personal identification card, and especially for a personal identification card including a photograph.
  • In accordance with a described embodiment, the image signature template may be arranged to capture at least a portion of a photograph (or similar image), document watermark, personal signature, fingerprint, retinal scan, or other information captured by use of the image signature template.
  • One advantage of the present invention resides in the great difficulty in counterfeiting (or otherwise providing an unauthorized reproduction) of a secure document when such a document incorporates the above-described features, such as the encoded image signature.
  • Another advantage of the present invention resides in the use of a machine readable code, such as a glyph pattern, that is distributed over at least a portion of the secure document in order to prevent the machine-readable code from being inadvertently or intentionally defeated or degraded.
  • The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
  • In a described embodiment, the control system is operable to encode the encoded image signature according to at least one of the following encoding schemes: two-dimensional bar coding, data glyph coding, holographic coding, and magnetic stripe formatted coding, and a combination thereof.
  • In a described embodiment the control system is operable to encode information concerning the document segment template used to capture the image segment(s) of the original document
  • In a described embodiment the control system is operable to encode at least one of: information concerning the level of corroboration of the encoded image signature for validation of the secure hardcopy version; information specific to a given hardcopy secure document; information about subsequently compressed or encrypted digital information; information specifying image processing techniques and/or other image discrimination algorithms which are to be performed for validation of the secure hardcopy version; instructions which relate to operations which are to be performed by a validation system depending on the presence or absence of a valid/invalid condition.
  • In a described embodiment the control system is operable to determine whether the comparing of the data indicates a match, and accordingly validates the secure document, or a discrepancy, and accordingly indicates that the secure document is counterfeit or has been altered.
  • In a further described embodiment the document input device further comprises an input scanner.
  • In a further described embodiment the control system further comprises a data storage and transfer system adapted for handling data representing at least one of the primary and second image signatures.
  • In a further described embodiment, the control system is operable to carry out instructions which relate to operations which are to be performed by the validation system depending on the determination of the validation or invalidation condition.
  • In a described embodiment the integrating step further comprises printing the hardcopy form of the encoded primary image signature on the original document so as to provide the hardcopy secure document.
  • In a further described embodiment the integrating step further comprises printing the hardcopy form of the encoded image signature on a substrate which is then integrated in the original document so as to provide the hardcopy secure document.
  • In a further described embodiment the encoded image signature is encoded according to at least one of the following encoding schemes: holographic coding, magnetic stripe coding, high-density barcode coding, microdot coding, data glyph coding; serpentine coding, and a combination thereof.
    • Figure 1 illustrates a method incorporating steps for providing a hardcopy secure document from a hardcopy original document.
    • Figure 2 illustrates a method incorporating steps for providing a hardcopy secure document from an electronic original document.
    • Figure 3 illustrates a method incorporating steps for validating a hardcopy secure document.
    • Figure 4 is an exemplary illustration of a secure document provided in the form of a personal identification card, containing an image signature recorded as machine readable code in accordance with the present invention. The illustration shows various exemplary elements of that particular document, portions of which may be selected for encoding in the image signature.
    • Figure 5 is an exemplary illustration of a hardcopy secure document provided in the form of a bank check.
    • Figures 6 and 7 are diagrammatic illustrations of systems for respectively generating and validating a hardcopy secure document, constructed in accordance with the present invention.
  • Plain paper is a favored recording medium for storing and transferring human readable information. The emergence of electronic document processing systems show that the functional utility of plain paper and other types of hardcopy documents may be enhanced significantly when the human readable information they normally convey is supplemented by writing appropriate machine readable digital data on them. This machine readable data enables a hardcopy document to actively interact with such a document processing system when the document is scanned into the system by an ordinary input scanner.
  • Modem electronic document processing systems generally include input scanners for electronically capturing the general appearance (i.e., the human readable information content and the basic graphical layout) of human readable hardcopy documents; programmed computers for enabling users to create, edit and otherwise manipulate electronic documents; and printers for producing hardcopy, human readable renderings of electronic documents. These systems typically have convenient access to mass memory for the storage and retrieval of electronic document files. Moreover, they often are networked by local area networks (LANs), switched data links, and the like for facilitating the interchange of digital electronic documents and for providing multi-user access to shared system resources, such as high speed electronic printers and electronic file servers.
  • Accordingly, an original document which may contain sensitive information therein can be produced or reproduced according to the invention in hardcopy form from a designated, controlled-access electronic printing machine or machines. Such machines contain and utilize apparatus for integrating machine-readable code into the secure document according to the invention in order to provide a secure, hardcopy version of the original document.
  • Documents bearing sensitive information, or which may be associated with sensitive information or a particular status, are described to include, but are not limited to, context sensitive documents, personal and performance history documents, financial documents, negotiable instruments, strategic or developmental plan documents, checks, tickets, and the like proprietary documents. Other sensitive documents include, for example, government, intelligence, security, financial, classified or registered, organizational, and the like hard copy documentation. The secure printing method of the present invention can be used to produce secure documents and other documentary articles of commerce. Documents for which security may be desired include, for example, bank notes, currency, stock certificates, bonds, visas, passports, stamps, driver's licenses, permits, tickets, credit cards, cash withdrawal cards, check cards, phone cards, access cards, travelers checks, bank checks, remote access control cards, and the like instruments. It will be appreciated that the term "document" as used herein in reference to the inclusion of bar codes and glyphs thereon is not limited to conventional sheets of paper or plastic. In this application it also broadly encompasses packaging, labels, cards and cardkeys, tokens, and various other printable image substrates.
  • The hardcopy secure document production systems of the present invention, in embodiments, therefore preferably operate under controlled access, i.e. printing privileges may be restricted to only authorized individuals. Authorized individuals are, for example, those persons with authority or permission to create and generate hardcopy versions of documents of a protected nature and which documents are intended to usually permit no further reproduction and may include limited or restricted distribution.
  • Original documents can also be of a confidential nature and it is often desired to limit readership, replication, and dissemination of such information.
  • Images, of either original or reproduced documents or components thereof, refers to, for example, alphanumeric characters, line art, bit maps, pictorial images, graphic images, watermark images, and the like images, and combinations thereof.
  • Reprographic devices include devices which provide for the hardcopy reproduction or replication of documents, whether the documents are in paper, other hardcopy, or electronic form prior to the reproduction, including photocopiers, electronic printers, digital copiers, and the like, being used to reproduce all types of documents. The reprographic and replication devices useful in the present invention include, for example, digital copiers, copying printers, digital scanning-printing devices, digital input scanners with remote printing means, and like devices. Printing machines operable in such embodiments may employ a marking engine, for example, employing a dry, liquid, or combination thereof of marking materials, and corresponding development system, for forming hardcopy images.
  • Describing now in further detail the exemplary embodiment with reference to the Figures, it will be understood that the exemplary hardcopy secure document production and validation systems are typically operable by a workstation connected to one or more storage devices, scanner, or printer, all of which can be stand-alone units, or connected for communication over a network with each other and/or other elements such as a remote auxiliary storage device (not shown). The illustrated hardcopy secure document production system may be operated to digitally form and integrate various components of an original document in an automated manner, and the illustrated hardcopy secure document validation system may be operated to validate the resulting secure document in an automated manner as well.
    • Figure 1 illustrates a method 10 incorporating steps for providing a hardcopy secure document 19 from a hardcopy original document 11. The hardcopy original document 11 is provided in step 12 to an image capture apparatus for capturing and digitization of an image of the original document 11. In typical applications, the captured image is digitized to provide an array RGB pixel values in a digitized image file. In step 13, a segment of the captured image is selected according to a predefined image segment template and the selected image segment is converted to a primary image signature. Such conversion can include subsampling of the selected image segment so as to perform spatial averaging and to reduce the amount of image data. In step 14, the image signature is optionally encrypted according to a known encryption scheme, and in step 15 the image signature is encoded in machine-readable code. In step 16, the encoded image signature is generated in hardcopy form and the resulting hardcopy encoded image signature is integrated in the original document 11. Such integration may be performed by printing the hardcopy encoded image signature on the original document 11 or by printing the hardcopy encoded image signature on a substrate which is then affixed to the original document 11 so as to provide a hardcopy secure document 19.
    • Figure 2 illustrates a method 20 incorporating steps for providing a hardcopy secure document 29 from an electronic original document 21. In typical applications, the electronic original document is in digital form as an array RGB pixel values in a digitized image file. The electronic version 21 of the original document is provided in step 22 to an image processing apparatus for selection of an image segment thereof according to a predefined image signature template. In step 23, the selected image segment is converted to a primary image signature. In step 24, the image signature is optionally encrypted according to a known encryption scheme, and in step 25 the image signature is encoded in machine-readable code. In step 26, the resulting encoded image signature is merged with the electronic version 21 of the original document to provide an electronic version of the resulting secure document. In step 27, the electronic version of the secure document is provided to reprographic apparatus for generation of a hardcopy version of the secure document in hardcopy form, so as to provide a hardcopy secure document 29.
    • Figure 3 illustrates a method 30 incorporating steps for validating the hardcopy secure documents 19, 29 generated in the methods illustrated in Figures 1 and 2. In step 31, at least one of the hardcopy secure documents 19, 29 is provided to an image capture apparatus for capturing and digitization of an image of the hardcopy secure document so as to provide a digitized image. In step 32, an image segment of the digitized image is selected according to the predefined image signature template used in the methods 10, 20 and the selected image segment processed so as to provide, in step 33, data representative of a secondary image signature. In step 34, the encoded image signature presented in the hardcopy secure document is located. In step 35, the encoded image signature decoded so as to recover data representative of the primary image signature. In step 36, the data representative of the primary and secondary image signatures are compared. A resulting determination of data matching will result in a validation condition 37 or a determination that the data has not matched will result in an invalidation condition 38.
    • Figure 4 illustrates a first example of secure document constructed in the form of an identification card 41 applicable for validation in a card security system according to one embodiment of the present invention. The illustrated identification card 41 includes a front surface of the card substrate on which is recorded a conventional watermark or hologram image 45, a personal signature 43, a photograph or other personalized image 44, a specialized graphic such as a corporate logo 47, and text 46. On the rear surface of the card substrate there may be recorded for conventional purposes, a low-density barcode 53. T he illustrated barcode 53 is a type of one-dimensional barcode. According to the present invention, the identification card 41 has integrated therein an encoded image signature recorded in machine readable form, which, for example, may be embodied in a high-density (e.g., two-dimensional) barcode 51, a background machine-readable pattern 52, or a magnetic stripe 54.
    • Figure 5 illustrates a second example of a secure document, provided in the form of a negotiable instrument. This example is a bank check 50 which includes a background machine-readable pattern 52, a high-density barcode 54, graphics such as box 55, text such as check name 57, a validating signature 53, and a secure font 56. One example of an image segment suitably captured for creation of a useful image signature is illustrated by an image signature template boundary 58. According to a feature of the present invention, the illustrated negotiable instrument, with its encoded image signature recorded in the a background machine-readable pattern 52 or barcode 54, either of which has suitably recorded therein certain unique information for that particular document, may be automatically printed at one time, in one printing pass of the paper or other substrate, without any human interaction, and without requiring pre-printed safety paper and/or pre- printed forms.
    • Figures 4 and 5 illustrated but two examples of a hardcopy secure document constructed in according to respective embodiments of the present invention. As will be appreciated by those skilled in the art, the identification card 41 or the bank check 50 can incorporate more or less than the illustrated combination of features, and such features may be provided at differing locations on the front and rear surfaces of their substrates, as needed. It is noted that in Figure 4 and 5, the encoded image signatures are located in predetermined areas of the hardcopy secure document.
    • Figure 6 illustrates a secure document production system 100 that includes components A for original document acquisition, data storage, and subsequent production of a hardcopy secure document. The components B are operable to control the production of such specially-encoded secure documents, as will be discussed more fully below.
  • Components A include a document input 120 which receives an original document 112 (and digitizes the original document if not already in digital form) and provides data representative of the digitized image for storage in memory 122. It is appreciated by those skilled in the art that the original document 112 may be either a hardcopy original document, a digital image file outputted from a similar document input device (not shown), or a data stream representing the image of an original document which is presented in a form compliant with a suitable image data format.
  • Controller 140 receives the original document image data from memory 122 and processes the original document image data according to automated image processing algorithms that are optionally supplemented by instructions from a user input 142. Preferably, the controller 140 operates according to one or more predefined image signature templates, image signature encoding and/or encryption schemes, user authorization codes, and other operations and protocols selectable from a database 144. The controller 140 controls the image producing system 124, a processor 160, and an encoder 162, which convert the image signature into appropriate machine readable code to be placed in, for example, the background of the original document image in order to produce a hardcopy secure document 126.
  • Additionally, controller 140 may interface with the database 144 to record a variety of information relevant to the production of the hardcopy secure document 126. For example, an organization may desire that records of some or all hardcopy secure documents and their respective image signatures, templates, encoding schemes, etc. be retained by the system 100.
  • Figure 7 shows an architecture of a secure document validation system 200 constructed according to the subject invention. With attention to the validation method already described with respect to Figure 3, the depicted apparatus may be understood as follows. Generally, the illustrated apparatus is intended to work with any document input device suitable for capturing a digitized representation of a hardcopy secure document provided according to the teachings herein.
  • A document input device 120 includes a digital image capture device (e.g., a card scanner, flatbed image scanner, or similar device). A hardcopy secure document is scanned so as to capture and image of the secure document in a digitized form, which may be stored as a bit map in document storage 230. Detector 232 is employed to determine if the digitized document image contains image signature data embedded in machine-readable form. Detector 232 analyzes a segment of the scanned bit map image in accordance with the predefined image signature template. During this analysis, detector 232 locates the embedded data presented in an encoded image signature. In the case of glyphs, this may involve analyzing the gray level, and texture and the segmentation and recognition of glyph patterns. For simplicity in the following description, the embedded image signature data will be assumed to have been recorded in the form of glyph codes.
  • The encoded image signature detected by detector 232 is decoded by decoder 234 in accordance with known techniques including those teachings found in the patents and applications cited and incorporated herein. This information is passed to a control system 236 which includes a microprocessor 238, a controller memory 240, and a controller 242. Data storage and transfer system 244 provide data to and from controller 236. The system 244 may include one or more devices including a user interface 248, a local database 250, or an external database 252 optionally connected to the hardcopy secure document production system 100 and to a communication channel with local database 250.
  • Control system 236 reads the decoded glyph codes from decoder 234 so as to provide data representative of the primary image signature. The control system 236 also applies the image signature template to the bit map obtained from document storage 230 so as to generate data representative of a secondary image signature. Data representing the primary image signature and the secondary image signature are compared in accordance with instructions stored in control system 236, via data received through data input 244, or from data stored in controller memory 240. The results of this processing, and (optionally) information relevant to the data recovered from the image signature, are transmitted to interface 248 and/or output device 256. Instructions operable in control system 236 in response to a determination of validity or invalidity conditions may be used for specialized operation of the interface 248 and/or output device 256. Such conditions can trigger instructions to indicate, in human readable form, information such as visual representations of the primary and/or secondary image signature data, as well as an indication of the image signature validity, invalidity, or some intermediate condition such as a relative level of validity. Such information is suitably available for display upon, or actuation of, a conventional display means (not shown) for the benefit of an operator, or this information is available for carrying out one or more automated procedures relevant to the condition declared by the control system 236, such as for impounding a hardcopy secure document declared as "invalid" in the document input device 220; or, in accordance with known techniques, including those teachings found in the patents cited and incorporated herein, for storing the bit map at the appropriate location in document storage 230.
  • Alternatively, the bit map data stored in document storage 230 may be maintained in electronic form and placed on a network through local database 250 which is in communication with external database 252 that may be part of a communication system having a remote security device (not shown). Using known technologies, data may be sent to the communication system for a variety of purposes, such as for archival storage of the bit map data, for use in the operation of the secure document production system 100, or for sounding an alert concerning an invalidity or fault condition, when appropriate.
  • In an embodiment where the scanned-in document stored in document storage 230 is determined by detector 232 to contain no encoded information, decoder 234 accordingly provides data to control system 236. According to the particular implementation of the invention as may be desired, the hardcopy secure document may be declared invalid, as previously discussed, or defective, or another indication relevant to this condition may be declared.
  • It is to be appreciated that, although the user input 142 and the user interface 248 are illustrated and described in the embodiments, the above-described operations may be accomplished in certain embodiments in an automatic manner, without requiring the interaction of a user. In perhaps one of the simplest modes of operation contemplated for this invention, the validation system 200 may be operated in such a way that the hardcopy secure document may be received by the document input device 220 and almost instantaneously is determined to be valid or invalid.
  • Furthermore, the contemplated image signature template is preferably oriented to capture an appropriate portion of the information content that is unique to the original document, such as a segment that includes one or more portions of a pictorial image, personal signature, watermark or logo, etc. It is to be appreciated that more than one image signature templates may be employed in the above embodiments, and that the image signature template may exhibit one of a variety of geometric and non-geometric configurations, such as a rectilinear stripe, a curved stripe, a checkerboard pattern, and the like. Furthermore, the comparison of primary and secondary image signatures may include techniques known in the art for discriminating useful data from noise, and for accommodating the absence of recovered data due to, for example, dirt, fading, or minor abrasion of the hardcopy secure document.
  • In the above description, two-dimensional barcode and glyph technology or combinations thereof are indicated. The encoded image signatures may be preferably printed on a hardcopy secure document in an unobtrusive manner using multi-bit binary data symbols encoded in a two-dimensional code such as the self-clocking glyph code. With reference again to Figure 4, the identification card 41 exemplifies a background pattern 52 of machine readable code configured as glyphs.
  • Kinds of data and methods for recording data discussed in the foregoing embodiments are only for explanation and not limited to the said embodiments. For example, an encoded image signature for the identification card may be stored in a hologram area in the form of hologram image, or written on the magnetic stripe 54, or recorded in the optically readable areas such as the indicated high-density barcode 51. Assorted exemplary encoding schemes include two-dimensional barcodes, commercially known as: PDF 417 (Symbol Technologies), Paper Data Barcoding (NeoMedia Technologies); DataMatrix (International Data Matrix, Inc.), 1.5 Dimension Symbology (Haisheng Liang); and glyph encoding such as DataGlyphs (Xerox Corporation). Further arrangements, such as integrating an integrated circuit memory in the hardcopy secure document substrate so as to enable storage of encoded image signature data, may also be useful for the present system. The proportion of the machine readable portions and human readable portions is not necessarily limited, and they may be of differing size, shape, content, or quantity than are indicated in the illustrations.
  • The coding and decoding of glyphs is well-known in the art and is described, for example, in commonly-assigned U.S. Pat. No. 5,444,779 . The use of glyph technology to lay down a low-density background tint across the rear side of the substrate is a preferred implementation because it does not alter the legibility of the document, and will be reproduced in any authorized or unauthorized duplication. Moreover, a glyph background tint is not susceptible to intentional or inadvertent masking, thus ensuring the embedded code will be detected on equipped devices and reproduced on any reproducing apparatus. As an added measure or level of security, the low density background tint is observable on the original document. Thus, persons will be dissuaded from attempting to reproduce the document knowing it contains embedded security information. Alternatively, the validation system could be programmed to only accept hardcopy secure documents where the code is found in a specific place. Those skilled in the art will realize that other types of machine readable codes may alternately be embedded in the document for detection and analysis by components B, such as microdots, bar codes, and the like, without departing from the spirit and scope of the present invention.
  • A self-clocking glyph code typically is generated by mapping logically ordered digital input values of a predetermined bit length into a predefined set of graphically unique symbols (i.e., "glyphs"), each of which is pre-assigned to the encoding of a different one of the permissible input values. Thus, each of the input values is transformed into and encoded by a corresponding glyph. These glyph encodings, in turn, are written on a hardcopy recording medium in accordance with a predetermined spatial formatting rule, thereby producing a glyph code that encodes the input values and preserves their logical ordering. Another of the known advantages of these self-clocking glyph codes is that they can be composed of glyphs that are graphically distinguished from each other by machine detectable characteristics that are not easily perceived by the human eye. Thus, these codes can be used for recording machine readable digital information on hardcopy documents, without significantly degrading the aesthetic quality of those documents. For instance, the glyphs can be written using inks that are virtually invisible to the human eye under normal lighting conditions. Even more remarkably, glyphs written using visible inks, such as standard xerographic toners, can be of such small uniform size and written at a sufficiently high spatial density that the resulting glyph code has a generally uniform textured appearance to the human eye.
  • As will be appreciated, a code of the foregoing type carries the clock signal that is required for transferring the encoded digital values from the hardcopy domain to the electronic domain synchronously. Every input value is represented by a corresponding glyph, so the clock is embedded in the spatial distribution of the logically ordered glyphs.
  • As noted, the particular high-density bar code patterns and the particular glyphs illustrated herein are merely exemplary, and others are known, including those noted in the references cited above, and/or including those in distinctive colors (which, of course, cannot be shown in patent drawings). In addition to the aforementioned glyph codes, other codes such as serpentine codes can be embedded into documents such that they are imperceptible to the unaided human eye. The illustrated two-dimensional bar code pattern is known to those skilled in the art.
  • Multi-color printing and scanning can be used to enhance the distinction and readability of the higher level of information density of the information encoded in the image signature. n addition, multi-color printing can be used to provide increased data density; for example, by using a very specific limited spectrum color for the glyphs in contrast to the typical black of the bar code pattern.
  • It is of course, desirable, and readily accomplished with the present invention, to print a composite of the original or source image and the encoded image signature in a single printing process by electronically superimposing the two or more images before electronic printing. As described above, this can be accomplished in a known manner by electronically merging the two or more images before they are printed.
  • It is also noted that the original document may be derived from more than one hardcopy document, or from more than one electronic document, or from a combination of hardcopy and electronic documents.
  • The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (10)

  1. A hardcopy secure document production apparatus (100), comprising:
    an input that receives original document information (112);
    a memory (122) for retaining the received original document information;
    a control system (140) for processing the original document information, deriving an
    image signature based on an image segment of the original document according to a document segment template, and encoding data representing the image signature and information concerning the document segment template in machine readable form; and
    an image producing system (124) for providing a secure hardcopy version (126) of the original document information, wherein the secure hardcopy version has integrated
    therein the encoded image signature (51; 52; 54) and the encoded information concerning document segment template.
  2. The apparatus of claim 1, wherein the image producing system is controlled by the control system to generate the encoded image signature on a substrate, whereby the substrate bearing the encoded image signature may be affixed to the original document so as to provide the secure hardcopy version.
  3. The apparatus of claim 1, wherein the image producing system is controlled by the control system to print the encoded image signature on a substrate bearing the original document information so as to provide the secure hardcopy version.
  4. The apparatus of claim 1, wherein the control system is operable to merge the encoded image signature with the original document information and provides a composite image to the image producing system for production of the hardcopy secure document.
  5. The apparatus of claim 1, further comprising a user input (142) in operative communication with the control system, which is operable according to user information received for permitting access to the hardcopy secure document production apparatus.
  6. The apparatus of claim 1, wherein the control system is operable to encrypt the encoded image signature.
  7. A hardcopy secure document validation apparatus, comprising:
    a document input device (120) for receiving a hardcopy secure document having an encoded image signature and encoded information concerning a document segment template and for providing a document image derived from the received hardcopy secure document;
    a document storage device (230) for retaining the document image;
    a detector (232) for detecting and locating the encoded image signature and the encoded information concerning the document segment template in the document image;
    a decoder (234) for recovering said information concerning said image segment carried in the encoded image signature, wherein the image signature is referred to as primary image signature; and
    a control system (236) for using the document segment template for selecting and processing the image segment to provide data representing a secondary image signature, and for comparing the data representing the primary and secondary image signatures to determine a corresponding validation or invalidation condition.
  8. A method for providing a hardcopy secure document from a hardcopy original document, comprising:
    providing the hardcopy original document to an image capture apparatus for capturing and digitization of an imag*e of the original document;
    selecting an image segment of the captured image according to a predefined document segment template;
    converting the selected image segment to an image signature;
    encoding the image signature and information concerning the document segment template in machine-readable form;
    generating a hardcopy in which the encoded image signature and the encoded information concerning the document segment template are
    integrated in the original document.
  9. A method for providing a hardcopy secure document from an electronic version of an original document, comprising:
    providing the electronic version of the original document to an image processing apparatus;
    selecting an image segment of the electronic version according to a predefined document segment template;
    converting the selected image segment to an image signature;
    encoding the image signature and information concerning the document segment template in machine-readable form;
    merging the encoded image signature and the encoded information concerning the document segment template with the electronic version of the original document to provide a composite image; and
    providing the composite image to reprographic apparatus for generation of a hardcopy version of the secure document in hardcopy form, so as to provide the hardcopy secure document.
  10. A method for validating a hardcopy secure document, comprising:
    providing the hardcopy secure document to an image capture apparatus;
    capturing an image of the hardcopy secure document;
    digitizing the image of the hardcopy secure document so as to provide a digitized image;
    locating, in the digitized image, an encoded primary image signature and encoded information concerning a document segment template presented in the digitized image;
    decoding the encoded information concerning the document segment template and the encoded primary image signature so as to recover data representative of a respective primary image signature;
    selecting and processing image segment of the digitized image according to the decoded information concerning the document segment template so as to provide data representative of a secondary image signature;
    comparing the data representative of the primary and secondary image signatures; and
    determining, in response to the comparing of the data, a corresponding validation or invalidation condition.
EP20030029010 2002-12-16 2003-12-16 Systems and methods for providing hardcopy secure documents and for validation of such documents Expired - Fee Related EP1432234B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US320864 1981-11-13
US10/320,864 US7197644B2 (en) 2002-12-16 2002-12-16 Systems and methods for providing hardcopy secure documents and for validation of such documents

Publications (2)

Publication Number Publication Date
EP1432234A1 EP1432234A1 (en) 2004-06-23
EP1432234B1 true EP1432234B1 (en) 2011-09-28

Family

ID=32392988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030029010 Expired - Fee Related EP1432234B1 (en) 2002-12-16 2003-12-16 Systems and methods for providing hardcopy secure documents and for validation of such documents

Country Status (3)

Country Link
US (1) US7197644B2 (en)
EP (1) EP1432234B1 (en)
JP (1) JP2004201321A (en)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236271B2 (en) * 1998-11-09 2007-06-26 Silverbrook Research Pty Ltd Mobile telecommunication device with printhead and media drive
US6816274B1 (en) 1999-05-25 2004-11-09 Silverbrook Research Pty Ltd Method and system for composition and delivery of electronic mail
AUPQ056099A0 (en) * 1999-05-25 1999-06-17 Silverbrook Research Pty Ltd A method and apparatus (pprint01)
AUPQ291299A0 (en) * 1999-09-17 1999-10-07 Silverbrook Research Pty Ltd A self mapping surface and related applications
US7999964B2 (en) * 1999-12-01 2011-08-16 Silverbrook Research Pty Ltd Printing on pre-tagged media
AUPQ439299A0 (en) * 1999-12-01 1999-12-23 Silverbrook Research Pty Ltd Interface system
SG152904A1 (en) 2000-10-20 2009-06-29 Silverbrook Res Pty Ltd Cartridge for an electronic pen
US20070102531A1 (en) * 2002-08-09 2007-05-10 Tri Ventures Inc. Method and apparatus for creating a bar code
US7740347B2 (en) * 2002-12-02 2010-06-22 Silverbrook Research Pty Ltd Ink usage tracking in a cartridge for a mobile device
US20050206944A1 (en) * 2002-12-02 2005-09-22 Silverbrook Research Pty Ltd Cartridge having one-time changeable data storage for use in a mobile device
US7340607B2 (en) * 2003-02-04 2008-03-04 Eastman Kodak Company Preservation system for digitally created and digitally signed documents
US7991432B2 (en) * 2003-04-07 2011-08-02 Silverbrook Research Pty Ltd Method of printing a voucher based on geographical location
US20050036654A1 (en) * 2003-08-15 2005-02-17 Cai-Xia Wan Scanner and method for encrypting/decrypting documents by using the scanner
US7715059B2 (en) * 2003-10-22 2010-05-11 International Business Machines Corporation Facsimile system, method and program product with junk fax disposal
US20050103837A1 (en) * 2003-11-13 2005-05-19 Boyer Charles E. High-security card and system
US20050144444A1 (en) * 2003-12-31 2005-06-30 Hall Timothy G. Data card and authentication process therefor
JP4466108B2 (en) * 2004-02-13 2010-05-26 株式会社日立製作所 Certificate issuance method and certificate verification method
US7609872B2 (en) * 2004-04-05 2009-10-27 Eastman Kodak Company Method and apparatus for verifying the authenticity of documents
AT426866T (en) * 2004-05-17 2009-04-15 Dexrad Pty Ltd Method and system for generating an identification document
JP4728327B2 (en) 2004-05-18 2011-07-20 シルバーブルック リサーチ ピーティワイ リミテッド Trading terminal
US7370932B2 (en) * 2004-05-27 2008-05-13 Silverbrook Research Pty Ltd Cartridge having integrated circuit for enabling validation thereof by a mobile device
US7751585B2 (en) * 2004-06-28 2010-07-06 Microsoft Corporation System and method for encoding high density geometric symbol set
US8215556B2 (en) * 2004-06-28 2012-07-10 Konica Minolta Laboratory U.S.A., Inc. Color barcode producing, reading and/or reproducing method and apparatus
US7949666B2 (en) * 2004-07-09 2011-05-24 Ricoh, Ltd. Synchronizing distributed work through document logs
US7533817B2 (en) * 2004-08-09 2009-05-19 Konica Minolta Systems Laboratory, Inc. Color barcode producing method and apparatus, color barcode reading method and apparatus and color barcode reproducing method and apparatus
CN101069187B (en) 2004-10-19 2010-09-15 威泰克公司 Secure cards and methods
US7568104B2 (en) * 2005-01-19 2009-07-28 International Business Machines Corporation Method and apparatus for adding signature information to electronic documents
JP4660212B2 (en) * 2005-01-24 2011-03-30 株式会社東芝 Image processing apparatus and image processing method
US20070021191A1 (en) * 2005-02-15 2007-01-25 White Michael L Method and apparatus for storing information on a wager gaming voucher
JP2006260481A (en) * 2005-03-18 2006-09-28 Canon Inc Document management device and its control method, computer program and storage medium
JP4419891B2 (en) * 2005-03-25 2010-02-24 富士ゼロックス株式会社 Translation apparatus, translation method, and program
US7669769B2 (en) * 2005-03-28 2010-03-02 Konica Minolta Systems Laboratory, Inc. Systems and methods for preserving and maintaining document integrity
US8370632B2 (en) * 2005-04-18 2013-02-05 Vpsign Ltd. Apparatus and method for incorporating signature into electronic documents
US7558962B2 (en) * 2005-05-09 2009-07-07 Silverbrook Research Pty Ltd Method of authenticating a print medium online
US20060250477A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Cartridge with capping mechanism for use in a mobile device
US7595904B2 (en) * 2005-05-09 2009-09-29 Silverbrook Research Pty Ltd Method of using a mobile device to determine a first rotational orientation of coded data on a print medium
US20060251867A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with removable portion
US7824031B2 (en) * 2005-05-09 2010-11-02 Silverbrook Research Pty Ltd Print cartridge with friction driven media feed shaft
US7680512B2 (en) * 2005-05-09 2010-03-16 Silverbrook Research Pty Ltd Method of using a mobile device to print onto a print medium taking into account an orientation of a print medium
US7645022B2 (en) * 2005-05-09 2010-01-12 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead, a capper and a locking mechanism for holding the capper in an uncapped position during printing
US20060252456A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Mobile device with printhead for receiving data via modulate light signal
US7470019B2 (en) * 2005-05-09 2008-12-30 Silverbrook Research Pty Ltd Mobile telecommunications device with a capper moveable between capping and uncapping positions by the printhead
US7841713B2 (en) 2005-05-09 2010-11-30 Silverbrook Research Pty Ltd Mobile device for printing schedule data
US7517046B2 (en) * 2005-05-09 2009-04-14 Silverbrook Research Pty Ltd Mobile telecommunications device with printhead capper that is held in uncapped position by media
US7726764B2 (en) * 2005-05-09 2010-06-01 Silverbrook Research Pty Ltd Method of using a mobile device to determine a position of a print medium configured to be printed on by the mobile device
US8104889B2 (en) * 2005-05-09 2012-01-31 Silverbrook Research Pty Ltd Print medium with lateral data track used in lateral registration
US7466993B2 (en) * 2005-05-09 2008-12-16 Silverbrook Research Pty Ltd Mobile telecommunications device dual media coding detectors
US8061793B2 (en) * 2005-05-09 2011-11-22 Silverbrook Research Pty Ltd Mobile device that commences printing before reading all of the first coded data on a print medium
US7447908B2 (en) * 2005-05-09 2008-11-04 Silverbrook Research Pty Ltd Method of authenticating a print medium offline
US20060251868A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium including coded data indicative of a physical characteristic thereof
US20060250640A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Method of reading coded data from a print medium before printing
US7284921B2 (en) * 2005-05-09 2007-10-23 Silverbrook Research Pty Ltd Mobile device with first and second optical pathways
US7566182B2 (en) * 2005-05-09 2009-07-28 Silverbrook Research Pty Ltd Printhead that uses data track for print registration on print medium
US7465047B2 (en) * 2005-05-09 2008-12-16 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead and media sheet position sensor
US7843484B2 (en) 2005-05-09 2010-11-30 Silverbrook Research Pty Ltd Mobile telecommunication device having a printer for printing connection history information
US20060250474A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with lateral data track
US7392950B2 (en) * 2005-05-09 2008-07-01 Silverbrook Research Pty Ltd Print medium with coded data in two formats, information in one format being indicative of information in the other format
US7607774B2 (en) * 2005-05-09 2009-10-27 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead and single media feed roller
US20060250486A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd. Mobile device that reads entire of first coded data before commencing printing
US7697159B2 (en) * 2005-05-09 2010-04-13 Silverbrook Research Pty Ltd Method of using a mobile device to determine movement of a print medium relative to the mobile device
US7874659B2 (en) * 2005-05-09 2011-01-25 Silverbrook Research Pty Ltd Cartridge with printhead and media feed mechanism for mobile device
US7735993B2 (en) * 2005-05-09 2010-06-15 Silverbrook Research Pty Ltd Print medium having coded data and an orientation indicator
US20060250481A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with self-clocking data track and method of printing onto the print medium
US8181261B2 (en) * 2005-05-13 2012-05-15 Xerox Corporation System and method for controlling reproduction of documents containing sensitive information
US7447361B2 (en) * 2005-05-26 2008-11-04 Marvell International, Ltd. System and method for generating a custom font
JP4529828B2 (en) * 2005-07-19 2010-08-25 富士ゼロックス株式会社 Document falsification prevention device
JP2007028529A (en) * 2005-07-21 2007-02-01 Fuji Xerox Co Ltd Information recording system, information reproducing system, and information recording and reproducing system
US7668540B2 (en) * 2005-09-19 2010-02-23 Silverbrook Research Pty Ltd Print on a mobile device with persistence
US7738919B2 (en) * 2005-09-19 2010-06-15 Silverbrook Research Pty Ltd Link object to card
US7689249B2 (en) * 2005-09-19 2010-03-30 Silverbrook Research Pty Ltd Printing a security identification using a mobile device
US7805162B2 (en) * 2005-09-19 2010-09-28 Silverbrook Research Pty Ltd Print card with linked object
US7697714B2 (en) * 2005-09-19 2010-04-13 Silverbrook Research Pty Ltd Associating an object with a sticker and a surface
US7654444B2 (en) 2005-09-19 2010-02-02 Silverbrook Research Pty Ltd Reusable sticker
US7672664B2 (en) * 2005-09-19 2010-03-02 Silverbrook Research Pty Ltd Printing a reminder list using mobile device
US7558597B2 (en) * 2005-09-19 2009-07-07 Silverbrook Research Pty Ltd. Retrieving a ringtone via a coded surface
US7924450B2 (en) * 2005-09-19 2011-04-12 Silverbrook Research Pty Ltd Reprint card on a mobile device
US7756526B2 (en) * 2005-09-19 2010-07-13 Silverbrook Research Pty Ltd Retrieving a web page via a coded surface
US7724399B2 (en) * 2005-09-19 2010-05-25 Silverbrook Research Pty Ltd Method of downloading and installing a software object
US7708203B2 (en) 2005-09-19 2010-05-04 Silverbrook Research Pty Ltd Link object to sticker
US7469829B2 (en) * 2005-09-19 2008-12-30 Silverbrook Research Pty Ltd Printing video information using a mobile device
US7558599B2 (en) * 2005-09-19 2009-07-07 Silverbrook Research Pty Ltd Printing a bill using a mobile device
US7855805B2 (en) 2005-09-19 2010-12-21 Silverbrook Research Pty Ltd Printing a competition entry form using a mobile device
US7621442B2 (en) 2005-09-19 2009-11-24 Silverbrook Research Pty Ltd Printing a subscription using a mobile device
US7738862B2 (en) * 2005-09-19 2010-06-15 Silverbrook Research Pty Ltd Retrieve information via card on mobile device
US7742755B2 (en) * 2005-09-19 2010-06-22 Silverbrook Research Pty Ltd Retrieving a bill via a coded surface
US7738674B2 (en) * 2005-09-19 2010-06-15 Silverbrook Research Pty Ltd Retrieving location data by sensing coded data on a surface
US7761090B2 (en) * 2005-09-19 2010-07-20 Silverbrook Research Pty Ltd Print remotely to a mobile device
US7747280B2 (en) * 2005-09-19 2010-06-29 Silverbrook Research Pty Ltd Retrieving a product via a coded surface
US8903744B2 (en) * 2005-11-18 2014-12-02 Xerox Corporation System and method for controlling access to personal identification information contained in documents
WO2007089730A2 (en) 2006-01-27 2007-08-09 Spyder Lynk, Llc Encoding and decoding data in an image
US20070176000A1 (en) * 2006-01-31 2007-08-02 Konica Minolta Systems Laboratory, Inc. Selective image encoding and replacement
US8479004B2 (en) * 2006-08-31 2013-07-02 Ricoh Co., Ltd Paper-based document logging
US7628330B2 (en) * 2006-09-29 2009-12-08 Konica Minolta Systems Laboratory, Inc. Barcode and decreased-resolution reproduction of a document image
US7766241B2 (en) * 2006-09-29 2010-08-03 Konica Minolta Systems Laboratory, Inc. Barcode for two-way verification of a document
US7818395B2 (en) * 2006-10-13 2010-10-19 Ceelox, Inc. Method and apparatus for interfacing with a restricted access computer system
US8194914B1 (en) 2006-10-19 2012-06-05 Spyder Lynk, Llc Encoding and decoding data into an image using identifiable marks and encoded elements
JP4752726B2 (en) * 2006-10-31 2011-08-17 富士ゼロックス株式会社 Image processing apparatus, image processing system, and image processing program
US7913920B2 (en) * 2006-12-20 2011-03-29 Palo Alto Research Center Incorporated Document processing devices, systems and methods thereof
US8006094B2 (en) * 2007-02-21 2011-08-23 Ricoh Co., Ltd. Trustworthy timestamps and certifiable clocks using logs linked by cryptographic hashes
US9514117B2 (en) * 2007-02-28 2016-12-06 Docusign, Inc. System and method for document tagging templates
US8996483B2 (en) * 2007-03-28 2015-03-31 Ricoh Co., Ltd. Method and apparatus for recording associations with logs
US20080243688A1 (en) * 2007-03-28 2008-10-02 Hart Peter E Method and Apparatus for Recording Transactions with a Portable Logging Device
US20080307233A1 (en) * 2007-06-09 2008-12-11 Bank Of America Corporation Encoded Data Security Mechanism
US8949706B2 (en) 2007-07-18 2015-02-03 Docusign, Inc. Systems and methods for distributed electronic signature documents
US8655961B2 (en) 2007-07-18 2014-02-18 Docusign, Inc. Systems and methods for distributed electronic signature documents
US20100293058A1 (en) * 2008-04-30 2010-11-18 Intertrust Technologies Corporation Ad Selection Systems and Methods
US8660539B2 (en) * 2008-04-30 2014-02-25 Intertrust Technologies Corporation Data collection and targeted advertising systems and methods
EP2145774A1 (en) * 2008-07-07 2010-01-20 Gemalto SA Method for securing an image by means of graphical anti-counterfeiting means, method for securing an identification document, and secure identification
US8185733B2 (en) * 2008-10-02 2012-05-22 Ricoh Co., Ltd. Method and apparatus for automatically publishing content based identifiers
US8406500B2 (en) * 2009-03-03 2013-03-26 Seiko Epson Corporation Simultaneously scanning multiple checks
BRPI0902945A2 (en) * 2009-03-12 2010-11-23 Sergio Leal Fonseca mobile electronic document signer
EP2237546A1 (en) * 2009-03-30 2010-10-06 Inventive Designers NV Device and process for protecting a digital document, and corresponding process for verifying the authenticity of a printed hardcopy
WO2010134996A2 (en) 2009-05-20 2010-11-25 Intertrust Technologies Corporation Content sharing systems and methods
WO2010135003A2 (en) * 2009-05-21 2010-11-25 Intertrust Technologies Corporation Dynamic, local targeted advertising systems and methods
RU2549113C2 (en) * 2009-05-21 2015-04-20 Интертраст Текнолоджиз Корпорейшн Systems and methods of delivering information content
US8768846B2 (en) * 2009-08-27 2014-07-01 International Business Machines Corporation System, method, and apparatus for management of media objects
KR20110074166A (en) 2009-12-24 2011-06-30 삼성전자주식회사 Method for generating digital contents
US9251131B2 (en) 2010-05-04 2016-02-02 Docusign, Inc. Systems and methods for distributed electronic signature documents including version control
AU2011265177C1 (en) 2010-06-11 2016-02-25 Docusign, Inc. Web-based electronically signed documents
RU2595885C2 (en) 2010-09-24 2016-08-27 Виза Интернэшнл Сервис Ассосиэйшн Method and system using universal identifier and biometric data
US8805095B2 (en) 2010-12-03 2014-08-12 International Business Machines Corporation Analysing character strings
JP6100773B2 (en) * 2011-07-14 2017-03-22 ドキュサイン,インク. Identification and verification of online signatures in the community
US9824198B2 (en) 2011-07-14 2017-11-21 Docusign, Inc. System and method for identity and reputation score based on transaction history
US9268758B2 (en) 2011-07-14 2016-02-23 Docusign, Inc. Method for associating third party content with online document signing
FR2978002B1 (en) * 2011-07-15 2015-12-11 Dictao Method of authentically signature of a working document
US9716711B2 (en) * 2011-07-15 2017-07-25 Pagemark Technology, Inc. High-value document authentication system and method
AU2012298605A1 (en) 2011-08-25 2014-03-20 Docusign, Inc. Mobile solution for signing and retaining third-party documents
CN104011710B (en) * 2011-10-27 2017-09-12 多塞股份公司 For importing and to the mobility solution of electronic third-party signature document signature
US9978064B2 (en) 2011-12-30 2018-05-22 Visa International Service Association Hosted thin-client interface in a payment authorization system
FR2986350A1 (en) 2012-01-26 2013-08-02 Paul Lahmi Method for transmitting documents and / or information with perennial authentication
US9373032B2 (en) 2012-02-09 2016-06-21 Hewlett-Packard Development Company, L.P. Forensic verification utilizing forensic markings inside halftones
WO2013119233A1 (en) 2012-02-09 2013-08-15 Hewlett-Packard Development Company, L.P. Forensic verification utilizing halftone boundaries
US9230130B2 (en) 2012-03-22 2016-01-05 Docusign, Inc. System and method for rules-based control of custody of electronic signature transactions
US9779227B1 (en) * 2014-10-24 2017-10-03 Amazon Technologies, Inc. Security system using keys encoded in holograms
WO2016191465A1 (en) * 2015-05-26 2016-12-01 Entrust Datacard Corporation Image capture in a security document printer
US9855785B1 (en) 2016-04-04 2018-01-02 Uipco, Llc Digitally encoded seal for document verification
US10135999B2 (en) * 2016-10-18 2018-11-20 Conduent Business Services, Llc Method and system for digitization of document

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489158A (en) 1990-01-05 1996-02-06 Symbol Technologies, Inc. Printer system for removable machine readable code
CA2039652C (en) * 1990-05-30 1996-12-24 Frank Zdybel, Jr. Hardcopy lossless data storage and communications for electronic document processing systems
US5388158A (en) * 1992-11-20 1995-02-07 Pitney Bowes Inc. Secure document and method and apparatus for producing and authenticating same
US5291243A (en) 1993-02-05 1994-03-01 Xerox Corporation System for electronically printing plural-color tamper-resistant documents
CA2129075C (en) 1993-10-18 1999-04-20 Joseph J. Daniele Electronic copyright royalty accounting system using glyphs
US5841886A (en) 1993-11-18 1998-11-24 Digimarc Corporation Security system for photographic identification
FR2732532B1 (en) 1995-03-29 1997-06-20 Lahmi Paul David Secure Method for reproduction of sensitive documents
US5742685A (en) 1995-10-11 1998-04-21 Pitney Bowes Inc. Method for verifying an identification card and recording verification of same
US5901224A (en) 1996-10-21 1999-05-04 Xerox Corporation Quasi-reprographics with variable embedded data with applications to copyright management, and distribution control
JP3570114B2 (en) 1996-10-21 2004-09-29 富士ゼロックス株式会社 Data validation methods and data verification system
US6209090B1 (en) * 1997-05-29 2001-03-27 Sol Aisenberg Method and apparatus for providing secure time stamps for documents and computer files
EP0935182A1 (en) * 1998-01-09 1999-08-11 Hewlett-Packard Company Secure printing
US6487301B1 (en) * 1998-04-30 2002-11-26 Mediasec Technologies Llc Digital authentication with digital and analog documents
US6328209B1 (en) 1999-02-03 2001-12-11 American Bank Note Holographics, Inc. Card security system
US6175714B1 (en) 1999-09-02 2001-01-16 Xerox Corporation Document control system and method for digital copiers
US6457651B2 (en) 1999-10-01 2002-10-01 Xerox Corporation Dual mode, dual information, document bar coding and reading system
JP4688375B2 (en) 2000-11-28 2011-05-25 ゼロックス コーポレイションXerox Corporation Printing method to prevent document forgery

Also Published As

Publication number Publication date
JP2004201321A (en) 2004-07-15
US20040117627A1 (en) 2004-06-17
US7197644B2 (en) 2007-03-27
EP1432234A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
CN100364309C (en) Digital watermarks and methods for security documents
US4908873A (en) Document reproduction security system
CA2288985C (en) Security document containing encoded data block
US6804377B2 (en) Detecting information hidden out-of-phase in color channels
US7113615B2 (en) Watermark embedder and reader
US5291243A (en) System for electronically printing plural-color tamper-resistant documents
US6940995B2 (en) Method for embedding and extracting text into/from electronic documents
US5838814A (en) Security check method and apparatus
US7519819B2 (en) Layered security in digital watermarking
JP3803378B2 (en) Secure copy of confidential documents
JP3373811B2 (en) Watermark embedding and detecting method and apparatus to black-and-white binary document image
US6804376B2 (en) Equipment employing watermark-based authentication function
US8144368B2 (en) Automated methods for distinguishing copies from original printed objects
US7054462B2 (en) Inferring object status based on detected watermark data
US8033477B2 (en) Optically variable personalized indicia for identification documents
US20040065739A1 (en) Barcode having enhanced visual quality and systems and methods thereof
US7457957B2 (en) Apparatus and method for issuing and authenticating securities, etc. using digital watermarking
US7770013B2 (en) Digital authentication with digital and analog documents
US7555139B2 (en) Secure documents with hidden signals, and related methods and systems
US20070114788A1 (en) Identification Documents and Authentication of Such Documents
US8543823B2 (en) Digital watermarking for identification documents
US6394358B1 (en) Device for authenticating a security document
EP1014318B1 (en) Ticket issuing method, ticket issuing system and ticket collating method
US7427030B2 (en) Security features for objects and method regarding same
US20050036651A1 (en) Digital anti&minus forging method

Legal Events

Date Code Title Description
AX Request for extension of the european patent to

Extension state: AL LT LV MK

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20041223

AKX Payment of designation fees

Designated state(s): DE FR GB

17Q First examination report

Effective date: 20070709

RIC1 Classification (correction)

Ipc: H04N 1/32 20060101AFI20110321BHEP

AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60338510

Country of ref document: DE

Effective date: 20111201

26N No opposition filed

Effective date: 20120629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60338510

Country of ref document: DE

Effective date: 20120629

PGFP Postgrant: annual fees paid to national office

Ref country code: DE

Payment date: 20131121

Year of fee payment: 11

Ref country code: GB

Payment date: 20131125

Year of fee payment: 11

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20131219

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60338510

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231