EP1428411B2 - Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers - Google Patents
Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers Download PDFInfo
- Publication number
- EP1428411B2 EP1428411B2 EP01980187A EP01980187A EP1428411B2 EP 1428411 B2 EP1428411 B2 EP 1428411B2 EP 01980187 A EP01980187 A EP 01980187A EP 01980187 A EP01980187 A EP 01980187A EP 1428411 B2 EP1428411 B2 EP 1428411B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- audio signal
- bandpass
- signal
- filter
- filtered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
Definitions
- the invention relates to a method for controlling the bass reproduction of audio signals in electroacoustic transducers according to the preamble of claim 1 and an electroacoustic system according to the preamble of claim 8.
- the bass reproduction of audio signals in an electroacoustic transducer is determined by the size of the electroacoustic transducer, the loudspeaker or the earphone. The smaller the speaker diaphragm and its maximum deflection, the higher the lower resonant frequency.
- FIGURE 1 is a typical frequency response of a small speaker shown.
- Electronic audio equipment in which such small electro-acoustic transducers are used and in which consequently the bass reproduction is unsatisfactory, are primarily audio devices (devices for outputting and / or reproducing audio signals) of the communication and information technology as well as consumer electronics and consumer goods, such as mobile and cordless phone handsets, notebooks, personal digital assistants, mini-radios, clock radios, portable music players, etc.
- the perception of a fundamental frequency can be simulated by a combination of harmonics. Therefore, the perception of a low frequency can be simulated with the appropriate combination of its harmonics.
- the low bass frequencies for example in the range of 20 to 70 Hz
- the higher bass frequencies for example in a range of 70 to 100 Hz
- the DE 199 28 420 A1 described splitting an audio signal into a first path and a second path to compensate for the frequency response of loudspeakers and to give the listener the illusion of sonorous basses.
- the second path harmonics of the signal components of lower frequencies are generated and mixed with the signal of the first path.
- the audio signal in the second path is band-pass filtered, weighted with a correction factor, amplified with a gain, then peaked and finally band-pass filtered again before being added to the original audio signal in the first path.
- the correction factor is reduced when the maximum value is exceeded, while it is otherwise increased.
- the object underlying the invention is to control the bass reproduction of audio signals in electroacoustic transducers based on the psychoacoustic principle referred to as “virtual pitch” or as “residual hearing (hearing of missing fundamental)" such that the perception of the virtual bass reproduction of the audio signals is improved over the prior art.
- the idea of the invention is to control the reproduction of the low frequencies or basses emitted in the electroacoustic transducer by amplifying the harmonic harmonics already contained in the audio signal in the sense of a simulation that the listener perceives or perceives improved bass reproduction.
- the control or simulation can be both digitally (claim 1), by a program module in the digital signal processor DSP of the electronic device for output and / or playback of audio signals with the electroacoustic transducer, as well as analog (claim 9), by a Hardware circuit between the digital / analog converter and the power amplifier of the electronic device for output and / or playback of audio signals with the electro-acoustic transducer, done.
- the advantage of the method according to claim 1 lies in the fact that the amplification of the harmonic original harmonics present in the audio signal significantly improves the quality of the digital signal processor generated modified audio signal guaranteed. As a result, in particular distortions of the audio signal are avoided.
- the inventive method has lower requirements in terms of computer performance and memory requirements in the digital signal processor.
- the modified audio signal is filtered to amplify selected frequencies.
- FIGURE 2 2 shows as a second exemplary embodiment in the form of a functional or block diagram the speech processing path in a radio FG for outputting and / or reproducing audio signals, in particular speech signals, in which the invention is implemented in a program module PGM of a digital signal processor DSP (digital implementation).
- the radio FG receives via an antenna ANT an analog radio signal FS, on which a coded voice information is modulated.
- a digital demodulated signal DDS is generated from the modulated coded analog radio signal FS.
- This digital demodulated signal DDS is then supplied to a speech decoder SDK of the digital signal processor DSP.
- a speech signal or, generally speaking, an audio signal AS is generated from the digital demodulated signal DDS.
- This audio signal AS is then fed to the program module for controlling the bass reproduction of audio signals in electroacoustic transducers PGM of the digital signal processor DSP.
- a modified audio signal MAS is generated from the audio signal AS, which is then further filtered by a filter FIL of the digital signal processor DSP.
- the filtered modified audio signal MAS is finally applied to a digital-to-analogue converter DAW and then amplified in a power amplifier EVS before the voice information contained in the modified audio signal MAS is output by an electroacoustic transducer EAS, which is preferably designed as a loudspeaker.
- EAS electroacoustic transducer
- FIG. 3 shows as a second embodiment in the form of a function or block diagram, the voice processing route in the radio FG, in which the invention in contrast to FIGURE 2 outside the Digital Signal Processor DSP in the analog part of the radio FG is implemented in a device for controlling the bass reproduction of audio signals in electroacoustic transducers STV (analog implementation).
- the voice signal processing in the radio FG begins with the analogue radio signal FS, on which coded voice information is modulated, being fed via the antenna ANT to the receiver EMP.
- the digital demodulated signal DDS is again generated by the microprocessor MP and the analog-to-digital converter ADW from the analog radio signal FS.
- This digital demodulated signal DDS is then fed back to the speech decoder SDK in the digital signal processor DSP.
- the decoded speech signal or, more generally, the decoded audio signal AS is recovered from the digital demodulated signal DDS.
- This audio signal AS is then filtered in the filter FIL of the digital signal processor DSP before the filtered audio signal in the digital-to-analog converter DAW is converted accordingly.
- the converted audio signal AS is then fed to the apparatus for controlling the bass reproduction of audio signals in electroacoustic transducers STV, where a modified audio signal MAS is generated from the audio signal AS.
- the modified audio signal MAS is subsequently amplified in the power amplifier EVS before being modified in the modified one Audio signal MAS contained speech information on the electro-acoustic transducer EAW, which is again preferably designed as a loudspeaker, is output.
- FIG. 4 shows a first implementation of the program module PGM according to the FIGURE 2 ,
- the audio signal AS is band-pass filtered to isolate a first frequency component FK with a software implemented bandpass filter BPF and low-pass filtered to isolate a second frequency component FK 'with a low-pass filter TPF realized by software. While the first frequency component FK is being amplified, the second frequency component FK 'generates a gain factor VF which determines the gain of the first frequency component FK.
- the bandpass filter BPF is preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM for buffering the audio signal AS a buffer ZWS. This buffer ZWS is not required when the bandpass filter BPF is designed as an Infinite Impulse Response filter IIR-F FIG. 4 represent the cache ZWS is shown as a dashed block.
- the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is applied to amplify it to the input of a software-implemented amplifier VS controllable by the gain factor VF.
- a software-implemented amplifier VS controllable by the gain factor VF.
- software implemented means for calculating signal envelope and / or signal energy MBSE are present in the program module PGM, which supply an input variable for the likewise implemented by software means for calculating the amplification factor MBVF of the program module PGM from the low-pass filtered audio signal FK ' ,
- the calculation means MBVF then supply the amplification factor VF with which the amplifier VS can be controlled.
- FIG. 5 shows starting from FIG. 4 a second embodiment of the program module PGM according to the FIGURE 2 ,
- the audio signal AS is bandpass filtered again to isolate the first frequency component FK with the bandpass filter BPF and low-pass filtered to isolate the second frequency component FK 'with the low-pass filter TPF. While the first frequency component FK is again amplified, the second frequency component FK 'again generates the amplification factor VF which determines the gain of the first frequency component FK.
- the bandpass filter BPF is again preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM again for buffering the audio signal AS the buffer ZWS. This buffer ZWS is not required again when the bandpass filter BPF is designed as an Infinite Impulse Response filter IIR-F FIG. 5 represent the cache ZWS is shown as a dashed block.
- the band-pass filtered audio signal FK or the frequency component FK isolated with the band-pass filter BPF becomes as in FIG FIG. 4 for their amplification to the input of an amplifier controllable with the gain VF VS set.
- the program module PGM again contains the means for calculating signal envelope and / or signal energy MBSE, which again supply an input from the low-pass filtered audio signal FK 'to the means for calculating the amplification factor MBVF of the program module PGM.
- the calculation means MBVF supplied a further input variable, which comes from further means for calculating signal envelope and / or signal energy MBSE.
- the further input variable is calculated by the calculation means MBSE from the unfiltered audio signal AS.
- the calculation means MBVF then supply from these two input variables the amplification factor VF with which the amplifier VS can be controlled again.
- the output of the amplifier VS is thus again connected to the band-pass filtered audio signal VSFK amplified by the amplification factor VF.
- This amplified bandpass filtered Audio signal VSFK and the audio signal AS which may have been buffered, are subsequently combined or added again with the aid of the combination means KM of the program module PGM, which are preferably designed again as addition means.
- the modified audio signal MAS is produced, which is preferably filtered again with the presence filter PRF in order to improve the signal quality. But it is also possible again that the modified audio signal MAS, as in the description of the FIGURE 2 explained, without further filtering by the presence filter PRF the filter FIL is supplied.
- FIG. 6 shows starting from FIG. 4 a third implementation of the program module PGM according to the FIGURE 2 ,
- the audio signal AS is bandpass filtered again to isolate the first frequency component FK with the bandpass filter BPF and low-pass filtered again to isolate the second frequency component FK 'with the low-pass filter TPF. While the first frequency component FK is again amplified, the amplification factor VF determining the amplification of the first frequency component FK is generated again with the second frequency component FK '.
- the bandpass filter BPF is again preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM again to buffer the audio signal AS the buffer ZWS. This buffer ZWS is not necessary again when the band-pass filter BPF is designed as an Infinite Impulse Response filter IIR-F FIG. 6 represent the cache ZWS is shown as a dashed block.
- the band-pass filtered audio signal FK or the frequency component FK isolated with the band-pass filter BPF becomes as in FIGS FIGURES 4 and 5 for their amplification to the input of controllable with the gain VF amplifier VS set.
- the program module PGM again contains the means for calculating signal envelope and / or signal energy MBSE, which supply an input quantity for means for calculating the amplification factor MBVF of the program module PGM from the low-pass filtered audio signal FK '.
- the calculation means MBVF supplied a further input variable, which comes from further means for calculating signal envelope and / or signal energy MBSE.
- the other input variable is unlike the according to the FIG. 5 calculated by the calculation means MBSE from the bandpass filtered audio signal FK.
- the calculation means MBVF then supply from these two input variables the amplification factor VF with which the amplifier VS can be controlled.
- the band-pass filtered audio signal VSFK amplified by the amplification factor VF is applied again.
- This amplified bandpass filtered audio signal VSFK and the audio signal AS which may have been temporarily stored, are subsequently combined or added again with the aid of the combination means KM of the program module PGM, which are preferably designed as addition means.
- the modified audio signal MAS again arises, which is preferably filtered again to improve the signal quality with the presence filter PRF.
- the modified audio signal MAS as in the description of the FIGURE 2 explained, without further filtering by the presence filter PRF the filter FIL is supplied.
- FIG. 7 shows an implementation of the control device STV according to the FIG. 3 .
- the audio signal AS is band-pass filtered to isolate the first frequency component FK with a designed as a hardware chip bandpass filter BPF1 and low-pass filtered to isolate the second frequency component FK 'with a designed as a hardware low-pass filter TPF1. While the first frequency component FK is amplified, the amplification factor VF determining the gain of the first frequency component FK is generated with the second frequency component FK '.
- the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF1 is applied to amplify it to the input of an amplifier VS1 which can be controlled by the amplification factor VF and is designed as a hardware component.
- amplification factor VF means formed in the control device STV for calculating signal envelope and / or signal energy MBSE1, which preferably consist of the series connection of a rectifier GLR and another low-pass filter TPF2, and of the low-pass filtered audio signal FK 'Provide an input for also designed as a hardware module means for calculating the gain factor MBVF1 the control device STV.
- the calculating means MBVF1 then supply the amplification factor VF with which the amplifier VS1 can be controlled.
- a bandpass filtered audio signal VSFK amplified by the gain factor VF.
- This amplified bandpass filtered audio signal VSFK and the audio signal AS are further combined or added with the aid of combination means KM1 of the control device STV, which are preferably designed as an addition means and as a hardware component.
- the modified audio signal MAS is produced, which is preferably filtered to improve the signal quality with a presence filter PRF1 embodied as a hardware component. But it is also possible that the modified audio signal MAS, as in the description of the FIG. 3 explained, without further filtering by the presence filter PRF is supplied to the power amplifier EVS.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern gemäß dem Oberbegriff des Patentanspruches 1 und ein elektroakustisches System gemäß dem Oberbegriff des Patentanspruches 8.The invention relates to a method for controlling the bass reproduction of audio signals in electroacoustic transducers according to the preamble of
Die Basswiedergabe von Audiosignalen in einem elektroakustischen Wandler, insbesondere einem Lautsprecher oder einer Hörkapsel, ist durch die Größe des elektroakustischen Wandlers, des Lautsprechers bzw. der Hörkapsel bedingt. Je kleiner die Lautsprecher-Membrane und deren maximale Auslenkung sind, desto höher ist die untere Resonanzfrequenz.The bass reproduction of audio signals in an electroacoustic transducer, in particular a loudspeaker or an earphone, is determined by the size of the electroacoustic transducer, the loudspeaker or the earphone. The smaller the speaker diaphragm and its maximum deflection, the higher the lower resonant frequency.
In
Um die Basswiedergabe mit einem kleinen Lautsprecher zu verbessern, kann ein bekannter psychoakustisches Prinzip benutzt werden. Dieses Prinzip wird als "Residual Hearing (Hearing of Missing Fundamentals)" oder als "Virtual Pitch" bezeichnet.To improve the bass reproduction with a small speaker, a well-known psychoacoustic principle can be used. This principle is referred to as "residual hearing (Hearing of Missing Fundamentals)" or "virtual pitch".
Nach diesem Prinzip kann die Wahrnehmung einer Grundfrequenz durch eine Kombination von Oberwellen simuliert werden. Daher kann auch die Wahrnehmung einer tiefen Frequenz mit der entsprechenden Kombination ihrer Oberwellen simuliert werden.According to this principle, the perception of a fundamental frequency can be simulated by a combination of harmonics. Therefore, the perception of a low frequency can be simulated with the appropriate combination of its harmonics.
Eine detaillierte Beschreibung des Virtual Pitch"-Prinzips ist in der Publikation "Psychoakustik" von E. Zwicker; H.Fastl; Springer Verlag , 2nd. Edition, 1999 zu finden.A detailed description of the Virtual Pitch Principle can be found in the publication "Psychoacoustics" by E. Zwicker, H.Fastl; Springer Verlag, 2nd Edition, 1999.
Aus der
Aus der
In der
Weiterhin ist in der
Schließlich ist in der
Die der Erfindung zugrundeliegende Aufgabe besteht darin, die Basswiedergabe von Audiosignalen in elektroakustischen Wandlern basierend auf dem als "virtual pitch" oder als "residual hearing (hearing of missing fundamental)" bezeichneten psychoakustischen Prinzip so zu steuern, dass die Wahrnehmung der virtuellen Basswiedergabe der Audiosignale gegenüber dem Stand der Technik verbessert ist.The object underlying the invention is to control the bass reproduction of audio signals in electroacoustic transducers based on the psychoacoustic principle referred to as "virtual pitch" or as "residual hearing (hearing of missing fundamental)" such that the perception of the virtual bass reproduction of the audio signals is improved over the prior art.
Diese Aufgabe wird sowohl ausgehend von dem im Oberbegriff des Patentanspruches 1 definierten Verfahren durch die im Kennzeichen des Patentanspruches 1 angegebenen Merkmale als auch ausgehend von der im Oberbegriff des Patentanspruches 8 definierten Vorrichtung durch die im Kennzeichen des Patentanspruches 8 angegebenen Merkmale gelöst.This object is achieved both on the basis of the method defined in the preamble of
Die die Erfindung ausmachende Idee besteht darin, die Wiedergabe der in dem elektroakustischen Wandler abgegebenen tiefen Frequenzen bzw. Bässe durch das Verstärken der schon im Audiosignal enthaltenen harmonischen Oberwellen so im Sinne einer Simulation zu steuern, dass der Hörer eine verbesserte Basswiedergabe empfindet bzw. wahrnimmt. Die Steuerung bzw. Simulation kann dabei sowohl digital (Anspruch 1), durch ein Programmmodul im Digitalen Signal-Prozessor DSP des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, als auch analog (Anspruch 9), durch eine Hardware-Schaltung zwischen dem Digital/Analog-Wandler und dem Endverstärker des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, erfolgen.The idea of the invention is to control the reproduction of the low frequencies or basses emitted in the electroacoustic transducer by amplifying the harmonic harmonics already contained in the audio signal in the sense of a simulation that the listener perceives or perceives improved bass reproduction. The control or simulation can be both digitally (claim 1), by a program module in the digital signal processor DSP of the electronic device for output and / or playback of audio signals with the electroacoustic transducer, as well as analog (claim 9), by a Hardware circuit between the digital / analog converter and the power amplifier of the electronic device for output and / or playback of audio signals with the electro-acoustic transducer, done.
Mit dem Programmmodul und der Hardware-Schaltung werden nur die harmonischen Oberwellen verstärkt, die sich oberhalb der Resonanzfrequenz des elektroakustischen Wandlers, insbesondere des Lautsprechers, befinden, um die Wahrnehmung der Grundfrequenz zu simulieren. Die Extraktion bzw. Isolierung der harmonischen Oberwellen wird beim Programmmodul durch Bandpassfilterung und bei der Hardware-Schaltung mittels eines Bandpassfilters erreicht, während die Verstärkung der Oberwellen gesteuert durch einen Verstärkungsfaktor in dem Programmmodul softwaregestützt und in der Hardware-Schaltung in einem dafür entsprechend ausgebildeten verstärkungsfaktorgesteuerten Verstärker (engl.: Gain Controlled Amplifier) abläuft. Der Verstärkungsfaktor wird vorzugsweise von Frequenzkomponenten des Audiosignals unterhalb der Resonanzfrequenz bzw. Grenzfrequenz des elektroakustischen Wandlers gesteuert.The program module and the hardware circuitry amplify only the harmonic waves that are above the resonant frequency of the electroacoustic transducer, particularly the loudspeaker, to simulate the perception of the fundamental frequency. Harmonic harmonic extraction is achieved in the program module by bandpass filtering and hardware switching by means of a bandpass filter, while the harmonic gain is controlled by a gain factor in the program module and in the hardware circuitry in a correspondingly designed gain controlled amplifier (English: Gain Controlled Amplifier) expires. The amplification factor is preferably controlled by frequency components of the audio signal below the resonance frequency or cut-off frequency of the electroacoustic transducer.
Der Vorteil des Verfahrens gemäß Anspruch 1 liegt darin, dass die Verstärkung der im Audiosignal vorhandenen harmonischen Original-Oberwellen eine deutliche bessere Qualität des im Digitalen Signal-Prozessor erzeugten modifizierten Audiosignals gewährleistet. Dadurch werden insbesondere Verzerrungen des Audiosignals vermieden. Außerdem stellt das erfindungsgemäße Verfahren geringere Anforderungen hinsichtlich der Rechnerleistung und des Speicherbedarfs im Digitalen Signal-Prozessor.The advantage of the method according to
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
So ist es nach Anspruch 2 iVm Anspruch 4 von Vorteil, wenn bei der Verwendung eines "Finite Impulse Response"-Filters - im Unterschied zu der Verwendung eines "Infinite Impulse Response"-Filter gemäß Anspruch 3 - das mit den verstärkten Frequenzkomponenten zu kombinierende Audiosignal gepuffert wird, um für die Kombination aufgrund der Verwendung des FIR-Filters vorhandene Phasenverschiebungen zwischen der verstärkten Frequenzkomponenten und dem Audiosignal zu kompensieren.Thus, it is advantageous according to
Nach den Ansprüchen 7 und 10 ist es vorteilhaft, wenn zur Verbesserung der Qualität des vom elektroakustischen Wandler abgegebenen modifizierten Audiosignals das modifizierte Audiosignal zur Verstärkung von ausgewählten Frequenzen gefiltert wird.According to
Zwei Ausführungsbeispiele der Erfindung werden anhand der
-
FIGUR 2 die digitale Implementierung des erfindungsgemäßen Verfahrens in Form eines Programmmoduls in einem Digitalen Signal-Prozessor eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen, -
FIGUR 3 die analoge Implementierung der erfindungsgemäßen Vorrichtung in das Hardware-Konzept eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen, -
FIGUR 4 eine erste Realisierungsform des Programmmoduls nach ,FIGUR 2 -
eine zweite Realisierungsform des Programmmoduls nachFIGUR 5FIGUR 2 , -
FIGUR 6 eine dritte Realisierungsform des Programmmoduls nachFIGUR 2 , -
eine Realisierungsform der Steuerungsvorrichtung nachFIGUR 7FIGUR 3 .
-
FIGURE 2 the digital implementation of the method according to the invention in the form of a program module in a digital signal processor of an electronic radio device for outputting and / or reproducing audio signals, -
FIG. 3 the analog implementation of the device according to the invention in the hardware concept of an electronic radio device for the output and / or reproduction of audio signals, -
FIG. 4 a first implementation of the program module according toFIGURE 2 . -
FIG. 5 a second implementation of the program module afterFIGURE 2 . -
FIG. 6 a third implementation of the program module afterFIGURE 2 . -
FIG. 7 an implementation of the control device according toFIG. 3 ,
Anstelle des Tiefpassfilters TPF kann alternativ auch ein weiteres mittels Software realisiertes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK'). Diese Vorgebensweise ist jedoch nicht zur Erfindung gehörig.Instead of the low-pass filter TPF, another band-pass filter realized by software or even the bandpass filter BPF generating the first frequency component FK can alternatively also be used. In the latter case, the two frequency components FK, FK 'would be the same (FK = FK'). However, this Vorweisesweise is not part of the invention.
Das Bandpassfilter BPF ist vorzugsweise als Finite Impulse Response"-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response "-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response"-Filter FIR-F ausgebildet, enthält das Programmmodul PGM zur Pufferung des Audiosignals AS einen Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann, wenn das Bandpassfilter BPF als Infinite Impulse Response"-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren mittels Software realisierten Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM mittels Software realisierte Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FK' eine Eingangsgröße für ebenfalls mittels Software realisierte Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern. Die Berechnungsmittel MBVF liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel ausgebildeten, mittels Software realisierten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem mittels Software realisierten Präsenzfilter PRF gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der
Anstelle des Tiefpassfilters TPF kann wiederum alternativ auch ein weiteres Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' dann wieder gleich (FK=FK'). Diese Vorgebensweise ist jedoch nicht zur Erfindung gehörig.Instead of the low-pass filter TPF, alternatively, another band-pass filter or even the bandpass filter BPF generating the first frequency component FK may alternatively be used. In the latter case, the two frequency components FK, FK 'would then be equal again (FK = FK'). However, this Vorweisesweise is not part of the invention.
Das Bandpassfilter BPF ist wieder vorzugsweise als Finite Impulse Response "-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response "-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response "-Filter FIR-F ausgebildet, enthält das Programmmodul PGM wieder zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann wieder, wenn das Bandpassfilter BPF als Infinite Impulse Response"-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in der
In der Realisierungsform des Programmmoduls PGM gemäß der
Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Verstärker VS wieder steuerbar ist. Am Ausgang des Verstärkers VS liegt somit wieder das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren wieder mit Hilfe der vorzugsweise wieder als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität wieder mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch wieder möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der
Anstelle des Tiefpassfilters TPF kann erneut alternativ auch ein weiteres Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK'). Diese Vorgebensweise ist jedoch nicht zur Erfindung gehörig.Instead of the low-pass filter TPF, alternatively, another band-pass filter or even the bandpass filter BPF generating the first frequency component FK may also be used. In the latter case, the two frequency components FK, FK 'would be the same (FK = FK'). However, this Vorweisesweise is not part of the invention.
Das Bandpassfilter BPF ist erneut vorzugsweise als Finite Impulse Response"-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response"-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response"-Filter FIR-F ausgebildet, enthält das Programmmodul PGM erneut zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann erneut, wenn das Bandpassfilter BPF als Infinite Impulse Response "-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in den
In der Realisierungsform des Programmmoduls PGM gemäß der
Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Verstärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit erneut das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren erneut mit Hilfe der vorzugsweise als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht erneut das modifizierte Audiosignal MAS, das vorzugsweise erneut zur Verbesserung der Signalqualität mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch erneut möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der
Anstelle des Tiefpassfilters TPF1 kann alternativ auch ein weiteres als Hardware-Baustein ausgebildetes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF1 verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK'). Diese Vorgebensweise ist jedoch nicht zur Erfindung gehörig.Instead of the low-pass filter TPF1, alternatively, another bandpass filter designed as a hardware component or even the bandpass filter BPF1 generating the first frequency component FK may be used. In the latter case, the two frequency components FK, FK 'would be the same (FK = FK'). However, this Vorweisesweise is not part of the invention.
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF1 isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren als Hardware-Baustein ausgebildeten Verstärker VS1 gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in der Steuerungsvorrichtung STV als Hardware-Baustein ausgebildete Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE1 vorhanden, die vorzugsweise aus der Serienschaltung von einem Gleichrichter GLR und einem weiteren Tiefpassfilter TPF2 bestehen und die aus dem tiefpassgefilterten Audiosignal FK' eine Eingangsgröße für ebenfalls als Hardware-Baustein ausgebildete Mittel zur Berechnung des Verstärkungsfaktors MBVF1 der Steuerungsvorrichtung STV liefern. Die Berechnungsmittel MBVF1 liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS1 steuerbar ist. Am Ausgang des Verstärkers VS1 liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel und als Hardware-Baustein ausgebildeten Kombinationsmittel KM1 der Steuerungsvorrichtung STV kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem als Hardware-Baustein ausgebildeten Präsenzfilter PRF1 gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der
Claims (10)
- Method for controlling the bass reproduction of audio signals in electroacoustic converters, in whicha) frequency components (FK, FK') of the audio signal (AS) are isolated and amplified (VS, VS 1) with a gain factor (VF) calculated on the basis of the audio signal (AS),b) the amplified frequency components (VSFK) of the audio signal (AS) and the audio signal (AS) are combined (KM, KM1) such as to produce a modified audio signal (MAS),c) the modified audio signal (MAS) is fed to the electroacoustic converter (EAW), characterised in thatd) the audio signal (AS) is bandpass filtered with a bandpass filter (BPF) for isolation and amplification of first frequency components (FK) in order to amplify only the harmonic waves, which are above the resonance frequency of the electroacoustic converter (EAW),e) for calculation (MBVF, MBVF1) of the gain factor (VF)e1) the audio signal (AS) is lowpass and/or bandpass filtered (BPF, BPF1, TPF, TPF1) for isolation of second frequency components (FK') with an other lowpass and/or bandpass filtered (BPF, BPF1, TPF, TPF1),e2) the envelope and/or the energy of the unfiltered, lowpass filtered and/or bandpass filtered audio signal (AS, FK') is calculated (MBSE, MBSE1).
- Method according to claim 1, characterized in that the bandpass filtering is executed with a "Finite Impulse Response" filter (FIR-F).
- Method according to claim 1, characterized in that the bandpass filtering is executed with an "Infinite Impulse Response" filter (IIR-F).
- Method according to claim 2, characterized in that the audio signal (AS) to be combined with the amplified frequency components (VFK) is buffered (ZWS).
- Method according to one of the claims 1 to 4, characterized in that the bandpass filtering for the isolation and amplification of the frequency components is undertaken with one bandpass filter (BPF, BPF1) and bandpass filtering for calculation of the gain factor is undertaken with a further bandpass filter.
- Method according to one of the claims 1 to 5, characterized in that the modified audio signal (MAS) is filtered (PRF, PRF1) for amplification of selected frequencies.
- Method according to one of the claims 1 to 6, characterized in that the method runs in an electronic device for output and/or reproduction of audio signals.
- Electroacoustic system, comprising a electroacoustic converter and a device for controlling the bass reproduction in the electroacoustic converter, in which(a) isolation means (BPF, BPF1, TPF, TPFL) at the input of which the audio signal (AS) is present isolate the frequency components (FK, FK') of the audio signal (AS),(b) calculation means (MBVF, MBVF1) are present which calculate a gain factor (VF) based on the audio signal (AS),(c) an amplifier (VS, VS1) is present which is connected to the isolation and calculation means in such a way that the frequency components (FK, FK') of the audio signal (AS) are amplified with the gain factor (VF) calculated,(d) combination means (KM, KM1) are present, at the input of which the audio signal (AS) and the amplified frequency components (VSFK) of the audio signal (AS) are present and which combine the audio signal (AS) and the amplified frequency components (VSFK) of the audio signal (AS) in such a way that at the output of the combination means (KM, KM 1) a modified audio 15 signal (MAS) intended for the electroacoustic converter (EAW) is present, characterised in that(e) two bandpass filter (BPF, BPF1) or at least one bandpass filter (BPF, BPF1) and lowpass filter (TPF, TPF1) in each case are present for isolation of a first frequency component (FK) and a second frequency component (FK') of the audio signal (AS),(f) of the bandpass filters (BPF, BPF1) one bandpass filter is connected on its output side with the amplifiers (VS, VS1) for isolation of the first frequency component (FK) and is arranged in such a way that only the harmonic waves are amplifiable, which are above the resonance frequency of the electroacoustic converter (EAW)(g) means are present for calculating signal envelopes and/or signal energy (MBSE, MBSE1), at which on the input side the unfiltered, lowpass- filtered and/or bandpass-filtered audio signal (AS, FK') is present,(h) the calculation means (MBVF, MBVF1) for calculating the gain factor (VF) is connected on its input side with the means for calculating the signal envelope and/or signal energy (MBSE, MBSE1) and on its output side with the amplifier (VS, VS1) for setting the gain factor (VF).
- Device according to claim 8, characterized in that a presence filter (PRF, PRF1) is available for amplifying selected frequencies of the modified audio signal (MAS).
- Device according to claim 8 or 9, characterized in that the device is integrated or contained in an electronic device for output and/or reproduction of audio signals.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2001/003653 WO2003028405A1 (en) | 2001-09-21 | 2001-09-21 | Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1428411A1 EP1428411A1 (en) | 2004-06-16 |
EP1428411B1 EP1428411B1 (en) | 2007-06-20 |
EP1428411B2 true EP1428411B2 (en) | 2011-11-30 |
Family
ID=5648291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01980187A Expired - Lifetime EP1428411B2 (en) | 2001-09-21 | 2001-09-21 | Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers |
Country Status (6)
Country | Link |
---|---|
US (1) | US7574009B2 (en) |
EP (1) | EP1428411B2 (en) |
CN (1) | CN1274184C (en) |
DE (1) | DE50112650D1 (en) |
HK (1) | HK1069705A1 (en) |
WO (1) | WO2003028405A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1665874A1 (en) * | 2003-09-16 | 2006-06-07 | Koninklijke Philips Electronics N.V. | Audio frequency range adaptation |
US20070030983A1 (en) * | 2003-09-16 | 2007-02-08 | Aarts Ronaldus M | High efficiency audio reproduction |
EP1665878A1 (en) * | 2003-09-16 | 2006-06-07 | Koninklijke Philips Electronics N.V. | High efficiency audio transducer |
EP1519619B1 (en) * | 2003-09-25 | 2010-11-03 | Sony Ericsson Mobile Communications AB | Loudspeaker sensitive sound reproduction |
US7720237B2 (en) * | 2004-09-07 | 2010-05-18 | Audyssey Laboratories, Inc. | Phase equalization for multi-channel loudspeaker-room responses |
US7826626B2 (en) * | 2004-09-07 | 2010-11-02 | Audyssey Laboratories, Inc. | Cross-over frequency selection and optimization of response around cross-over |
WO2007086000A2 (en) * | 2006-01-27 | 2007-08-02 | Koninklijke Philips Electronics N.V. | Device and method for adapting an audio signal to a transducer unit |
JP2008263583A (en) * | 2007-03-16 | 2008-10-30 | Sony Corp | Bass enhancing method, bass enhancing circuit and audio reproducing system |
US7991171B1 (en) * | 2007-04-13 | 2011-08-02 | Wheatstone Corporation | Method and apparatus for processing an audio signal in multiple frequency bands |
CN101262662B (en) * | 2007-06-29 | 2011-02-09 | 浙江华立通信集团有限公司 | Tone generation method and device for 3G and 4G terminal |
WO2009004718A1 (en) * | 2007-07-03 | 2009-01-08 | Pioneer Corporation | Musical sound emphasizing device, musical sound emphasizing method, musical sound emphasizing program, and recording medium |
US20090216352A1 (en) * | 2008-02-22 | 2009-08-27 | Sony Ericsson Mobile Communications Ab | Method for providing an improved music experience |
CN101505443B (en) * | 2009-03-13 | 2013-12-11 | 无锡中星微电子有限公司 | Virtual supper bass enhancing method and system |
US20130114816A1 (en) * | 2010-01-04 | 2013-05-09 | Noel Lee | Audio Coupling System |
US8705764B2 (en) | 2010-10-28 | 2014-04-22 | Audyssey Laboratories, Inc. | Audio content enhancement using bandwidth extension techniques |
CN103891310B (en) | 2011-11-10 | 2018-10-19 | 宗德工业国际有限公司 | It include the audio attachment of the headphone with independent socket |
US9379777B2 (en) * | 2012-05-07 | 2016-06-28 | Nokia Technologies Oy | Near field communication circuitry used for hearing aid compatibility |
US20140372110A1 (en) * | 2013-02-15 | 2014-12-18 | Max Sound Corporation | Voic call enhancement |
US20150006180A1 (en) * | 2013-02-21 | 2015-01-01 | Max Sound Corporation | Sound enhancement for movie theaters |
US9247342B2 (en) | 2013-05-14 | 2016-01-26 | James J. Croft, III | Loudspeaker enclosure system with signal processor for enhanced perception of low frequency output |
US10405094B2 (en) | 2015-10-30 | 2019-09-03 | Guoguang Electric Company Limited | Addition of virtual bass |
US10893362B2 (en) | 2015-10-30 | 2021-01-12 | Guoguang Electric Company Limited | Addition of virtual bass |
US9794688B2 (en) | 2015-10-30 | 2017-10-17 | Guoguang Electric Company Limited | Addition of virtual bass in the frequency domain |
US9794689B2 (en) * | 2015-10-30 | 2017-10-17 | Guoguang Electric Company Limited | Addition of virtual bass in the time domain |
GB2555842A (en) | 2016-11-11 | 2018-05-16 | Eartex Ltd | Auditory device assembly |
DE102017212431A1 (en) * | 2017-07-20 | 2019-01-24 | Robert Bosch Gmbh | Method and device for processing a signal |
CN109996151A (en) * | 2019-04-10 | 2019-07-09 | 上海大学 | One kind mixing virtual bass boosting method based on the separation of wink steady-state signal |
CN110536216B (en) * | 2019-09-05 | 2021-04-06 | 长沙市回音科技有限公司 | Equalization parameter matching method and device based on interpolation processing, terminal equipment and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182930A (en) † | 1978-03-10 | 1980-01-08 | Dbx Inc. | Detection and monitoring device |
WO2000014998A1 (en) † | 1998-09-08 | 2000-03-16 | Koninklijke Philips Electronics N.V. | Means for bass enhancement in an audio system |
DE19928420A1 (en) † | 1999-06-23 | 2000-12-28 | Micronas Gmbh | Audio signal processing involves adding band limited, corrected and again band limited audio signal to original audio signal, whereby correction factor is reduced if maximum exceeded |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2403684A1 (en) | 1977-09-01 | 1979-04-13 | Serac Sa | Audio amplifier with reinforced bass response - using active filters for separation of bass signals |
US4454609A (en) * | 1981-10-05 | 1984-06-12 | Signatron, Inc. | Speech intelligibility enhancement |
EP0546619B1 (en) * | 1991-12-09 | 1998-09-23 | Koninklijke Philips Electronics N.V. | Low frequency audio doubling and mixing circuit |
US6885752B1 (en) * | 1994-07-08 | 2005-04-26 | Brigham Young University | Hearing aid device incorporating signal processing techniques |
US6072885A (en) * | 1994-07-08 | 2000-06-06 | Sonic Innovations, Inc. | Hearing aid device incorporating signal processing techniques |
US5661808A (en) * | 1995-04-27 | 1997-08-26 | Srs Labs, Inc. | Stereo enhancement system |
TW343417B (en) * | 1996-05-08 | 1998-10-21 | Philips Eloctronics N V | Circuit, audio system and method for processing signals, and a harmonics generator |
US5930373A (en) * | 1997-04-04 | 1999-07-27 | K.S. Waves Ltd. | Method and system for enhancing quality of sound signal |
US6285767B1 (en) | 1998-09-04 | 2001-09-04 | Srs Labs, Inc. | Low-frequency audio enhancement system |
IT1313298B1 (en) | 1999-09-28 | 2002-07-17 | Italtel Spa | METHOD OF CALCULATING THE COEFFICIENTS OF A FIR FILTER THAT INTEGRATES THE FUNCTIONS OF INTERPOLATION, PASS-BAND, AND EQUALIZATION OF THE |
WO2001056157A1 (en) | 2000-01-26 | 2001-08-02 | Acoustic Technologies, Inc. | Band pass filter from two filters |
-
2001
- 2001-09-21 US US10/490,259 patent/US7574009B2/en not_active Expired - Fee Related
- 2001-09-21 WO PCT/DE2001/003653 patent/WO2003028405A1/en active IP Right Grant
- 2001-09-21 DE DE50112650T patent/DE50112650D1/en not_active Expired - Lifetime
- 2001-09-21 CN CN01823654.5A patent/CN1274184C/en not_active Expired - Fee Related
- 2001-09-21 EP EP01980187A patent/EP1428411B2/en not_active Expired - Lifetime
-
2005
- 2005-03-09 HK HK05102061A patent/HK1069705A1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182930A (en) † | 1978-03-10 | 1980-01-08 | Dbx Inc. | Detection and monitoring device |
WO2000014998A1 (en) † | 1998-09-08 | 2000-03-16 | Koninklijke Philips Electronics N.V. | Means for bass enhancement in an audio system |
DE19928420A1 (en) † | 1999-06-23 | 2000-12-28 | Micronas Gmbh | Audio signal processing involves adding band limited, corrected and again band limited audio signal to original audio signal, whereby correction factor is reduced if maximum exceeded |
Also Published As
Publication number | Publication date |
---|---|
WO2003028405A1 (en) | 2003-04-03 |
US7574009B2 (en) | 2009-08-11 |
DE50112650D1 (en) | 2007-08-02 |
US20050002534A1 (en) | 2005-01-06 |
CN1550121A (en) | 2004-11-24 |
EP1428411B1 (en) | 2007-06-20 |
CN1274184C (en) | 2006-09-06 |
HK1069705A1 (en) | 2005-05-27 |
EP1428411A1 (en) | 2004-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1428411B2 (en) | Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers | |
DE69919506T2 (en) | MEANS OF IMPRESSING THE BASS FREQUENCY IN AN AUDIO SYSTEM | |
US6115475A (en) | Capacitor-less crossover network for electro-acoustic loudspeakers | |
DE112012006458B4 (en) | signal processing device | |
EP1192837B1 (en) | Method for processing an audio signal | |
US20120207328A1 (en) | Dynamic bass equalization with modified sallen-key high pass filter | |
US8295508B2 (en) | Processing an audio signal | |
JPWO2007119362A1 (en) | Audio circuit | |
US7233833B2 (en) | Method of modifying low frequency components of a digital audio signal | |
US20050141727A1 (en) | Apparatus for generating harmonics in an audio signal | |
WO1996031082A3 (en) | Audio bass speaker driver circuit | |
DE112009005147T5 (en) | System and method for modifying an audio signal | |
US11638095B2 (en) | Method and apparatus for improving effective signal-to-noise ratio of analog to digital conversion for multi-band digital signal processing devices | |
DE10134927C1 (en) | Filter circuit and method for processing an audio signal | |
EP1279316A2 (en) | Infra bass | |
DE102009058415A1 (en) | Method for frequency transposition in a hearing aid device and hearing aid device | |
EP3829192B1 (en) | Limiter system and method for avoiding clipping distortion or increasing maximum sound level of active speaker | |
JPH06289898A (en) | Speech signal processor | |
DE19832472A1 (en) | Device and method for influencing an audio signal according to ambient noise amplifies or dampens audio signal frequencies selectively by mixing signals to suit ambient noise. | |
JP2000022473A (en) | Audio processing unit | |
JP2000022469A (en) | Audio processing unit | |
JPS5883415A (en) | Amplitude limiter | |
RU2267867C2 (en) | Method and device for controlling reproduction of audio-signal bass components in electro-acoustic transformers | |
WO2000005810A1 (en) | Series-configured crossover network for electro-acoustic loudspeakers | |
JPH0819088A (en) | Sound processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040218 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: AUBAUER, ROLAND Inventor name: KLINKE, STEFANO, AMBROSIUS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KLINKE, STEFANO, AMBROSIUS Inventor name: AUBAUER, ROLAND |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070620 |
|
REF | Corresponds to: |
Ref document number: 50112650 Country of ref document: DE Date of ref document: 20070802 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: MICRONAS GMBH Effective date: 20080320 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: MICRONAS GMBH |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GIGASET COMMUNICATIONS GMBH |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: GIGASET COMMUNICATIONS GMBH Effective date: 20090715 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: MICRONAS GMBH Effective date: 20080320 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20101028 AND 20101103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100924 Year of fee payment: 10 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20111130 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 50112650 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 50112650 Country of ref document: DE Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120921 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50112650 Country of ref document: DE Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50112650 Country of ref document: DE Owner name: GIGASET COMMUNICATIONS GMBH, DE Free format text: FORMER OWNER: GIGASET COMMUNICATIONS GMBH, 81379 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180924 Year of fee payment: 18 Ref country code: DE Payment date: 20180920 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180919 Year of fee payment: 18 Ref country code: GB Payment date: 20180919 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50112650 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20191001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190921 |