EP1424937B1 - Medical implant system - Google Patents

Medical implant system Download PDF

Info

Publication number
EP1424937B1
EP1424937B1 EP02791457A EP02791457A EP1424937B1 EP 1424937 B1 EP1424937 B1 EP 1424937B1 EP 02791457 A EP02791457 A EP 02791457A EP 02791457 A EP02791457 A EP 02791457A EP 1424937 B1 EP1424937 B1 EP 1424937B1
Authority
EP
European Patent Office
Prior art keywords
implant system
implant
radiation
sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02791457A
Other languages
German (de)
French (fr)
Other versions
EP1424937A1 (en
Inventor
Thomas Grupp
Josef Kozak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aesculap AG
Original Assignee
Aesculap AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10137011A external-priority patent/DE10137011C2/en
Application filed by Aesculap AG filed Critical Aesculap AG
Publication of EP1424937A1 publication Critical patent/EP1424937A1/en
Application granted granted Critical
Publication of EP1424937B1 publication Critical patent/EP1424937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7208Flexible pins, e.g. ENDER pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8085Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable or resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30668Means for transferring electromagnetic energy to implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants

Definitions

  • the invention relates to a medical implant system with a Implant made of a composite material in which glass fibers are embedded are, at least one embedded in the implant the sensor element comprising glass fibers with a measuring device is connected, which is a physical property of the sensor element or its environment or its change.
  • Medical implants for example bone plates, intramedullary nails, Endoprostheses, osteosynthesis systems for the spine, etc.
  • implants that consist of a composite material, in which glass fibers are embedded for reinforcement, in particular medical implants of this type consist of sterilizable, selected ones Plastics such as polyether ether ketone, polyamides etc.
  • these implants When these implants are inserted into the body, they are different Exposed to influences, for example different Strains and stresses, temperature developments or chemical Environments. It would be of interest to the treating type to experience these different parameters as they provide information about the healing process or about any problems that may arise.
  • the subject of the application lies based on the task of a generic medical implant system to improve so that information about physical Preserve properties in and around the implant can.
  • This task is the beginning of a medical implant described type according to the invention solved in that the glass fibers in the form of a woven fabric, a knitted fabric or a fleece as a mechanical Reinforcement are embedded in the composite material.
  • the glass fibers therefore form a network that is integrated into the composite material is embedded and thereby reinforced.
  • Glass fibers are in various forms as a material for reinforcement known (DE 39 14 164 C1), but the glass fibers serve exclusively as reinforcement material. As part of the present Invention, however, are the glass fibers at the same time as reinforcement and used as a sensor element, and this is from the known State of the art was not obvious.
  • glass fiber all fibrous, in the Composite embeddable substances that are capable of electromagnetic radiation must be conducted and transmitted, preferably these fibers are made of quartz glass, but they can also other substances are used, for example fibers Plastic, so-called plastic optical fibers (POF).
  • fibers Plastic so-called plastic optical fibers (POF).
  • the glass fibers can concentrated in certain areas of the implant or over the entire extent of the implant should be distributed.
  • the measuring device is preferably designed so that it is electromagnetic Radiation feeds into the sensor element and from the Type of continuous and / or reflected radiation physical Properties of the sensor element or determined by its environment.
  • the glass fiber of the sensor element is according to a preferred embodiment provided with a radiation reflecting coating.
  • the sensor element is present essentially from the glass fiber forming a sensor fiber. In this embodiment, it is in the composite material embedded fiber optic at the same time sensor and transmission element for electromagnetic radiation.
  • the glass fiber acts as a sensor fiber
  • the glass fiber acts as a sensor fiber
  • at least one acting as a Bragg grating in the sensor fiber Area incorporated.
  • the periodic Changes in the refractive index in the longitudinal direction of the sensor fiber has radiation is reflected, which is superimposed on reflection and only for very specific wavelengths in the reverse direction strengthened.
  • This wavelength depends on the periodicity of the Bragg grating area and changes with this periodicity. Every change in length the sensor fiber or any change in the periodicity of the Bragg-lattice, which occurs due to external influences, can occur can be determined in the form of a wavelength shift.
  • the sensor fiber one by the fed electromagnetic Radiation to fluorescence-excited substance is embedded, their fluorescent properties under the influence of the environment experienced changes outside the sensor fiber.
  • These changes can be mechanical changes, but in particular the Fluorescence property of the embedded substance through the chemical Environment of the sensor fiber can be influenced, for example can the fluorescence from certain substances in the environment to be deleted.
  • the radiation-reflecting coating consists of a substance, under the influence of the environment outside the sensor fiber Reflection behavior for the electromagnetic radiation in the sensor fiber changed. As a result, the one passing through the sensor fiber and reflected amount of radiation changes, and this leaves establish themselves.
  • any change in the properties of the radiation can be detected changes in wavelength, phase position, the polarization, etc., it is only essential that this Changes in a clearly recognizable context with changes of the properties in the vicinity of the sensor fiber, for example with changes in mechanical tension, temperature or the material composition.
  • the sensor element comprises the glass fiber and another Sensor element, which is connected to the measuring device via the glass fiber is.
  • the glass fiber essentially acts as a transmission element between the sensor element and the Measuring device.
  • the sensor element can be a pressure sensor with a flexible one Membrane and one of these movable mirror element, which the electromagnetic radiation fed into the glass fiber reflected differently according to position.
  • the sensor element can be a Fabry-Perot interferometer his.
  • the active layer under the influence of the environment experiences dimensional changes.
  • Such active layer can for example be porous and swell, when it comes in contact with a liquid, this way For example, it can be determined whether an implant is still sealed or has a desired or undesirable opening to the environment.
  • the Fabry-Perot interferometer comprises two glass fibers with polished end faces, whose distance can be changed by environmental influences. This configuration is particularly beneficial when there are strains or displacements should be determined within an implant.
  • the glass fiber of the sensor element can be used directly with the measuring device be connected, the measuring device being carried inside the body can be, but also outside. In the latter case, the Glass fiber from the implant through the body tissue to the outside performed so that there is a connection to the measuring device can be.
  • the measuring device is in the body implantable microcontroller.
  • the glass fiber is included connected to a transmitter that signals without physical connection exchanged with the measuring device.
  • This transmitter can in particular be implantable in the body, for example, it can be a transponder.
  • the transmitter is a Light source to which a light receiver is assigned. It turned out that light of different wavelengths body tissue in some Extensions can penetrate, so that between a light receiver and a light source, part of which is in the body and one Part are arranged outside, transmitted by light Radiant energy is possible, especially when the light source electromagnetic radiation in the range between 650 and 1000 nm sending out.
  • the measuring device a radiation transmitter is assigned, which uses a glass fiber in the implant Radiation is transported into the interior of the implant.
  • a Radiation transmitter can be used in addition to Determination of the physical properties of the implant by the coupled radiation to act on the implant and this to change, for example by heating in certain areas or similar.
  • the transport of the radiation via a glass fiber takes place in addition to the glass fiber of a sensor element is embedded in the implant, but it can also be provided be that the transport of the radiation over the glass fiber of a sensor element he follows. In this case it is advantageous if appropriate Switching elements are used which select the fiber optics connect to the measuring device and to the radiation transmitter.
  • a configuration in which the wavelength and is particularly advantageous Intensity of the transported radiation are chosen so that the radiation mechanical and / or in the composite material of the implant causes material changes. For example, it is possible, an additional curing of a polymer composite in certain areas or vice versa Weakening by destroying the composite material, so that on this way the mechanical properties of the implant in larger Areas or can be changed locally.
  • the measuring device and the radiation transmitter a controller is assigned, which the radiation transmitter depending on the Measured variables of the measuring device activated.
  • the physical data of the implant for example the mechanical transferred to the implant
  • Tensions for example, a measure of the healing process are, these tensions increase with increasing stability Bone connection as part of the stress from the bone is taken over. It is then cheap, according to this regeneration to reduce the strength of the implant of the bone connection, so that the power transmission function increasingly from that healing bones.
  • An implant 1 in the form of a bone plate with openings 2 for receiving of bone screws is in a manner known per se Bone screws connected to two bone fragments 3, 4, that they are fixed in a certain relative position to each other, so that, for example, a break 5 can heal (Figure 1).
  • the Implant 1 consists of a plastic material, for example a resorbable plastic such as polylactide (PLLA, PL DLLA), polyglycolite (PGA) or trimethylene carbonate (TMC), and in this plastic material 6, glass fibers 7 are embedded.
  • PLLA polylactide
  • PGA polyglycolite
  • TMC trimethylene carbonate
  • the glass fibers 7 in the embodiment of Figure 1 are with a Transmission element 8 connected, for example a conventional one Transponder on the implant 1 itself or at a distance from the implant 1 inside the patient's body or on the inside Surface of the patient's body can be placed on it can also be an optical element, which is light can receive and transmit, for example a small parabolic mirror, a lens or the like.
  • a Transmission element 8 connected, for example a conventional one Transponder on the implant 1 itself or at a distance from the implant 1 inside the patient's body or on the inside Surface of the patient's body can be placed on it can also be an optical element, which is light can receive and transmit, for example a small parabolic mirror, a lens or the like.
  • all glass fibers 7 arranged in the implant 1 with the transmission element 8 connected only in the embodiment of Figure 2 some, while other glass fibers are used exclusively to reinforce the Serve implant 1. This can be chosen differently from case to case in extreme cases, it is sufficient to have a single glass fiber 7 in the implant 1 to
  • the transmission element 8 is a corresponding transmission element 9 assigned, which via a line 10 with a measuring device 11 is connected. Between the transmission elements 8 and 9 signals can be exchanged, it can be electrical signals to optical signals to mechanical signals Act (ultrasound), the only essential thing is that of the transmission element 8 into the glass fiber and possibly from the glass fiber in the transmission element 8 transmit electromagnetic energy which is converted into signals in the transmission element 8 then in any way to the transmission element 9 and thus Measuring device 11 can be passed.
  • Act ultrasound
  • the Transmission element 8 and 9 in an arrangement of the transmission element 8 inside the body between them an electromagnetic Radiation with a wavelength between 650 and 1000 nanometers exchange, this electromagnetic radiation can affect the body tissue penetrate to a certain depth and can therefore a signal connection between the two transmission elements 8 and 9, both in the direction of irradiation and in the direction of emission.
  • the radiation coupled into the glass fiber 7 in this way is shown in the fiber 7 out and through this itself or by a with it connected sensor member 12 changes, depending on the physical state data of the glass fiber 7, the sensor element 12 or the surrounding area.
  • the resulting from the glass fiber 7 Transmission element 8 radiation fed in the reverse direction is accordingly changed, and this change can be detected by the measuring device 11 notice, which is a feedback about changes the physical state of the glass fiber, the sensor element 12 and / or the surroundings thereof.
  • Electromagnetic radiation is diverse, it can be based on this Way length changes, deformations, mechanical tensile stresses, Forces, vibrations, pressures, angles of rotation, electrical or magnetic Field strengths, currents, temperatures, humidity, ionizing Radiations or concentration or presence of chemical Determine substances, this is just a selection of the possible ones physical states that can be determined in this way. Based 5 to 10 are some examples of the influence below of electromagnetic radiation in a glass fiber is discussed.
  • FIG Glass fibers are spaced apart in the longitudinal direction
  • Different areas 13, 14, 15 are provided, in which in the longitudinal direction periodic changes in the refractive index of the fiber occur.
  • These can be generated, for example, by one, for example quartz glass fiber doped with germanium dioxide via a microlithographic Mask with ultraviolet light of 240 nm wavelength is irradiated. This creates one in each area 13, 14, 15 Arrangement of a Bragg grating, the periodicity and thus the Lattice constant in different areas 13, 14, 15 different to get voted.
  • each of these Bragg gratings an interference radiation very specific wavelength is reflected, this wavelength is dependent on the periodicity of the lattice and thus also changes when this the periodicity changes.
  • Such a change in periodicity or Lattice constant can be caused by external influences, for example by stretching the glass fiber, by bending the glass fiber, by heating etc. Since in each area 13, 14, 15 only radiation of a certain one Wavelength is reflected, you can look at the wavelength of the reflected radiation immediately read in which area a Reflection has occurred, also gives the shift in wavelength Information about changes in the grid spacing in these areas, so for example about the stretching of the glass fiber in certain areas.
  • Measuring device can make statements about it from the reflected radiation make how large an elongation is in each of the areas 13, 14, 15. This is particularly useful when using several Such glass fibers provide precise information about the deformation of the Implants 1 in the body and thus, for example, on the healing process when bone fragments grow together. The stretch due to the forces exerted will be greatest when the Bone fragments have not yet grown together and they will continuously decrease with the healing progress.
  • the radiation emitted in this way can be determined by the measuring device.
  • Environmental influences, for example certain chemical substances in the environment of the area 16 can influence the fluorescence, for example the fluorescence intensity can be reduced or the fluorescence be completely deleted.
  • the measuring device receives on this Wise information about the presence of certain chemical substances in the vicinity of area 16.
  • the glass fiber 7 has a coating 18 envelops the outlet of the guided through the glass fiber 7 prevents electromagnetic radiation.
  • This coating can react with chemical substances 19 in the environment and itself implement so that the exit properties of the electromagnetic Radiation can be changed in the area where the chemical Substance 19 is located, and in this way you get one again Change in reflected radiation depending on certain chemical substances 19 in the vicinity of the glass fiber 7.
  • the flat ground end 20 of the glass fiber 7 also a flat ground end 21 one Glass fiber piece 22 opposite, between the ends 20 and 21st a very narrow gap 23 is formed, for example the gap width A are of the order of 50 mm.
  • This arrangement forms a Fabry-Pérot interferometer and reflects radiation from a whole certain wavelength, this depends on the gap width A. Moving the two ends 20 and 21 relative to each other results there is also a shift in the wavelength of the reflected Radiation, and this can be determined very sensitively. This too For example, stretching of the implant can result in the glass fiber 7 and the glass fiber piece 22 are transmitted without notice more.
  • an active layer 24 is inserted into the gap 23, which their dimension, for example their volume, as a function of environmental influences changes. It can be, for example porous structure act when liquid enters the pores swells. This changes the gap width B and this leads to a change in the wavelength of the Fabry-Pérot arrangement reflected radiation.
  • FIGS. 8 and 9 thus form one Sensor member 12, which via the glass fiber 7 with the measuring device 11 is connected in the exemplary embodiments of FIGS. 5 to 7, however, the glass fiber 7 itself is a sensor element, it is about So here are glass fibers that are themselves sensor fibers.
  • the glass fiber 7 is a sensor element 12 in the form of a pressure sensor 25.
  • connection of the transmission element 8 with the measuring device 11 is in the embodiment in the Figure 3 symbolized by a line 10, it can be a physical line or around a wireless transmission link act.
  • a radiation source 29 provided with one or more glass fibers 30 in connection stand, which are embedded in the plastic material 6 of the implant 1 are.
  • a radiation source 29 provided with one or more glass fibers 30 in connection stand, which are embedded in the plastic material 6 of the implant 1 are.
  • FIG. 3 there is only one such glass fiber 30 shown, which is directly connected to the radiation source 29 is to be understood only as a schematic representation.
  • several glass fibers 30 can be provided, which are similar How the glass fibers 7 are connected to the measuring device are in turn connected to the radiation source 29, that is to say via transmission elements, which are located in the body or outside could, etc.
  • the radiation source 29 can be an electromagnetic one in the glass fibers 30 Feed in radiation that emerges inside the implant 1 and creates a direct influence on the environment there, for example a heating of the surrounding plastic material 6 or but additional curing through increased polymerization or but a dissolution of polymerization compounds etc.
  • electromagnetic radiation is an influence the physical data of the plastic material 6 and possibly the Environment of the implant 1, for example, the strength of the Implants are increased or decreased locally or across the board.
  • the location of exposure can be determined by arranging the Glass fibers 30 in the implant 1 determine the type of action an appropriate selection of a particular radiation.
  • the radiation source 29 can be completely independent of the measuring device 13 can be activated, but it is particularly advantageous if, how 3, a controller 31 is assigned to the radiation source 29 which is the radiation source 29 as a function of the measurement data the measuring device 11 switches on and off. To this end is the measuring device 11 via a line 28 with the controller 31 connected.
  • the measuring device 11 determines that the elongation of the Implant 1 decreases in a certain area, this is a Signs that part of the power transmission through healing Bone fragments has been taken over, it can then be fed in of electromagnetic radiation in glass fibers 30 the strength of the implant 1 by dissolving part of the plastic material 6 are reduced so that the support function of the implant 1 corresponding to the increase in the stability of the bone connection decreases. This is an optimal adaptation of these sizes to each other possible, moreover, it is conducive to healing if the bone connection is increasingly burdened according to the healing process.
  • the introduction of the the radiation source 29 generated radiation via glass fibers 30, the are different from the glass fibers 7 of the measuring device.
  • the optical switch 33 can optionally also be operated automatically be, so that it is ensured that, for example, alternately A measurement of the physical condition is carried out via the glass fiber 7 and radiant energy to influence the glass fiber environment is irradiated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Electrotherapy Devices (AREA)

Abstract

In the case of a medical implant system with an implant made of a composite material in which glass fibers are embedded, to obtain information on physical states of the implant in its environment it is proposed that a sensor element which is embedded in the implant and comprises at least one of the glass fibers is coupled to a measuring device which determines a physical property of the sensor element or its environment and changing of this property.

Description

Die Erfindung betrifft ein medizinisches Implantatsystem mit einem Implantat aus einem Verbundwerkstoff, in welchen Glasfasern eingebettet sind, wobei ein in das Implantat eingebettetes, mindestens eine der Glasfasern umfassendes Sensorelement mit einer Meßeinrichtung verbunden ist, die eine physikalische Eigenschafts des Sensorelements oder dessen Umgebung oder deren Änderung bestimmt.The invention relates to a medical implant system with a Implant made of a composite material in which glass fibers are embedded are, at least one embedded in the implant the sensor element comprising glass fibers with a measuring device is connected, which is a physical property of the sensor element or its environment or its change.

Medizinische Implantate, beispielsweise Knochenplatten, Marknägel, Endoprothesen, Osteosynthesesysteme für die Wirbelsäule etc. werden üblicherweise aus metallischen Werkstoffen hergestellt, es sind aber auch Implantate bekannt, die aus einem Verbundwerkstoff bestehen, in welchen zur Verstärkung Glasfasern eingebettet sind, insbesondere bestehen derartige medizinische Implantate aus sterilisierbaren, ausgesuchten Kunststoffen wie Polyetheretherketon, Polyamiden etc.Medical implants, for example bone plates, intramedullary nails, Endoprostheses, osteosynthesis systems for the spine, etc. Usually made from metallic materials, but they are also known implants that consist of a composite material, in which glass fibers are embedded for reinforcement, in particular medical implants of this type consist of sterilizable, selected ones Plastics such as polyether ether ketone, polyamides etc.

Wenn diese Implantate in den Körper eingesetzt sind, sind sie unterschiedlichen Einflüssen ausgesetzt, beispielsweise unterschiedlichen Dehnungen und Spannungen, Temperaturentwicklungen oder chemischen Umgebungen. Es wäre für den behandelnden Art von Interesse, diese unterschiedlichen Parameter zu erfahren, da sie Auskunft geben über den Heilungsverlauf oder über möglicherweise auftretende Probleme.When these implants are inserted into the body, they are different Exposed to influences, for example different Strains and stresses, temperature developments or chemical Environments. It would be of interest to the treating type to experience these different parameters as they provide information about the healing process or about any problems that may arise.

In der US-A-5 792 076 sind medizinische Vorrichtungen beschrieben, in die Glasfasern eingebettet werden können, um über die Glasfasern bestimmte physikalische Eigenschaften von Implantaten oder medizinischen Vorrichtungen zu erfassen. Im Einzelfall wird dabei eine einzelne Faser eingebettet, es ist auch beschrieben, daß mehrere Fasern eingebettet sind, beispielsweise sechs Fasern. Diese Fasern werden beispielsweise längs des Umfanges eines Stabes in regelmäßigen Mustern angeordnet, beispielsweise in Umfangsrichtung oder in radialer Richtung in gleichem Abstand. In all diesen Fällen werden die Glasfasern also ausschließlich als Sensoren verwendet.Medical devices are described in US Pat. No. 5,792,076, can be embedded in the glass fibers to over the glass fibers certain physical properties of implants or medical Detect devices. In individual cases it becomes a single one Fiber embedded, it is also described that multiple fibers are embedded are, for example, six fibers. These fibers are, for example along the circumference of a stick in regular patterns arranged, for example in the circumferential direction or in the radial direction at the same distance. In all of these cases, the glass fibers used only as sensors.

Ausgehend von diesem Stand der Technik liegt dem Anmeldegegenstand die Aufgabe zugrunde, ein gattungsgemäßes medizinisches Implantatsystem so zu verbessern, daß man Informationen über physikalische Eigenschaften im Implantat und in seiner Umgebung erhalten kann.Based on this state of the art, the subject of the application lies based on the task of a generic medical implant system to improve so that information about physical Preserve properties in and around the implant can.

Diese Aufgabe wird bei einem medizinischen Implantat der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß die Glasfasern in Form eines Gewebes, eines Gewirkes oder eines Vlieses als mechanische Verstärkung in den Verbundwerkstoff eingebettet sind.This task is the beginning of a medical implant described type according to the invention solved in that the glass fibers in the form of a woven fabric, a knitted fabric or a fleece as a mechanical Reinforcement are embedded in the composite material.

Die Glasfasern bilden also ein Netzwerk aus, das insgesamt in den Verbundwerkstoff eingebettet ist und diesen dadurch verstärkt.The glass fibers therefore form a network that is integrated into the composite material is embedded and thereby reinforced.

Glasfasern sind zwar in verschiedener Form als Material zur Verstärkung bekannt (DE 39 14 164 C1), jedoch dienen die Glasfasern dabei ausschließlich als Verstärkungsmaterial. Im Rahmen der vorliegenden Erfindung werden die Glasfasern jedoch gleichzeitig als Verstärkung und als Sensorelement eingesetzt, und dies ist aus dem bekannten Stand der Technik nicht naheliegend gewesen. Glass fibers are in various forms as a material for reinforcement known (DE 39 14 164 C1), but the glass fibers serve exclusively as reinforcement material. As part of the present Invention, however, are the glass fibers at the same time as reinforcement and used as a sensor element, and this is from the known State of the art was not obvious.

Dabei werden unter dem Begriff "Glasfaser" alle faserförmigen, in den Verbundwerkstoff einbettbaren Substanzen verstanden, die in der Lage sind elektromagnetische Strahlung zu führen und zu übertragen, vorzugsweise bestehen diese Fasern aus Quarzglas, es können aber auch andere Substanzen Verwendung finden, beispielsweise Fasern aus Kunststoff, sogenannte Plastic Optical Fibres (POF). Here, the term "glass fiber" all fibrous, in the Composite embeddable substances that are capable of electromagnetic radiation must be conducted and transmitted, preferably these fibers are made of quartz glass, but they can also other substances are used, for example fibers Plastic, so-called plastic optical fibers (POF).

Je nach den mechanischen Anforderungen können die Glasfasern dabei in bestimmten Bereichen des Implantates konzentriert oder aber über die gesamte Ausdehnung des Implantates verteilt sein.Depending on the mechanical requirements, the glass fibers can concentrated in certain areas of the implant or over the entire extent of the implant should be distributed.

Vorzugsweise ist die Meßeinrichtung so ausgebildet, daß sie elektromagnetische Strahlung in das Sensorelement einspeist und aus der Art der durchgehenden und/oder reflektierten Strahlung physikalische Eigenschaften des Sensorelementes oder von dessen Umgebung bestimmt.The measuring device is preferably designed so that it is electromagnetic Radiation feeds into the sensor element and from the Type of continuous and / or reflected radiation physical Properties of the sensor element or determined by its environment.

Die Glasfaser des Sensorelementes ist gemäß einer bevorzugten Ausführungsform mit einer strahlungsreflektierenden Beschichtung versehen.The glass fiber of the sensor element is according to a preferred embodiment provided with a radiation reflecting coating.

Bei einer ersten bevorzugten Ausführungsform besteht das Sensorelement im wesentlichen aus der eine Sensorfaser ausbildenden Glasfaser. Bei dieser Ausführungsform ist also die in den Verbundwerkstoff eingebettete Glasfaser gleichzeitig Sensor und Übertragungselement für die elektromagnetische Strahlung.In a first preferred embodiment, the sensor element is present essentially from the glass fiber forming a sensor fiber. In this embodiment, it is in the composite material embedded fiber optic at the same time sensor and transmission element for electromagnetic radiation.

Es sind eine größere Anzahl von unterschiedlichen Ausgestaltungen möglich, bei denen die Glasfaser als Sensorfaser wirkt, beispielsweise kann in die Sensorfaser mindestens ein als Bragg-Gitter wirkender Bereich eingearbeitet sein. In einem solchen Bereich, der periodische Änderungen des Brechungsindex in Längsrichtung der Sensorfaser aufweist, wird Strahlung reflektiert, die sich bei der Reflexion überlagert und sich nur für ganz bestimmte Wellenlängen in Rückrichtung verstärkt. Diese Wellenlänge hängt von der Periodizität des Bragg-Gitterbereiches ab und ändert sich mit dieser Periodizität. Jede Längenänderung der Sensorfaser oder jede Änderung der Periodizität des Bragg-Gitters, die aufgrund von äußeren Einflüssen eintritt, kann auf diese Weise in Form einer Wellenlängenverschiebung festgestellt werden.There are a large number of different configurations possible in which the glass fiber acts as a sensor fiber, for example can at least one acting as a Bragg grating in the sensor fiber Area incorporated. In such an area, the periodic Changes in the refractive index in the longitudinal direction of the sensor fiber has radiation is reflected, which is superimposed on reflection and only for very specific wavelengths in the reverse direction strengthened. This wavelength depends on the periodicity of the Bragg grating area and changes with this periodicity. Every change in length the sensor fiber or any change in the periodicity of the Bragg-lattice, which occurs due to external influences, can occur can be determined in the form of a wavelength shift.

Bei einer anderen bevorzugten Ausführungsform kann vorgesehen sein, daß in die Sensorfaser eine durch die eingespeiste elektromagnetische Strahlung zu Fluoreszenz angeregte Substanz eingebettet ist, deren Fluoreszenzeigenschaften unter Einwirkung der Umgebung außerhalb der Sensorfaser Änderungen erfahren. Diese Änderungen können mechanische Änderungen sein, insbesondere kann jedoch die Fluoreszenzeigenschaft der eingebetteten Substanz durch die chemische Umgebung der Sensorfaser beeinflußt werden, beispielsweise kann die Fluoreszenz durch bestimmte Substanzen in der Umgebung gelöscht werden.In another preferred embodiment can be provided be that in the sensor fiber one by the fed electromagnetic Radiation to fluorescence-excited substance is embedded, their fluorescent properties under the influence of the environment experienced changes outside the sensor fiber. These changes can be mechanical changes, but in particular the Fluorescence property of the embedded substance through the chemical Environment of the sensor fiber can be influenced, for example can the fluorescence from certain substances in the environment to be deleted.

Bei einer weiteren bevorzugten Ausführungsform ist vorgesehen, daß die strahlungsreflektierende Beschichtung aus einer Substanz besteht, die unter Einwirkung der Umgebung außerhalb der Sensorfaser das Reflexionsverhalten für die elektromagnetische Strahlung in der Sensorfaser verändert. Dadurch wird die durch die Sensorfaser hindurchtretende und reflektierte Strahlungsmenge verändert, und dies läßt sich feststellen.In a further preferred embodiment it is provided that the radiation-reflecting coating consists of a substance, under the influence of the environment outside the sensor fiber Reflection behavior for the electromagnetic radiation in the sensor fiber changed. As a result, the one passing through the sensor fiber and reflected amount of radiation changes, and this leaves establish themselves.

Jede Änderung der Eigenschaften in der Strahlung kann detektiert werden, es kann sich dabei um Änderungen der Wellenlänge, der Phasenlage, der Polarisation etc. handeln, wesentlich ist lediglich, daß diese Änderungen in klar erkennbarem Zusammenhang mit Änderungen der Eigenschaften in der Umgebung der Sensorfaser stehen, also beispielsweise mit Änderungen der mechanischen Spannung, der Temperatur oder der stofflichen Zusammensetzung.Any change in the properties of the radiation can be detected changes in wavelength, phase position, the polarization, etc., it is only essential that this Changes in a clearly recognizable context with changes of the properties in the vicinity of the sensor fiber, for example with changes in mechanical tension, temperature or the material composition.

Bei einer weiteren bevorzugten Ausführungsform kann vorgesehen sein, daß das Sensorelement die Glasfaser umfaßt und ein weiteres Sensorglied, welches über die Glasfaser mit der Meßeinrichtung verbunden ist. Bei dieser Ausgestaltung wirkt die Glasfaser im wesentlichen als Übertragungselement zwischen dem Sensorglied und der Meßeinrichtung.In a further preferred embodiment can be provided be that the sensor element comprises the glass fiber and another Sensor element, which is connected to the measuring device via the glass fiber is. With this configuration, the glass fiber essentially acts as a transmission element between the sensor element and the Measuring device.

Beispielsweise kann das Sensorglied ein Drucksensor mit einer flexiblen Membran und einem von dieser bewegbaren Spiegelelement sein, welches die in die Glasfaser eingespeiste elektromagnetische Strahlung je nach Stellung unterschiedlich reflektiert.For example, the sensor element can be a pressure sensor with a flexible one Membrane and one of these movable mirror element, which the electromagnetic radiation fed into the glass fiber reflected differently according to position.

Bei einer weiteren Ausführungsform kann das Sensorglied ein Fabry-Pérot-Interferometer sein.In a further embodiment, the sensor element can be a Fabry-Perot interferometer his.

Beispielsweise kann dabei vorgesehen sein, daß das Fabry-Perot-Interferometer als auf das Ende der Glasfaser aufkontaktiertes Dünnschicht-Interferometer ausgebildet ist, dessen aktive Schicht unter dem Einfluß der Umgebung Dimensionsänderungen erfährt. Eine solche aktive Schicht kann beispielsweise porös ausgebildet sein und quellen, wenn sie mit einer Flüssigkeit in Verbindung kommt, auf diese Weise ist zum Beispiel feststellbar, ob ein Implantat noch abgedichtet ist oder eine erwünschte oder unerwünschte Öffnung zur Umgebung aufweist.For example, it can be provided that the Fabry-Perot interferometer as a thin-film interferometer contacted on the end of the glass fiber is formed, the active layer under the influence of the environment experiences dimensional changes. Such active layer can for example be porous and swell, when it comes in contact with a liquid, this way For example, it can be determined whether an implant is still sealed or has a desired or undesirable opening to the environment.

Bei einer anderen Ausführungsform ist vorgesehen, daß das Fabry-Perot-Interferometer zwei Glasfasern mit polierten Endflächen umfaßt, deren Abstand durch Umgebungseinflüsse veränderbar ist. Diese Ausgestaltung ist insbesondere dann günstig, wenn Dehnungen oder Verschiebungen innerhalb eines Implantates festgestellt werden sollen.In another embodiment it is provided that the Fabry-Perot interferometer comprises two glass fibers with polished end faces, whose distance can be changed by environmental influences. This configuration is particularly beneficial when there are strains or displacements should be determined within an implant.

Die Glasfaser des Sensorelementes kann direkt mit der Meßeinrichtung verbunden sein, wobei die Meßeinrichtung im Innern des Körpers getragen werden kann, aber auch außerhalb. Im letzteren Fall wird die Glasfaser aus dem Implantat durch das Körpergewebe nach außen geführt, so daß dort eine Verbindung zu der Meßeinrichtung hergestellt werden kann.The glass fiber of the sensor element can be used directly with the measuring device be connected, the measuring device being carried inside the body can be, but also outside. In the latter case, the Glass fiber from the implant through the body tissue to the outside performed so that there is a connection to the measuring device can be.

Besonders günstig ist es, wenn die Meßeinrichtung ein in den Körper implantierbarer Mikrocontroller ist.It is particularly favorable if the measuring device is in the body implantable microcontroller.

Bei einer besonders bevorzugten Ausführungsform ist die Glasfaser mit einem Übertrager verbunden, der ohne körperliche Verbindung Signale mit der Meßeinrichtung austauscht.In a particularly preferred embodiment, the glass fiber is included connected to a transmitter that signals without physical connection exchanged with the measuring device.

Dieser Übertrager kann insbesondere in den Körper implantierbar sein, beispielsweise kann es sich dabei um einen Transponder handeln.This transmitter can in particular be implantable in the body, for example, it can be a transponder.

Bei einer besonders günstigen Ausführungsform ist der Übertrager eine Lichtquelle, der ein Lichtempfänger zugeordnet ist. Es hat sich herausgestellt, daß Licht unterschiedlicher Wellenlänge Körpergewebe in gewissem Umfange durchdringen kann, so daß zwischen einem Lichtempfänger und einer Lichtquelle, von denen ein Teil im Körper und ein Teil außerhalb angeordnet sind, durch Licht eine Übertragung von Strahlungsenergie möglich ist, insbesondere dann, wenn die Lichtquelle elektromagnetische Strahlung im Bereich zwischen 650 und 1000 nm aussendet.In a particularly favorable embodiment, the transmitter is a Light source to which a light receiver is assigned. It turned out that light of different wavelengths body tissue in some Extensions can penetrate, so that between a light receiver and a light source, part of which is in the body and one Part are arranged outside, transmitted by light Radiant energy is possible, especially when the light source electromagnetic radiation in the range between 650 and 1000 nm sending out.

Bei einer besonders bevorzugten Ausführungsform ist der Meßeinrichtung ein Strahlungssender zugeordnet, der über eine Glasfaser im Implantat Strahlung in das Innere des Implantates transportiert. Ein solcher Strahlungssender kann dazu verwendet werden, zusätzlich zur Bestimmung der physikalischen Eigenschaften des Implantates durch die eingekoppelte Strahlung auf das Implantat einzuwirken und dieses zu verändern, beispielsweise durch Erwärmung in bestimmten Bereichen oder dergleichen.In a particularly preferred embodiment, the measuring device a radiation transmitter is assigned, which uses a glass fiber in the implant Radiation is transported into the interior of the implant. Such a Radiation transmitter can be used in addition to Determination of the physical properties of the implant by the coupled radiation to act on the implant and this to change, for example by heating in certain areas or similar.

Es kann dabei vorgesehen sein, daß der Transport der Strahlung über eine Glasfaser erfolgt, die zusätzlich zu der Glasfaser eines Sensorelementes in das Implantat eingebettet ist, es kann aber auch vorgesehen sein, daß der Transport der Strahlung über die Glasfaser eines Sensorelementes erfolgt. In diesem Fall ist es vorteilhaft, wenn entsprechende Schaltelemente Verwendung finden, welche die Glasfaser wahlweise mit der Meßeinrichtung und mit dem Strahlungssender verbinden.It can be provided that the transport of the radiation via a glass fiber takes place in addition to the glass fiber of a sensor element is embedded in the implant, but it can also be provided be that the transport of the radiation over the glass fiber of a sensor element he follows. In this case it is advantageous if appropriate Switching elements are used which select the fiber optics connect to the measuring device and to the radiation transmitter.

Besonders vorteilhaft ist eine Ausgestaltung, bei der Wellenlänge und Intensität der transportierten Strahlung so gewählt sind, daß die Strahlung in dem Verbundwerkstoff des Implantates mechanische und/oder stoffliche Veränderungen hervorruft. Beispielsweise ist es dadurch möglich, eine zusätzliche Aushärtung eines polymeren Verbundwerkstoffes in bestimmten Bereichen vorzunehmen oder umgekehrt eine Schwächung durch Zerstörung des Verbundwerkstoffes, so daß auf diese Weise die mechanischen Eigenschaften des Implantates in größeren Bereichen oder aber auch lokal geändert werden können. A configuration in which the wavelength and is particularly advantageous Intensity of the transported radiation are chosen so that the radiation mechanical and / or in the composite material of the implant causes material changes. For example, it is possible, an additional curing of a polymer composite in certain areas or vice versa Weakening by destroying the composite material, so that on this way the mechanical properties of the implant in larger Areas or can be changed locally.

Bei einer besonders bevorzugten Ausführungsform ist dabei vorgesehen, daß der Meßeinrichtung und dem Strahlungssender eine Steuerung zugeordnet ist, die den Strahlungssender in Abhängigkeit von den Meßgrößen der Meßeinrichtung aktiviert. Bei dieser Ausgestaltung ist es möglich, die physikalischen Daten des Implantates laufend zu bestimmen, beispielsweise die auf das Implantat übertragenen mechanischen Spannungen, die zum Beispiel ein Maß für den Heilungsprozeß sind, diese Spannungen nehmen mit zunehmender Stabilität an der Knochenverbindung ab, da ein Teil der Belastungen durch den Knochen übernommen wird. Es ist dann günstig, entsprechend dieser Regeneration der Knochenverbindung die Festigkeit des Implantates herabzusetzen, so daß die Kraftübertragungsfunktion zunehmend von dem heilenden Knochen übernommen wird.In a particularly preferred embodiment, that the measuring device and the radiation transmitter a controller is assigned, which the radiation transmitter depending on the Measured variables of the measuring device activated. In this configuration is it is possible to continuously determine the physical data of the implant, for example the mechanical transferred to the implant Tensions, for example, a measure of the healing process are, these tensions increase with increasing stability Bone connection as part of the stress from the bone is taken over. It is then cheap, according to this regeneration to reduce the strength of the implant of the bone connection, so that the power transmission function increasingly from that healing bones.

Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigen:

Figur 1:
eine schematische Ansicht eines Implantats in Form einer Knochenplatte mit einer drahtlosen Verbindung zu einer Meßeinrichtung;
Figur 2:
eine schematische Ansicht eines plattenförmigen Implantates mit einer netzförmigen Glasfaserverstärkung;
Figur 3:
eine schematische Ansicht eines Implantats in Form einer Knochenplatte mit einer an mehrere Glasfasern angeschlossenen Meßeinrichtung und mit einer Strahlungsquelle zur Einführung von Strahlung in eine nicht mit der Meßeinrichtung verbundene Glasfaser;
Figur 4:
eine Ansicht ähnlich Figur 3 mit einer Schalteinrichtung zur wahlweisen Verbindung von Glasfasern im Implantat mit der Meßeinrichtung oder mit der Strahlungsquelle;
Figur 5:
eine schematische Seitenansicht einer Glasfaser mit Bragg-Gitter-Bereichen unterschiedlicher Periodizität;
Figur 6:
eine schematische Seitenansicht einer Glasfaser mit eingebetteten fluoreszierenden Farbstoffpartikeln;
Figur 7:
eine schematische Seitenansicht einer Glasfaser mit einer Ummantelung mit veränderlichen Transmissionseigenschaften;
Figur 8:
eine schematische Seitenansicht eines mit einer Glasfaser verbundenen Fabry-Pérot-Interferometers mit zwei gegeneinander bewegten Glasfaserstükken;
Figur 9:
eine Ansicht ähnlich Figur 8 mit einer dimensionsveränderlichen aktiven Schicht und
Figur 10:
eine schematische Seitenansicht einer Glasfaser mit einem Membrandrucksensor.
The following description of preferred embodiments of the invention serves in conjunction with the drawing for a more detailed explanation. Show it:
Figure 1:
a schematic view of an implant in the form of a bone plate with a wireless connection to a measuring device;
Figure 2:
a schematic view of a plate-shaped implant with a net-shaped glass fiber reinforcement;
Figure 3:
a schematic view of an implant in the form of a bone plate with a measuring device connected to a plurality of glass fibers and with a radiation source for introducing radiation into a glass fiber not connected to the measuring device;
Figure 4:
a view similar to Figure 3 with a switching device for the optional connection of glass fibers in the implant with the measuring device or with the radiation source;
Figure 5:
a schematic side view of a glass fiber with Bragg grating regions of different periodicity;
Figure 6:
a schematic side view of a glass fiber with embedded fluorescent dye particles;
Figure 7:
a schematic side view of a glass fiber with a sheath with variable transmission properties;
Figure 8:
is a schematic side view of a Fabry-Pérot interferometer connected to a glass fiber with two pieces of glass fiber moved against each other;
Figure 9:
a view similar to Figure 8 with a dimensionally variable active layer and
Figure 10:
is a schematic side view of an optical fiber with a membrane pressure sensor.

Die Erfindung wird nachfolgend am Beispiel einer Knochenplatte erläutert, es versteht sich aber, daß die Erfindung allgemein für in den Körper einsetzbare medizinische Implantate verwendbar ist und nicht auf Knochenplatten beschränkt ist.The invention is explained below using the example of a bone plate, it is understood, however, that the invention is general for in the body insertable medical implants can be used and not on Bone plates is limited.

Ein Implantat 1 in Form einer Knochenplatte mit Öffnungen 2 zur Aufnahme von Knochenschrauben ist in an sich bekannter Weise mittels Knochenschrauben so mit zwei Knochenfragmenten 3, 4 verbunden, daß diese in einer bestimmten Relativposition zueinander fixiert sind, so daß beispielsweise eine Bruchstelle 5 verheilen kann (Figur 1). Das Implantat 1 besteht aus einem Kunststoffmaterial, beispielsweise aus einem resorbierbaren Kunststoff wie Polylactid (PLLA, PL DLLA), Polyglycolit (PGA) oder Trimethylencarbonat (TMC), und in dieses Kunststoffmaterial 6 sind Glasfasern 7 eingebettet. Im Ausführungsbeispiel der Figur 1 sind schematisch nur zwei einzelne Glasfasern 7 dargestellt, die sich in Längsrichtung des plattenförmigen Implantates 1 erstrecken, im Ausführungsbeispiel der Figur 2 sind eine Vielzahl von Glasfasern 7 in Form eines Netzes angedeutet, welches insgesamt in das Kunststoffmaterial 6 eingebettet ist, hier sind die unterschiedlichsten Anordnungen und Konzentrationen von Glasfasern in dem Kunststoffmaterial 6 möglich. Die Glasfasern verstärken durch diese Einbettung das Kunststoffmaterial 6, und dementsprechend werden unterschiedliche Verteilungen im Implantat gewählt, je nach den mechanischen Festigkeitsanforderungen. An implant 1 in the form of a bone plate with openings 2 for receiving of bone screws is in a manner known per se Bone screws connected to two bone fragments 3, 4, that they are fixed in a certain relative position to each other, so that, for example, a break 5 can heal (Figure 1). The Implant 1 consists of a plastic material, for example a resorbable plastic such as polylactide (PLLA, PL DLLA), polyglycolite (PGA) or trimethylene carbonate (TMC), and in this plastic material 6, glass fibers 7 are embedded. In the embodiment 1 only two individual glass fibers 7 are shown schematically, which extend in the longitudinal direction of the plate-shaped implant 1, in the embodiment of Figure 2 are a variety of Glass fibers 7 indicated in the form of a network, which in total the plastic material 6 is embedded, here are the most varied Arrangements and concentrations of glass fibers in the plastic material 6 possible. This embedding reinforces the glass fibers the plastic material 6, and accordingly become different Distributions selected in the implant, depending on the mechanical Strength requirements.

Die Glasfasern 7 im Ausführungsbeispiel der Figur 1 sind mit einem Übertragungselement 8 verbunden, beispielsweise einem üblichen Transponder, der am Implantat 1 selbst oder im Abstand vom Implantat 1 im Innern des Körpers des Patienten oder aber auch auf der Oberfläche des Körpers des Patienten angeordnet werden kann, es kann sich dabei auch um ein optisches Element handeln, welches Licht empfangen und aussenden kann, beispielsweise ein kleiner Parabolspiegel, eine Linse oder dergleichen. Im Ausführungsbeispiel der Figur 1 sind alle im Implantat 1 angeordneten Glasfasern 7 mit dem Übertragungselement 8 verbunden, im Ausführungsbeispiel der Figur 2 nur einige, während andere Glasfasern ausschließlich der Verstärkung des Implantates 1 dienen. Dies kann von Fall zu Fall unterschiedlich gewählt werden, im Extremfall genügt es, eine einzige Glasfaser 7 im Implantat 1 mit einem solchen Übertragungselement 8 zu verbinden.The glass fibers 7 in the embodiment of Figure 1 are with a Transmission element 8 connected, for example a conventional one Transponder on the implant 1 itself or at a distance from the implant 1 inside the patient's body or on the inside Surface of the patient's body can be placed on it can also be an optical element, which is light can receive and transmit, for example a small parabolic mirror, a lens or the like. In the embodiment of the figure 1 are all glass fibers 7 arranged in the implant 1 with the transmission element 8 connected, only in the embodiment of Figure 2 some, while other glass fibers are used exclusively to reinforce the Serve implant 1. This can be chosen differently from case to case in extreme cases, it is sufficient to have a single glass fiber 7 in the implant 1 to be connected to such a transmission element 8.

Dem Übertragungselement 8 ist ein entsprechendes Übertragungselement 9 zugeordnet, welches über eine Leitung 10 mit einer Meßeinrichtung 11 verbunden ist. Zwischen den Übertragungselementen 8 und 9 können Signale ausgetauscht werden, es kann sich dabei um elektrische Signale, um optische Signale, um mechanische Signale (Ultraschall) handeln, wesentlich ist lediglich, daß von dem Übertragungselement 8 in die Glasfaser und gegebenenfalls von der Glasfaser in das Übertragungselement 8 elektromagnetische Energie übertragen wird, die im Übertragungselement 8 in Signale umgesetzt wird, die dann in beliebiger Weise zum Übertragungselement 9 und damit zur Meßeinrichtung 11 geleitet werden können. Insbesondere können die Übertragungselement 8 und 9 bei einer Anordnung des Übertragungselements 8 im Innern des Körpers zwischen sich eine elektromagnetische Strahlung mit einer Wellenlänge zwischen 650 und 1000 Nanometer austauschen, diese elektromagnetische Strahlung kann das Körpergewebe bis zu einer bestimmten Tiefe durchdringen und kann somit eine Signalverbindung zwischen den beiden Übertragungselementen 8 und 9 herstellen, und zwar sowohl in Einstrahlrichtung als auch in Ausstrahlrichtung.The transmission element 8 is a corresponding transmission element 9 assigned, which via a line 10 with a measuring device 11 is connected. Between the transmission elements 8 and 9 signals can be exchanged, it can be electrical signals to optical signals to mechanical signals Act (ultrasound), the only essential thing is that of the transmission element 8 into the glass fiber and possibly from the glass fiber in the transmission element 8 transmit electromagnetic energy which is converted into signals in the transmission element 8 then in any way to the transmission element 9 and thus Measuring device 11 can be passed. In particular, the Transmission element 8 and 9 in an arrangement of the transmission element 8 inside the body between them an electromagnetic Radiation with a wavelength between 650 and 1000 nanometers exchange, this electromagnetic radiation can affect the body tissue penetrate to a certain depth and can therefore a signal connection between the two transmission elements 8 and 9, both in the direction of irradiation and in the direction of emission.

Die auf diese Weise in die Glasfaser 7 eingekoppelte Strahlung wird in der Glasfaser 7 geführt und durch diese selbst oder durch ein mit ihr verbundenes Sensorglied 12 verändert, und zwar abhängig von den physikalischen Zustandsdaten der Glasfaser 7, des Sensorgliedes 12 oder der Umgebung derselben. Die daraufhin aus der Glasfaser 7 dem Übertragungselement 8 in Rückrichtung zugeführte Strahlung ist dementsprechend verändert, und diese Veränderung läßt sich von der Meßeinrichtung 11 feststellen, die damit eine Rückmeldung über Änderungen des physikalischen Zustands der Glasfaser, des Sensorgliedes 12 und/oder der Umgebung derselben erhält.The radiation coupled into the glass fiber 7 in this way is shown in the fiber 7 out and through this itself or by a with it connected sensor member 12 changes, depending on the physical state data of the glass fiber 7, the sensor element 12 or the surrounding area. The resulting from the glass fiber 7 Transmission element 8 radiation fed in the reverse direction is accordingly changed, and this change can be detected by the measuring device 11 notice, which is a feedback about changes the physical state of the glass fiber, the sensor element 12 and / or the surroundings thereof.

Die Möglichkeiten zur Einwirkung auf die in die Glasfaser 7 eingespeiste elektromagnetische Strahlung sind vielfältig, es lassen sich auf diese Weise Längenänderungen, Verformungen, mechanische Zugspannungen, Kräfte, Schwingungen, Drücke, Drehwinkel, elektrische oder magnetische Feldstärken, Ströme, Temperaturen, Feuchte, ionisierende Strahlungen oder Konzentration oder Anwesenheit von chemischen Substanzen bestimmen, dies ist lediglich eine Auswahl der möglichen physikalischen Zustände, die auf diese Weise feststellbar sind. Anhand der Figuren 5 bis 10 werden nachstehend einige Beispiele der Beeinflussung der elektromagnetischen Strahlung in einer Glasfaser erörtert. The possibilities for acting on the fed into the glass fiber 7 Electromagnetic radiation is diverse, it can be based on this Way length changes, deformations, mechanical tensile stresses, Forces, vibrations, pressures, angles of rotation, electrical or magnetic Field strengths, currents, temperatures, humidity, ionizing Radiations or concentration or presence of chemical Determine substances, this is just a selection of the possible ones physical states that can be determined in this way. Based 5 to 10 are some examples of the influence below of electromagnetic radiation in a glass fiber is discussed.

In Figur 5 ist ein Ausschnitt einer Glasfaser 7 dargestellt, in dieser Glasfaser sind in Längsrichtung im Abstand voneinander angeordnet verschiedene Bereiche 13, 14, 15 vorgesehen, bei denen in Längsrichtung der Faser periodische Änderungen des Brechungsindex auftreten. Diese lassen sich zum Beispiel dadurch erzeugen, daß eine beispielsweise mit Germaniumdioxid dotierte Quarzglasfaser über eine mikrolithographische Maske mit Ultraviolettlicht von 240 nm Wellenlänge bestrahlt wird. Es entsteht dadurch in jedem Bereich 13, 14, 15 eine Anordnung eines Bragg-Gitters, wobei die Periodizität und damit die Gitterkonstante in verschiedenen Bereichen 13, 14, 15 unterschiedlich gewählt werden.A section of an optical fiber 7 is shown in FIG Glass fibers are spaced apart in the longitudinal direction Different areas 13, 14, 15 are provided, in which in the longitudinal direction periodic changes in the refractive index of the fiber occur. These can be generated, for example, by one, for example quartz glass fiber doped with germanium dioxide via a microlithographic Mask with ultraviolet light of 240 nm wavelength is irradiated. This creates one in each area 13, 14, 15 Arrangement of a Bragg grating, the periodicity and thus the Lattice constant in different areas 13, 14, 15 different to get voted.

An jedem dieser Bragg-Gitter wird durch Interferenzstrahlung eine ganz bestimmte Wellenlänge reflektiert, diese Wellenlänge ist abhängig von der Periodizität des Gitters und ändert sich damit auch, wenn dieses die Periodizität ändert. Eine solche Änderung der Periodizität oder Gitterkonstante kann durch äußere Einflüsse erfolgen, beispielsweise durch Dehnung der Glasfaser, durch Biegung der Glasfaser, durch Erwärmung etc. Da in jedem Bereich 13, 14, 15 nur Strahlung einer bestimmten Wellenlänge reflektiert wird, kann man an der Wellenlänge der reflektierten Strahlung sofort ablesen, an welchem Bereich eine Reflexion erfolgt ist, außerdem gibt die Verschiebung der Wellenlänge Auskunft über Änderungen der Gitterabstände in diesen Bereichen, also zum Beispiel über die Dehnung der Glasfaser in bestimmten Bereichen. Diese kann in den Bereichen 13, 14, 15 unterschiedlich sein, die Meßeinrichtung kann aus der reflektierten Strahlung Aussagen darüber machen, wie groß eine Dehnung in jedem der Bereiche 13, 14, 15 ist. Damit erhält man insbesondere bei der Verwendung von mehreren derartigen Glasfasern eine genaue Auskunft über die Verformung des Implantates 1 im Körper und damit zum Beispiel über den Heilungsfortgang beim Zusammenwachsen von Knochenfragmenten. Die Dehnung aufgrund der ausgeübten Kräfte wird am größten sein, wenn die Knochenfragmente noch nicht zusammengewachsen sind, und sie wird mit dem Heilungsfortgang laufend abnehmen.At each of these Bragg gratings an interference radiation very specific wavelength is reflected, this wavelength is dependent on the periodicity of the lattice and thus also changes when this the periodicity changes. Such a change in periodicity or Lattice constant can be caused by external influences, for example by stretching the glass fiber, by bending the glass fiber, by heating etc. Since in each area 13, 14, 15 only radiation of a certain one Wavelength is reflected, you can look at the wavelength of the reflected radiation immediately read in which area a Reflection has occurred, also gives the shift in wavelength Information about changes in the grid spacing in these areas, so for example about the stretching of the glass fiber in certain areas. This can be different in areas 13, 14, 15 Measuring device can make statements about it from the reflected radiation make how large an elongation is in each of the areas 13, 14, 15. This is particularly useful when using several Such glass fibers provide precise information about the deformation of the Implants 1 in the body and thus, for example, on the healing process when bone fragments grow together. The stretch due to the forces exerted will be greatest when the Bone fragments have not yet grown together and they will continuously decrease with the healing progress.

Bei dem Ausführungsbeispiel der Figur 6 sind in die Glasfaser 7 in einem bestimmten Bereich 16 Farbstoffpartikel 17 eingebettet, die durch in die Glasfaser 7 eintretende elektromagnetische Strahlung zur Fluoreszenz angeregt werden. Die auf diese Weise abgegebene Strahlung kann von der Meßeinrichtung bestimmt werden. Umgebungseinflüsse, beispielsweise bestimmte chemische Substanzen in der Umgebung des Bereiches 16, können die Fluoreszenz beeinflussen, beispielsweise kann die Fluoreszenzintensität herabgesetzt oder aber die Fluoreszenz ganz gelöscht werden. Die Meßeinrichtung erhält auf diese Weise Information über die Anwesenheit bestimmter chemischer Substanzen in der Umgebung des Bereiches 16.In the exemplary embodiment in FIG. 6, the glass fibers 7 in embedded in a specific area 16 dye particles 17, the by electromagnetic radiation entering the glass fiber 7 Fluorescence can be excited. The radiation emitted in this way can be determined by the measuring device. Environmental influences, for example certain chemical substances in the environment of the area 16 can influence the fluorescence, for example the fluorescence intensity can be reduced or the fluorescence be completely deleted. The measuring device receives on this Wise information about the presence of certain chemical substances in the vicinity of area 16.

Beim Ausführungsbeispiel der Figur 7 ist die Glasfaser 7 mit einer Beschichtung 18 umhüllt, die einen Austritt der durch die Glasfaser 7 geführten elektromagnetischen Strahlung verhindert. Diese Beschichtung kann mit chemischen Stoffen 19 in der Umgebung reagieren und sich dabei so umsetzen, daß die Austrittseigenschaften der elektromagnetischen Strahlung in dem Bereich geändert werden, in dem sich der chemische Stoff 19 befindet, und auf diese Weise erhält man wieder eine Änderung der reflektierten Strahlung in Abhängigkeit von bestimmten chemischen Stoffen 19 in der Umgebung der Glasfaser 7. In the exemplary embodiment in FIG. 7, the glass fiber 7 has a coating 18 envelops the outlet of the guided through the glass fiber 7 prevents electromagnetic radiation. This coating can react with chemical substances 19 in the environment and itself implement so that the exit properties of the electromagnetic Radiation can be changed in the area where the chemical Substance 19 is located, and in this way you get one again Change in reflected radiation depending on certain chemical substances 19 in the vicinity of the glass fiber 7.

Beim Ausführungsbeispiel der Figur 8 steht das plangeschliffene Ende 20 der Glasfaser 7 einem ebenfalls plangeschliffenen Ende 21 eines Glasfaserstückes 22 gegenüber, wobei zwischen den Enden 20 und 21 ein sehr schmaler Spalt 23 entsteht, die Spaltbreite A kann beispielsweise in der Größenordnung von 50 mm liegen. Diese Anordnung bildet ein Fabry-Pérot-Interferometer aus und reflektiert Strahlung einer ganz bestimmten Wellenlänge, diese ist abhängig von der Spaltbreite A. Verschieben sich die beiden Enden 20 und 21 relativ zueinander, ergibt sich also auch eine Verschiebung der Wellenlänge der reflektierten Strahlung, und dies läßt sich sehr empfindlich feststellen. Auch auf diese Weise lassen sich zum Beispiel Dehnungen des Implantates, die auf die Glasfaser 7 und das Glasfaserstück 22 übertragen werden, ohne weiteres feststellen.In the embodiment of Figure 8, the flat ground end 20 of the glass fiber 7 also a flat ground end 21 one Glass fiber piece 22 opposite, between the ends 20 and 21st a very narrow gap 23 is formed, for example the gap width A are of the order of 50 mm. This arrangement forms a Fabry-Pérot interferometer and reflects radiation from a whole certain wavelength, this depends on the gap width A. Moving the two ends 20 and 21 relative to each other results there is also a shift in the wavelength of the reflected Radiation, and this can be determined very sensitively. This too For example, stretching of the implant can result in the glass fiber 7 and the glass fiber piece 22 are transmitted without notice more.

Beim Ausführungsbeispiel der Figur 9 ist eine ähnliche Anordnung gewählt, jedoch ist in den Spalt 23 eine aktive Lage 24 eingesetzt, die ihre Dimension, beispielsweise ihr Volumen, in Abhängigkeit von Umgebungseinflüssen ändert. Es kann sich dabei beispielsweise um eine poröse Struktur handeln, die beim Eintritt von Flüssigkeit in die Poren aufquillt. Die Spaltbreite B verändert sich dadurch, und dies führt zu einer Veränderung der Wellenlänge der an der Fabry-Pérot-Anordnung reflektierten Strahlung.In the exemplary embodiment in FIG. 9, a similar arrangement is selected, however, an active layer 24 is inserted into the gap 23, which their dimension, for example their volume, as a function of environmental influences changes. It can be, for example porous structure act when liquid enters the pores swells. This changes the gap width B and this leads to a change in the wavelength of the Fabry-Pérot arrangement reflected radiation.

Die Fabry-Pérot-Anordnungen der Figuren 8 und 9 bilden somit ein Sensorglied 12 aus, das über die Glasfaser 7 mit der Meßeinrichtung 11 in Verbindung steht, bei den Ausführungsbeispielen der Figuren 5 bis 7 dagegen ist die Glasfaser 7 selbst ein Sensorelement, es handelt sich hier also um Glasfasern, die selbst Sensorfasern sind. The Fabry-Perot arrangements of FIGS. 8 and 9 thus form one Sensor member 12, which via the glass fiber 7 with the measuring device 11 is connected in the exemplary embodiments of FIGS. 5 to 7, however, the glass fiber 7 itself is a sensor element, it is about So here are glass fibers that are themselves sensor fibers.

Bei dem Ausführungsbeispiel der Figur 10 ist der Glasfaser 7 ein Sensorglied 12 in Form eines Drucksensors 25 zugeordnet. Dieser umfaßt eine flexible Membran 26, die einseitig mit einer Spiegelschicht 27 versehen ist. Ordnet man diesen Drucksensor 25 am Ende einer Glasfaser 7 an, so ändert sich mit der Verformung der Membran 26, die druckabhängig erfolgt, die in die Glasfaser 7 zurückgeworfene elektromagnetische Strahlung, und damit erhält man wieder ein Maß für den Druck am Ende der Glasfaser 7.In the exemplary embodiment in FIG. 10, the glass fiber 7 is a sensor element 12 in the form of a pressure sensor 25. This includes a flexible membrane 26 which is provided on one side with a mirror layer 27 is. If you arrange this pressure sensor 25 at the end of an optical fiber 7, the deformation of the membrane 26 changes as a function of pressure takes place, which is reflected in the glass fiber 7 electromagnetic Radiation, and thus you get a measure of the Print at the end of the fiber 7.

Bei dem Ausführungsbeispiel der Figuren 1 und 2 sind Glasfasern 7, die aus dem Implantat 1 herausgeführt sind, direkt oder indirekt mit der Meßeinrichtung 11 verbunden.In the embodiment of Figures 1 and 2 are glass fibers 7, the are led out of the implant 1, directly or indirectly with the Measuring device 11 connected.

Dies ist bei der Ausführung gemäß Figur 3, die ähnlich aufgebaut ist wie die der Figur 1 und bei der gleiche Teile entsprechende Bezugszeichen tragen, ähnlich gelöst, die Verbindung des Übertragungselementes 8 mit der Meßeinrichtung 11 ist bei dem Ausführungsbeispiel in der Figur 3 durch eine Leitung 10 symbolisiert, es kann sich dabei um eine körperliche Leitung oder um eine leitungslose Übertragungsstrecke handeln.This is the case in the embodiment according to FIG. 3, which has a similar structure like that of FIG. 1 and corresponding reference numerals for the same parts wear, similarly solved, the connection of the transmission element 8 with the measuring device 11 is in the embodiment in the Figure 3 symbolized by a line 10, it can be a physical line or around a wireless transmission link act.

Zusätzlich ist bei dieser Ausführungsform eine Strahlungsquelle 29 vorgesehen, die mit einer oder mehreren Glasfasern 30 in Verbindung stehen, die in das Kunststoffmaterial 6 des Implantates 1 eingebettet sind. Im Ausführungsbeispiel der Figur 3 ist nur eine derartige Glasfaser 30 dargestellt, die direkt mit der Strahlungsquelle 29 verbunden ist, dies ist lediglich als schematische Darstellung aufzufassen. Auch hier können mehrere Glasfasern 30 vorgesehen sein, die in ähnlicher Weise, wie die Glasfasern 7 mit der Meßeinrichtung verbunden sind, ihrerseits mit der Strahlungsquelle 29 verbunden sind, also über Übertragungselemente, die im Körper oder außerhalb angeordnet sein könnten, etc.In addition, in this embodiment there is a radiation source 29 provided with one or more glass fibers 30 in connection stand, which are embedded in the plastic material 6 of the implant 1 are. In the exemplary embodiment in FIG. 3 there is only one such glass fiber 30 shown, which is directly connected to the radiation source 29 is to be understood only as a schematic representation. Also here several glass fibers 30 can be provided, which are similar How the glass fibers 7 are connected to the measuring device are in turn connected to the radiation source 29, that is to say via transmission elements, which are located in the body or outside could, etc.

Die Strahlungsquelle 29 kann in die Glasfasern 30 eine elektromagnetische Strahlung einspeisen, die im Innern des Implantates 1 austritt und dort eine direkte Beeinflussung der Umgebung erzeugt, beispielsweise eine Aufwärmung des umgebenden Kunststoffmaterials 6 oder aber eine zusätzliche Aushärtung durch erhöhte Polymerisation oder aber eine Auflösung von Polymerisationsverbindungen etc. Hier sind eine Vielzahl von Wirkungen denkbar, die abhängen von der Natur des verwendeten Kunststoffmaterials 6 und von der Natur der eingespeisten elektromagnetischen Strahlung. Die Wirkung dieser eingespeisten elektromagnetischen Strahlung ist in jedem Falle eine Beeinflussung der physikalischen Daten des Kunststoffmaterials 6 und eventuell der Umgebung des Implantates 1, beispielsweise kann die Festigkeit des Implantates lokal oder flächendeckend erhöht oder erniedrigt werden. Den Ort der Einwirkung kann man durch entsprechende Anordnung der Glasfasern 30 im Implantat 1 bestimmen, die Art der Einwirkung durch eine entsprechende Auswahl einer bestimmten Strahlung.The radiation source 29 can be an electromagnetic one in the glass fibers 30 Feed in radiation that emerges inside the implant 1 and creates a direct influence on the environment there, for example a heating of the surrounding plastic material 6 or but additional curing through increased polymerization or but a dissolution of polymerization compounds etc. Here are a variety of effects conceivable that depend on the nature of the used plastic material 6 and the nature of the fed electromagnetic radiation. The effect of this fed In any case, electromagnetic radiation is an influence the physical data of the plastic material 6 and possibly the Environment of the implant 1, for example, the strength of the Implants are increased or decreased locally or across the board. The location of exposure can be determined by arranging the Glass fibers 30 in the implant 1 determine the type of action an appropriate selection of a particular radiation.

Die Strahlungsquelle 29 kann völlig unabhängig von der Meßeinrichtung 13 aktiviert werden, es ist aber besonders vorteilhaft, wenn, wie in Figur 3 dargestellt, der Strahlungsquelle 29 eine Steuerung 31 zugeordnet ist, die die Strahlungsquelle 29 in Abhängigkeit von den Meßdaten der Meßeinrichtung 11 ein- und ausschaltet. Zu diesem Zweck ist die Meßeinrichtung 11 über eine Leitung 28 mit der Steuerung 31 verbunden. The radiation source 29 can be completely independent of the measuring device 13 can be activated, but it is particularly advantageous if, how 3, a controller 31 is assigned to the radiation source 29 which is the radiation source 29 as a function of the measurement data the measuring device 11 switches on and off. To this end is the measuring device 11 via a line 28 with the controller 31 connected.

Stellt beispielsweise die Meßeinrichtung 11 fest, daß die Dehnung des Implantates 1 in einem bestimmten Bereich abnimmt, so ist dies ein Zeichen dafür, daß ein Teil der Kraftübertragung durch verheilende Knochenfragmente übernommen worden ist, es kann dann durch Einspeisen von elektromagnetischer Strahlung in Glasfasern 30 die Festigkeit des Implantates 1 durch Auflösen eines Teils des Kunststoffmaterials 6 herabgesetzt werden, so daß die Stützfunktion des Implantates 1 entsprechend der Zunahme der Stabilität der Knochenverbindung abnimmt. Damit ist eine optimale Anpassung dieser Größen aneinander möglich, außerdem ist es für die Heilung förderlich, wenn die Knochenverbindung entsprechend dem Heilvorgang zunehmend belastet wird.For example, the measuring device 11 determines that the elongation of the Implant 1 decreases in a certain area, this is a Signs that part of the power transmission through healing Bone fragments has been taken over, it can then be fed in of electromagnetic radiation in glass fibers 30 the strength of the implant 1 by dissolving part of the plastic material 6 are reduced so that the support function of the implant 1 corresponding to the increase in the stability of the bone connection decreases. This is an optimal adaptation of these sizes to each other possible, moreover, it is conducive to healing if the bone connection is increasingly burdened according to the healing process.

Bei dem Ausführungsbeispiel der Figur 3 erfolgt die Einführung der von der Strahlungsquelle 29 erzeugten Strahlung über Glasfasern 30, die von den Glasfasern 7 der Meßeinrichtung verschieden sind.In the embodiment of Figure 3, the introduction of the the radiation source 29 generated radiation via glass fibers 30, the are different from the glass fibers 7 of the measuring device.

Es ist auch möglich, sowohl die Messung der physikalischen Zustandsdaten als auch die Einspeisung von elektromagnetischer Strahlung über dieselben Glasfasern 7 vorzunehmen, dies ist in Figur 4 schematisch dargestellt. Zu diesem Zweck ist zwischen das Übertragungselement 8 einerseits und die Meßeinrichtung 11 und die Strahlungsquelle 29 andererseits ein optischer Schalter 33 eingeschaltet, der wahlweise eine Verbindung der Glasfasern 7 mit der Meßeinrichtung 11 oder der Strahlungsquelle 29 ermöglicht. In Figur 4 ist dies durch den Doppelpfeil C symbolisch angedeutet. Schalter dieser Art stehen in verschiedener Weise zur Verfügung, es kann sich dabei um mechanische Schalter handeln, die beispielsweise ein Glasfaser zwischen zwei Einkoppelstellen verschieben, oder aber auch um Schalter, die elektromagnetisch, piezoelektrisch oder thermisch arbeiten, hier sind dem Fachmann eine große Anzahl unterschiedlicher Schalter bekannt, die zu diesem Zweck eingesetzt werden können.It is also possible to measure both the physical state data as well as the feeding of electromagnetic radiation to carry out over the same glass fibers 7, this is shown schematically in FIG shown. For this purpose is between the transmission element 8 on the one hand and the measuring device 11 and the radiation source 29 on the other hand, an optical switch 33 turned on, optionally a connection of the glass fibers 7 with the measuring device 11 or Radiation source 29 allows. In Figure 4 this is by the double arrow C symbolically indicated. Switches of this type are available in different Way available, it can be mechanical Act switches, for example, an optical fiber between two coupling points move, or even switches that are electromagnetic, work piezoelectrically or thermally, here are the A large number of different switches known to those skilled in the art can be used for this purpose.

Der optische Schalter 33 kann gegebenenfalls auch automatisch betätigt werden, so daß sichergestellt ist, daß beispielsweise abwechselnd über die Glasfaser 7 eine Messung des physikalischen Zusandes vorgenommen wird und Strahlungsenergie zur Beeinflussung der Glasfaserumgebung eingestrahlt wird.The optical switch 33 can optionally also be operated automatically be, so that it is ensured that, for example, alternately A measurement of the physical condition is carried out via the glass fiber 7 and radiant energy to influence the glass fiber environment is irradiated.

Claims (25)

  1. A medical implant system having an implant (1) made of a composite material, in which glass fibres (7) are embedded, wherein a sensor element embedded in the implant (1) and comprising at least one of the glass fibres (7) is connected to a measuring device (11) which measures a physical property of the sensor element or of its environment, or of a change therein, characterised in that the glass fibres (7) in the form of a tissue, or a piece of knitted material or a fleece, are embedded in the composite material as mechanical reinforcement.
  2. An implant system according to Claim 1, characterised in that the glass fibres (7) in the composite material are distributed over the whole extent of the implant (1).
  3. An implant system according to any one of the preceding claims, characterised in that the measuring device (11) supplies electromagnetic radiation to the sensor element and measures physical properties of the sensor element or of its environment from the nature of the radiation passing through and/or being reflected.
  4. An implant system according to Claim 3, characterised in that the glass fibre (7) of the sensor element is provided with a radiation-reflecting coating (18).
  5. An implant system according to any one of the preceding claims, characterised in that the sensor element consists substantially of the glass fibre (7) forming a sensor fibre.
  6. An implant system according to Claim 5, characterised in that at least one region (13, 14, 15) functioning as a Bragg lattice is embedded in the sensor fibre.
  7. An implant system according to [Claim] 5, characterised in that a substance (17) in which fluorescence is induced by the supplied electromagnetic radiation is embedded in the sensor fibre, the fluorescence properties of which substance undergo changes under the influence of the chemical environment outside the sensor fibre.
  8. An implant system according to Claims 4 and 5, characterised in that the radiation-reflecting coating (18) consists of a substance which, under the influence of the chemical environment (19) outside the sensor fibre, alters the reflection behaviour in respect of the electromagnetic radiation within the sensor fibre.
  9. An implant system according to any one of Claims 1 to 3, characterised in that the sensor element comprises the glass fibre (7) and another sensor member (12) which is connected to the measuring device (11) via the glass fibre (7).
  10. An implant system according to Claim 9, characterised in that the sensor member (12) is a pressure sensor (25) having a flexible membrane (26) and a mirror element (27) movable by the said membrane, which mirror element position-dependently variously reflects the electromagnetic radiation supplied to the glass fibre (7).
  11. An implant system according to Claim 9, characterised in that the sensor member (12) is a Fabry-Pérot interferometer.
  12. An implant system according to Claim 11, characterised in that the Fabry-Pérot interferometer is in the form of a thin-layer interferometer (21, 22, 24) contacted on to the end (20) of the glass fibre (7), the active layer of which thin-layer interferometer undergoes changes in dimension under the influence of the environment.
  13. An implant system according to Claim 11, characterised in that the Fabry-Pérot interferometer comprises two glass fibres (7, 22) having polished end faces (20, 21), the distance between which (B) is variable due to environmental influences.
  14. An implant system according to any one of the preceding claims, characterised in that the glass fibre (7) of the sensor element is directly connected to the measuring device (11).
  15. An implant system according to Claim 14, characterised in that the measuring device is a microcontroller implantable in the body.
  16. An implant system according to any one of Claims 1 to 13, characterised in that the glass fibre (7) is connected to a transmitter (8) which, without physical contact, exchanges signals with the measuring device (11).
  17. An implant system according to Claim 16, characterised in that the transmitter (8) is implantable in the body.
  18. An implant system according to Claim 16 or 17, characterised in that the transmitter (8) is a transponder.
  19. An implant system according to Claim 16 or 17, characterised in that the transmitter is a light source with which a light detector is associated.
  20. An implant system according to Claim 19, characterised in that the light source emits electromagnetic radiation in the range between 650 and 1000 nm.
  21. An implant system according to any one of the preceding claims, characterised in that the measuring device (11) is associated with a radiation transmitter (29) which, via a glass fibre (7; 30) in the implant (1), transports radiation into the interior of the implant (1).
  22. An implant system according to Claim 21, characterised in that the radiation is transported via the glass fibre (7) of a sensor element.
  23. An implant system according to Claim 21, characterised in that the radiation is transported via a glass fibre (30) which, like the glass fibre (7) of a sensor element, is embedded in the implant (1).
  24. An implant system according to any one of Claims 21 to 23, characterised in that the wavelength and intensity of the transported radiation is selected such that the radiation induces mechanical and/or material changes in the composite material of the implant
  25. An implant system according to any one of Claims 21 to 24, characterised in that the measuring device (11) and the radiation transmitter (29) are associated with a controller (31) which activates the radiation transmitter as a function of the measured variables of the measuring device (11).
EP02791457A 2001-07-28 2002-07-17 Medical implant system Expired - Lifetime EP1424937B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10137011 2001-07-28
DE10137011A DE10137011C2 (en) 2001-07-28 2001-07-28 Medical implant system
PCT/EP2002/007927 WO2003011133A1 (en) 2001-07-28 2002-07-17 Medical implant system

Publications (2)

Publication Number Publication Date
EP1424937A1 EP1424937A1 (en) 2004-06-09
EP1424937B1 true EP1424937B1 (en) 2004-11-17

Family

ID=32308445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02791457A Expired - Lifetime EP1424937B1 (en) 2001-07-28 2002-07-17 Medical implant system

Country Status (5)

Country Link
US (1) US20040204647A1 (en)
EP (1) EP1424937B1 (en)
AT (1) ATE282358T1 (en)
DE (1) DE50201594D1 (en)
ES (1) ES2232784T3 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0301825L (en) * 2003-06-19 2005-02-18 Integration Diagnostics Ltd Method and system for implant certification
US8391958B2 (en) * 2003-06-19 2013-03-05 Osstell Ab Method and arrangement relating to testing objects
DE102004006501A1 (en) * 2004-02-10 2005-09-01 Charité-Universitätsmedizin Berlin Component and method for assembling an implant assembly
US20070270684A1 (en) * 2004-06-21 2007-11-22 Integration Diagnostics Ltd. Method and Arrangement Relating to Testing Objects
US8388553B2 (en) 2004-11-04 2013-03-05 Smith & Nephew, Inc. Cycle and load measurement device
AU2006282828B2 (en) * 2005-08-23 2013-01-31 Smith & Nephew, Inc Telemetric orthopaedic implant
DE102005045739A1 (en) * 2005-09-23 2007-04-19 Universitätsklinikum Freiburg osteosynthesis
US7691130B2 (en) * 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7328131B2 (en) * 2006-02-01 2008-02-05 Medtronic, Inc. Implantable pedometer
US8016859B2 (en) 2006-02-17 2011-09-13 Medtronic, Inc. Dynamic treatment system and method of use
US7993269B2 (en) * 2006-02-17 2011-08-09 Medtronic, Inc. Sensor and method for spinal monitoring
WO2007103276A2 (en) * 2006-03-03 2007-09-13 Smith & Nephew, Inc. Systems and methods for delivering a medicament
EP2596764B1 (en) * 2006-08-22 2016-07-13 Mitsubishi Electric Corporation Laser processing apparatus, osseointegration method, implant material, and implant-material fabrication method
EP2114247B1 (en) 2007-02-23 2013-10-30 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
AU2008296209B2 (en) 2007-09-06 2014-05-29 Smith & Nephew, Inc. System and method for communicating with a telemetric implant
US8915866B2 (en) 2008-01-18 2014-12-23 Warsaw Orthopedic, Inc. Implantable sensor and associated methods
EP2364115B1 (en) 2008-10-15 2019-02-20 Smith & Nephew, Inc. Composite internal fixators
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8376937B2 (en) * 2010-01-28 2013-02-19 Warsaw Orhtopedic, Inc. Tissue monitoring surgical retractor system
CN109998659A (en) * 2011-07-15 2019-07-12 史密夫和内修有限公司 The compound orthopedic device that fiber with embedded electronic device is reinforced
EP3108807A1 (en) * 2015-06-26 2016-12-28 Stryker European Holdings I, LLC Bone healing probe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895574A (en) * 1984-06-06 1990-01-23 Larry Rosenberg Piezoelectric motivator for prosthetic devices
JPS61135671A (en) * 1984-12-04 1986-06-23 三菱鉱業セメント株式会社 Implant material
US5561173A (en) * 1990-06-19 1996-10-01 Carolyn M. Dry Self-repairing, reinforced matrix materials
US5202939A (en) * 1992-07-21 1993-04-13 Institut National D'optique Fabry-perot optical sensing device for measuring a physical parameter
US5376785A (en) * 1992-10-02 1994-12-27 Chin; Philip K. Optical displacement sensor utilizing optical diffusion
US5695496A (en) * 1995-01-17 1997-12-09 Smith & Nephew Inc. Method of measuring bone strain to detect fracture consolidation
US5841529A (en) * 1996-03-25 1998-11-24 University Of Maryland Fiber optic strain sensor
US6005242A (en) * 1997-08-15 1999-12-21 Alconi Sensline Environmental media and pressure sensor
WO2000038570A1 (en) * 1998-12-31 2000-07-06 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
JP3519333B2 (en) * 2000-02-10 2004-04-12 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Optical fiber sensor
US7050661B2 (en) * 2000-03-27 2006-05-23 Tml Photonics, Inc. Process to create artificial nerves for biomechanical systems using optical waveguide network
US6539947B2 (en) * 2000-12-12 2003-04-01 International Business Machines Corporation Apparatus, system, method and computer program product for controlling bio-enhancement implants
US7344539B2 (en) * 2001-03-30 2008-03-18 Depuy Acromed, Inc. Intervertebral connection system
EP1513584A2 (en) * 2002-06-04 2005-03-16 Cyberkinetics, Inc. Optically-connected implants and related systems and methods of use
US6761741B2 (en) * 2002-06-10 2004-07-13 Kazuho Iesaka Prosthetic joint

Also Published As

Publication number Publication date
EP1424937A1 (en) 2004-06-09
ATE282358T1 (en) 2004-12-15
US20040204647A1 (en) 2004-10-14
ES2232784T3 (en) 2005-06-01
DE50201594D1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
EP1424937B1 (en) Medical implant system
DE2343869C3 (en) Device for measuring a property of foam-like material
DE10011284B4 (en) Apparatus for in vivo measurement of the concentration of an ingredient of a body fluid
EP1827866B1 (en) Security document comprising a light source and a light-processing device
DE69417026T2 (en) METHOD FOR PRODUCING SOFT TISSUE PAPER
EP3359948B1 (en) Apparatus and method for analyzing a material
EP0618441B1 (en) Device for laterally resolved investigation of a laterally heterogeneous ultra-thin layer
DE60005004T2 (en) HYDROPHILIC WAD PRODUCT WITH A SOFT AND ROUGH SURFACE
EP0342647A2 (en) Method for examining sheet-like objects
WO2013104600A1 (en) Roll with sensors for a machine for producing and/or processing a material web and machine for producing and/or processing a material web
DE102011050389B4 (en) Sensor unit and measurement method
EP1716820A2 (en) Apparatus for curing a polymerisable dental material as well as method for determining the degree of polymerisation
DE102011104708A1 (en) Method and device for determining material properties of a substrate sample in the Tera-Hertz frequency spectrum
CH698317B1 (en) Microplate reader with intelligent filter slider.
DE69703045T2 (en) SECURITY MARKING SYSTEM
DE10137011C2 (en) Medical implant system
WO1998053739A1 (en) In vivo detection of langer's lines
DE60217093T2 (en) Fiber-optic based device for surface profiling
EP2703772B1 (en) Sensor for detecting a moving strip
EP0723252B1 (en) Device for testing the magnetic properties of sheet material, e.g. bank notes or valuable papers
EP3047793B1 (en) Wound dressing
DE20005496U1 (en) Detection system for surgical instruments and materials
DE60038184T2 (en) METHOD FOR DETERMINING A CHARACTERISTIC OF A SAFETY DOCUMENT, AS FORM. A BANKNOTE
WO2014063843A1 (en) Sensor element with a photonic crystal arrangement
DE10156852A1 (en) Object, especially valuable and security document has security marker with emitter layer for stimulated optical emission and periodic modulation, especially height modulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041117

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201594

Country of ref document: DE

Date of ref document: 20041223

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050217

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2232784

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050717

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050717

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: *AESCULAP A.G. & CO. K.G.

Effective date: 20050731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120717

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20131025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140722

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140728

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160722

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160722

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160722

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718