EP1423557B1 - Electrolytic solution for electrochemical deposition of gold and its alloys - Google Patents

Electrolytic solution for electrochemical deposition of gold and its alloys Download PDF

Info

Publication number
EP1423557B1
EP1423557B1 EP02774881A EP02774881A EP1423557B1 EP 1423557 B1 EP1423557 B1 EP 1423557B1 EP 02774881 A EP02774881 A EP 02774881A EP 02774881 A EP02774881 A EP 02774881A EP 1423557 B1 EP1423557 B1 EP 1423557B1
Authority
EP
European Patent Office
Prior art keywords
gold
electrolytic bath
organic compound
bath according
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02774881A
Other languages
German (de)
French (fr)
Other versions
EP1423557A1 (en
Inventor
Lionel Chalumeau
Christian Leclere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metalor Technologies France Sas
Original Assignee
Metalor Technologies France Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metalor Technologies France Sas filed Critical Metalor Technologies France Sas
Publication of EP1423557A1 publication Critical patent/EP1423557A1/en
Application granted granted Critical
Publication of EP1423557B1 publication Critical patent/EP1423557B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold

Definitions

  • the present invention relates to an electrolytic bath intended for the electrochemical deposition of gold or its alloys.
  • Electrolytic gilding was born in the wake of the invention of the battery by Alisandro Volta. It is indeed Luigi Brugnatelli, pupil and collaborator of Volta, professor of chemistry at the University of Pavia, who discovered in 1805 the way to gild silver medals using the battery. The process he used is described in particular in a letter addressed to Van Mons, from Brussels. Brugnatelli used a solution of gold chloride in ammonia, in which the object to be browned was immersed, and made the latter communicate by a silver or steel wire with the negative pole of a battery. .
  • the speed of deposition of metals in surface treatment is the parameter that it has been and which is still most often asked to optimize (AM Weisberg in Gold Plating Technology, FH Reid and W. Goldie, Electrochemical Publications Limited, Ayr, 1974).
  • the gold baths most efficient in terms of electrodeposition speed, retaining on deposit its excellent properties of gloss, ductility, porosity, hardness, resistance to corrosion and friction, low contact resistance are the baths called "Acid Hard Gold” which are intended for deposits of gold hardened by alloying a very small amount of a common metal, most often cobalt or nickel, derived from an acid electrolyte based on the citric acid / citrate system.
  • Improving the speed of plating is also a demand in the jewelry industry with types of baths ranging from citrate-based electrolytes to phosphate-based electrolytes.
  • the methods of improving the electrodeposition speed were based either on the addition of a gold reducer making it possible not to affect the cathodic yield by the reduction of gold (III) originating from l oxidation of the gold salt (I) constituting the anode bath (US4238300, US4670107, US4795534), either on the addition of an organic or metallic brightener allowing the use of higher current densities to the detriment of the cathodic yield (US4767507, US4591415).
  • cyanide baths for electrolytic deposition of gold remain widely used because of their performance.
  • one of the well-known drawbacks of such baths is that the presence of cyanides in the bath is responsible for the formation of polymers during electrolytic deposition. These polymers pollute the deposits and consequently affect the quality of the electrolytic deposit.
  • so-called “hard gold” gold deposits from aurocyanide solutions buffered by the citric acid-potassium citrate system at pH between 4 and 5, and containing cobalt as hardening metal for the deposit. .
  • These deposits are accompanied by a co-deposition of carbon and nitrogen.
  • the presence of this contaminant seems responsible for the relatively strong contact resistance of the deposit in two different ways.
  • the polymers increase the contact resistance of the deposit, not only by forming a film on the surface of the deposit but also by being present within this deposit.
  • the formation of polymers is dependent on the availability of free cyanides in the electrolyte.
  • the amount of polymer included in the deposit is also largely dependent on the level of cobalt included.
  • cobalt oxides on the surface of the deposit is also responsible for the contact resistance of the gold-cobalt deposits, in particular, by the formation of a complex with the free cyanides.
  • Czech patent CS 107 253 1 describes a process intended to deposit two successive layers of bright and hard gold using an electrolytic bath containing vanillin as a brightening agent at a concentration of 0.5 g / L, for an auropotassium cyanide concentration of 8 g / L, which corresponds to a vanillin concentration of the order of 0.1 mole per mole of gold to be deposited.
  • the present invention makes it possible, in particular, to improve the speed of gold plating by allowing the use of gold electrolytes with high current densities, up to 120 A / dm 2 , without affecting the yield. cathode.
  • the invention relates according to a first aspect to an electrolytic bath intended for the deposition of gold or gold alloys, this bath containing a well-defined auxiliary agent making it possible to considerably improve the speed of electrodeposition of gold or of its alloys, while reducing the contact resistance and allowing the use of high current densities.
  • the invention relates to a process for the electrolytic deposition of gold or gold alloys on a substrate, using the bath of the invention as an electrolytic bath.
  • the invention relates to a new use of a well-defined family of organic compounds having at least one aldehyde function as an auxiliary intended to improve the performance of an electrolytic deposition process for gold or alloys thereof. gold on a substrate.
  • the invention applies to all known methods using a step of electrodeposition of gold or gold alloys, in the field of decoration as well as in electronics and connectors.
  • the invention according to this first aspect relates to an aqueous electrolytic bath intended for the electrochemical deposition of gold or its alloys.
  • a bath intended for the electrolytic deposition of a metal is distinguished from a bath known as a "chemical bath” for depositing the same metal not only by its operating conditions (current flow and presence electrodes in the case of the electrochemical bath) but also by the nature of its constituents.
  • a chemical bath will comprise a large quantity of reducing agents and will be characterized by the presence of a high concentration in free cyanides, while in an electrochemical bath we will seek to eliminate, as much as possible, the presence of free cyanides.
  • the orders of magnitude of the deposition rates from a chemical bath and from an electrochemical bath have nothing to do with, which precludes a priori the use of chemical baths to produce continuous deposits on substrates. .
  • the electrolytic bath can be constituted by any bath conventionally used for the electrodeposition of gold or gold alloys, from the moment when it also contains a compound organic comprising one or two aldehyde functions as defined above.
  • the electrolytic baths of the invention advantageously contain from 1.5 to 2.5 moles of said organic compound comprising one or two aldehyde functions per mole of gold, preferably of the order of 2 moles of said organic compound per mole of gold .
  • the electrolytic baths of the invention advantageously contain gold contents which can vary widely but in general are between 1 and 100 g / L (the contents of soluble salts are related to the metal content).
  • the content of compounds carrying one or two aldehyde functions can vary within very large proportions.
  • the baths of the invention contain, depending on the molar base of the aldehyde, from 0.1 to 50 g / L of at least one organic compound comprising one or two aldehyde functions as defined previously.
  • the family of organic compounds which can be used according to the invention as an auxiliary agent in an electrochemical deposition bath for gold or gold alloys is an organic compound comprising from 3 to 20 carbon atoms and at least one aldehyde function .
  • They can be aliphatic compounds but also compounds containing one or more rings, these compounds possibly also containing at least one heteroelement such as oxygen, nitrogen, sulfur and phosphorus.
  • the family of products which can be used according to the invention also includes the salts of the above products and in particular the sulfonates which also have the advantage of having surfactant properties if they are sufficiently long.
  • the organic compounds used according to the invention will be chosen from aldehydes of formula R-CHO in which R is a linear or branched, saturated or unsaturated aliphatic group comprising from 3 to 12 carbon atoms.
  • alkyl chains comprising from 3 to 9 carbon atoms will preferably be chosen.
  • the organic compound comprises from 4 to 20 carbon atoms and comprises at least one saturated, unsaturated or aromatic ring or is in the form of a salt, in particular a sulfonate, of one of these compounds .
  • a compound is preferably chosen in which the ring, in particular the aromatic ring, carries at most two substituent groups.
  • the organic compound comprises 4 to 20 carbon atoms and contains at least one saturated, unsaturated or aromatic heterocycle or is in the form of a salt, in particular a sulfonate, of one of these compounds.
  • the organic compound used according to the invention will be chosen from the group consisting of propionaldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, capronalddehyde, hexaldehyde, heptaldehyde, caprylic aldehyde, pelargonaldehyde, decanal, undecanal, laurylaldehyde, acrolein, crotonal, benzaldehyde, phenylacetaldehyde, cuminic aldehyde, cinnamaldehyde, anisaldehyde, phthalic aldehyde.
  • the electrolytic bath intended for depositing gold or its alloys will moreover comprise all the additives commonly used in such baths.
  • the invention is not limited to electrolytic baths in which the gold is in the form of aurocyanide or of auricyanide, the invention applies very particularly to this type of bath, well known for having as disadvantage in the prior art of causing pollution of the electrolytic deposit by formation of polymers.
  • the organic compound with aldehyde function according to the invention is found to be introduced in a particularly advantageous manner in the baths in which the gold is in the form of auri- or aurocyanide but it can also be used in other baths with the effect of improving the performance of electroplating.
  • We can, in particular, introduce it into baths where gold is in the form of aurosulfite, aurothiosulfate or gold chloride.
  • the invention relates to a method of electroplating gold or a gold alloy, according to which the electrolysis of an electrolytic bath as defined above is carried out.
  • the main advantages of the introduction of the organic compound with aldehyde function are to improve the speed of electroplating, to decrease the contact resistance and to allow the use of particularly high current densities.
  • the improvement of the invention is applicable to all types of electrolytic gold deposition processes and for all types of application, whether in decoration, for the preparation of electronic components and in connectors.
  • the current densities used in the methods of the invention can vary over wide ranges, generally between 0.5 and 120 A / dm 2 .
  • the method of the invention insofar as it allows the use of particularly high current densities of up to 120 A / dm 2 finds a particularly advantageous application in electronic applications where it is sought to work with a maximum deposition rate and where the desired deposits must be, among other things, shiny, ductile and non-porous.
  • the baths used in this field must operate at the highest possible current densities, which allows in particular the use of the auxiliaries used according to the invention.
  • baths of the invention can also be used at lower speeds and current densities and, in particular in decoration applications.
  • the improvement of the invention is applicable to all the processes conventionally used for the deposition of gold or gold alloys.
  • insoluble anodes preferably of platinum titanium, of platinum coated with iridium oxide or of precious metal such as platinum and a metallized substrate will be placed as a cathode.
  • the invention relates according to a third aspect to the use of an organic compound as defined above in an electrolytic bath intended for the electrolytic deposition of gold or of a of its alloys, as an auxiliary agent improving the speed of electrodeposition of gold or its alloys and / or decreasing the contact resistance.
  • the concentrations of gold and alloy metals are referred to the metal.
  • This bath deposits more than 99.9% gold, the deposit is shiny, ductile, with a contact resistance of 12 mOhm, low porosity and excellent resistance to corrosion.
  • Its electrodeposition speed is 0.05 to 0.5 ⁇ m / min. it is ideally used in the so-called “fastening” or "dipping” processes.
  • This bath deposits more than 99.9% gold, the deposit is shiny, ductile, with a contact resistance of 5 mOhm, low porosity and excellent resistance to corrosion. Its electrodeposition speed is 0.1 to 0.7 ⁇ m / min. It is ideally used in so-called “fastening” or “dipping” processes.
  • This bath deposits more than 99.9% gold, the deposit is shiny, ductile, has low porosity and excellent corrosion resistance, with a contact resistance of 7 mOhm. It is deposited at a speed of 0.1 to 0.7 ⁇ m / min. It is ideally used in the so-called “fastening” or “dipping” processes.
  • This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with low contact resistance, low porosity and excellent resistance to corrosion.
  • Cobalt acts here not only as a metallic brightener but also as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom”. It is ideally used in the so-called “continuous” "selective deposition with masking” or “selective jet deposition” processes.
  • the contact resistance is 5 mOhm after thermal aging for 1 hour at 250 ° C. As an indication, it is under the same conditions of 14 mOhm, when the bath does not contain aldehyde. (Measurement according to standard ASTM B667-97).
  • the deposition rate is 0.5 to 11 ⁇ m / min with aldehyde, 0.4 to 8.5 ⁇ m / min without aldehyde using as a deposition means a rotary cathode rotating at a speed of 1.5 m / s or jet deposit material.
  • This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion, and leads to a speed of 0, 5 to 11 ⁇ m / min.
  • Nickel acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test called "British Telecom”. It is ideally used in the so-called “continuous”, “selective deposition with masking” or “selective jet deposition” processes.
  • This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion, and leads to a deposition rate of 0.5 to 11 ⁇ m / min.
  • Cobalt acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom". ". It is ideally used in the so-called “continuous”, “selective deposition with masking” or “selective jet deposition” processes.
  • This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion. It leads to a deposition rate of 0.5 to 11 ⁇ m / min.
  • Cobalt acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom". ". It is ideally used in the so-called “continuous”, “selective deposition with masking” or “selective jet deposition” processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

An aqueous electrolytic solution for electrochemical deposition of gold or its alloys includes at least a soluble gold compound designed for electrolytic deposition and, optionally at least a secondary metal compound designed for co-deposition in the form of a gold alloy. The solution includes 0.3 to 3 moles per mole of gold contained in the electrolytic solution of an organic compound having one or two aldehyde functions, this organic compound being or an organic compound having 3 to 20 carbon atoms and one or two aldehyde functions in the form of a saturated or unsaturated, linear or branched aliphatic group, or a group containing at least a saturated, unsaturated or aromatic cycle. The organic compound may further include at least a heteroelement selected among oxygen, nitrogen, sulfur and phosphorus or be in the form of a salt, in particular a sulphonate. The presence of the organic compound enables increasing the speed of electrodeposition and/or decreasing contact resistance.

Description

La présente invention concerne un bain électrolytique destiné au dépôt électrochimique de l'or ou de ses alliages.The present invention relates to an electrolytic bath intended for the electrochemical deposition of gold or its alloys.

La dorure électrolytique est née dans le sillage de l'invention de la pile par Alisandro Volta. C'est en effet Luigi Brugnatelli, élève et collaborateur de Volta, professeur de chimie à l'université de Pavie, qui découvrit en 1805 le moyen de dorer des médailles d'argent à l'aide de la pile. Le procédé qu'il employait se trouve décrit notamment dans une lettre adressée à Van Mons, de Bruxelles. Brugnatelli se servait d'une dissolution de chlorure d'or dans l'ammoniaque, dans laquelle était plongé l'objet à dorer, et faisait communiquer ce dernier par un fil d'argent ou d'acier avec le pôle négatif d'une pile. Le procédé n'eut pas d'écho à l'époque à cause vraisemblablement de l'impossibilité d'obtenir avec la pile de Volta un courant constant, donc un dépôt satisfaisant, ou bien à cause de l'état de guerre qui persista jusqu'en 1815 qui fit que cette invention de fut pas mentionnée par les scientifiques distingués commissionnés par Napoléon pour communiquer les progrès scientifiques après la révolution française. Il fallut attendre le résultat des recherches de Antoine Becquerel sur les causes d'irrégularité du courant et sur les moyens généraux de s'en affranchir et l'invention de la pile à courant constant de Daniell. Cette source de courant permet alors d'obtenir des dépôts métalliques homogènes et ductiles. C'est Auguste de la Rive, physicien de Genève, qui a le premier réellement appliqué la pile à la dorure. Il obtint, en 1840, un dépôt d'or électrolytique sur du laiton, du cuivre et de l'argent en utilisant une solution de chlorure d'or sous un courant très faible. Le dépôt présentait malgré tout un défaut d'adhérence. En effet l'électrolyte acide attaquait constamment la surface du substrat. Plusieurs personnes apportèrent leur contribution à l'amélioration du procédé de la Rive comme Elsner, Boettger, Perrot et Smée. C'est fin 1840 qu'est apparu le précurseur des bains d'or modernes avec les travaux des frères anglais Henry et George Elkington et du français Henry de Ruolz qui ont développé l'utilisation de solutions alcalines de cyanure d'or dans du cyanure de potassium.Electrolytic gilding was born in the wake of the invention of the battery by Alisandro Volta. It is indeed Luigi Brugnatelli, pupil and collaborator of Volta, professor of chemistry at the University of Pavia, who discovered in 1805 the way to gild silver medals using the battery. The process he used is described in particular in a letter addressed to Van Mons, from Brussels. Brugnatelli used a solution of gold chloride in ammonia, in which the object to be browned was immersed, and made the latter communicate by a silver or steel wire with the negative pole of a battery. . The process had no echo at the time probably because of the impossibility of obtaining with the Volta battery a constant current, therefore a satisfactory deposit, or else because of the state of war which persisted until 'in 1815 which made this invention of was not mentioned by distinguished scientists commissioned by Napoleon to communicate scientific progress after the French Revolution. We had to wait for the results of Antoine Becquerel's research on the causes of current irregularity and on the general means of overcoming it and the invention of Daniell's constant current battery. This current source then makes it possible to obtain homogeneous and ductile metallic deposits. It was Auguste de la Rive, a physicist from Geneva, who first actually applied the pile to the gilding. He obtained, in 1840, a deposit of electrolytic gold on brass, copper and silver by using a solution of gold chloride under a very weak current. The deposit still had a lack of adhesion. Indeed the acid electrolyte constantly attacked the surface of the substrate. Several people brought their contribution to improving the process on the Shore such as Elsner, Boettger, Perrot and Smée. It was at the end of 1840 that the precursor of modern gold baths appeared with the work of the English brothers Henry and George Elkington and the Frenchman Henry de Ruolz who developed the use of alkaline solutions of gold cyanide in cyanide. potassium.

Ce sont ces types d'électrolytes qui ont été utilisés pendant près de quatre-vingts ans sans qu'aucune modification ne soit apportée pour procéder à la dorure électrolytique. Les applications de ces bains étaient la bijouterie, la dorure des bronzes et des zincs d'art, employés surtout pour la confection des pendules, candélabres, coupes, lustres, et la fabrication des fils dorés pour la passementerie.These are the types of electrolytes that have been used for almost eighty years without any modification being made to carry out the electrolytic gilding. The applications of these baths were jewelry, gilding of bronzes and zincs of art, used especially for the making of pendulums, candelabras, cups, chandeliers, and the manufacture of golden threads for trimmings.

C'est le développement de l'industrie électronique au début des années quarante qui a provoqué un renouveau d'intérêt pour les bains d'or. Les utilisateurs de dorure électrolytique étaient demandeurs de dépôts brillants, durs, bons conducteurs et avec un contrôle de l'épaisseur, entre autres. Les recherches menées pour obtenir ces résultats ont abouti à la mise au point des bains d'or acides et neutres, destinés à des dépôts brillants dans les années cinquante. Les années soixante ont vu le développement des bains acides d'or allié conduisant à des dépôts ayant des propriétés physiques spécifiques comme la ductilité, la résistance à la corrosion, la pureté du dépôt etc. C'est aussi à ce moment là que sont réapparus les électrolytes d'or non-cyanurés avec toujours l'objectif d'obtenir des dépôts d'or brillants et durs. Dans les années soixante-dix, la sophistication toujours croissante de l'électronique mais surtout la forte croissance du prix de l'or ont conduit les utilisateurs de bains d'or à développer des méthodes de placage sélectives et à minimiser la quantité d'or dans les dépôts en développant des bains d'alliages d'or plutôt que d'or pur. L'augmentation de la consommation de produits électroniques a également été déterminante dans la recherche d'électrolytes permettant d'augmenter la vitesse de déposition avec un fort pouvoir nivelant et une bonne pénétration, c'est à dire tout en obtenant une bonne répartition du dépôt. Depuis les années quatre-vingt et l'avènement des bains acides d'or dur allié à du nickel, du cobalt, du fer, de l'indium ou d'autres métaux, la recherche s'est focalisée sur leur amélioration par l'ajout d'additifs organiques permettant d'utiliser ces électrolytes sous de fortes densités de courant (brillanteurs, tensioactifs), d'augmenter la résistance au frottement (téflon, chaînes carbonées) ou d'augmenter le rendement cathodique (formiates). Les préoccupations croissantes concernant les problèmes écotoxicologiques permettent de voir l'apparition de nouveaux bains d'or sans cyanure ni sulfite mais malheureusement avec des performances bien moindres que celles obtenues avec les bains d'or acides cyanurés.It was the development of the electronics industry in the early 1940s that sparked renewed interest in gold baths. Users of electroplating were looking for shiny, hard deposits, good conductors and with thickness control, among others. The research carried out to obtain these results led to the development of acid and neutral gold baths, intended for shiny deposits in the 1950s. The sixties saw the development of acid baths of alloyed gold leading to deposits having specific physical properties like ductility, resistance to corrosion, purity of deposit etc. It is also at this time that the electrolytes of non-cyanide gold reappeared with always the objective of obtaining shiny and hard gold deposits. In the seventies, the ever increasing sophistication of electronics but especially the strong growth in the price of gold led users of gold baths to develop selective plating methods and to minimize the quantity of gold. in deposits by developing baths of gold alloys rather than pure gold. The increase in the consumption of electronic products has also been a determining factor in research of electrolytes allowing the deposition rate to be increased with a high leveling power and good penetration, that is to say while obtaining a good distribution of the deposit. Since the 1980s and the advent of acid baths of hard gold combined with nickel, cobalt, iron, indium or other metals, research has focused on improving them by addition of organic additives allowing these electrolytes to be used under high current densities (brighteners, surfactants), to increase the resistance to friction (teflon, carbon chains) or to increase the cathodic yield (formates). Growing concerns about ecotoxicological problems allow us to see the appearance of new gold baths without cyanide or sulfite but unfortunately with much lower performance than those obtained with cyanide acid gold baths.

Les applications les plus exigeantes en terme de vitesse d'électrodéposition sont sans aucun doute celles de la connectique. En effet, depuis les années quarante, l'industrie des connecteurs n'a cessé de croître, impliquant une production de plus en plus massive de pièces revêtues de métal précieux.The most demanding applications in terms of plating speed are undoubtedly those of connectors. In fact, since the 1940s, the connector industry has grown steadily, implying an increasingly massive production of parts coated with precious metal.

Dans l'optique d'une optimisation des coûts de production, la vitesse de déposition des métaux en traitement de surface est le paramètre qu'il a été et qui est encore le plus souvent demandé d'optimiser (A.M. Weisberg in Gold Plating Technology, F.H. Reid et W.Goldie, Electrochemical Publications Limited, Ayr, 1974).With a view to optimizing production costs, the speed of deposition of metals in surface treatment is the parameter that it has been and which is still most often asked to optimize (AM Weisberg in Gold Plating Technology, FH Reid and W. Goldie, Electrochemical Publications Limited, Ayr, 1974).

Les bains d'or les plus performants en matière de vitesse d'électrodéposition, conservant au dépôt ses excellentes propriétés de brillance, de ductilité, de porosité, de dureté, de résistance à la corrosion et aux frottements, de faible résistance de contact sont les bains dénommés «Acide Hard Gold » qui sont destinés à des dépôts d'or durcis par alliage d'une très faible quantité d'un métal commun, le plus souvent du cobalt ou du nickel, issus d'un électrolyte acide à base du système acide citrique/citrate.The gold baths most efficient in terms of electrodeposition speed, retaining on deposit its excellent properties of gloss, ductility, porosity, hardness, resistance to corrosion and friction, low contact resistance are the baths called "Acid Hard Gold" which are intended for deposits of gold hardened by alloying a very small amount of a common metal, most often cobalt or nickel, derived from an acid electrolyte based on the citric acid / citrate system.

L'amélioration de la vitesse d'électrodéposition est également une demande de l'industrie bijoutière avec des types de bains allant des électrolytes à base de citrate jusqu'aux électrolytes à base de phosphates.Improving the speed of plating is also a demand in the jewelry industry with types of baths ranging from citrate-based electrolytes to phosphate-based electrolytes.

Jusqu'à présent les méthodes d'amélioration de la vitesse d'électrodéposition étaient basées soit sur l'ajout d'un réducteur de l'or permettant de ne pas affecter le rendement cathodique par la réduction d'or(III) issu de l'oxydation du sel d'or(I) constitutif du bain à l'anode (US4238300, US4670107, US4795534), soit sur l'ajout d'un brillanteur organique ou métallique permettant d'utiliser de plus fortes densités de courants au détriment du rendement cathodique (US4767507, US4591415).Until now, the methods of improving the electrodeposition speed were based either on the addition of a gold reducer making it possible not to affect the cathodic yield by the reduction of gold (III) originating from l oxidation of the gold salt (I) constituting the anode bath (US4238300, US4670107, US4795534), either on the addition of an organic or metallic brightener allowing the use of higher current densities to the detriment of the cathodic yield (US4767507, US4591415).

A l'heure actuelle, malgré les inconvénients exposés ci-dessus, les bains cyanurés de dépôt électrolytique d'or restent très utilisés du fait de leurs performances. Toutefois, un des inconvénients bien connus de tels bains est que la présence de cyanures dans le bain est responsable de la formation de polymères en cours de dépôt électrolytique. Ces polymères viennent polluer les dépôts et nuisent par conséquent à la qualité du dépôt électrolytique.At the present time, despite the drawbacks exposed above, cyanide baths for electrolytic deposition of gold remain widely used because of their performance. However, one of the well-known drawbacks of such baths is that the presence of cyanides in the bath is responsible for the formation of polymers during electrolytic deposition. These polymers pollute the deposits and consequently affect the quality of the electrolytic deposit.

Par ailleurs, il est classique de recourir à l'utilisation de métaux secondaires, en particulier de cobalt et de nickel comme durcisseur et/ou brillanteur des dépôts électrolytiques d'or.Furthermore, it is conventional to resort to the use of secondary metals, in particular cobalt and nickel as hardener and / or brightener of the electrolytic deposits of gold.

Il est en particulier fréquent de préparer des dépôts d'or dits « hard gold » à partir de solutions d'aurocyanure tamponnées par le système acide citrique-citrate de potassium à pH entre 4 et 5, et contenant du cobalt comme métal durcisseur du dépôt. Ces dépôts sont accompagnés d'une codéposition de carbone et d'azote. Il y a donc un contaminant formé lors de l'électrodéposition de l'or à partir de tels bains. La présence de ce contaminant semble responsable de la relativement forte résistance de contact du dépôt de deux façons différentes. Les polymères augmentent la résistance de contact du dépôt, non seulement en formant un film à la surface du dépôt mais également en étant présents au sein de ce dépôt. La formation de polymères est dépendante de la disponibilité des cyanures libres dans l'électrolyte. La quantité de polymère incluse dans le dépôt est également largement dépendante du taux de cobalt inclus.It is in particular frequent to prepare so-called “hard gold” gold deposits from aurocyanide solutions buffered by the citric acid-potassium citrate system at pH between 4 and 5, and containing cobalt as hardening metal for the deposit. . These deposits are accompanied by a co-deposition of carbon and nitrogen. There is therefore a contaminant formed during the electrodeposition of gold from such baths. The presence of this contaminant seems responsible for the relatively strong contact resistance of the deposit in two different ways. The polymers increase the contact resistance of the deposit, not only by forming a film on the surface of the deposit but also by being present within this deposit. The formation of polymers is dependent on the availability of free cyanides in the electrolyte. The amount of polymer included in the deposit is also largely dependent on the level of cobalt included.

De plus, la présence d'oxydes de cobalt à la surface du dépôt est également responsable de la résistance de contact des dépôts d'or-cobalt, en particulier, par formation d'un complexe avec les cyanures libres.In addition, the presence of cobalt oxides on the surface of the deposit is also responsible for the contact resistance of the gold-cobalt deposits, in particular, by the formation of a complex with the free cyanides.

Ainsi donc, les problèmes liés à l'utilisation de bains d'or cyanurés se trouvent encore accrus dans le cas des alliages et tout particulièrement dans le cas des alliages or-cobalt largement utilisés lorsque l'on cherche des dépôts durs d'or.Thus, the problems associated with the use of cyanide gold baths are further increased in the case of alloys and especially in the case of gold-cobalt alloys widely used when seeking hard gold deposits.

La publication intitulée « Notes on the electrodeposition of thick gold deposits », Charles L. BAUER, Plating (1952), 39, 1335-6, décrit des essais réalisés en vue d'améliorer les propriétés d'un dépôt épais d'or destiné à des applications de thermoformage. Dans le bain utilisé selon ce document, de la vanilline est utilisée à une concentration de 0,3 g/L pour une concentration en or de 18 g/L et il est spécifié dans ce document que, parmi 30 agents auxiliaires testés, seule la vanilline et le sulfite de potassium ont permis d'améliorer la qualité des dépôts et que la vanilline permet d'obtenir des grains beaucoup plus fins, ce qui signifie que la vanilline est utilisée dans ce bain en tant que brillanteur.The publication entitled "Notes on the electrodeposition of thick gold deposits", Charles L. BAUER, Plating (1952), 39, 1335-6, describes tests carried out to improve the properties of a thick deposit of gold intended to thermoforming applications. In the bath used according to this document, vanillin is used at a concentration of 0.3 g / L for a gold concentration of 18 g / L and it is specified in this document that, among 30 auxiliary agents tested, only the vanillin and potassium sulfite have improved the quality of the deposits and that vanillin allows to obtain much finer grains, which means that vanillin is used in this bath as a brightener.

Le brevet tchèque CS 107 253 1 décrit un procédé destiné à déposer deux couches successives d'or brillant et dur en recourant à un bain électrolytique contenant de la vanilline en tant qu'agent brillanteur à une concentration de 0,5 g/L, pour une concentration en cyanure auropotassique de 8 g/L, ce qui correspond à une concentration en vanilline de l'ordre de 0,1 mole par mole d'or à déposer.Czech patent CS 107 253 1 describes a process intended to deposit two successive layers of bright and hard gold using an electrolytic bath containing vanillin as a brightening agent at a concentration of 0.5 g / L, for an auropotassium cyanide concentration of 8 g / L, which corresponds to a vanillin concentration of the order of 0.1 mole per mole of gold to be deposited.

M.Dettke et al. ont décrit dans le brevet US3878066 un procédé utilisant une combinaison de formaldéhyde, d'acétaldéhyde ou d'un de leur composé bisulfitique avec de l'arsenic et un composé aminé aliphatique pour l'obtention d'un dépôt d'or très brillant et ayant une excellente adhérence.M.Dettke et al. have described in patent US3878066 a process using a combination of formaldehyde, acetaldehyde or one of their bisulfitic compound with arsenic and an aliphatic amino compound for obtaining a deposit of very bright gold and having excellent adhesion.

La propriété des aldéhydes de se cyanyler en présence de cyanure est bien connue. Elle est en particulier mise en application dans le brevet US5380562 qui concerne un procédé de dépôt chimique d'or utilisant un bain comprenant un cyanoaurate ou un cyanure alcalin, un agent réducteur, un hydroxyde alcalin, un agent de contrôle de la formation des cristaux et un agent stabilisant, et dans lequel on ajoute un aldéhyde ou une cétone en même temps que le sel d'or, de façon à éviter l'accumulation de cyanures libres dans le bain.The property of aldehydes to cyanylate in the presence of cyanide is well known. It is in particular implemented in US Pat. No. 5,380,562, which relates to a process for the chemical deposition of gold using a bath comprising a cyanoaurate or an alkali cyanide, a reducing agent, an alkali hydroxide, an agent for controlling the formation of crystals and a stabilizing agent, and in which an aldehyde or a ketone is added at the same time as the gold salt, so as to avoid the accumulation of free cyanides in the bath.

Il a maintenant été mis en évidence que l'utilisation d'aldéhydes bien déterminés dans des bains destinés au dépôt électrolytique d'or ou d'alliages d'or permettait d'augmenter considérablement la vitesse du dépôt de métal ou de l'alliage tout en réduisant la résistance de contact et en minimisant les problèmes environnementaux, en particulier dans le cas d'utilisation de bains cyanurés.It has now been demonstrated that the use of well-defined aldehydes in baths intended for the electrolytic deposition of gold or gold alloys makes it possible to considerably increase the speed of the deposition of metal or of the alloy. reducing contact resistance and minimizing environmental problems, especially when using cyanide baths.

La présente invention permet, en particulier, d'améliorer la vitesse d'électrodéposition de l'or en permettant l'utilisation des électrolytes d'or avec des densités de courants élevées, jusqu'à 120 A/dm2, sans affecter le rendement cathodique.The present invention makes it possible, in particular, to improve the speed of gold plating by allowing the use of gold electrolytes with high current densities, up to 120 A / dm 2 , without affecting the yield. cathode.

Ainsi, l'invention concerne selon un premier aspect un bain électrolytique destiné au dépôt d'or ou d'alliages d'or, ce bain contenant un agent auxiliaire bien déterminé permettant de considérablement améliorer la vitesse d'électrodéposition de l'or ou de ses alliages, tout en diminuant la résistance de contact et en permettant d'utiliser des densités de courant élevées.Thus, the invention relates according to a first aspect to an electrolytic bath intended for the deposition of gold or gold alloys, this bath containing a well-defined auxiliary agent making it possible to considerably improve the speed of electrodeposition of gold or of its alloys, while reducing the contact resistance and allowing the use of high current densities.

Selon un deuxième aspect, l'invention concerne un procédé de dépôt électrolytique d'or ou d'alliages d'or sur un substrat, utilisant comme bain électrolytique le bain de l'invention.According to a second aspect, the invention relates to a process for the electrolytic deposition of gold or gold alloys on a substrate, using the bath of the invention as an electrolytic bath.

Selon un troisième aspect, l'invention concerne une nouvelle utilisation d'une famille bien déterminée de composés organiques présentant au moins une fonction aldéhyde comme auxiliaire destiné à améliorer les performances d'un procédé de dépôt électrolytique d'or ou d'alliages d'or sur un substrat.According to a third aspect, the invention relates to a new use of a well-defined family of organic compounds having at least one aldehyde function as an auxiliary intended to improve the performance of an electrolytic deposition process for gold or alloys thereof. gold on a substrate.

L'invention s'applique à tous les procédés connus mettant en oeuvre une étape d'électrodéposition d'or ou d'alliages d'or, aussi bien dans le domaine de la décoration que de l'électronique et de la connectique.The invention applies to all known methods using a step of electrodeposition of gold or gold alloys, in the field of decoration as well as in electronics and connectors.

Elle trouve un intérêt tout particulier dans le cas des procédés de dépôt électrolytique d'or à partir d'un bain cyanuré, en particulier, à partir d'un bain électrolytique contenant de l'or sous forme d'aurocyanure ou d'auricyanure et, tout particulièrement, dans le cas des dépôts d'or durcis par un métal secondaire, en particulier par du cobalt, du fer ou du nickel.It is of particular interest in the case of the processes for the electrolytic deposition of gold from a cyanide bath, in particular from an electrolytic bath containing gold in the form of aurocyanide or auricyanide and , very particularly, in the case of gold deposits hardened by a secondary metal, in particular by cobalt, iron or nickel.

Selon l'une de ses caractéristiques essentielles, l'invention concerne un bain électrolytique aqueux pour le dépôt électrochimique de l'or ou de ses alliages comprenant au moins un composé soluble de l'or destiné à être déposé électrolytiquement et, de façon optionnelle au moins un composé de métal secondaire destiné à être codéposé sous forme d'alliage avec l'or, caractérisé en ce qu'il comprend en outre de 0,3 à 3 moles par mole d'or contenue dans le bain électrolytique d'un composé organique comprenant une ou deux fonctions aldéhyde, ledit composé organique étant un composé organique comprenant de 3 à 20 atomes de carbone et une ou deux fonctions aldéhyde sous forme :

  • ■ d'un groupe aliphatique, linéaire, ramifié, saturé ou insaturé, ou
  • ■ d'un groupement contenant au moins un cycle saturé, insaturé ou aromatique,
ledit composé organique pouvant comprendre en outre au moins un hétéroélément choisi parmi l'oxygène, l'azote, le soufre et le phosphore ou être sous la forme d'un sel, en particulier d'un sulfonate.According to one of its essential characteristics, the invention relates to an aqueous electrolytic bath for the electrochemical deposition of gold or its alloys comprising at least one soluble compound of gold intended to be deposited electrolytically and, optionally at at least one secondary metal compound intended to be codeposited in the form of an alloy with gold, characterized in that it additionally comprises from 0.3 to 3 moles per mole of gold contained in the electrolytic bath of a compound organic comprising one or two aldehyde functions, said organic compound being an organic compound comprising from 3 to 20 carbon atoms and one or two aldehyde functions in the form:
  • ■ an aliphatic group, linear, branched, saturated or unsaturated, or
  • A group containing at least one saturated, unsaturated or aromatic cycle,
said organic compound possibly further comprising at least one heteroelement chosen from oxygen, nitrogen, sulfur and phosphorus or being in the form of a salt, in particular a sulfonate.

Ainsi, l'invention selon ce premier aspect concerne un bain électrolytique aqueux destiné au dépôt électrochimique de l'or ou de ses alliages. L'homme du métier sait parfaitement qu'un bain destiné au dépôt électrolytique d'un métal se distingue d'un bain dit"bain chimique" de dépôt du même métal non seulement par ses conditions de mise en oeuvre (passage du courant et présence d'électrodes dans le cas du bain électrochimique) mais également par la nature de ses constituants.Thus, the invention according to this first aspect relates to an aqueous electrolytic bath intended for the electrochemical deposition of gold or its alloys. A person skilled in the art knows perfectly well that a bath intended for the electrolytic deposition of a metal is distinguished from a bath known as a "chemical bath" for depositing the same metal not only by its operating conditions (current flow and presence electrodes in the case of the electrochemical bath) but also by the nature of its constituents.

Ainsi par exemple, dans le cas où l'or est déposé par l'intermédiaire d'un sel soluble tel qu'un aurocyanure, un bain chimique comprendra une quantité importante d'agents réducteurs et sera caractérisé par la présence d'une concentration élevée en cyanures libres, alors que dans un bain électrochimique on cherchera à éliminer, autant que faire se peut, la présence de cyanures libres. Par ailleurs, les ordres de grandeur des vitesses de dépôt à partir d'un bain chimique et d'un bain électrochimique n'ont rien à voir, ce qui exclut a priori l'utilisation de bains chimiques pour réaliser des dépôts continus sur des substrats.Thus, for example, in the case where gold is deposited via a soluble salt such as an aurocyanide, a chemical bath will comprise a large quantity of reducing agents and will be characterized by the presence of a high concentration in free cyanides, while in an electrochemical bath we will seek to eliminate, as much as possible, the presence of free cyanides. Furthermore, the orders of magnitude of the deposition rates from a chemical bath and from an electrochemical bath have nothing to do with, which precludes a priori the use of chemical baths to produce continuous deposits on substrates. .

Ce qui caractérise essentiellement le premier aspect de l'invention est que le bain électrolytique peut être constitué par tout bain classiquement utilisé pour l'électrodéposition d'or ou d'alliages d'or, dès l'instant où il contient en outre un composé organique comprenant une ou deux fonctions aldéhyde tel qu'il est défini ci-dessus.What essentially characterizes the first aspect of the invention is that the electrolytic bath can be constituted by any bath conventionally used for the electrodeposition of gold or gold alloys, from the moment when it also contains a compound organic comprising one or two aldehyde functions as defined above.

Les bains électrolytiques de l'invention contiennent avantageusement de 1,5 à 2,5 moles dudit composé organique comprenant une ou deux fonctions aldéhydes par mole d'or, de préférence de l'ordre de 2 moles dudit composé organique par mole d'or.The electrolytic baths of the invention advantageously contain from 1.5 to 2.5 moles of said organic compound comprising one or two aldehyde functions per mole of gold, preferably of the order of 2 moles of said organic compound per mole of gold .

On comprendra aisément que la quantité de composé organique à fonction aldéhyde dépendra à la fois de la concentration en sels solubles d'or dans le bain et de la masse molaire de cet aldéhyde.It will be readily understood that the amount of organic compound with an aldehyde function will depend both on the concentration of soluble gold salts in the bath and on the molar mass of this aldehyde.

Les bains électrolytiques de l'invention contiennent avantageusement des teneurs en or qui peuvent largement varier mais d'une façon générale sont comprises entre 1 et 100 g/L (les teneurs en sels solubles sont rapportées à la teneur en métal).The electrolytic baths of the invention advantageously contain gold contents which can vary widely but in general are between 1 and 100 g / L (the contents of soluble salts are related to the metal content).

Ainsi, la teneur en composés portant une ou deux fonctions aldéhydes peut varier dans de très larges proportions. D'une façon générale, les bains de l'invention contiennent, en fonction de la base molaire de l'aldéhydre, de 0,1 à 50 g/L d'au moins un composé organique comprenant une ou deux fonctions aldéhydes tel que défini précédemment.Thus, the content of compounds carrying one or two aldehyde functions can vary within very large proportions. In general, the baths of the invention contain, depending on the molar base of the aldehyde, from 0.1 to 50 g / L of at least one organic compound comprising one or two aldehyde functions as defined previously.

La famille de composés organiques utilisables selon l'invention à titre d'agent auxiliaire dans un bain de dépôt électrochimique d'or ou d'alliages d'or est un composé organique comprenant de 3 à 20 atomes de carbone et au moins une fonction aldéhyde.The family of organic compounds which can be used according to the invention as an auxiliary agent in an electrochemical deposition bath for gold or gold alloys is an organic compound comprising from 3 to 20 carbon atoms and at least one aldehyde function .

Il peut s'agir de composés aliphatiques mais également de composés contenant un ou plusieurs cycles, ces composés contenant éventuellement en outre au moins un hétéroélément tel que l'oxygène, l'azote, le soufre et le phosphore.They can be aliphatic compounds but also compounds containing one or more rings, these compounds possibly also containing at least one heteroelement such as oxygen, nitrogen, sulfur and phosphorus.

La famille de produits utilisables selon l'invention comprend également les sels des produits ci-dessus et en particulier les sulfonates qui ont en outre l'avantage de présenter des propriétés tensioactives s'ils sont suffisamment longs.The family of products which can be used according to the invention also includes the salts of the above products and in particular the sulfonates which also have the advantage of having surfactant properties if they are sufficiently long.

D'une façon générale, on choisira avantageusement parmi les produits ci-dessus ceux qui sont solubles dans le milieu ou du moins ceux qui y sont solubilisables en ajoutant, le cas échéant, un tensioactif ou tout autre produit permettant de rendre soluble dans le bain le composé organique à fonction aldéhyde.In general, advantageously one will choose among the above products those which are soluble in the medium or at least those which are soluble therein by adding, if necessary, a surfactant or any other product making it possible to make soluble in the bath. the organic compound with aldehyde function.

Selon une variante, les composés organiques utilisés selon l'invention seront choisis parmi les aldéhydes de formule R-CHO dans lesquels R est un groupement aliphatique linéaire ou ramifié, saturé ou insaturé comprenant de 3 à 12 atomes de carbone.According to a variant, the organic compounds used according to the invention will be chosen from aldehydes of formula R-CHO in which R is a linear or branched, saturated or unsaturated aliphatic group comprising from 3 to 12 carbon atoms.

On choisira de préférence les chaînes alkyles comprenant de 3 à 9 atomes de carbone.The alkyl chains comprising from 3 to 9 carbon atoms will preferably be chosen.

Selon une autre variante, le composé organique comprend de 4 à 20 atomes de carbone et comprend au moins un cycle saturé, insaturé ou aromatique ou est sous la forme d'un sel, en particulier d'un sulfonate, d'un de ces composés.According to another variant, the organic compound comprises from 4 to 20 carbon atoms and comprises at least one saturated, unsaturated or aromatic ring or is in the form of a salt, in particular a sulfonate, of one of these compounds .

Lorsque l'on recourt à des composés organiques contenant un cycle, en particulier lorsque ce cycle est aromatique, pour des raisons évidentes de solubilité de ce composé, on choisit de préférence, un composé dans lequel le cycle, en particulier le cycle aromatique, porte au plus deux groupements substituants.When resorting to organic compounds containing a ring, in particular when this ring is aromatic, for obvious reasons of solubility of this compound, a compound is preferably chosen in which the ring, in particular the aromatic ring, carries at most two substituent groups.

Selon une autre variante encore le composé organique comprend 4 à 20 atomes de carbone et renferme au moins un hétérocycle saturé, insaturé ou aromatique ou est sous la forme d'un sel, en particulier d'un sulfonate, d'un de ces composés.According to yet another variant, the organic compound comprises 4 to 20 carbon atoms and contains at least one saturated, unsaturated or aromatic heterocycle or is in the form of a salt, in particular a sulfonate, of one of these compounds.

D'une façon avantageuse, on choisira le composé organique utilisé selon l'invention dans le groupe constitué du propionaldéhyde, du butyraldéhyde, de l'isovaléraldéhyde, du valéraldéhyde, du capronaldéhyde, de l'hexaldéhyde, de l'heptaldéhyde, de l'aldéhyde caprylique, du pélargonaldéhyde, du décanal, de l'undécanal, du laurylaldéhyde, de l'acroléine, du crotonal, du benzaldéhyde, du phénylacétaldéhyde, de l'aldéhyde cuminique, de la cinnamaldéhyde, de l'adéhyde anisique, de l'aldéhyde phtalique.Advantageously, the organic compound used according to the invention will be chosen from the group consisting of propionaldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, capronalddehyde, hexaldehyde, heptaldehyde, caprylic aldehyde, pelargonaldehyde, decanal, undecanal, laurylaldehyde, acrolein, crotonal, benzaldehyde, phenylacetaldehyde, cuminic aldehyde, cinnamaldehyde, anisaldehyde, phthalic aldehyde.

Comme exposé précédemment, le bain électrolytique destiné au dépôt d'or ou de ses alliages comprendra par ailleurs tous les additifs couramment utilisés dans de tels bains.As explained above, the electrolytic bath intended for depositing gold or its alloys will moreover comprise all the additives commonly used in such baths.

Il pourra donc comprendre en particulier:

  • a) différents métaux agissant comme brillanteurs minéraux ou comme durcisseurs,
  • b) des métaux dits "métaux secondaires" ou "métaux d'alliages" généralement choisis dans les périodes 4, 5 et 6 de la classification périodique des éléments selon Mendeleïev, à une concentration comprise généralement entre 0,01 et 60 g/L.
    Ces métaux d'alliages sont d'une façon générale choisis parmi le cobalt, le nickel, le fer, l'indium, le cadmium, l'arsenic, le manganèse, l'étain, le plomb et le cuivre.
    Les métaux préférés seront le cobalt, le nickel et le fer.
    Toutefois, c'est avec le cobalt que l'effet de diminution de la résistance de contact dû à la présence du composé à fonction ald éhyde sera le plus net.
    D'une façon générale, le métal secondaire est introduit dans le bain sous forme de sulfate, de carbonate, d'hydroxyde, d'oxyde, d'acétylacétonate, de citrate, de gluconate, de sulfamate ou d'un mélange de ces composés.
  • c) des agents brillanteurs :
    Ces agents brillanteurs sont tous ceux classiquement utilisés dans le domaine du dépôt électrolytique de l'or.
    On choisira avantageusement comme agent brillanteur l'acide 3-(3-pyridyl) acrylique ou l'acide 3-(3-quinolyl) acrylique ou un de leurs sels à des teneurs comprises entre 0,01 et 10 g/L.
  • d) des sels conducteurs :
    Ces sels contribuent au bon fonctionnement du système électrolytique. D'une façon générale, le bain contient au moins 10 g/L d'un sel conducteur, de préférence choisi dans le groupe constitué des sels de citrate, de phosphate, de borate ou de sulfate et de leurs mélanges.
  • e) des agents de type tampon destinés à stabiliser le pH, ledit tampon étant de préférence de type acétique, citrique, borique, phosphorique ou phtalique.
  • f) des agents mouillants :
    A titre d'agents mouillants, on choisira de préférence le tolyletriazol ou le benzotriazol.
It may therefore include in particular:
  • a) different metals acting as mineral brighteners or as hardeners,
  • b) metals called "secondary metals" or "alloy metals" generally chosen in periods 4, 5 and 6 of the periodic classification of the elements according to Mendeleev, at a concentration generally between 0.01 and 60 g / L.
    These alloy metals are generally chosen from cobalt, nickel, iron, indium, cadmium, arsenic, manganese, tin, lead and copper.
    The preferred metals will be cobalt, nickel and iron.
    However, it is with cobalt that the effect of reducing the contact resistance due to the presence of the aldehyde-functional compound will be most marked.
    Generally, the secondary metal is introduced into the bath in the form of sulfate, carbonate, hydroxide, oxide, acetylacetonate, citrate, gluconate, sulfamate or a mixture of these compounds .
  • c) brightening agents:
    These brighteners are all those conventionally used in the field of electrolytic deposition of gold.
    Advantageously, the 3- (3-pyridyl) acrylic acid or the 3- (3-quinolyl) acrylic acid or a salt thereof at a content of between 0.01 and 10 g / L will be chosen as the brightening agent.
  • d) conductive salts:
    These salts contribute to the proper functioning of the electrolytic system. Generally, the bath contains at least 10 g / L of a conductive salt, preferably chosen from the group consisting of citrate, phosphate, borate or sulfate salts and their mixtures.
  • e) agents of the buffer type intended to stabilize the pH, said buffer preferably being of the acetic, citric, boric, phosphoric or phthalic type.
  • f) wetting agents:
    As wetting agents, tolyletriazol or benzotriazol will preferably be chosen.

Enfin, même si l'invention n'est pas limitée aux bains électrolytiques dans lesquels l'or est sous forme d'aurocyanure ou d'auricyanure, l'invention s'applique tout particulièrement à ce type de bain, bien connu pour avoir comme inconvénient dans l'art antérieur d'entraîner une pollution du dépôt électrolytique par formation de polymères.Finally, even if the invention is not limited to electrolytic baths in which the gold is in the form of aurocyanide or of auricyanide, the invention applies very particularly to this type of bath, well known for having as disadvantage in the prior art of causing pollution of the electrolytic deposit by formation of polymers.

Ainsi donc, le composé organique à fonction aldéhyde selon l'invention se trouve être introduit de façon particulièrement avantageuse dans les bains dans lesquels l'or se trouve sous forme d'auri- ou d'aurocyanure mais il peut également être utilisé dans d'autres bains avec pour effet d'améliorer les performances du dépôt électrolytique. On pourra, en particulier, l'introduire dans des bains où l'or se trouve sous forme d'aurosulfite, d'aurothiosulfate ou de chlorure d'or.Thus, the organic compound with aldehyde function according to the invention is found to be introduced in a particularly advantageous manner in the baths in which the gold is in the form of auri- or aurocyanide but it can also be used in other baths with the effect of improving the performance of electroplating. We can, in particular, introduce it into baths where gold is in the form of aurosulfite, aurothiosulfate or gold chloride.

Selon un deuxième aspect, l'invention concerne un procédé d'électrodéposition de l'or ou d'un alliage d'or, selon lequel on réalise l'électrolyse d'un bain électrolytique tel que défini précédemment.According to a second aspect, the invention relates to a method of electroplating gold or a gold alloy, according to which the electrolysis of an electrolytic bath as defined above is carried out.

Comme exposé précédemment, la présence d'un composé organique à fonction aldéhyde tel que défini précédemment améliore considérablement les performances de tous les bains électrolytiques de dépôts d'or ou d'alliages d'or et en particulier les bains cyanurés contenant l'or sous forme d'aurocyanure ou d'auricyanure.As previously explained, the presence of an aldehyde-functional organic compound as defined above considerably improves the performance of all electrolytic baths of deposits of gold or gold alloys and in particular cyanide baths containing gold under form of aurocyanide or auricyanide.

Les principaux avantages de l'introduction du composé organique à fonction aldéhyde sont d'améliorer la vitesse d'électrodéposition, de diminuer la résistance de contact et de permettre l'utilisation de densités de courant particulièrement élevées.The main advantages of the introduction of the organic compound with aldehyde function are to improve the speed of electroplating, to decrease the contact resistance and to allow the use of particularly high current densities.

Le perfectionnement de l'invention est applicable à tous les types de procédés de dépôts électrolytiques d'or et pour tous les types d'application, que ce soit en décoration, pour la préparation de composants électroniques et en connectique.The improvement of the invention is applicable to all types of electrolytic gold deposition processes and for all types of application, whether in decoration, for the preparation of electronic components and in connectors.

Les densités de courant mises en oeuvre dans les procédés de l'invention peuvent varier dans de larges gammes, généralement entre 0,5 et 120 A/dm2.The current densities used in the methods of the invention can vary over wide ranges, generally between 0.5 and 120 A / dm 2 .

Bien entendu, on utilisera généralement pour les applications dans le domaine de la décoration, des densités de courant inférieures à 10 A/dm2 alors que pour les applications dites "haute vitesse", on emploiera des densités de courant de l'ordre de 10 à 120 A/dm2, ce type de procédé haute vitesse est en général réservé au domaine de l'électronique et de la connectique.Of course, current densities of less than 10 A / dm 2 will generally be used for applications in the decoration field, whereas for so-called "high speed" applications, current densities of the order of 10 will be used. at 120 A / dm 2 , this type of high-speed process is generally reserved for the electronics and connector industry.

Le procédé de l'invention, dans la mesure où il permet l'utilisation de densités de courant particulièrement élevées pouvant aller jusqu'à 120 A/dm2 trouve une application particulièrement avantageuse dans les applications électroniques où l'on cherche à travailler avec une vitesse de dépôt maximale et où les dépôts souhaités doivent être, entre autres, brillants, ductiles et non poreux. Pour obtenir de fortes productivités, les bains utilisés dans ce domaine doivent fonctionner sous des densités de courant le plus élevé possible, ce que permet en particulier l'utilisation des auxiliaires utilisés selon l'invention.The method of the invention, insofar as it allows the use of particularly high current densities of up to 120 A / dm 2 finds a particularly advantageous application in electronic applications where it is sought to work with a maximum deposition rate and where the desired deposits must be, among other things, shiny, ductile and non-porous. To obtain high productivity, the baths used in this field must operate at the highest possible current densities, which allows in particular the use of the auxiliaries used according to the invention.

Toutefois, les bains de l'invention peuvent être également utilisés à des vitesses et à des densités de courant moindres et, en particulier dans des applications de décoration.However, the baths of the invention can also be used at lower speeds and current densities and, in particular in decoration applications.

Comme exposé précédemment, le perfectionnement de l'invention est applicable à tous les procédés classiquement utilisés pour le dépôt d'or ou d'alliages d'or.As previously stated, the improvement of the invention is applicable to all the processes conventionally used for the deposition of gold or gold alloys.

En particulier, tous les types d'anodes classiquement utilisées, solubles ou insolubles, peuvent être utilisés dans le procédé de l'invention.In particular, all the types of conventionally used anodes, soluble or insoluble, can be used in the process of the invention.

Toutefois, on utilisera de préférence des anodes insolubles et de préférence en titane platiné, en platine recouvert d'oxyde d'iridium ou en métal précieux tel que le platine et un substrat métallisé sera placé en cathode.However, use will preferably be made of insoluble anodes and preferably of platinum titanium, of platinum coated with iridium oxide or of precious metal such as platinum and a metallized substrate will be placed as a cathode.

Enfin, comme déjà exposé et comme cela ressort des exemples qui suivent, l'invention concerne selon un troisième aspect l'utilisation d'un composé organique tel que défini précédemment dans un bain électrolytique destiné au dépôt électrolytique de l'or ou d'un de ses alliages, en tant qu'agent auxiliaire améliorant la vitesse d'électrodéposition de l'or ou de ses alliages et/ou diminuant la résistance de contact.Finally, as already explained and as is apparent from the examples which follow, the invention relates according to a third aspect to the use of an organic compound as defined above in an electrolytic bath intended for the electrolytic deposition of gold or of a of its alloys, as an auxiliary agent improving the speed of electrodeposition of gold or its alloys and / or decreasing the contact resistance.

Les formulations préférées de bains selon la présente invention peuvent être de manière non restrictive décrites par la composition générale suivante dans laquelle les concentrations en dérivés métalliques (de l'or et éventuellement des métaux d'alliage) sont rapportées au métal :

  • Or   1 à 100 g/L
  • Métal d'alliage tel que Co, Ni, Fe, Cd   0 à 50 g/L
  • Brillanteur, de préférence acide 3-(3- pyridyl) acrylique   0,01 à 10 g/L
  • Acide citrique et/ou citrate de potassium   10 à 300 g/L
  • Aldéhyde   0,01 à 100 g/L
Les conditions opératoires sont avantageusement les suivantes :
  • pH   3,5 à 12 (en fonction de la nature du complexe d'or)
  • Température   10 à 75°C
  • Agitation   Modérée, à très vigoureuse
  • Densité de courant   0,1 à 80 A/dm2
  • Anode   Toutes celles classiquement utilisées, en particulier titane platiné, platine recouvert d'oxyde d'iridium ou métal précieux tel que le platine
The preferred bath formulations according to the present invention can be non-restrictively described by the following general composition in which the concentrations of metallic derivatives (gold and optionally alloy metals) are related to the metal:
  • Gold 1 to 100 g / L
  • Alloy metal such as Co, Ni, Fe, Cd 0 to 50 g / L
  • Gloss, preferably 3- (3- pyridyl) acrylic acid 0.01 to 10 g / L
  • Citric acid and / or potassium citrate 10 to 300 g / L
  • Aldehyde 0.01 to 100 g / L
The operating conditions are advantageously as follows:
  • pH 3.5 to 12 (depending on the nature of the gold complex)
  • Temperature 10 to 75 ° C
  • Moderate to very vigorous agitation
  • Current density 0.1 to 80 A / dm 2
  • Anode All those conventionally used, in particular platinum titanium, platinum coated with iridium oxide or precious metal such as platinum

EXEMPLESEXAMPLES

Dans les exemples les concentrations en or et métaux d'alliages sont rapportées au métal.In the examples, the concentrations of gold and alloy metals are referred to the metal.

Les exemples qui suivent illustrent les bonnes performances de l'invention.

  • a) Dans tous ces exemples, le substrat à métalliser, est préparé par une procédure convenable, selon la nature du métal. Par exemple, les substrats cuivreux ou en nickel, sont préalablement dégraissés électrolytiquement, après un rinçage à l'eau, le substrat est dépassivé dans de l'acide sulfurique dilué à 5-20% en volume, le substrat est rincé à l'eau désionnisée avant d'être introduit dans un des électrolytes de l'invention.
The following examples illustrate the good performance of the invention.
  • a) In all of these examples, the substrate to be metallized is prepared by a suitable procedure, depending on the nature of the metal. For example, copper or nickel substrates are pre-degreased electrolytically, after rinsing with water, the substrate is passivated in sulfuric acid diluted to 5-20% by volume, the substrate is rinsed with water deionized before being introduced into one of the electrolytes of the invention.

De façon facultative, certains additifs peuvent être ajoutés. Ainsi :

  • Comme sel conducteur, on peut utiliser le sulfate de sodium, mais aussi le sulfate de potassium ou le sulfate d'ammonium ou un de leur mélange.
  • Un tampon acétique, citrique, borique, orthophosphorique, ou tout autre système tampon efficace dans la gamme de pH concernée peuvent être utilisés pour stabiliser le pH du bain.
  • Un agent mouillant peut être ajouté pour éviter l'adsorption d'hydrogène formé à la cathode lors de l'électrolyse et par conséquent éviter son inclusion dans le dépôt. Un agent mouillant cationique, anionique ou non ionique peut convenir, on pourra par exemple utiliser le benzotriazol en faible quantité.
Optionally, some additives can be added. So :
  • As conductive salt, it is possible to use sodium sulphate, but also potassium sulphate or ammonium sulphate or one of their mixture.
  • An acetic, citric, boric, orthophosphoric buffer, or any other effective buffer system in the pH range concerned can be used to stabilize the pH of the bath.
  • A wetting agent can be added to prevent the adsorption of hydrogen formed at the cathode during electrolysis and therefore avoid its inclusion in the deposit. A cationic, anionic or nonionic wetting agent may be suitable, for example, benzotriazol may be used in small quantities.

EXEMPLE 1 : Bain d'or décoratif (exemple comparatif)EXAMPLE 1 Decorative gold bath (comparative example)

  • Or (introduit sous forme d'aurocyanure de potassium)   2 à 10 g/LGold (introduced as potassium aurocyanide) 2 to 10 g / L
  • Citrate d'ammonium   90 à 130 g/LAmmonium citrate 90 to 130 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • pH (Acide citrique / Hydroxyde de potassium)   3,5 à 5pH (Citric acid / potassium hydroxide) 3.5 to 5
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Modérée à VigoureuseModerate to vigorous agitation
  • Densité de courant   1 à 20 A/dm2 Current density 1 to 20 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à plus de 99,9%, le dépôt est brillant, ductile, avec une résistance de contact de 12 mOhm, une faible porosité et une excellente résistance à la corrosion. Sa vitesse d'électrodéposition est de 0,05 à 0,5 µm/mn. il est idéalement utilisé dans le procédés dit "à l'attache" ou "au trempé".This bath deposits more than 99.9% gold, the deposit is shiny, ductile, with a contact resistance of 12 mOhm, low porosity and excellent resistance to corrosion. Its electrodeposition speed is 0.05 to 0.5 µm / min. it is ideally used in the so-called "fastening" or "dipping" processes.

EXEMPLE 2 : Bain d'or décoratifEXAMPLE 2 Decorative gold bath

  • Or (introduit sous forme d'aurocyanure de potassium)   2 à 10 g/LGold (introduced as potassium aurocyanide) 2 to 10 g / L
  • Citrate d'ammonium   90 à 130 g/LAmmonium citrate 90 to 130 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • Pelargonaldehyde   0,5 à 4 g/LPelargonaldehyde 0.5 to 4 g / L
  • pH (Acide citrique / Hydroxyde de potassium)   3,5 à 5pH (Citric acid / potassium hydroxide) 3.5 to 5
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Modérée à VigoureuseModerate to vigorous agitation
  • Densité de courant   1 à 20 A/dm2 Current density 1 to 20 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à plus de 99,9 %, le dépôt est brillant, ductile, avec une résistance de contact de 5 mOhm, une faible porosité et une excellente résistance à la corrosion. Sa vitesse d'électrodéposition est de 0,1 à 0,7 µm/mn. Il est idéalement utilisé dans les procédés dits "à l'attache" ou "au trempé".This bath deposits more than 99.9% gold, the deposit is shiny, ductile, with a contact resistance of 5 mOhm, low porosity and excellent resistance to corrosion. Its electrodeposition speed is 0.1 to 0.7 µm / min. It is ideally used in so-called "fastening" or "dipping" processes.

EXEMPLE 3 : Bain d'or décoratifEXAMPLE 3 Decorative gold bath

  • Or (introduit sous forme d'aurosulfite d'ammonium)   2 à 10 g/LGold (introduced as ammonium aurosulfite) 2 to 10 g / L
  • Bisulfite de potassium   2 à 15 g/LPotassium bisulphite 2 to 15 g / L
  • Arsenic (sous forme d'oxyde)   2 à 50 mg/LArsenic (as oxide) 2 to 50 mg / L
  • Isovaleraldehyde   0,5 à 4 g/LIsovaleraldehyde 0.5 to 4 g / L
  • pH (Acide borique / Hydroxyde de potassium)   8 à 12pH (Boric acid / potassium hydroxide) 8 to 12
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Modérée à vigoureuseModerate to vigorous agitation
  • Densité de courant   1 à 10 A/dm2 Current density 1 to 10 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à plus de 99,9%, le dépôt est brillant, ductile, présente une faible porosité et une excellente résistance à la corrosion, avec une résistance de contact de 7 mOhm. Il se dépose à une vitesse de 0,1 à 0,7 µm/mn. Il est idéalement utilisé dans le procédés dit "à l'attache" ou "au trempé".This bath deposits more than 99.9% gold, the deposit is shiny, ductile, has low porosity and excellent corrosion resistance, with a contact resistance of 7 mOhm. It is deposited at a speed of 0.1 to 0.7 µm / min. It is ideally used in the so-called "fastening" or "dipping" processes.

EXEMPLE 4 : Bain d'or-cobalt Haute vitesseEXAMPLE 4 High-speed gold-cobalt bath

  • Or (introduit sous forme d'aurocyanure de potassium)   5 à 20 g/LGold (introduced as potassium aurocyanide) 5 to 20 g / L
  • Cobalt (sous forme de sulfate)   0,5 à 1,5 g/LCobalt (as sulfate) 0.5 to 1.5 g / L
  • Citrate de potassium   50 à 180 g/LPotassium citrate 50 to 180 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • Butyraldéhyde   0,5 à 10 g/LButyraldehyde 0.5 to 10 g / L
  • pH (Acide citrique / Hydroxyde de potassium)   3,5 à 5pH (Citric acid / potassium hydroxide) 3.5 to 5
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Vigoureuse à très vigoureuseVigorous to very vigorous agitation
  • Densité de courant   10 à 80 A/dm2 Current density 10 to 80 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à près de 99,5%, le dépôt est brillant, ductile, avec une faible résistance de contact, une faible porosité et une excellente résistance à la corrosion. Le cobalt agit ici non seulement comme brillanteur métallique mais également comme métal d'alliage durcisseur. Il permet au dépôt de présenter une bonne résistance au frottement et de passer positivement le test dit « British Telecom ». Il est idéalement utilisé dans les procédés dits "en continu" "de dépôt sélectif avec masquage" ou "de dépôt sélectif au jet".This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with low contact resistance, low porosity and excellent resistance to corrosion. Cobalt acts here not only as a metallic brightener but also as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom". It is ideally used in the so-called "continuous" "selective deposition with masking" or "selective jet deposition" processes.

La résistance de contact est de 5 mOhm après vieillissement thermique de 1 heure à 250°C. A titre indicatif, elle est dans les mêmes conditions de 14 mOhm, quand le bain ne contient pas d'aldéhyde.(mesure selon la norme ASTM B667-97).The contact resistance is 5 mOhm after thermal aging for 1 hour at 250 ° C. As an indication, it is under the same conditions of 14 mOhm, when the bath does not contain aldehyde. (Measurement according to standard ASTM B667-97).

La vitesse de dépôt est de 0,5 à 11 µm/mn avec de l'aldéhyde, de 0,4 à 8,5 µm/mn sans aldéhyde en utilisant comme moyen de dépôt une cathode rotative tournant à une vitesse de 1,5 m/s ou un matériel de dépôt par jet.The deposition rate is 0.5 to 11 µm / min with aldehyde, 0.4 to 8.5 µm / min without aldehyde using as a deposition means a rotary cathode rotating at a speed of 1.5 m / s or jet deposit material.

EXEMPLE 5 : Bain d'or-nickel Haute vitesseEXAMPLE 5 High speed gold-nickel bath

  • Or (introduit sous forme d'aurocyanure de potassium)   5 à 20 g/LGold (introduced as potassium aurocyanide) 5 to 20 g / L
  • Nickel (sous forme de sulfate)   0.5 à 1.5 g/LNickel (as sulfate) 0.5 to 1.5 g / L
  • Citrate de potassium   50 à 180 g/LPotassium citrate 50 to 180 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • Butyraldéhyde   0,5 à 10 g/LButyraldehyde 0.5 to 10 g / L
  • pH (Acide citrique Hydroxyde de potassium)   3,5 à 5pH (Citric acid potassium hydroxide) 3.5 to 5
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Vigoureuse à très vigoureuseVigorous to very vigorous agitation
  • Densité de courant   10 à 80 A/dm2 Current density 10 to 80 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à près de 99,5%, le dépôt est brillant, ductile, avec une résistance de contact de 7 mOhm, une faible porosité et une excellente résistance à la corrosion, et conduit à une vitesse de 0,5 à 11 µm/mn. Le nickel agit comme brillanteur métallique et comme métal d'alliage durcisseur. Il permet au dépôt de présenter une bonne résistance au frottement et de passer positivement le test dit "British Telecom". Il est idéalement utilisé dans les procédés dit "en continu", "de dépôt sélectif avec masquage" ou "de dépôt sélectif au jet".This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion, and leads to a speed of 0, 5 to 11 µm / min. Nickel acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test called "British Telecom". It is ideally used in the so-called "continuous", "selective deposition with masking" or "selective jet deposition" processes.

EXEMPLE 6 : Bain d'or-cobalt Haute vitesseEXAMPLE 6 High speed gold-cobalt bath

  • Or (introduit sous forme d'aurocyanure de potassium)   5 à 20 g/LGold (introduced as potassium aurocyanide) 5 to 20 g / L
  • Cobalt (sous forme d'acetylacétonate)   0,5 à 1,5 g/LCobalt (as acetylacetonate) 0.5 to 1.5 g / L
  • Citrate de potassium   50 à 180 g/LPotassium citrate 50 to 180 g / L
  • Acide formique   30 à 60 g/LFormic acid 30 to 60 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • Heptaldéhyde   0,5 à 10 g/LHeptaldehyde 0.5 to 10 g / L
  • pH (Acide citrique / Hydroxyde de potassium)   4,5 à 6pH (Citric acid / potassium hydroxide) 4.5 to 6
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Agitation   Vigoureuse à très vigoureuseVigorous to very vigorous agitation
  • Densité de courant   10 à 80 A/dm2 Current density 10 to 80 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à près de 99,5%, le dépôt est brillant, ductile, avec une résistance de contact de 7 mOhm, une faible porosité et une excellente résistance à la corrosion, et conduit à une vitesse de dépôt de 0,5 à 11 µm/mn. Le cobalt agit comme brillanteur métallique et comme métal d'alliage durcisseur. Il permet au dépôt de présenter une bonne résistance au frottement et de passer positivement le test dit « British Telecom ». ». Il est idéalement utilisé dans les procédés dit "en continu", "de dépôt sélectif avec masquage" ou "de dépôt sélectif au jet".This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion, and leads to a deposition rate of 0.5 to 11 µm / min. Cobalt acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom". ". It is ideally used in the so-called "continuous", "selective deposition with masking" or "selective jet deposition" processes.

EXEMPLE 7 : Bain d'or-cobalt Haute vitesseEXAMPLE 7 High Speed Gold-Cobalt Bath

  • Or (introduit sous forme d'aurocyanure de potassium)   5 à 20 g/LGold (introduced as potassium aurocyanide) 5 to 20 g / L
  • Cobalt (sous forme de gluconate)   0,5 à 1,5 g/LCobalt (as gluconate) 0.5 to 1.5 g / L
  • Citrate de potassium   10 à 50 g/LPotassium citrate 10 to 50 g / L
  • Acide Trans 3-(3-pyridyl)acrylique   0,5 à 1,5 g/LTrans 3- (3-pyridyl) acrylic acid 0.5 to 1.5 g / L
  • Hexaldéhyde   0,5 à 10 g/LHexaldehyde 0.5 to 10 g / L
  • pH (Acide citrique / Hydroxyde de potassium)   4,5 à 6pH (Citric acid / potassium hydroxide) 4.5 to 6
  • Température   40 à 60°CTemperature 40 to 60 ° C
  • Densité de courant   10 à 80 A/dm2 Current density 10 to 80 A / dm 2
  • Anode   Titane platinéPlatinum Titanium Anode

Ce bain dépose de l'or à près de 99,5%, le dépôt est brillant, ductile, avec une résistance de contact de 7 mOhm, une faible porosité et une excellente résistance à la corrosion. Il conduit à une vitesse de dépôt de 0,5 à 11 µm/mn. Le cobalt agit comme brillanteur métallique et comme métal d'alliage durcisseur. Il permet au dépôt de présenter une bonne résistance au frottement et de passer positivement le test dit « British Telecom ». ». Il est idéalement utilisé dans les procédés dit "en continu", "de dépôt sélectif avec masquage" ou "de dépôt sélectif au jet".This bath deposits gold at almost 99.5%, the deposit is shiny, ductile, with a contact resistance of 7 mOhm, low porosity and excellent resistance to corrosion. It leads to a deposition rate of 0.5 to 11 µm / min. Cobalt acts as a metallic brightener and as a hardening alloy metal. It allows the deposit to present a good resistance to friction and to pass positively the test known as "British Telecom". ". It is ideally used in the so-called "continuous", "selective deposition with masking" or "selective jet deposition" processes.

Claims (21)

  1. An aqueous electrolytic bath for electrochemically depositing gold or its alloys comprising at least one soluble gold compound intended to be deposited electrolytically and, optionally, at least one secondary metal compound intended to be co-deposited in the form of an alloy with gold, characterised in that it further comprises 0.3 to 3 moles, per mole of gold contained in the electrolytic bath, of an organic compound comprising one or two aldehyde functions, said organic compound being an organic compound having 3 to 20 carbon atoms and one or two aldehyde functions in the form :
    ■ of a linear, branched, saturated or unsaturated aliphatic group, or
    ■ of a group containing at least one saturated, unsaturated or aromatic ring,
    it being possible for said organic compound to further comprise at least one heteroelement selected from oxygen, nitrogen, sulphur, and phosphorus, or to be in the form of a salt, particularly in the form of a sulphonate.
  2. The electrolytic bath according to claim 1, characterised in that it contains 1.5 to 2.5 moles of said organic compound comprising one or two aldehyde functions per mole of gold, preferably of the order of 2 moles of said organic compound per mole of gold.
  3. The electrolytic bath according to one of claims 1 or 2, characterised in that said organic compound is an aldehyde of formula R-CHO in which R is a linear or branched, saturated or unsaturated aliphatic group having 3 to 12 carbon atoms.
  4. The electrolytic bath according to one of claims 1 or 2, characterised in that said organic compound has 4 to 20 carbon atoms and comprises at least one saturated, unsaturated or aromatic ring, or is in the form of a salt, particularly in the form of a sulphonate, of one of these compounds.
  5. The electrolytic bath according to one of claims 1 or 2, characterised in that said organic compound has 4 to 20 carbon atoms and contains at least one saturated, unsaturated or aromatic heterocycle, or is in the form of a salt, particularly in the form of a sulphonate, of one of these compounds.
  6. The electrolytic bath according to one of claims 1 to 3, characterised in that said organic compound is selected from the group consisting of propionaldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, capronaldehyde, hexaldehyde, heptaldehyde, caprylic aldehyde, pelargonaldehyde, decanal, undecanal, laurylaldehyde, acrolein, crotonal, benzaldehyde, phenylacetaldehyde, cuminic aldehyde, cinnamaldehyde, anisic aldehyde, phthalic aldehyde.
  7. The electrolytic bath according to one of claims 1 to 6, characterised in that it contains 1 to 100 g/L of gold.
  8. The electrolytic bath according to one of claims 1 to 7, characterised in that it contains at least one metal acting as inorganic brightener or as hardener.
  9. The electrolytic bath according to one of claims 1 to 8, characterised in that it contains at least one secondary metal selected from periods 4, 5 and 6 of Mendeleev's periodic classification of the elements, at a concentration of between 0.01 and 60 g/L.
  10. The electrolytic bath according to claim 9, characterised in that said secondary metal is cobalt, nickel or iron, preferably cobalt.
  11. The electrolytic bath according to claim 9, characterised in that said secondary metal is introduced into said bath in the form of sulphate, carbonate, hydroxide, oxide, acetylacetonate, citrate, gluconate, sulphamate, or of a mixture of these compounds.
  12. The electrolytic bath according to one of claims 1 to 11, characterised in that it contains an organic brightening agent.
  13. The electrolytic bath according to claim 12, characterised in that it contains 0.01 to 10 g/L 3-(3-pyridyl)acrylic acid or 3-(3-quinolyl)acrylic acid or one of their salts.
  14. The electrolytic bath according to one of claims 1 to 13, characterised in that it contains at least 10 g/L of a conducting salt, preferably selected from the group consisting of citrate, phosphate, borate or sulphate salts, and their mixtures.
  15. The electrolytic bath according to one of claims 1 to 14, characterised in that it contains a buffer intended for stabilising the pH, said buffer preferably being of acetic, citric, boric, phosphoric, or phthalic type.
  16. The electrolytic bath according to one of claims 1 to 15, characterised in that it contains at least one wetting agent, preferably tolyltriazole or benzotriazole.
  17. The electrolytic bath according to one of claims 1 to 16, characterised in that the gold is introduced in the form of cyanoaurate (I) or cyanoaurate (III).
  18. A method of electrodepositing gold or an alloy of gold, characterised in that it comprises electrolysing an electrolytic bath as defined in one of claims 1 to 17 in implementing current densities of between 0.5 and 120 A/dm2.
  19. The method according to claim 18, characterised in that said electrolysis is carried out using insoluble anodes, preferably of platinum-containing titanium, of iridium oxide-covered platinum or of precious metal such as platinum and a metallised substrate placed as cathode.
  20. Use, in an electrolytic bath intended for electrolytically depositing gold or one of its alloys, of an organic compound as defined in claim 1 or one of claims 3 to 6, as auxiliary agent which improves the speed of electrodeposition of gold or of its alloys and/or which reduces the contact resistance.
  21. Use according to claim 20, characterised in that said agent is used at a concentration of 0.3 to 3 mole per mole of gold contained in the bath, preferably at a concentration of 1.5 to 2.5 moles, per mole of gold contained in the bath, more preferably at a concentration of the order of 2 moles per mole of gold contained in the bath.
EP02774881A 2001-08-24 2002-08-22 Electrolytic solution for electrochemical deposition of gold and its alloys Expired - Lifetime EP1423557B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0111092 2001-08-24
FR0111092A FR2828889B1 (en) 2001-08-24 2001-08-24 ELECTROLYTIC BATH FOR THE ELECTROCHEMICAL DEPOSITION OF GOLD AND ITS ALLOYS
PCT/FR2002/002922 WO2003018880A1 (en) 2001-08-24 2002-08-22 Electrolytic solution for electrochemical deposition of gold and its alloys

Publications (2)

Publication Number Publication Date
EP1423557A1 EP1423557A1 (en) 2004-06-02
EP1423557B1 true EP1423557B1 (en) 2004-12-22

Family

ID=8866724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02774881A Expired - Lifetime EP1423557B1 (en) 2001-08-24 2002-08-22 Electrolytic solution for electrochemical deposition of gold and its alloys

Country Status (7)

Country Link
US (1) US20040195107A1 (en)
EP (1) EP1423557B1 (en)
CN (1) CN1561407A (en)
AT (1) ATE285489T1 (en)
DE (1) DE60202378T2 (en)
FR (1) FR2828889B1 (en)
WO (1) WO2003018880A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828898B2 (en) * 2003-04-03 2004-12-07 Cts Corporation Fuel tank resistor card having improved corrosion resistance
US20050092616A1 (en) * 2003-11-03 2005-05-05 Semitool, Inc. Baths, methods, and tools for superconformal deposition of conductive materials other than copper
JP4945193B2 (en) * 2006-08-21 2012-06-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Hard gold alloy plating solution
CH714243B1 (en) * 2006-10-03 2019-04-15 Swatch Group Res & Dev Ltd Electroforming process and part or layer obtained by this method.
CH710184B1 (en) 2007-09-21 2016-03-31 Aliprandini Laboratoires G Process for obtaining a yellow gold alloy deposit by electroplating without the use of toxic metals or metalloids.
JP4719822B2 (en) * 2008-06-11 2011-07-06 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same
EP2312021B1 (en) * 2009-10-15 2020-03-18 The Swatch Group Research and Development Ltd. Method for obtaining a deposit of a yellow gold alloy by galvanoplasty without using toxic metals
JP2011122192A (en) * 2009-12-09 2011-06-23 Ne Chemcat Corp Electrolytic hard gold plating liquid and plating method using the same
JP5731802B2 (en) * 2010-11-25 2015-06-10 ローム・アンド・ハース電子材料株式会社 Gold plating solution
CN102586830B (en) * 2011-01-10 2015-12-09 深圳市奥美特科技有限公司 Wire surface gold-plated or plating palladium Apparatus and method for
CN103741180B (en) * 2014-01-10 2015-11-25 哈尔滨工业大学 Non-cyanide bright electrogilding additive and application thereof
EP3315635B1 (en) * 2015-06-26 2020-11-04 Metalor Technologies (Japan) Corporation Electrolytic hard gold plating solution including a substitution inhibitor
DE102019202899B3 (en) * 2019-03-04 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aqueous formulation for producing a layer of gold and silver
CN110344089B (en) * 2019-06-26 2021-11-09 深圳市瑞世兴科技有限公司 Gold sodium sulfite plating solution and electroplating method thereof
CN114836794B (en) * 2021-06-25 2024-01-30 深圳市铭轩珠宝首饰有限公司 Gold-copper alloy electroforming process and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244434C3 (en) * 1972-09-06 1982-02-25 Schering Ag, 1000 Berlin Und 4619 Bergkamen Aqueous bath for the galvanic deposition of gold and gold alloys
SU709719A1 (en) * 1977-07-27 1980-01-15 Предприятие П/Я М-5068 Gold plating electrolyte
CH662583A5 (en) * 1985-03-01 1987-10-15 Heinz Emmenegger GALVANIC BATH FOR THE ELECTROLYTIC DEPOSITION OF GOLD-COPPER-CADMIUM-ZINC ALLOYS.
GB8612361D0 (en) * 1986-05-21 1986-06-25 Engelhard Corp Gold electroplating bath
JPS637390A (en) * 1986-06-26 1988-01-13 Nippon Engeruharudo Kk Gold-cobalt alloy plating liquid

Also Published As

Publication number Publication date
ATE285489T1 (en) 2005-01-15
US20040195107A1 (en) 2004-10-07
FR2828889B1 (en) 2004-05-07
CN1561407A (en) 2005-01-05
FR2828889A1 (en) 2003-02-28
DE60202378T2 (en) 2005-12-08
DE60202378D1 (en) 2005-01-27
EP1423557A1 (en) 2004-06-02
WO2003018880A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
EP1423557B1 (en) Electrolytic solution for electrochemical deposition of gold and its alloys
FR2699556A1 (en) Baths for forming an electrolytic deposit of copper and process for electrolytic deposition using this bath.
FR2550229A1 (en) METHOD AND BATH FOR ELECTROLYTIC DEPOSITION OF ZINC AND ZINC ALLOYS
EP1272691B1 (en) Electrolytic solution for electrochemical deposit of palladium or its alloys
FR2658536A1 (en) COMPOSITIONS AND METHODS FOR ELECTRODEPOSITION.
CH662583A5 (en) GALVANIC BATH FOR THE ELECTROLYTIC DEPOSITION OF GOLD-COPPER-CADMIUM-ZINC ALLOYS.
US4076598A (en) Method, electrolyte and additive for electroplating a cobalt brightened gold alloy
FR2586713A1 (en) ELECTROLYTE AND METHOD FOR FORMING A ZINC ALLOY COATING
FR2597118A1 (en) ELECTROLYTE OF ZINC-NICKEL ALLOYS AND METHOD FOR ITS ELECTRODEPOSITION
FR2479275A1 (en) PROCESS FOR THE ELECTRODEPOSITION OF COPPER
EP1268347B1 (en) Palladium complex salt and use thereof for adjusting palladium concentration of an electrolytic solution for deposit of palladium or one of its alloys
EP2312021B1 (en) Method for obtaining a deposit of a yellow gold alloy by galvanoplasty without using toxic metals
US4615774A (en) Gold alloy plating bath and process
US4309256A (en) Process for the galvanoplastic deposition of a gold alloy
FR2512845A1 (en) PROCESS FOR INCREASING THE CORROSION RESISTANCE OF A PALLADIUM-NICKEL ALLOY REMOVED BY ELECTROLYSIS
EP1103637A1 (en) Method of producing AuCuGa alloy coating using electrolysis, and alloys produced by such a method
FR2470169A1 (en) GALVANIZATION BATHS AND METHOD FOR THEIR IMPLEMENTATION
FR2493881A1 (en) COMPOSITIONS AND METHOD FOR HIGH SPEED ELECTROLYTIC DEPOSITION OF BRILLIANT SILVER USING A VALENCE 3 SELENIUM COMPOUND
FR2492849A1 (en) ELECTROLYTIC COATING BATHS FOR SEMI-GLOSSY NICKEL DEPOSITION, CONTAINING BENZENESULFONIC ACID AS A BRILLIANT AND A PERFLUOROALKYLSULFONATE WETTING AGENT
FR2527230A1 (en) ZINC COATING BATHS CONTAINING BRILLIANTS FORMED BY A-AMINOPROPIONIC ACID DERIVATIVES AND THEIR POLYMERS
CA1272160A (en) Gold alloy plating bath and process
EP0121492A1 (en) Galvanic bath for the electroplating of a gold-copper-cadmium alloy, process for using it and article resulting from the process
FR2492416A1 (en) BATHS FOR ELECTROLYTIC DEPOSITION OF BLACK OR SUBSTANTIALLY BLACK NICKEL, CONTAINING A SOLUBLE AMINE IN SUCH BATHS
CH629260A5 (en) Process for gold-silver electrolytic deposition, bath for its use and alloy thus obtained
FR2538816A1 (en) Aq. gold alloy electroplating baths

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60202378

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050805

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

BERE Be: lapsed

Owner name: *METALOR TECHNOLOGIES FRANCE S.A.S.

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831