EP1421317A2 - Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator - Google Patents

Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator

Info

Publication number
EP1421317A2
EP1421317A2 EP02797600A EP02797600A EP1421317A2 EP 1421317 A2 EP1421317 A2 EP 1421317A2 EP 02797600 A EP02797600 A EP 02797600A EP 02797600 A EP02797600 A EP 02797600A EP 1421317 A2 EP1421317 A2 EP 1421317A2
Authority
EP
European Patent Office
Prior art keywords
evaporator tubes
heating gas
evaporator
flow medium
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02797600A
Other languages
German (de)
French (fr)
Other versions
EP1421317B1 (en
Inventor
Joachim Franke
Rudolf Kral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP02797600A priority Critical patent/EP1421317B1/en
Publication of EP1421317A2 publication Critical patent/EP1421317A2/en
Application granted granted Critical
Publication of EP1421317B1 publication Critical patent/EP1421317B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a method for starting up a steam generator with a heating gas channel through which an approximately horizontal heating gas direction can flow, in which at least one continuous heating surface formed from a number of approximately vertically arranged evaporator tubes arranged to flow through a flow medium is arranged. It further relates to such a steam generator.
  • the heat contained in the relaxed working fluid or heating gas from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a waste heat steam generator connected downstream of the gas turbine, in which a number of heating surfaces for water preheating, steam generation and steam superheating are usually arranged.
  • the heating surfaces are connected to the water-steam cycle of the steam turbine.
  • the water-steam cycle usually comprises several, e.g. three pressure levels, each pressure level having an evaporative heating surface.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water (P Kr i ⁇ 221 bar) - where there are only slight differences in density between liquid-like and steam-like medium - are possible , A high live steam pressure favors high thermal efficiency and thus low CO 2 emissions from a fossil-fired power plant.
  • a continuous steam generator has a simple construction in comparison to a circulation steam generator and can therefore be produced with particularly little effort. The use of a steam generator designed according to the continuous flow principle as waste heat steam generator of a gas and steam turbine system is therefore particularly favorable in order to achieve a high overall efficiency of the gas and steam turbine system with a simple construction.
  • a heat recovery steam generator in a horizontal design offers particular advantages in terms of manufacturing effort, but also with regard to the maintenance work required, in which the heating medium or heating gas, in particular the exhaust gas from the gas turbine, is guided through the steam generator in an approximately horizontal flow direction.
  • Such a steam generator designed in a horizontal construction, is known from EP 0 944 801 B1.
  • the boundary condition must be observed when operating this steam generator that water cannot flow out of the evaporator tubes forming the once-through heating surface into a downstream superheater.
  • this can be problematic especially when starting the steam generator.
  • the steam generator starts up a so-called water emission can occur.
  • the invention is therefore based on the object of specifying a method for starting up a steam generator of the type mentioned above, with which a high level of operational safety is ensured even with a particularly simple construction.
  • a steam generator that is particularly suitable for carrying out the method is to be specified.
  • this object is achieved according to the invention in that at least some of the evaporator tubes forming the continuous heating surface are partially filled with unevaporated flow medium before the heating gas channel is supplied with heating gas up to a predeterminable desired fill level.
  • the invention is based on the consideration that, in order to maintain a high level of operational safety, it must also be ruled out while the steam generator is starting up should that unevaporated flow medium can get into the superheater downstream of the evaporator tubes. For a particularly simple construction, however, this should be ensured by dispensing with the water-steam separation device usually provided in continuous steam generators.
  • the evaporator tubes are only partially filled with undevaporated flow medium before starting.
  • the filling quantity and thus the target filling level for this first filling before the heating gas duct is exposed to heating gas should be selected in such a way that, on the one hand, water emission due to the first steam formation is avoided, and on the other hand, insufficient cooling of the evaporator tubes when starting is avoided.
  • the target fill level is expediently selected such that the evaporator tubes are not supplied with flow medium at the start of the start-up process.
  • the flow medium which is already in the evaporator tubes is initially evaporated.
  • the unevaporated flow medium, which lies within the respective evaporator tube downstream from the respective location of the start of evaporation, is pushed through the vapor bubble that is formed into the previously unfilled zone of the respective evaporator tube. This portion of the unevaporated flow medium can evaporate there or, if the mass flow densities in the evaporator tubes are sufficiently low, falls back into the lower area of the respective evaporator tube.
  • the partial portion located in the upper area of the respective evaporator tube which is initially not filled with flow medium and serves as a compensation space for the column underneath as a flow medium, can
  • the area of the respective evaporator tube should be dimensioned sufficiently large so that an escape of undevaporated flow medium from the respective evaporator tube can be reliably ruled out even when evaporation begins.
  • the actual fill level of the respective evaporator tubes is advantageously adjusted to the predefinable target fill level.
  • the respective actual fill level is advantageously determined by means of a differential pressure measurement between the lower pipe inlet and the upper pipe outlet of the respective evaporator pipe, the measurement value obtained thereby expediently being used as the basis for supplying the respective evaporator pipe with undevaporated flow medium.
  • the initial filling level of the evaporator tubes which is decisive, is advantageously predetermined as a function of the start-up heating curve provided in each case.
  • the start-up heating process is expediently determined on the basis of characteristic values for the boiler geometry and / or the time course of the heat supply by the heating gas. For a large number of such parameter combinations, a respectively adapted start-up heating curve can be stored in a database assigned to the steam generator, with the current len heating cycle previous heating cycles can be taken into account.
  • the steam generator In the starting phase of the start-up process, i.e. H.
  • the steam generator In a period of time immediately after the heating gas channel has started to be supplied with heating gas, the steam generator is intended to be operated without further loading of the evaporator tubes with flow medium or feed water.
  • the delivery of feed water or unevaporated flow medium into the evaporator tubes is expedient after the onset
  • Vapor formation in the evaporator tubes is added, so that sufficient cooling of the respective evaporator tube is ensured in any case even after the onset of vapor formation.
  • the onset of steam formation is advantageously detected by means of an increase in pressure in the water-steam cycle.
  • a measurement value characteristic of a pressure of the flow medium is advantageously monitored after the heating gas channel has been exposed to heating gas, and if this measurement value exceeds a predefinable limit value, a continuous supply of feed water to the evaporator tubes is started.
  • the feed water is expediently fed into the evaporator tubes in such a way that the escape of undevaporated flow medium from the evaporator tubes is reliably avoided.
  • the supply of feed water into the evaporator tubes is advantageously regulated in such a way that superheated steam emerges at the upper tube outlet of the or each evaporator tube. To ensure that no unevaporated flow medium can get into the downstream superheater, the provision of only relatively weakly superheated steam at the outlet of the evaporator tubes can be sufficient.
  • the mass flow density is advantageously set when the evaporator tubes are supplied with flow medium in such a way that an evaporator tube which is more heated in comparison to another evaporator tube of the same continuous heating surface has a higher throughput of the flow medium in comparison with the other evaporator tube .
  • the flow heating surface of the steam generator thus shows, in the nature of the flow characteristics of a natural circulation evaporator heating surface (natural circulation characteristic), with different heating of individual evaporator tubes, a self-stabilizing behavior which, without the need for external influence, leads to an adaptation of the outlet-side temperatures even in differently heated flow medium evaporator tubes connected in parallel.
  • the evaporator tubes are provided with a comparatively low mass flow density.
  • a common differential pressure measuring device is assigned to a distributor connected upstream of the evaporator pipes and to an outlet collector connected downstream of the evaporator pipes.
  • the level in the evaporator tubes can be monitored in a particularly advantageous manner by means of the differential pressure measuring device, so that a characteristic characteristic value can be used as a suitable reference variable for supplying the evaporator tubes.
  • the advantages achieved by the invention consist in particular in that, by only partially filling the evaporator tubes with unevaporated flow medium before the heating gas channel is first exposed to heating gas, the start-up process with a high level of operational safety, in particular with sufficient cooling of the evaporator tubes while reliably avoiding introduction undevaporated flow medium in the overflow downstream of the evaporator tubes superheater is guaranteed, the steam generator can be kept particularly simple in terms of construction.
  • the comparatively complex water-steam separation system can be completely dispensed with without having to take measures that are structurally as complex as, for example, the use of particularly robust or high-quality pipe materials.
  • a particularly safe and stable operating behavior can be achieved in particular by applying a comparatively low mass flow density to the evaporator tubes, so that unevaporated flow medium located in the evaporator tubes remains in the respective evaporator tube even when steam formation begins and is ultimately also evaporated there.
  • FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
  • the figure shows a simplified representation in longitudinal section of a steam generator in a horizontal construction.
  • the steam generator 1 is connected in the manner of a heat recovery steam generator downstream of a gas turbine, not shown.
  • the steam generator 1 has a surrounding wall 2 which forms a heating gas duct 6 for the exhaust gas from the gas turbine, through which the heating gas direction x can be flowed in an approximately horizontal direction indicated by the arrows 4.
  • a number of evaporator heating surfaces also referred to as continuous heating surfaces 8, 10, are arranged in the heating gas channel 6 according to the continuous flow principle. In the exemplary embodiment, two continuous heating surfaces 8, 10 are shown, but only one or a larger number of continuous heating surfaces can also be provided.
  • the continuous heating surfaces 8, 10 of the steam generator 1 each comprise a plurality of, in the manner of a tube bundle
  • the evaporator tubes 14, 15 are each aligned approximately vertically, a plurality of evaporator tubes 14 and 15 being arranged side by side as seen in the heating gas direction x. Only one of the evaporator tubes 14 and 15 arranged next to one another in this way is visible.
  • the evaporator tubes 14 of the first continuous heating surface 8 have a common distributor 16 upstream and a common outlet header 18 on the flow medium side.
  • the outlet header 18 of the first continuous heating surface 8 is in turn connected on the outlet side via a downpipe system 20 to a distributor 22 assigned to the second continuous heating surface 10.
  • An outlet header 24 is connected downstream of the second continuous heating plate 10.
  • the evaporator system formed by the continuous heating surfaces 8, 10 can be acted upon by flow medium W, which evaporates once it passes through the evaporator system and is discharged as steam D after exiting the evaporator system and is supplied to a superheater heating surface 26 downstream of the outlet collector 24 of the second continuous heating surface 10 ,
  • the pipe system formed from the continuous heating surfaces 8, 10 and the superheater heating surface 26 connected downstream is connected to the water-steam circuit of a steam turbine, not shown in any more detail.
  • a number of further heating surfaces 28, each indicated schematically in the figure, are connected in the water-steam circuit of the steam turbine.
  • the heating surfaces 28 can be, for example, medium-pressure evaporators, low-pressure evaporators and / or preheaters.
  • the evaporator system formed by the continuous heating surfaces 8, 10 is designed such that it is suitable for feeding the evaporator tubes 14, 15 with a comparatively low mass flow density, the evaporator tubes 14, 15 having a natural circulation characteristic.
  • This natural circulation characteristic shows one in comparison to another Evaporator tube 14 or 15 of the same continuous heating surface 8 or 10 more-heated evaporator tube 14 or 15 has a higher throughput of the flow medium W in comparison to the further evaporator tube 14 or 15.
  • the steam generator 1 is kept in a comparatively simple construction.
  • the second once-through heating surface 10 is connected directly to the superheater heating surface 26 connected to it, without a comparatively complex water-steam separation system or separating system, so that the outlet header 24 of the second once-through heating surface 10 is connected directly via an overflow line and without the interposition of further components is connected to a distributor of the superheater heating surface 26.
  • the steam generator 1 is operated when starting up with regard to these marginal specifications.
  • the steam generator 1 is in particular operated during start-up in such a way that, on the one hand, sufficient cooling of the evaporator tubes 14, 15 forming the continuous heating surfaces 8, 10 and of the steam generator tubes forming the superheater heating surface 26 is always ensured.
  • the steam generator 1 is also operated when starting up in such a way that even without a water-steam separation system connected between the second continuous heating surface 10 and the superheater heating surface 26, the feeding of undevaporated flow medium W into the superheater heating surface 26 is reliably avoided.
  • the evaporator tubes 14 forming the first continuous heating surface 8 are filled with undevaporated flow medium W before the heating gas channel 6 is first supplied with heating gas from the upstream gas turbine up to a predeterminable desired fill level, indicated by the broken line 30 in the figure.
  • the actual fill level reached in the evaporator tubes 14 is determined by a differential pressure measurement between the lower distributor 16 and the upper outlet collector 18.
  • a common differential pressure measuring device 32 is assigned to the distributor 16 and the outlet header 18.
  • the further filling with unevaporated flow medium W is controlled in such a way that the predetermined target filling level is assumed within a predetermined tolerance band.
  • any remaining unevaporated flow medium W is transferred via the downpipe system 20 into the downstream second continuous heating surface 10, where it is completely evaporated.
  • the second continuous heating surface 10 thus absorbs the remaining water output from the first continuous heating surface 8 in each case. Because the evaporator tubes 14 are only partially filled before the actual start-up process begins, no or almost no unevaporated flow medium W thus enters the outlet header 24 downstream of the second continuous heating surface 10 or the superheater heating surface 26 downstream thereof.
  • the partial filling of the evaporator tubes 14 forming the first continuous heating surface 8 is thus provided; the second continuous heating surface 10 initially remains unfilled.
  • partial filling of the evaporator tubes 15 forming the second continuous heating surface 10 can also be provided with an analogous procedure.
  • a determination as to whether steam production has already started in the evaporator tubes 14 and vaporized flow medium or steam D enters the outlet collector 24 is made by measuring the pressure of the flow medium W or steam D, in particular at the outlet collector 24 or at the outlet of the superheater heating surface 26 a correspondingly arranged pressure sensor is used to record and monitor a measured value characteristic of the pressure of the vaporized flow medium or steam D in the outlet header 24 or at the outlet of the superheater heating surface.
  • the beginning of steam production is concluded on the basis of the onset of pressure rise, which can reach values of a few bar per minute when steam begins to form.
  • the operational delivery of feed water or unevaporated flow medium W is taken up in the distributor 16 assigned to the continuous heating surface 8.
  • the supply of feed water or unevaporated flow medium W is controlled in the evaporator tubes 14 in such a way that superheated steam D, ie steam D without wet components, emerges at the upper tube outlet 34 of the evaporator tubes 14.
  • the evaporator tubes 14 when the evaporator tubes 14 are supplied with flow medium W, their mass flow density is set such that an evaporator tube 14 which is more heated in comparison to another evaporator tube 14 has a higher throughput of the flow medium W in comparison with the other evaporator tube 14. This ensures that the continuous heating surface 8 shows a self-stabilizing behavior even with different heating of individual evaporator tubes 14 in the manner of the flow characteristics of a natural circulation evaporator heating surface.
  • the start-up process of the steam generator 1 is carried out here, it is ensured that, on the one hand, there is sufficient cooling for the evaporator tubes 14, 15 at all times and, on the other hand, that undevaporated flow medium W never enters the superheater heating surface 26 downstream of the second continuous heating surface 10. Compliance with these boundary conditions is to be ensured in particular by a suitable choice of the desired fill level for the evaporator tubes 14 before the start of the actual start-up process. Specification of the target fill level for the evaporator tubes 14 takes place precisely in such a way that, on the basis of the intended starting process, exactly these boundary conditions are met. For this purpose, the target fill level is specified as a function of the intended start-up heating curve for the steam generator 1.
  • the start-up heating process is determined on the basis of characteristic values for the boiler geometry and material and / or the type of fuel. In particular, it can be provided that in the manner of a database in a
  • Memory module a variety of possible start-up heating curves suitable for the present steam generator 1 from which a course adapted to the current situation is selected on the basis of operational data and used as a basis for specifying the target fill level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

The invention relates to a steam generator (1) comprising a heating gas channel (6), which can be traversed in an approximately horizontal heating gas direction and in which at least one continuous heating surface (8) is located, configured from a number of approximately vertical evaporator tubes (14), connected in parallel to allow the passage of a flow medium (W, D). The aim of the invention is to provide a method for starting a generator, which guarantees a high degree of operational safety, even for a steam generator with a particularly simple construction (1). According to the invention, to achieve this, at least several evaporator tubes (14) are partially filled to a predeterminable desired level with unevaporated flow medium (W), prior to the impingement of the heating gas channel (6) by a heating gas.

Description

Verfahren zum Anfahren eines Dampferzeugers mit einem in einer annähernd horizontalen Heizgasrichtung durchströmbaren Heizgaskanal und DampferzeugerMethod for starting up a steam generator with a heating gas channel through which the heating gas can flow in an approximately horizontal heating gas direction, and steam generator
Die Erfindung bezieht sich auf ein Verfahren zum Anfahren eines Dampferzeugers mit einem in einer annähernd horizontalen Heizgasrichtung durchströmbaren Heizgaskanal, in dem mindestens eine aus einer Anzahl von annähernd vertikal angeordneten, zur Durchströmung eines Strömungsmediums parallel geschalteten Verdampferrohren gebildete Durchlaufheizfläche angeordnet ist. Sie betrifft weiter einen derartigen Dampferzeuger.The invention relates to a method for starting up a steam generator with a heating gas channel through which an approximately horizontal heating gas direction can flow, in which at least one continuous heating surface formed from a number of approximately vertically arranged evaporator tubes arranged to flow through a flow medium is arranged. It further relates to such a steam generator.
Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel oder Heizgas aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger, in dem üblicherweise eine Anzahl von Heizflächen zur Wasservorwärmung, zur Dampferzeugung und zur Dampfüberhitzung angeordnet ist. Die Heizflächen sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfaßt üblicherweise mehrere, z.B. drei, Druckstufen, wobei jede Druckstufe eine Verdampf- erheizfläche aufweisen kann.In a gas and steam turbine system, the heat contained in the relaxed working fluid or heating gas from the gas turbine is used to generate steam for the steam turbine. The heat transfer takes place in a waste heat steam generator connected downstream of the gas turbine, in which a number of heating surfaces for water preheating, steam generation and steam superheating are usually arranged. The heating surfaces are connected to the water-steam cycle of the steam turbine. The water-steam cycle usually comprises several, e.g. three pressure levels, each pressure level having an evaporative heating surface.
Für den der Gasturbine als Abhitzedampferzeuger heizgasseitig nachgeschalteten Dampferzeuger kommen mehrere alternative Auslegungskonzepte, nämlich die Auslegung als Durchlaufdampferzeuger oder die Auslegung als Umlaufdampferzeuger, in Betracht. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf. Im Gegensatz dazu wird bei einem Natur- oder Zwangumlaufdampferzeuger das im Umlauf geführte Wasser bei einem Durchlauf durch die Verdampferrohre nur teilweise verdampft. Das dabei nicht verdampfte Wasser wird nach einer Abtrennung des erzeugten Dampfes den selben Verdampferrohren für eine weitere Verdampfung erneut zugeführt .For the steam generator downstream of the gas turbine as the heat recovery steam generator, several alternative design concepts come into consideration, namely the design as a continuous steam generator or the design as a circulation steam generator. In a once-through steam generator, the heating of steam generator pipes provided as evaporator pipes leads to an evaporation of the flow medium in the steam generator pipes in a single pass. In contrast to this, in the case of a natural or forced circulation steam generator, the water circulated is passed through the evaporator tubes only partially evaporated. After the steam generated has been separated off, the water which has not evaporated is fed back to the same evaporator tubes for further evaporation.
Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so daß Frischdampfdrücke weit über dem kritischen Druck von Wasser (PKri Ä 221 bar) - wo es nur noch geringe Dichteunter- schiede gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begünstigt einen hohen thermischen Wirkungsgrad und somit niedrige C02-Emisionen eines fossilbeheizten Kraftwerks. Zudem weist ein Durchlaufdampferzeuger im Vergleich zu einem Umlaufdamp- ferzeuger eine einfache Bauweise auf und ist somit mit besonders geringem Aufwand herstellbar. Die Verwendung eines nach dem Durchlaufprinzip ausgelegten Dampferzeugers als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage ist daher zur Erzielung eines hohen Gesamtwirkungsgrades der Gas- und Dampfturbinenanlage bei einfacher Bauweise besonders günstig.In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that live steam pressures well above the critical pressure of water (P Kr i Ä 221 bar) - where there are only slight differences in density between liquid-like and steam-like medium - are possible , A high live steam pressure favors high thermal efficiency and thus low CO 2 emissions from a fossil-fired power plant. In addition, a continuous steam generator has a simple construction in comparison to a circulation steam generator and can therefore be produced with particularly little effort. The use of a steam generator designed according to the continuous flow principle as waste heat steam generator of a gas and steam turbine system is therefore particularly favorable in order to achieve a high overall efficiency of the gas and steam turbine system with a simple construction.
Besondere Vorteile hinsichtlich des Herstellungsaufwands, aber auch hinsichtlich erforderlicher Wartungsarbeiten bietet ein Abhitzedampferzeuger in liegender Bauweise, bei dem das beheizende Medium oder Heizgas, also insbesondere das Abgas aus der Gasturbine, in annähernd horizontaler Strömungsrichtung durch den Dampferzeuger geführt ist. Ein derartiger, in liegender Bauweise ausgelegter Dampferzeuger ist aus der EP 0 944 801 Bl bekannt. Infolge seiner Auslegung als Durch- laufdampferzeuger ist beim Betrieb dieses Dampferzeugers die Randbedingung einzuhalten, daß das Überströmen von Wasser aus den die Durchlaufheizfläche bildenden Verdampferrohren in einen nachgeschalteten Überhitzer ausgeschlossen ist. Dies kann jedoch gerade beim Anfahren des Dampferzeugers problematisch sein. Beim Anfahren des Dampferzeugers kann es zu einem sogenannten Wasserausstoß kommen. Dieser entsteht, wenn die infolge der Beheizung der Verdampferrohre eintretende Verdampfung des darin befindlichen Strömungsmediums erstmals einsetzt und dies beispielsweise in der Mitte des jeweiligen Verdampferrohres geschieht. Damit wird die stromabwärts vorhandene Wassermenge (auch als Wasserpfropfen bezeichnet) aus dem jeweiligen Verdampferrohr hinausgeschoben. Um sicher auszuschließen, daß unverdampftes Strömungsmedium aus den Verdampferroh- ren in den diesen nachgeschalteten Überhitzer gelangen kann, ist der bekannte Dampferzeuger - wie üblicherweise auch ein Durchlaufdampferzeuger in stehender Bauweise - mit einer zwischen die die Durchlaufheizfläche bildenden Verdampferrohre und den Überhitzer geschalteten Wasser-Dampf-Trennvorrichtung oder Abscheideeinrichtung versehen. Aus dieser wird überschüssiges Wasser abgezogen und entweder mittels einer Umwälzpumpe wieder dem Verdampfer zugeführt oder verworfen. Ein derartiges Wasser-Dampf-Trennsystem ist jedoch sowohl in konstruktiver Hinsicht als auch im Hinblick auf den Wartungsauf- wand vergleichsweise aufwendig.A heat recovery steam generator in a horizontal design offers particular advantages in terms of manufacturing effort, but also with regard to the maintenance work required, in which the heating medium or heating gas, in particular the exhaust gas from the gas turbine, is guided through the steam generator in an approximately horizontal flow direction. Such a steam generator, designed in a horizontal construction, is known from EP 0 944 801 B1. As a result of its design as a once-through steam generator, the boundary condition must be observed when operating this steam generator that water cannot flow out of the evaporator tubes forming the once-through heating surface into a downstream superheater. However, this can be problematic especially when starting the steam generator. When the steam generator starts up, a so-called water emission can occur. This occurs when the evaporation of the flow medium located in it as a result of the heating of the evaporator tubes begins for the first time and this occurs, for example, in the middle of the respective evaporator tube. This pushes the amount of water downstream (also referred to as water plug) out of the respective evaporator tube. In order to reliably rule out that unevaporated flow medium can get from the evaporator tubes into the superheater connected downstream, the known steam generator - like usually also a continuous steam generator in a standing construction - with a water-steam- connected between the evaporator tubes forming the continuous heating surface and the superheater. Provide separator or separator. Excess water is drawn off from this and either fed back to the evaporator by means of a circulation pump or discarded. However, such a water-steam separation system is comparatively complex both in terms of construction and in terms of maintenance.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Anfahren eines Dampferzeugers der oben genannten Art anzugeben, mit dem auch bei besonders einfacher Bauweise eine hohe betriebliche Sicherheit gewährleistet ist. Zudem soll ein für die Durchführung des Verfahrens besonders geeigneter Dampferzeuger angegeben werden.The invention is therefore based on the object of specifying a method for starting up a steam generator of the type mentioned above, with which a high level of operational safety is ensured even with a particularly simple construction. In addition, a steam generator that is particularly suitable for carrying out the method is to be specified.
Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß gelöst, indem zumindest einige der die Durchlaufheizfläche bildenden Verdampferrohre vor einer Beaufschlagung des Heizgaskanals mit Heizgas bis zu einem vorgebbaren Sollfüllstand teilweise mit unverdampftem Strömungsmedium befüllt werden.With regard to the method, this object is achieved according to the invention in that at least some of the evaporator tubes forming the continuous heating surface are partially filled with unevaporated flow medium before the heating gas channel is supplied with heating gas up to a predeterminable desired fill level.
Die Erfindung geht dabei von der Überlegung aus, daß zur Einhaltung einer hohen betrieblichen Sicherheit auch während des Anfahrens des Dampferzeugers sicher ausgeschlossen sein sollte, daß unverdampftes Strömungsmedium in den den Verdampferrohren nachgeschalteten Überhitzer gelangen kann. Für eine besonders einfache Bauweise sollte dies jedoch unter Verzicht auf die üblicherweise bei Durchlaufdampferzeugern vorgesehene Wasser-Dampf-Trenneinrichtung sichergestellt werden. Dazu sollte bei einem Dampferzeuger in liegender Bauweise, bei dem ein den die Durchlaufheizfläche bildenden Verdampferrohren austrittsseitig nachgeschalteter Austrittssammler direkt mit einem Eintrittsverteiler des Überhitzers verbunden ist, vor dem Anfahren eine lediglich teilweise Befüllung der Verdampferrohre mit unverdampftem Strömungsmedium vorgenommen werden. Die Füllmenge und damit der Sollfüllstand für diese Erstbefüllung vor Aufnahme der Beaufschlagung des Heizgaskanals mit Heizgas sollte dabei derart gewählt sein, daß einer- seits ein Wasseraustoß infolge der erstmaligen Dampfbildung vermieden ist, und daß andererseits eine unzureichende Kühlung der Verdampferrohre beim Anfahren vermieden ist.The invention is based on the consideration that, in order to maintain a high level of operational safety, it must also be ruled out while the steam generator is starting up should that unevaporated flow medium can get into the superheater downstream of the evaporator tubes. For a particularly simple construction, however, this should be ensured by dispensing with the water-steam separation device usually provided in continuous steam generators. For this purpose, in the case of a horizontal steam generator, in which an outlet header connected downstream of the evaporator tubes forming the continuous heating surface is connected directly to an inlet manifold of the superheater, the evaporator tubes are only partially filled with undevaporated flow medium before starting. The filling quantity and thus the target filling level for this first filling before the heating gas duct is exposed to heating gas should be selected in such a way that, on the one hand, water emission due to the first steam formation is avoided, and on the other hand, insufficient cooling of the evaporator tubes when starting is avoided.
Der Sollfüllstand wird dabei zweckmäßigerweise derart ge- wählt, daß zu Beginn des Anfahrvorgangs eine Bespeisung der Verdampferrohre mit Strömungsmedium unterbleiben kann. Somit erfolgt während des Anfahrvorgangs, also nach erfolgter Beaufschlagung des Heizgaskanals mit dem Heizgas, zunächst eine Verdampfung des bereits in den Verdampferrohren befindlichen Strömungsmediums. Dabei wird dasjenige unverdampfte Strömungsmedium, das innerhalb des jeweiligen Verdampferrohres stromabwärts vom jeweiligen Ort des Verdampfungsbeginns liegt, durch die sich bildende Dampfblase in die vorab nicht gefüllte Zone des jeweiligen Verdampferrohres geschoben. Dort kann dieser Anteil des unverdampften Strömungsmediums verdampfen oder fällt bei Einhaltung ausreichend niedriger Mas- senstromdichten in den Verdampferrohren wieder in den unteren Raumbereich des jeweiligen Verdampferrohres. Durch eine geeignete Wahl des Sollfüllstands kann somit der im oberen Be- reich des jeweiligen Verdampferrohres befindliche, zunächst nicht mit Strömungsmedium befüllte und als Ausgleichsraum für die darunterliegende Säule als Strömungsmedium dienende Teil- bereich des jeweiligen Verdampferrohres ausreichend groß bemessen gewählt werden, so daß ein Austritt unverdampften Strömungsmediums aus dem jeweiligen Verdampferrohr auch bei beginnender Verdampfung sicher ausgeschlossen werden kann.The target fill level is expediently selected such that the evaporator tubes are not supplied with flow medium at the start of the start-up process. Thus, during the start-up process, that is to say after the heating gas channel has been supplied with the heating gas, the flow medium which is already in the evaporator tubes is initially evaporated. The unevaporated flow medium, which lies within the respective evaporator tube downstream from the respective location of the start of evaporation, is pushed through the vapor bubble that is formed into the previously unfilled zone of the respective evaporator tube. This portion of the unevaporated flow medium can evaporate there or, if the mass flow densities in the evaporator tubes are sufficiently low, falls back into the lower area of the respective evaporator tube. Through a suitable choice of the desired filling level, the partial portion located in the upper area of the respective evaporator tube, which is initially not filled with flow medium and serves as a compensation space for the column underneath as a flow medium, can The area of the respective evaporator tube should be dimensioned sufficiently large so that an escape of undevaporated flow medium from the respective evaporator tube can be reliably ruled out even when evaporation begins.
Bei der teilweisen Befüllung der jeweiligen Verdampferrohre vor der erstmaligen Beaufschlagung des Heizgaskanals mit Heizgas wird vorteilhafterweise der Istfüllstand der jeweiligen Verdampferrohre an den vorgebbaren Sollfüllstand angegli- chen. Dazu wird der jeweilige Istfüllstand vorteilhafterweise mittels einer Differenzdruckmessung zwischen unterem Rohreintritt und oberem Rohraustritt des jeweiligen Verdampferrohres ermittelt, wobei der dabei gewonnene Meßwert zweckmäßigerweise als Grundlage für eine Bespeisung des jeweiligen Ver- dampferrohres mit unverdampftem Strömungsmedium herangezogen wird.When the respective evaporator tubes are partially filled before the heating gas channel is first exposed to heating gas, the actual fill level of the respective evaporator tubes is advantageously adjusted to the predefinable target fill level. For this purpose, the respective actual fill level is advantageously determined by means of a differential pressure measurement between the lower pipe inlet and the upper pipe outlet of the respective evaporator pipe, the measurement value obtained thereby expediently being used as the basis for supplying the respective evaporator pipe with undevaporated flow medium.
Je nach Betriebszustand des Dampferzeugers und dessen Vorgeschichte können unterschiedliche zeitliche Verläufe der Be- heizung des Dampferzeugers während seiner Anfahrphase vorgesehen sein. Um auch bei variierendem Ablauf der Anfahrphase eine besonders zuverlässige Einhaltung der Randbedingungen zu gewährleisten, daß nämlich einerseits beim Anfahren ein Austritt von unverdampftem Strömungsmedium aus den Verdampfer- röhren zuverlässig ausgeschlossen und andererseits in jedem Fall eine ausreichende Kühlung aller Verdampferrohre gewährleistet sein soll, wird der für die Erstbefüllung der Verdampferrohre maßgebliche Sollfüllstand vorteilhafterweise in Abhängigkeit von dem jeweils vorgesehenen Anfahrbeheizungs- verlauf vorgegeben. Der Anfahrbeheizungsverlauf wird dabei zweckmäßigerweise anhand von Kennwerten für die Kesselgeometrie und/oder den zeitlichen Verlauf des Wärmeangebots durch das Heizgas ermittelt. Dabei kann für eine Vielzahl derartiger Parameterkombinationen ein jeweils angepaßter Anfahrbe- heizungsverlauf in einer dem Dampferzeuger zugeordneten Datenbank hinterlegt sein, wobei insbesondere auch dem aktuel- len Beheizungszyklus vorangegangene Beheizungszyklen berücksichtigt sein können.Depending on the operating state of the steam generator and its history, different time courses of the heating of the steam generator can be provided during its start-up phase. In order to ensure particularly reliable compliance with the boundary conditions even when the start-up phase varies, namely that, on the one hand, an escape of undevaporated flow medium from the evaporator tubes is reliably prevented and, on the other hand, adequate cooling of all evaporator tubes is to be ensured in any case, the initial filling level of the evaporator tubes, which is decisive, is advantageously predetermined as a function of the start-up heating curve provided in each case. The start-up heating process is expediently determined on the basis of characteristic values for the boiler geometry and / or the time course of the heat supply by the heating gas. For a large number of such parameter combinations, a respectively adapted start-up heating curve can be stored in a database assigned to the steam generator, with the current len heating cycle previous heating cycles can be taken into account.
In der Startphase des Anfahrvorgangs, d. h. in einer Zeit- spanne unmittelbar nach Beginn der Beaufschlagung des Heizgaskanals mit Heizgas, ist ein Betrieb des Dampferzeugers ohne weitere Beaufschlagung der Verdampferrohre mit Strömungsmedium oder Speisewasser vorgesehen. Zweckmäßigerweise wird jedoch die Förderung von Speisewasser oder unverdampftem Strömungsmedium in die Verdampferrohre nach einsetzenderIn the starting phase of the start-up process, i.e. H. In a period of time immediately after the heating gas channel has started to be supplied with heating gas, the steam generator is intended to be operated without further loading of the evaporator tubes with flow medium or feed water. However, the delivery of feed water or unevaporated flow medium into the evaporator tubes is expedient after the onset
Dampfbildung in den Verdampferrohren aufgenommen, so daß auch nach einsetzender Dampfbildung in jedem Fall eine ausreichende Kühlung des jeweiligen Verdampferrohres sichergestellt ist. Das Einsetzen der Dampfbildung wird dabei vorteilhafter- weise mittels eines Druckanstiegs im Wasser-Dampf-Kreislauf erkannt. Um die bedarfsgerechte Bespeisung der Verdampferrohre mit Speisewasser auf besonders zuverlässige Weise zu ermöglichen, wird somit vorteilhafterweise nach der Aufnahme der Beaufschlagung des Heizgaskanals mit Heizgas ein für ei- nen Druck des Strömungsmediums charakteristischer Meßwert überwacht, wobei dann, wenn dieser Meßwert einen vorgebbaren Grenzwert übersteigt, eine kontinuierliche Beaufschlagung der Verdampferrohre mit Speisewasser aufgenommen wird.Vapor formation in the evaporator tubes is added, so that sufficient cooling of the respective evaporator tube is ensured in any case even after the onset of vapor formation. The onset of steam formation is advantageously detected by means of an increase in pressure in the water-steam cycle. In order to enable the evaporator tubes to be supplied with feed water in a particularly reliable manner, a measurement value characteristic of a pressure of the flow medium is advantageously monitored after the heating gas channel has been exposed to heating gas, and if this measurement value exceeds a predefinable limit value, a continuous supply of feed water to the evaporator tubes is started.
Auch nach Aufnahme der Förderung von Speisewasser in die Verdampferrohre wird das Speisewasser in die Verdampferrohre zweckmäßigerweise derart eingespeist, daß ein Austritt unver- dampften Strömungsmediums aus den Verdampferrohren sicher vermieden ist. Dazu wird die Zufuhr von Speisewasser in die Verdampferrohre vorteilhafterweise derart geregelt, daß am oberen Rohraustritt des oder jeden Verdampferrohres überhitzter Dampf austritt. Um dabei zu gewährleisten, daß kein un- verdampftes Strömungsmedium in den nachgeschalteten Überhitzer gelangen kann, kann dabei die Bereitstellung von ledig- lieh vergleichsweise schwach überhitztem Dampf am Austritt der Verdampferrohre ausreichen. Um eine besonders hohe betriebliche Stabilität des Dampferzeugers zu gewährleisten, wird vorteilhafterweise bei der Bespeisung der Verdampferrohre mit Strömungsmedium dessen Mas- senstromdichte derart eingestellt, daß ein im Vergleich zu einem weiteren Verdampferrohr derselben Durchlaufheizfläche mehrbeheiztes Verdampferrohr einen im Vergleich zum weiteren Verdampferrohr höheren Durchsatz des Strömungsmediums aufweist. Die Durchlaufheizflache des Dampferzeugers zeigt somit in der Art der Strömungscharakteristik einer Naturumlaufver- dampferheizflache (NaturumlaufCharakteristik) bei auftretender unterschiedlicher Beheizung einzelner Verdampferrohre ein selbststabilisierendes Verhalten, das ohne das Erfordernis äußere Einflußnahme zu einer Angleichung der austrittsseiti- gen Temperaturen auch an unterschiedlich beheizten, strö- mungsmediumsseitig parallel geschalteten Verdampferrohren führt. Zur Gewährleistung dieser Charakteristik ist eine Beaufschlagung der Verdampferrohre mit vergleichsweise geringer Massenstromdichte vorgesehen.Even after the feed water has been pumped into the evaporator tubes, the feed water is expediently fed into the evaporator tubes in such a way that the escape of undevaporated flow medium from the evaporator tubes is reliably avoided. For this purpose, the supply of feed water into the evaporator tubes is advantageously regulated in such a way that superheated steam emerges at the upper tube outlet of the or each evaporator tube. To ensure that no unevaporated flow medium can get into the downstream superheater, the provision of only relatively weakly superheated steam at the outlet of the evaporator tubes can be sufficient. In order to ensure a particularly high operational stability of the steam generator, the mass flow density is advantageously set when the evaporator tubes are supplied with flow medium in such a way that an evaporator tube which is more heated in comparison to another evaporator tube of the same continuous heating surface has a higher throughput of the flow medium in comparison with the other evaporator tube , The flow heating surface of the steam generator thus shows, in the nature of the flow characteristics of a natural circulation evaporator heating surface (natural circulation characteristic), with different heating of individual evaporator tubes, a self-stabilizing behavior which, without the need for external influence, leads to an adaptation of the outlet-side temperatures even in differently heated flow medium evaporator tubes connected in parallel. To ensure this characteristic, the evaporator tubes are provided with a comparatively low mass flow density.
Bezüglich des Dampferzeugers wird die genannte Aufgabe gelöst, indem einem den Verdampferrohren vorgeschalteten Verteiler und einem den Verdampferrohren nachgeschalteten Austrittssammler eine gemeinsame Differenzdruckmeßeinrichtung zugeordnet ist. Über die Differenzdruckmeßeinrichtung ist da- bei der Füllstand in den Verdampferrohren auf besonders günstige Weise überwachbar, so daß ein dafür charakteristischer Kennwert als geeignete Führungsgröße für die Bespeisung der Verdampferrohre heranziehbar ist.With regard to the steam generator, the stated object is achieved in that a common differential pressure measuring device is assigned to a distributor connected upstream of the evaporator pipes and to an outlet collector connected downstream of the evaporator pipes. The level in the evaporator tubes can be monitored in a particularly advantageous manner by means of the differential pressure measuring device, so that a characteristic characteristic value can be used as a suitable reference variable for supplying the evaporator tubes.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch eine lediglich teilweise Befüllung der Verdampferrohre mit unverdampftem Strömungsmedium vor einer erstmaligen Beaufschlagung des Heizgaskanals mit Heizgas der Anfahrvorgang mit hoher betrieblicher Sicherheit, also insbe- sondere unter ausreichender Kühlung der Verdampferrohre bei sicherer Vermeidung einer Einbringung unverdampften Strömungsmediums in den den Verdampferrohren nachgeschalteten Ü- berhitzer, gewährleistet ist, wobei der Dampferzeuger in konstruktiver Hinsicht besonders einfach gehalten sein kann. Dabei kann auch bei der Einhaltung hoher betrieblicher Sicherheisstandards das vergleichsweise aufwendige Wasser-Dampf- Trennsystem vollständig entfallen, ohne daß an dessen Stelle baulich ebenso aufwendige Maßnahmen wie beispielsweise die Verwendung besonders robuster oder hochwertiger Rohrmaterialien vorzunehmen sind. Ein besonders sicheres und stabiles Betriebsverhalten ist dabei insbesondere erreichbar, indem die Verdampferrohre mit vergleichsweise geringer Massenstrom- dichte beaufschlagt werden, so daß in den Verdampferrohren befindliches unverdampftes Strömungsmedium auch bei einsetzender Dampfbildung im jeweiligen Verdampferrohr verbleibt und letztendlich auch dort verdampft wird.The advantages achieved by the invention consist in particular in that, by only partially filling the evaporator tubes with unevaporated flow medium before the heating gas channel is first exposed to heating gas, the start-up process with a high level of operational safety, in particular with sufficient cooling of the evaporator tubes while reliably avoiding introduction undevaporated flow medium in the overflow downstream of the evaporator tubes superheater is guaranteed, the steam generator can be kept particularly simple in terms of construction. When complying with high operational safety standards, the comparatively complex water-steam separation system can be completely dispensed with without having to take measures that are structurally as complex as, for example, the use of particularly robust or high-quality pipe materials. A particularly safe and stable operating behavior can be achieved in particular by applying a comparatively low mass flow density to the evaporator tubes, so that unevaporated flow medium located in the evaporator tubes remains in the respective evaporator tube even when steam formation begins and is ultimately also evaporated there.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur in vereinfachter Darstellung im Längsschnitt einen Dampferzeuger in liegender Bauweise.An embodiment of the invention is explained in more detail with reference to a drawing. The figure shows a simplified representation in longitudinal section of a steam generator in a horizontal construction.
Der Dampferzeuger 1 gemäß der Figur ist in der Art eines Abhitzedampferzeugers einer nicht näher dargestellten Gasturbine abgasseitig nachgeschaltet. Der Dampferzeuger 1 weist eine Umfassungswand 2 auf, die einen in einer annähernd hori- zontalen, durch die Pfeile 4 angedeuteten Heizgasrichtung x durchströmbaren Heizgaskanal 6 für das Abgas aus der Gasturbine bildet. Im Heizgaskanal 6 ist eine Anzahl von nach dem Durchlaufprinzip ausgelegten Verdampferheizfläche, auch als Durchlaufheizflache 8, 10 bezeichnet, angeordnet. Im Ausfüh- rungsbeispiel sind dabei zwei Durchlaufheizflachen 8, 10 gezeigt, es kann aber auch lediglich eine oder eine größere Anzahl von Durchlaufheizflächen vorgesehen sein.The steam generator 1 according to the figure is connected in the manner of a heat recovery steam generator downstream of a gas turbine, not shown. The steam generator 1 has a surrounding wall 2 which forms a heating gas duct 6 for the exhaust gas from the gas turbine, through which the heating gas direction x can be flowed in an approximately horizontal direction indicated by the arrows 4. A number of evaporator heating surfaces, also referred to as continuous heating surfaces 8, 10, are arranged in the heating gas channel 6 according to the continuous flow principle. In the exemplary embodiment, two continuous heating surfaces 8, 10 are shown, but only one or a larger number of continuous heating surfaces can also be provided.
Die Durchlaufheizflächen 8, 10 des Dampferzeugers 1 umfassen jeweils in der Art eines Rohrbündels eine Mehrzahl von zurThe continuous heating surfaces 8, 10 of the steam generator 1 each comprise a plurality of, in the manner of a tube bundle
Durchströmung eines Strömungsmediums W parallel geschalteten Verdampferrohren 14 bzw. 15. Die Verdampferrohre 14, 15 sind dabei jeweils annähernd vertikal ausgerichtet, wobei jeweils eine Mehrzahl von Verdampferrohren 14 bzw. 15 in Heizgasrichtung x gesehen nebeneinander angeordnet ist. Dabei ist jeweils lediglich eines der so nebeneinander angeordneten Ver- dampferrohre 14 bzw. 15 sichtbar.Flow through a flow medium W parallel evaporator tubes 14 and 15. The evaporator tubes 14, 15 are each aligned approximately vertically, a plurality of evaporator tubes 14 and 15 being arranged side by side as seen in the heating gas direction x. Only one of the evaporator tubes 14 and 15 arranged next to one another in this way is visible.
Den Verdampferrohren 14 der ersten Durchlaufheizfläche 8 ist strö ungsmediumsseitig jeweils ein gemeinsamer Verteiler 16 vor- und ein gemeinsamer Austrittssammler 18 nachgeschaltet. Der Austrittssammler 18 der ersten Durchlaufheizfläche 8 ist seinerseits ausgangsseitig über ein Fallrohrsystem 20 mit einem der zweiten Durchlaufheizfläche 10 zugeordneten Verteiler 22 verbunden. Ausgangsseitig ist der zweiten Durchlaufheiz- flache 10 ein Austrittssammler 24 nachgeschaltet.The evaporator tubes 14 of the first continuous heating surface 8 have a common distributor 16 upstream and a common outlet header 18 on the flow medium side. The outlet header 18 of the first continuous heating surface 8 is in turn connected on the outlet side via a downpipe system 20 to a distributor 22 assigned to the second continuous heating surface 10. An outlet header 24 is connected downstream of the second continuous heating plate 10.
Das von den Durchlaufheizflachen 8, 10 gebildete Verdampfersystem ist mit Strömungsmedium W beaufschlagbar, das bei einmaligem Durchlauf durch das Verdampfersystem verdampft und nach dem Austritt aus dem Verdampfersystem als Dampf D abge- führt und einer dem Austrittssammler 24 der zweiten Durchlaufheizfläche 10 nachgeschalteten Überhitzerheizfläche 26 zugeführt wird. Das aus den Durchlaufheizflachen 8, 10 und der dieser nachgeschalteten Überhitzerheizfläche 26 gebildete Rohrsystem ist in den nicht näher dargestellten Wasser-Dampf- Kreislauf einer Dampfturbine geschaltet. Zusätzlich sind in den Wasser-Dampf-Kreislauf der Dampfturbine eine Anzahl weiterer, in der Figur jeweils schematisch angedeuteter Heizflächen 28 geschaltet. Bei den Heizflächen 28 kann es sich beispielsweise um Mitteldruckverdampfer, Niederdruckverdampfer und/oder um Vorwärmer handeln.The evaporator system formed by the continuous heating surfaces 8, 10 can be acted upon by flow medium W, which evaporates once it passes through the evaporator system and is discharged as steam D after exiting the evaporator system and is supplied to a superheater heating surface 26 downstream of the outlet collector 24 of the second continuous heating surface 10 , The pipe system formed from the continuous heating surfaces 8, 10 and the superheater heating surface 26 connected downstream is connected to the water-steam circuit of a steam turbine, not shown in any more detail. In addition, a number of further heating surfaces 28, each indicated schematically in the figure, are connected in the water-steam circuit of the steam turbine. The heating surfaces 28 can be, for example, medium-pressure evaporators, low-pressure evaporators and / or preheaters.
Das von den Durchlaufheizflachen 8, 10 gebildete Verdampfersystem ist derart ausgelegt, daß es für eine Bespeisung der Verdampferrohre 14, 15 mit vergleichsweise niedriger Massen- stromdichte geeignet ist, wobei die Verdampferrohre 14, 15 eine NaturumlaufCharakteristik aufweisen. Bei dieser Naturumlaufcharakteristik weist ein im Vergleich zu einem weiteren Verdampferrohr 14 bzw. 15 derselben Durchlaufheizfläche 8 bzw. 10 mehrbeheiztes Verdampferrohr 14 bzw. 15 einen im Vergleich zum weiteren Verdampferrohr 14 bzw. 15 höheren Durchsatz des Strömungsmediums W auf.The evaporator system formed by the continuous heating surfaces 8, 10 is designed such that it is suitable for feeding the evaporator tubes 14, 15 with a comparatively low mass flow density, the evaporator tubes 14, 15 having a natural circulation characteristic. This natural circulation characteristic shows one in comparison to another Evaporator tube 14 or 15 of the same continuous heating surface 8 or 10 more-heated evaporator tube 14 or 15 has a higher throughput of the flow medium W in comparison to the further evaporator tube 14 or 15.
Der Dampferzeuger 1 gemäß der Figur ist in vergleichsweise einfacher Bauweise gehalten. Dazu ist unter anderem die zweite Durchlaufheizfläche 10 unter Verzicht auf ein vergleichsweise aufwendiges Wasser-Dampf-Trennsystem oder Ab- scheidesystem direkt mit der ihr nachgeschalteten Überhitzerheizfläche 26 verbunden, so daß der Austrittssammler 24 der zweiten Durchlaufheizfläche 10 unmittelbar über eine Überströmleitung und ohne Zwischenschaltung weiterer Komponenten an einen Verteiler der Überhitzerheizfläche 26 ange- schlössen ist. Um jedoch auch bei dieser baulich vergleichsweise einfach gehaltenen Auslegung in allen Betriebszuständen eine vergleichsweise hohe betriebliche Sicherheit einzuhalten, wird der Dampferzeuger 1 beim Anfahren im Hinblick auf diese Randvorgaben betrieben. Der Dampferzeuger 1 wird dabei beim Anfahren insbesondere derart betrieben, daß einerseits immer eine ausreichende Kühlung sowohl der die Durchlaufheizflächen 8, 10 bildenden Verdampferrohre 14, 15 als auch der die Überhitzerheizfläche 26 bildenden Dampferzeugerrohre gewährleistet ist. Andererseits wird der Dampferzeuger 1 auch beim Anfahren derart betrieben, daß auch ohne einen zwischen die zweite Durchlaufheizfläche 10 und die Überhitzerheizfläche 26 geschaltetes Wasser-Dampf-Trennsystem die Einspeisung unverdampften Strömungsmediums W in die Überhitzerheizfläche 26 sicher vermieden ist.The steam generator 1 according to the figure is kept in a comparatively simple construction. For this purpose, the second once-through heating surface 10 is connected directly to the superheater heating surface 26 connected to it, without a comparatively complex water-steam separation system or separating system, so that the outlet header 24 of the second once-through heating surface 10 is connected directly via an overflow line and without the interposition of further components is connected to a distributor of the superheater heating surface 26. However, in order to maintain a comparatively high level of operational safety even in this structurally comparatively simple design in all operating states, the steam generator 1 is operated when starting up with regard to these marginal specifications. The steam generator 1 is in particular operated during start-up in such a way that, on the one hand, sufficient cooling of the evaporator tubes 14, 15 forming the continuous heating surfaces 8, 10 and of the steam generator tubes forming the superheater heating surface 26 is always ensured. On the other hand, the steam generator 1 is also operated when starting up in such a way that even without a water-steam separation system connected between the second continuous heating surface 10 and the superheater heating surface 26, the feeding of undevaporated flow medium W into the superheater heating surface 26 is reliably avoided.
Um dies zu gewährleisten, werden die die erste Durchlaufheizfläche 8 bildenden Verdampferrohre 14 vor einer erstmaligen Beaufschlagung des Heizgaskanals 6 mit Heizgas aus der vorgeschalteten Gasturbine bis zu einem vorgebbaren, in der Figur durch die gestrichelte Linie 30 angedeuteten Sollfüllstand mit unverdampftem Strömungsmedium W befüllt. Die Befüllung der Verdampferrohre 14 mit unverdampftem Strömungsmedium W vor der Beheizungsaufnahme erfolgt dabei über den ohnehin vorhandenen Speisewasserstrang und den Verteiler 16. Dabei wird der in den Verdampferrohren 14 erreichte Istfüllstand durch eine Differenzdruckmessung zwischen dem unteren Vertei- 1er 16 und dem oberen Austrittssammler 18 ermittelt. Zu diesem Zweck ist dem Verteiler 16 und dem Austrittssammler 18 eine gemeinsame Differenzdruckmeßeinrichtung 32 zugeordnet. Anhand des so ermittelten Istfüllstands in jedem Verdampferrohr 14 wird die weitere Befüllung mit unverdampftem Strö- mungsmedium W derart gesteuert, daß der vorgegebene Sollfüllstand innerhalb eines vorgegebenen Toleranzbandes eingenommen wird.In order to ensure this, the evaporator tubes 14 forming the first continuous heating surface 8 are filled with undevaporated flow medium W before the heating gas channel 6 is first supplied with heating gas from the upstream gas turbine up to a predeterminable desired fill level, indicated by the broken line 30 in the figure. The filling of the evaporator tubes 14 with undevaporated flow medium W Before the heating is taken up, this takes place via the feed water line and the distributor 16, which is present anyway. The actual fill level reached in the evaporator tubes 14 is determined by a differential pressure measurement between the lower distributor 16 and the upper outlet collector 18. For this purpose, a common differential pressure measuring device 32 is assigned to the distributor 16 and the outlet header 18. On the basis of the actual filling level in each evaporator tube 14 determined in this way, the further filling with unevaporated flow medium W is controlled in such a way that the predetermined target filling level is assumed within a predetermined tolerance band.
Nach Abschluß der Erstbefüllung der Verdampferrohre 14 mit unverdampftem Strömungsmedium W wird zunächst die weitere Zufuhr von Strömungsmedium W in die Verdampferrohre 14 unterbunden. In diesem Zustand erfolgt der Start des eigentlichen Anfahrvorgangs für den Dampferzeuger 1, wobei insbesondere die Beaufschlagung des Heizgaskanals 6 mit Heizgas aus der vorgeschalteten Gasturbine aufgenommen wird. Durch die nunmehr eintretende Beheizung der Verdampferrohre 14 beginnt das in diesen befindliche unverdampfte Strömungsmedium W zu verdampfen. In jedem der Verdampferröhre 14 setzt nunmehr nach einer gewissen Zeitspanne lokale Verdampfung ein, wobei das stromabwärts oder oberhalb des jeweiligen Ortes des Verdampfungsbeginns befindliche noch unverdampfte Strömungsmedium W jeweils in die obere, zunächst nicht mit Strömungsmedium W befüllte Zone des jeweiligen Verdampferrohres 14 geschoben wird. Dort erfolgt entweder eine Verdampfung dieses Anteils des Strömungsmediums W, oder dieser Teil des Strömungsmediums W fällt aufgrund der vergleichsweise geringen Auslegungsmas- senstro dichte in den Verdampferrohren 14 wieder in dessen unteren Bereich zurück.After completion of the initial filling of the evaporator tubes 14 with undevaporated flow medium W, the further supply of flow medium W into the evaporator tubes 14 is first prevented. In this state, the actual start-up process for the steam generator 1 is started, with the heating gas channel 6 in particular being supplied with heating gas from the upstream gas turbine. As a result of the heating of the evaporator tubes 14 now occurring, the unevaporated flow medium W located therein begins to evaporate. Local evaporation now begins in each of the evaporator tubes 14 after a certain period of time, the unevaporated flow medium W located downstream or above the respective location of the start of evaporation being pushed into the upper zone of the respective evaporator tube 14, which is initially not filled with flow medium W. This portion of the flow medium W either evaporates there, or this part of the flow medium W falls back into its lower region due to the comparatively low design mass flow density in the evaporator tubes 14.
Eventuell noch verbleibendes unverdampftes Strömungsmedium W wird über das Fallrohrsystem 20 in die nachgeschaltete zweite Durchlaufheizfläche 10 überführt und dort vollständig ver- dampft. Die zweite Durchlaufheizflache 10 nimmt somit in jedem Fall den noch verbleibenden Wasserausstoß aus der ersten Durchlaufheizfläche 8 auf. Aufgrund der lediglich teilweisen Befüllung der Verdampferrohre 14 vor dem Beginn des eigentli- chen Anfahrvorgangs tritt somit kein oder nahezu kein unverdampftes Strömungsmedium W in den der zweiten Durchlaufheizfläche 10 nachgeschalteten Austrittssammler 24 oder in die diesem nachgeschaltete Überhitzerheizfläche 26 ein.Any remaining unevaporated flow medium W is transferred via the downpipe system 20 into the downstream second continuous heating surface 10, where it is completely evaporated. The second continuous heating surface 10 thus absorbs the remaining water output from the first continuous heating surface 8 in each case. Because the evaporator tubes 14 are only partially filled before the actual start-up process begins, no or almost no unevaporated flow medium W thus enters the outlet header 24 downstream of the second continuous heating surface 10 or the superheater heating surface 26 downstream thereof.
Im Ausführungsbeispiel ist somit die lediglich teilweise Befüllung der die erste Durchlaufheizfläche 8 bildenden Verdampferrohre 14 vorgesehen; die zweite Durchlaufheizfläche 10 bleibt dabei zunächst unbefüllt. Zusätzlich kann in einer alternativen Ausführungsform aber auch eine teilweise Befüllung der die zweite Durchlaufheizfläche 10 bildenden Verdampferrohre 15 bei analoger Verfahrensführung vorgesehen sein.In the exemplary embodiment, the partial filling of the evaporator tubes 14 forming the first continuous heating surface 8 is thus provided; the second continuous heating surface 10 initially remains unfilled. In an alternative embodiment, however, partial filling of the evaporator tubes 15 forming the second continuous heating surface 10 can also be provided with an analogous procedure.
Eine Feststellung, ob eine Dampfproduktion in den Verdampferrohren 14 bereits eingesetzt hat und verdampftes Strömungsme- dium oder Dampf D in den Austrittssammler 24 eintritt, erfolgt über eine Druckmessung des Strömungsmediums W oder Dampfes D, insbesondere am Austrittssammler 24 oder am Austritt der Überhitzerheizfläche 26. Über einen entsprechend angeordneten Drucksensor wird dabei ein für den Druck des verdampften Strömungsmediums oder Dampfes D im Austrittssammler 24 oder am Austritt der Überhitzerheizfläche charakteristischer Meßwert erfaßt und überwacht. Auf beginnende Dampfproduktion wird dabei anhand einsetzenden Druckanstiegs geschlossen, der bei einsetzender Dampfbildung Werte von eini- gen bar pro Minute erreichen kann.A determination as to whether steam production has already started in the evaporator tubes 14 and vaporized flow medium or steam D enters the outlet collector 24 is made by measuring the pressure of the flow medium W or steam D, in particular at the outlet collector 24 or at the outlet of the superheater heating surface 26 a correspondingly arranged pressure sensor is used to record and monitor a measured value characteristic of the pressure of the vaporized flow medium or steam D in the outlet header 24 or at the outlet of the superheater heating surface. The beginning of steam production is concluded on the basis of the onset of pressure rise, which can reach values of a few bar per minute when steam begins to form.
Nachdem auf diese Weise eine einsetzende Dampfbildung in den Verdampferrohren 14 festgestellt wurde, wird die betriebsgemäße Förderung von Speisewasser oder unverdampftem Strömungs- medium W in den der Durchlaufheizfläche 8 zugeordneten Verteiler 16 aufgenommen. Während des weiteren Anfahrvorgangs, also insbesondere bis hin zum Erreichen eines Gleichgewichts- Betriebszustands, wird die Zufuhr von Speisewasser oder unverdampftem Strömungsmedium W in die Verdampferrohre 14 dabei derart geregelt, daß am oberen Rohraustritt 34 der Verdampferrohre 14 überhitzter Dampf D, d.h. Dampf D ohne Naßan- teile, austritt.After an onset of steam formation in the evaporator tubes 14 has been determined in this way, the operational delivery of feed water or unevaporated flow medium W is taken up in the distributor 16 assigned to the continuous heating surface 8. During the further starting process, in particular up to reaching an equilibrium Operating state, the supply of feed water or unevaporated flow medium W is controlled in the evaporator tubes 14 in such a way that superheated steam D, ie steam D without wet components, emerges at the upper tube outlet 34 of the evaporator tubes 14.
Im übrigen wird bei der Bespeisung der Verdampferrohre 14 mit Strömungsmedium W dessen Massenstromdichte derart eingestellt, daß ein im Vergleich zu einem weiteren Verdampferrohr 14 mehrbeheiztes Verdampferrohr 14 einen im Vergleich zum weiteren Verdampferrohr 14 höheren Durchsatz des Strömungsmediums W aufweist. Dadurch ist gewährleistet, daß die Durchlaufheizfläche 8 auch bei auftretender unterschiedlicher Beheizung einzelner Verdampferrohre 14 in der Art der Strömung- scharakteristik einer Naturumlaufverdampferheizfläche ein selbststabilisierendes Verhalten zeigt.Incidentally, when the evaporator tubes 14 are supplied with flow medium W, their mass flow density is set such that an evaporator tube 14 which is more heated in comparison to another evaporator tube 14 has a higher throughput of the flow medium W in comparison with the other evaporator tube 14. This ensures that the continuous heating surface 8 shows a self-stabilizing behavior even with different heating of individual evaporator tubes 14 in the manner of the flow characteristics of a natural circulation evaporator heating surface.
Bei der hier vorgesehenen Durchführung des Anfahrvorgangs des Dampferzeugers 1 ist sichergestellt, daß einerseits jederzeit eine ausreichende Kühlung für die Verdampferrohre 14, 15 vorliegt, und daß andererseits zu keinem Zeitpunkt unverdampftes Strömungsmedium W in die der zweiten Durchlaufheizfläche 10 nachgeschaltete Überhitzerheizfläche 26 eintritt. Die Einhaltung dieser Randbedingungen ist dabei insbesondere durch die geeignete Wahl des Sollfüllstands für die Verdampferrohre 14 vor dem Start des eigentlichen Anfahrvorgangs sicherzustellen. Die Vorgabe des Sollfüllstands für die Verdampferrohre 14 erfolgt nämlich gerade derart, daß bei Zugrundelegung des vorgesehenen Anfahrvorgangs genau diese Randbedingungen ein- gehalten werden. Dazu wird der Sollfüllstand in Abhängigkeit von dem vorgesehenen Anfahrbeheizungsverlauf für den Dampferzeuger 1 vorgegeben. Der Anfahrbeheizungsverlauf wird dabei anhand von Kennwerten für Kesselgeometrie und -material und/oder die Brennstoffart ermittelt. Insbesondere kann dabei vorgesehen sein, daß in der Art einer Datenbank in einemWhen the start-up process of the steam generator 1 is carried out here, it is ensured that, on the one hand, there is sufficient cooling for the evaporator tubes 14, 15 at all times and, on the other hand, that undevaporated flow medium W never enters the superheater heating surface 26 downstream of the second continuous heating surface 10. Compliance with these boundary conditions is to be ensured in particular by a suitable choice of the desired fill level for the evaporator tubes 14 before the start of the actual start-up process. Specification of the target fill level for the evaporator tubes 14 takes place precisely in such a way that, on the basis of the intended starting process, exactly these boundary conditions are met. For this purpose, the target fill level is specified as a function of the intended start-up heating curve for the steam generator 1. The start-up heating process is determined on the basis of characteristic values for the boiler geometry and material and / or the type of fuel. In particular, it can be provided that in the manner of a database in a
Speicherbaustein eine Vielzahl möglicher, für den vorliegenden Dampferzeuger 1 geeignete Anfahrbeheizungsverlaufe hin- terlegt sind, aus denen anhand von betrieblichen Daten ein für die aktuelle Situation angepaßter Verlauf ausgewählt und für die Vorgabe des Sollfüllstands zugrundegelegt wird. Memory module a variety of possible start-up heating curves suitable for the present steam generator 1 from which a course adapted to the current situation is selected on the basis of operational data and used as a basis for specifying the target fill level.

Claims

Patentansprüche claims
1. Verfahren zum Anfahren eines Dampferzeugers (1) mit einem in einer annähernd horizontalen Heizgasrichtung durchströmba- ren Heizgaskanal (6), in dem mindestens eine aus einer Anzahl von annähernd vertikal angeordneten, zur Durchströmung eines Strömungsmediums (W, D) parallel geschalteten Verdampferrohren (14) gebildete Durchlaufheizfläche (8) angeordnet ist, bei dem zumindest einige Verdampferrohre (14) vor einer Be- aufschlagung des Heizgaskanals (6) mit Heizgas bis zu einem vorgebbaren Sollfüllstand teilweise mit unverdampftem Strömungsmedium (W) befüllt werden.1. Method for starting up a steam generator (1) with a heating gas channel (6) through which an approximately horizontal heating gas direction can flow, in which at least one of a number of approximately vertically arranged evaporator tubes arranged in parallel to flow through a flow medium (W, D) 14) continuous heating surface (8) is arranged, in which at least some evaporator tubes (14) are partially filled with unevaporated flow medium (W) before the heating gas channel (6) is charged with heating gas up to a predefinable target fill level.
2. Verfahren nach Anspruch 1, bei dem der Istfüllstand der jeweiligen Verdampferrohre (14) mittels einer Differenzdruckmessung zwischen unterem Rohreintritt (32) und oberem Rohraustritt (34) ermittelt wird.2. The method according to claim 1, wherein the actual fill level of the respective evaporator tubes (14) is determined by means of a differential pressure measurement between the lower tube inlet (32) and the upper tube outlet (34).
3. Verfahren nach Anspruch 1 oder 2, bei dem der Sollfüll- stand in Abhängigkeit von einem vorgesehenen Anfahrbehei- zungsverlauf vorgegeben wird.3. The method as claimed in claim 1 or 2, in which the target fill level is predetermined as a function of an intended start-up heating curve.
4. Verfahren nach Anspruch 3, bei dem der Anfahrbeheizungsverlauf anhand von Kennwerten für die Kesselgeometrie und/oder den zeitlichen Verlauf des Wärmeangebots durch das Heizgas ermittelt wird.4. The method according to claim 3, in which the start-up heating curve is determined on the basis of characteristic values for the boiler geometry and / or the time curve of the heat supply by the heating gas.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem nach der Aufnahme der Beaufschlagung des Heizgaskanals (6) mit Heizgas ein für einen Druck des Strömungsmediums (W, D) charakteristischer Meßwert überwacht wird, wobei dann, wenn dieser Meßwert einen vorgebbaren Grenzwert übersteigt, eine kontinuierliche Beaufschlagung der Verdampferrohre (14) mit unverdampftem Strömungsmedium (W) aufgenommen wird.5. The method according to any one of claims 1 to 4, in which, after the admission of the heating gas channel (6) with heating gas, a characteristic measured value for a pressure of the flow medium (W, D) is monitored, when this measured value has a predeterminable limit value exceeds, a continuous loading of the evaporator tubes (14) with undevaporated flow medium (W) is taken up.
6. Verfahren nach Anspruch 5 , bei dem nach einsetzender Dampf bildung in den Verdampferrohren ( 14 ) die Förderung von Strömungsmedium (W) in die Verdampferrohre (14) aufgenommen wird.6. The method according to claim 5, in which after the onset of steam formation in the evaporator tubes (14) the promotion of Flow medium (W) is received in the evaporator tubes (14).
7. Verfahren nach Anspruch 6, bei dem die Zufuhr von Strö- mungsmedium (W) in die Verdampferrohre (14) derart geregelt wird, daß am oberen Rohraustritt des oder jeden Verdampferrohres (15) überhitzter Dampf (D) austritt.7. The method according to claim 6, in which the supply of flow medium (W) into the evaporator tubes (14) is regulated in such a way that superheated steam (D) emerges at the upper tube outlet of the or each evaporator tube (15).
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem bei der Bespeisung der Verdampferrohre (14) mit Strömungsmedium8. The method according to any one of claims 1 to 7, in which in the feeding of the evaporator tubes (14) with flow medium
(W, D) dessen Massenstromdichte derart eingestellt wird, daß ein im Vergleich zu einem weiteren Verdampferrohr (14) derselben Durchlaufheizflache (8) mehrbeheiztes Verdampferrohr(W, D) whose mass flow density is set in such a way that an evaporator tube which is more heated in comparison to a further evaporator tube (14) has the same continuous heating surface (8)
(14) einen im Vergleich zum weiteren Verdampferrohr (14) hö- heren Durchsatz des Strömungsmediums (W) aufweist.(14) has a higher throughput of the flow medium (W) compared to the further evaporator tube (14).
9. Dampferzeuger (1) mit einem in einer annähernd horizontalen Heizgasrichtung durchströmbaren Heizgaskanal (6), in dem mindestens eine aus einer Anzahl von annähernd vertikal ange- ordneten, zur Durchströmung eines Strömungsmediums (W, D) parallel geschalteten Verdampferrohren (14) gebildete Durchlaufheizfläche (8) angeordnet ist, wobei einem den Verdampferrohren (14) vorgeschalteten Verteiler (16) und einem den Verdampferrohren (14) nachgeschalteten Austrittssammler (18) eine gemeinsame Differenzdruckmeßeinrichtung (32) zugeordnet ist. 9. Steam generator (1) with a heating gas channel (6) through which an approximately horizontal heating gas direction can flow, in which at least one continuous heating surface formed from a number of approximately vertically arranged evaporator tubes (14) connected in parallel to flow through a flow medium (W, D) (8) is arranged, a common differential pressure measuring device (32) being assigned to a distributor (16) upstream of the evaporator tubes (14) and an outlet header (18) downstream of the evaporator tubes (14).
EP02797600A 2001-08-31 2002-08-20 Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator Expired - Lifetime EP1421317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02797600A EP1421317B1 (en) 2001-08-31 2002-08-20 Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01121027A EP1288567A1 (en) 2001-08-31 2001-08-31 Steam generator and process for starting a steam generator with a heating gas channel through which a heating gas can flow in a substantially horizontal direction
EP01121027 2001-08-31
PCT/EP2002/009312 WO2003021148A2 (en) 2001-08-31 2002-08-20 Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator
EP02797600A EP1421317B1 (en) 2001-08-31 2002-08-20 Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator

Publications (2)

Publication Number Publication Date
EP1421317A2 true EP1421317A2 (en) 2004-05-26
EP1421317B1 EP1421317B1 (en) 2012-11-28

Family

ID=8178502

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01121027A Withdrawn EP1288567A1 (en) 2001-08-31 2001-08-31 Steam generator and process for starting a steam generator with a heating gas channel through which a heating gas can flow in a substantially horizontal direction
EP02797600A Expired - Lifetime EP1421317B1 (en) 2001-08-31 2002-08-20 Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01121027A Withdrawn EP1288567A1 (en) 2001-08-31 2001-08-31 Steam generator and process for starting a steam generator with a heating gas channel through which a heating gas can flow in a substantially horizontal direction

Country Status (12)

Country Link
US (1) US7281499B2 (en)
EP (2) EP1288567A1 (en)
JP (2) JP2005523410A (en)
KR (1) KR100742407B1 (en)
CN (1) CN1289854C (en)
CA (1) CA2458390C (en)
CZ (1) CZ2004403A3 (en)
ES (1) ES2395897T3 (en)
PL (1) PL199757B1 (en)
RU (1) RU2290563C2 (en)
SK (1) SK1552004A3 (en)
WO (1) WO2003021148A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512907A1 (en) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Method for starting a once-through steam generator and the once-through steam generator for carrying out said method
CA2614665C (en) * 2005-07-19 2015-06-16 Ceramic Fuel Cells Limited Steam generator
JP4847213B2 (en) * 2006-05-29 2011-12-28 バブコック日立株式会社 Once-through exhaust heat recovery boiler
DE102008008637B4 (en) * 2008-02-12 2017-01-05 Man Diesel & Turbo Se Condensing steam turbine with level detection device and method for controlling the level
MX2010009037A (en) * 2008-03-27 2010-09-30 Alstom Technology Ltd Continuous steam generator with equalizing chamber.
EP2194320A1 (en) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102009012322B4 (en) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Flow evaporator
DE102009012321A1 (en) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Flow evaporator
DE102009012320A1 (en) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Flow evaporator
DE102009024587A1 (en) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Flow evaporator
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
CN103090345A (en) * 2011-10-28 2013-05-08 西安科弘厨房工程设备有限责任公司 Solar energy/ composite energy closed circulating phase-change heat supply system
KR102049106B1 (en) 2012-01-17 2019-11-27 제네럴 일렉트릭 테크놀러지 게엠베하 Tube arrangement in a once-through horizontal evaporator
US9696098B2 (en) 2012-01-17 2017-07-04 General Electric Technology Gmbh Method and apparatus for connecting sections of a once-through horizontal evaporator
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
CN104896500B (en) * 2014-11-18 2017-12-08 郭志男 A kind of solid fuel ignition removes cigarette device for reducing dust
EP3495731B1 (en) 2017-12-08 2022-02-16 General Electric Technology GmbH Once-through evaporator systems
EP3495729B1 (en) 2017-12-08 2020-11-25 General Electric Technology GmbH Once-through evaporator systems
EP3495732B1 (en) 2017-12-08 2024-02-14 General Electric Technology GmbH Once-through evaporator systems
EP3495730B1 (en) 2017-12-08 2024-01-24 General Electric Technology GmbH Once-through evaporator systems
EP3842723A1 (en) * 2019-12-23 2021-06-30 Hamilton Sundstrand Corporation Two-stage fractal heat exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1094268B (en) * 1960-12-01 Arum.: L. S. C. Steinmüller G.m.b.H., Gumimersbach (RhId.) Procedure for filling a steam boiler
FR1593128A (en) * 1967-12-09 1970-05-25
CH632331A5 (en) * 1978-10-03 1982-09-30 Sulzer Ag METHOD FOR STARTING A FORCED STEAM GENERATOR.
JPS60178203A (en) * 1984-02-24 1985-09-12 株式会社小松製作所 Controller for overheat temperature of waste heat once-through boiler
US4685426A (en) * 1986-05-05 1987-08-11 The Babcock & Wilcox Company Modular exhaust gas steam generator with common boiler casing
DK0439765T3 (en) * 1990-01-31 1995-10-02 Siemens Ag A steam generator
DE4303613C2 (en) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Process for generating steam in a once-through steam generator
DE19528438C2 (en) * 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
DE19651678A1 (en) * 1996-12-12 1998-06-25 Siemens Ag Steam generator
DE19717158C2 (en) * 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
DE19907451A1 (en) * 1999-02-22 2000-08-24 Abb Alstom Power Ch Ag Method for starting a once-through waste heat boiler and device for carrying out the method
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03021148A2 *

Also Published As

Publication number Publication date
CN1543551A (en) 2004-11-03
EP1421317B1 (en) 2012-11-28
JP2008180501A (en) 2008-08-07
WO2003021148A3 (en) 2003-04-17
KR20040029105A (en) 2004-04-03
JP2005523410A (en) 2005-08-04
RU2290563C2 (en) 2006-12-27
US20060192023A1 (en) 2006-08-31
WO2003021148A2 (en) 2003-03-13
ES2395897T3 (en) 2013-02-15
JP4970316B2 (en) 2012-07-04
PL367786A1 (en) 2005-03-07
WO2003021148A8 (en) 2004-03-04
CZ2004403A3 (en) 2004-06-16
SK1552004A3 (en) 2004-11-03
US7281499B2 (en) 2007-10-16
CA2458390A1 (en) 2003-03-13
RU2004109587A (en) 2005-05-20
KR100742407B1 (en) 2007-07-24
CA2458390C (en) 2008-12-30
CN1289854C (en) 2006-12-13
PL199757B1 (en) 2008-10-31
EP1288567A1 (en) 2003-03-05

Similar Documents

Publication Publication Date Title
EP1421317B1 (en) Method for starting a steam generator comprising a heating gas channel that can be traversed in an approximately horizontal heating gas direction and a steam generator
EP1848925B1 (en) Horizontally positioned steam generator
DE2845021C2 (en) Procedure for starting up a forced-air steam generator
WO2005028957A1 (en) Method for starting a continuous steam generator and continuous steam generator for carrying out said method
DE19651678A1 (en) Steam generator
EP2438351B1 (en) Continuous evaporator
DE102011076968A1 (en) Method for operating a circulation heat recovery steam generator
DE19717158C2 (en) Continuous steam generator and method for starting up a continuous steam generator
DE102010040624A1 (en) heat recovery steam generator
DE19901656A1 (en) Regulating temp. at outlet of steam superheater involves spraying water into superheater near steam inlet; water can be sprayed into wet, saturated or superheated steam
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
EP1660812B1 (en) Once-through steam generator and method of operating said once-through steam generator
DE102010040623A1 (en) Method for regulating a short-term increase in output of a steam turbine
CH497664A (en) High pressure steam power plant
DE3236979A1 (en) FORCED STEAM GENERATOR AND METHOD FOR ITS COMMISSIONING
EP2409078B1 (en) Method for designing a continuous evaporator
EP1537358B1 (en) Horizontally assembled steam generator
DE102010043683A1 (en) Fossil fired steam generator
DE19944920A1 (en) Combination power generation system has injection device for injecting water into fresh steam, and injection water is pre-heated by arrangement in line feeding injection device
DE1965078B2 (en) PROCEDURE FOR SLIDING PRESSURE OPERATION OF A FORCED STEAM GENERATOR
WO1996016298A1 (en) Steam generation plant using the natural circulation system and process for starting the water circulation in such a plant
EP2655811A2 (en) Method for regulating a brief increase in power of a steam turbine
DE1965078C (en) Method for sliding pressure operation of a forced-flow generator
DE2006410A1 (en) Process for operating a steam power plant and system for carrying out the process
EP2625390B1 (en) Fossil-fired steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040203

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20091216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 586396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215664

Country of ref document: DE

Effective date: 20130124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2395897

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130215

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130328

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215664

Country of ref document: DE

Effective date: 20130829

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130820

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160811

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160708

Year of fee payment: 15

Ref country code: FR

Payment date: 20160823

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 586396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170820

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170820

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215664

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210802

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211025

Year of fee payment: 20

Ref country code: ES

Payment date: 20211124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215664

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220819

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220821