EP1411913A4 - Antimicrobial nanoemulsion compositions and methods - Google Patents
Antimicrobial nanoemulsion compositions and methodsInfo
- Publication number
- EP1411913A4 EP1411913A4 EP02752094A EP02752094A EP1411913A4 EP 1411913 A4 EP1411913 A4 EP 1411913A4 EP 02752094 A EP02752094 A EP 02752094A EP 02752094 A EP02752094 A EP 02752094A EP 1411913 A4 EP1411913 A4 EP 1411913A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- ammonium chloride
- vol
- oil
- composition
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/14—Quaternary ammonium compounds, e.g. edrophonium, choline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
- A61K8/062—Oil-in-water emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/02—Local antiseptics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/005—Antimicrobial preparations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/21—Emulsions characterized by droplet sizes below 1 micron
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/413—Nanosized, i.e. having sizes below 100 nm
Definitions
- the present invention relates to compositions and methods for decreasing the infectivity, morbidity, and rate of mortality associated with a variety of pathogens.
- the present invention also relates to methods and compositions for decontaminating areas, samples, solutions, and foodstuffs colonized or otherwise infected by pathogens and microorganisms.
- Pathogens such as bacteria, fungi, viruses, and bacterial spores are responsible for a plethora of human and animal ills, as well as contamination of food and biological and environmental samples.
- the first step in microbial infections of animals is generally attachment or colonization of skin or mucus membranes, followed by subsequent invasion and dissemination of the infectious microbe.
- the portals of entry of pathogenic bacteria are predominantly the skin and mucus membranes.
- bacteria of the Bacillus genus form stable spores that resist harsh conditions and extreme temperatures. Contamination of farmlands with B. anthracis leads to a fatal disease in domestic, agricultural, and wild animals (See e.g., Dragon and Rennie, Can. Vet. J. 36:295 [1995]). Human infection with this organism usually results from contact with infected animals or infected animal products (See e.g., Welkos et al, Infect. Immun. 51 :795 [1986]). Human clinical syndromes include a pulmonary form that has a rapid onset and is frequently fatal.
- Bacillus anthracis infection in humans is no longer common due to effective animal controls that include vaccines, antibiotics and appropriate disposal of infected livestock.
- animal anthrax infection still represents a significant problem due to the difficulty in decontamination of land and farms.
- anthrax vaccine is available (See e.g., Ivins et al, Vaccine 13:1779 [1995]) and can be used for the prevention of classic anthrax, genetic mixing of different strains of the organism can render the vaccine ineffective (See e.g., Mobley, Military Med. 160:547 [1995]).
- Anthrax spores as a biological weapon was demonstrated by the accidental release of Bacillus anthracis from a military microbiology laboratory in the former Soviet Union. Seventy-seven cases of human anthrax, including 66 deaths, were attributed to the accident.
- Anthrax infections occurred as far as 4 kilometers from the laboratory (See e.g., Meselson et al, Science 266:1202 [1994]). Genetic analysis of infected victims revealed the presence of either multiple strains or a genetically altered B. anthracis (See e.g., Jackson et al, Proc. Nat. Acad. of Sci. U.S.A. 95:1224 [1998]).
- Bacillus cereus is a common pathogen. It is involved in food borne diseases due to the ability of the spores to survive cooking procedures. It is also associated with local sepsis and wound and systemic infection (See e.g., Drobniewski, Clin. Micro. Rev. 6:324 [1993]). Many bacteria readily develop resistance to antibiotics. An organism infected with an antibiotic-resistant strain of bacteria faces serious and potentially life-threatening consequences.
- bacteria that develop resistance examples include Staphylococcus that often cause fatal infections, Pneumococci that cause pneumonia and meningitis; Salmonella and E. coli that cause diarrhea; and Enterococci that cause blood-stream, surgical wound and urinary tract infections (See e.g., Berkelman et. al, J. Infcet. Dis. 170(2):272 [1994]).
- disinfectants/biocides e.g., sodium hypochlorite, formaldehyde and phenols
- phenols e.g., sodium hypochlorite, formaldehyde and phenols
- toxicity leads to tissue necrosis and severe pulmonary injury following inhalation of volatile fumes.
- the corrosive nature of these compounds also renders them unsuitable for decontamination of sensitive equipment (See e.g., Alasri et al, Can. J. Micro. 39:52 [1993]; Beauchamp et al, Crit. Rev.
- Influenza A virus is a common respirator pathogen that is widely used as a model system to test anti-viral agents in vitro (See e.g., Karaivanova and Spiro, Biochem. J. 329:511 [1998]; Mammen et al, J. Med. Chem. 38:4179 [1995]; and Huang et al, FEBS Letters 291:199 [1991]), and in vivo (See e.g., Waghorn and Goa, Drugs 55:721 [1998]; Mendel et al, Antimicrob. Agents Chemother. 42:640 [1998]; and Smith et al, J. med. Chem. 41:787 [1998]).
- envelope glycoproteins hemagglutinin (HA) and neuraminidase (NA), which determine the antigenic specificity of viral subtypes, are able to readily mutate, allowing the virus to evade neutralizing antibodies.
- Current anti-viral compounds and neuraminidase inhibitors are minimally effective and viral resistance is common.
- compositions and methods that decrease the infectivity, morbidity, and mortality associated with pathogenic exposure are needed.
- Such compositions and methods should preferably not have the undesirable properties of promoting microbial resistance, or of being toxic to the recipient.
- the present invention relates to compositions and methods for decreasing the infectivity, morbidity, and rate of mortality associated with a variety of pathogens.
- the present invention also relates to methods and compositions for decontaminating areas, samples, solutions, and foodstuffs colonized or otherwise infected by pathogens and microorganisms.
- Certain embodiments of the present compositions are nontoxic and may be safely ingested by humans and other animals. Additionally, certain embodiments of the present invention are chemically stable and non-staining.
- the present invention provides compositions and methods suitable for treating animals, including humans, exposed to pathogens or the threat of pathogens.
- the animal is contacted with effective amounts of the compositions prior to exposure to pathogenic organisms.
- the animal is contacted with effective amounts of the compositions after exposure to pathogenic organisms.
- the present invention contemplates both the prevention and treatment of microbiological infections.
- the present invention provides compositions and methods suitable for decontaminating solutions and surfaces, including organic and inorganic samples that are exposed to pathogens or suspected of containing pathogens.
- the compositions are used as additives to prevent the growth of harmful or undesired microorganisms in biological and environmental samples.
- the emulsion further comprises a solvent.
- the solvent comprises an organic phosphate solvent .
- the organic phosphate-based solvent comprises dialkyl phosphates or trialkyl phosphates (e.g., tributyl phosphate).
- the emulsion further comprises an alcohol.
- the solvent is provided in the oil phase of the composition.
- compositions of the present invention further comprise one or more surfactants or detergents.
- the surfactant is a non-anionic detergent.
- the non-anionic detergent is a polysorbate surfactant.
- the non-anionic detergent is a polyoxyethylene ether.
- Surfactants that find use in the present invention include, but are not limited to surfactants such as the TWEEN, TRITON, and TYLOXAPOL families of compounds.
- compositions of the present invention further comprise one or more cationic halogen containing compounds, including but not limited to, cetylpyridinium chloride.
- compositions of the present invention further comprise one or more compounds that promote or enhance the germination ("germination enhancers") of certain microorganism, and in particular the spore form of certain bacteria.
- Germination enhancers contemplated for formulation with the inventive compositions include, but are not limited to, L-alanine, Inosine, CaCl 2 , and NH 4 C1, and the like.
- compositions of the present invention further comprise one or more compounds that increase the interaction ("interaction enhancers") of the composition with microorganisms (e.g., chelating agents like ethylenediaminetetraacetic acid, or ethylenebis(oxyethylenenitrilo)tetraacetic acid in a buffer).
- interaction enhancers e.g., chelating agents like ethylenediaminetetraacetic acid, or ethylenebis(oxyethylenenitrilo)tetraacetic acid in a buffer.
- the formulations further comprise coloring or flavoring agents (e.g. , dyes and peppermint oil).
- the composition further comprises an emulsifying agent to aid in the formation of emulsions.
- Emulsifying agents include compounds that aggregate at the oil/water interface to form a kind of continuous membrane that prevents direct contact between two adjacent droplets.
- Certain embodiments of the present invention feature oil-in-water emulsion compositions that may readily be diluted with water to a desired concentration without impairing their anti-pathogenic properties.
- oil-in-water emulsions can also contain other lipid structures, such as small lipid vesicles (e.g., lipid spheres that often consist of several substantially concentric lipid bilayers separated from each other by layers of aqueous phase), micelles (e.g., amphiphilic molecules in small , clusters of 50-200 molecules arranged so that the polar head groups face outward toward the aqueous phase and the apolar tails are sequestered inward away from the aqueous phase), or lamellar phases (lipid dispersions in which each particle consists of parallel amphiphilic bilayers separated by thin films of water).
- small lipid vesicles e.g., lipid spheres that often consist of several substantially concentric lipid bilayers separated from each other by layers of aqueous phase
- micelles e.g., amphiphilic molecules in small , clusters of 50-200 molecules arranged so that the polar head groups face outward toward the aqueous phase
- SLPs surfactant lipid preparations
- SLPs are minimally toxic to mucous membranes and are believed to be metabolized within the small intestine (See e.g., Hamouda et al, J. Infect. Disease 180:1939 [1998]). SLPs are non-corrosive to plastics and metals in contrast to disinfectants such as bleach. As such, formulations of the present invention based on SLPs are contemplated to be particularly useful against bacteria, fungi, viruses and other pathogenic entities.
- Certain embodiments of the present invention contemplate methods for decreasing the infectivity of microorganisms (e.g., pathogenic agents) comprising contacting the pathogen with a composition comprising an oil-in-water emulsion.
- the emulsion is in the form of an oil phase distributed in an aqueous phase with a surfactant, the oil phase includes an organic phosphate based solvent and a carrier oil.
- two or more distinct emulsions are exposed to the pathogen.
- the emulsions are fusigenic and/or lysogenic.
- the oil phase used in the method comprises a non-phosphate based solvent (e.g., an alcohol).
- the contacting is performed for a time sufficient to kill the pathogenic agent or to inhibit the growth of the agent.
- the present invention provides a method of decontaminating an environmental surface harboring harmful or undesired pathogens.
- the pathogenic agent is associated with an environmental surface and the method comprises contacting the environmental surface with an amount of the composition sufficient for decontaminating the surface. While it may be so desired, decontamination need not result in total elimination of the pathogen.
- the compositions and methods further comprise dyes, paints, and other marking and identification compounds to as to ensure that a treated surface has been sufficiently treated with the compositions of the present invention.
- an animal is treated internally with a composition of the present invention.
- the contacting is via intradermal, subcutaneous, intramuscular or intraperitoneal injection.
- the contacting is via oral, nasal, buccal, rectal, vaginal or topical administration.
- the present compositions are administered as pharmaceuticals, it is contemplated that the compositions further comprise pharmaceutically acceptable adjutants, excipients, stabilizers, diluents, and the like.
- the present invention contemplates compositions further comprising additional pharmaceutically acceptable bioactive molecules (e.g., antibodies, antibiotics, means for nucleic acid transfection, vitamins, minerals, co-factors, etc.).
- the present invention provides a composition comprising an oil-in-water emulsion, said oil-in-water emulsion comprising a discontinuous oil phase distributed in an aqueous phase, a first component comprising an alcohol or glycerol, and a second component comprising a surfactant or a halogen- containing compound.
- the aqueous phase can comprise any type of aqueous phase including, but not limited to, water (e.g., diH 2 O, distilled water, tap water) and solutions (e.g., phosphate buffered saline solution).
- the oil phase can comprise any type of oil including, but not limited to, plant oils (e.g., soybean oil, avocado oil, flaxseed oil, coconut oil, cottonseed oil, squalene oil, olive oil, canola oil, corn oil, rapeseed oil, safflower oil, and sunflower oil), animal oils (e.g., fish oil), flavor oil, water insoluble vitamins, mineral oil, and motor oil.
- plant oils e.g., soybean oil, avocado oil, flaxseed oil, coconut oil, cottonseed oil, squalene oil, olive oil, canola oil, corn oil, rapeseed oil, safflower oil, and sunflower oil
- animal oils e.g., fish oil
- flavor oil water insoluble vitamins, mineral oil, and motor oil.
- the oil phase comprises 30-90 vol% of the oil-in-water emulsion (i.e., constitutes 30-90% of the total volume of the final emulsion), more preferably 50-80%. While the present invention
- the surfactant is a polysorbate surfactant (e.g., TWEEN 20, TWEEN 40, TWEEN 60, and TWEEN 80), a pheoxypolyethoxyethanol (e.g., TRITON X-100, X-301, X-165, X-102, and X-200, and TYLOXAPOL) or sodium dodecyl sulfate.
- a polysorbate surfactant e.g., TWEEN 20, TWEEN 40, TWEEN 60, and TWEEN 80
- a pheoxypolyethoxyethanol e.g., TRITON X-100, X-301, X-165, X-102, and X-200
- TYLOXAPOL sodium dodecyl sulfate
- the halogen-containing compound comprises a cetylpyridinium halides, cetyltrimethylammonium halides, cetyldimethylethylammonium halides, cetyldimethylbenzylammonium halides, cetyltributylphosphonium halides, dodecyltrimethylammonium halides, tetradecyltrimethylammonium halides, cetylpyridinium chloride, cetyltrimethylammonium chloride, cetylbenzyldimethylammonium chloride, cetylpyridinium bromide, cetyltrimethylammonium bromide, cetyidimethylethylammonium bromide, cetyltributylphosphonium bromide, dodecyltrimethylammonium bromide, or tetrad ecyltrimethyl
- the emulsions may further comprise third, fourth, fifth, etc. components.
- an additional component is a surfactant (e.g., a second surfactant), a germination enhancer, a phosphate based solvent (e.g., tributyl phosphate), a neutramingen, L-alanine, ammonium chloride, trypticase soy broth, yeast extract, L- ascorbic acid, lecithin, p-hyroxybenzoic acid methyl ester, sodium thiosulate, sodium citrate, inosine, sodium hyroxide, dextrose, and polyethylene glycol (e.g., PEG 200, PEG 2000, etc.).
- a surfactant e.g., a second surfactant
- a germination enhancer e.g., tributyl phosphate
- a neutramingen e.g., L-alanine, ammonium chloride, tryptica
- the present invention also provides non-toxic, non-irritant, a composition comprising an oil-in-water emulsion, said oil-in-water emulsion comprising a quaternary ammonium compound, wherein said oil-in-water emulsion is antimicrobial against bacteria, virus, fungi, and spores.
- the oil-in-water emulsion has no detectable toxicity to plants or animals (e.g., to humans).
- the oil-in-water emulsion causes no detectable irritation to plants or animals (e.g., to humans).
- the oil-in-water emulsion further comprises any of the components described above.
- Quaternary ammonium compounds include, but are not limited to, N-alkyldimethyl benzyl ammonium saccharinate, 1,3,5- Triazine-l,3,5(2H,4H,6H)-triethanol; 1-Decanaminium, N-decyl-N, N-dimethyl-, chloride (or) Didecyl dimethyl ammonium chloride; 2-(2-(p-(Diisobuyl)cresosxy)ethoxy)ehyl dimethyl benzyl ammonium chloride; 2-(2-(p-(Diisobutyl)phenoxy)ethoxy)ethyl dimethyl benzyl ammonium chloride; alkyl 1 or 3 benzyl- l-(2-hydroxethyl)-2-imidazolinium chloride; alkyl bis(2-hydroxyethyl) benzyl ammonium chloride; alkyl demethyl benzyl ammonium chloride; al
- the present invention also provides methods of making each of the emulsions disclosed herein.
- the present invention provides a method of making a oil- in-water emulsion comprising emulsifying a mixture, said mixture comprising an oil, an aqueous solution, a first component comprising an alcohol or glycerol, and a second component comprising a surfactant or a halogen-containing compound.
- the present invention further provides methods for protecting (e.g., protecting from contamination of a microorganism) or decontaminating an area (e.g., decontaminating an area by removing or reducing the number of microorganisms in the area) comprising exposing the area to a composition comprising an oil-in-water emulsion (e.g., any of the oil-in-water emulsions described herein).
- a composition comprising an oil-in-water emulsion (e.g., any of the oil-in-water emulsions described herein).
- the method may be applied to any type of area.
- the area comprises a solid surface (e.g., a medical device), a solution, the surface of an organism (e.g., an external or internal portion of a human), or a food product.
- the present invention also provides methods for modifying any of the emulsions described herein, comprising: providing the emulsion and adding or removing a component from the emulsion to produce a modified emulsion.
- the method further comprises the step of testing the modified emulsion in a biological assay (e.g., an antimicrobrial assay to determine the effectiveness of the emulsion at reducing the amount of microorganisms associated with a treated area).
- a biological assay e.g., an antimicrobrial assay to determine the effectiveness of the emulsion at reducing the amount of microorganisms associated with a treated area.
- the present invention also contemplates methods of using such modified emulsion in commerce. For example, in some embodiments, the method further comprises the step of advertising the sale of the modified emulsion and/or selling the modified emulsion.
- the present invention also provides systems comprising a delivery system (e.g. , a container, dispenser, packaging etc.) containing any of the oil-in-water emulsions described herein.
- the present invention further comprises a system comprising a material in contact with any of the oil-in-water emulsions described herein.
- materials include, but are not limited to, medical devices, solutions, food products, cleaning products, motor oils, creams, and biological materials (e.g., human tissues).
- Figure 1 illustrates the bactericidal efficacy of an emulsion of the present invention on B. cereus spores.
- Figure 2A- Figure 2C illustrate bacterial smears showing the bactericidal efficacy of an emulsion of the present invention on B. cereus spores.
- Figure 3 illustrates the sporicidal activity of different dilutions of an emulsion of the present invention on different B. anthracis spores.
- Figure 4 illustrates a comparison of the sporicidal activity of an emulsion of the present invention and bleach over time.
- Figure 5 illustrates a comparison of the sporicidal activity of an emulsion of the present invention and bleach over time.
- Figure 6 illustrates the sporicidal activity of different dilutions of an emulsion of the present invention in media on different B. anthracis spores.
- Figure 7 illustrates the time course for the sporicidal activity of an emulsion of the present invention against B. anthracis from Del Rio, TX.
- Figure 8 depicts an electron micrograph of E. coli (10,000X).
- Figure 9 depicts an electron micrograph of E. coli treated with BCTP (10,000X).
- Figure 10 depicts an electron micrograph of E. coli treated with W 80 8P (10,000X).
- Figure 11 depicts an electron micrograph of Vibrio cholerae (25,000X).
- Figure 12 depicts an electron micrograph of Vibrio cholerae treated with W 80 8P (25,000X).
- Figure 13 depicts an electron micrograph of Vibrio cholerae treated with BCTP (25,000X).
- Figure 14 depicts an electron micrograph of Vibrio cholerae treated with X 8 W 60 PC (25,000X).
- Figure 15 illustrates the effect of BCTP, W 80 8P and X 8 W 60 PC on influenza A activity.
- Figure 16 illustrates the sporicidal activity of BCTP against 4 different Bacillus species compared to that of X 8 W 60 PC against 2 Bacillus species.
- BCTP showed a significant sporicidal activity after 4 hours of treatment against Bacillus cereus, Bacillus circulans, and Bacillus megaterium spores, but not against Bacillus subtilis spores.
- X 8 W 60 PC in 4 hours, showed more effective killing against B. cereus and also had a sporicidal activity against B. subtilis which was resistant to BCTP.
- Figure 17 illustrates the time course of the nanoemulsion sporicidal activity against Bacillus cereus. Incubation with BCTP diluted 1:100 resulted in 95% killing in 4 hours. Incubation with X 8 W 60 PC diluted 1:1000 resulted in 95% killing in only 30 minutes.
- Figure 18 depicts electron micrographs of Bacillus cereus spores pre- and post- treatment with BCTP. Note, the uniform density in the cortex and the well-defined spore coat before treatment with BCTP. Spores after 4 hours of BCTP treatment show disruption in both the spore coat and the cortex with loss of core components.
- Figure 19 illustrates the effects of germination inhibition and stimulation on the sporicidal activity of BCTP diluted 1:100.
- BCTP sporicidal activity was delayed in the presence of 10 mM D-alanine (germination inhibition), and accelerated in the presence of 50 ⁇ M L-alanine and 50 ⁇ M Inosine (germination stimulation).
- Figure 20A- Figure 20F depict gross and histologic photographs of animals injected subcutaneously with different combinations of BCTP and B. cereus spores.
- Figure 20A and Figure 20B illustrate animals that were injected with BCTP alone at a dilution of 1:10. There was no gross tissue damage and histology showed no inflammation.
- Figure 20C and Figure 20D illustrate animals that were injected with 4xl0 7 Bacillus cereus spores alone subcutaneously. A large necrotic area resulted with an average area of 1.68 cm 2 . Histology of this area showed essentially complete tissue necrosis of the epidermis and dermis including subcutaneous fat and muscle.
- Figure 20E and Figure 20F depict mice that were injected with 4xl0 7 Bacillus spores which had been immediately premixed with the BCTP nanoemulsion at final dilution 1:10. These animals showed minimal skin lesions with average area 0.02 cm 2 (an approximate 98% reduction from those lesions resulting from an untreated infection with spores). Histology in Figure 20F indicates some inflammation, however most of the cellular structures in the epidermis and dermis were intact. All histopathology is shown at 4X magnification.
- Figure 21A- Figure 21F depict gross and histological photographs of animals with experimental wounds infected with Bacillus cereus spores.
- Figure 21 A and Figure 2 IB depict mice with experimental wounds that were infected with 2.5xl0 7 Bacillus cereus spores but not treated. Histological examination of these wounds indicated extensive necrosis and a marked inflammatory response.
- Figure 21 C and Figure 2 ID depict mice with wounds that were infected with 2.5x10 7 Bacillus cereus spores and irrigated 1 hour later with saline. By 48 hours, there were large necrotic areas surrounding the wounds with an average area of 4.86 cm 2 . In addition, 80% of the animals in this group died as a result of the infection.
- FIG. 21E and Figure 2 IF depict mice with wounds that were infected with 2.5x10 7 Bacillus cereus spores and irrigated 1 hour later with a 1:10 dilution of BCTP. There were small areas of necrosis adjacent to the wounds (0.06 cm 2 ) which was reduced 98% compared to animals receiving spores and saline irrigation. In addition, only 20% of animals died from these wounds. Histology of these lesions showed no evidence of vegetative Bacillus illustrates several particular embodiments the various emulsions of the present invention.
- Figure 22 illustrates the inhibition of influenza A infection by surfactant lipid preparations.
- Figure 22A represents BCTP, W 80 8P, SS, and NN;
- FIG. 22B BCTP and SS.
- Virus was incubated with SLPs for 30 min. and subsequently diluted and overlaid on cells. Inhibition of influenza A infection was measured using cellular ELISA. Each data point represents the mean of three replicates +/- one standard error.
- Figure 23 illustrates the efficacy of BCTP as an anti-influenza agent as compared to TRITON X-100.
- Influenza A virus was treated with BCTP, tri(n-butyl)phosphate/TRITON X-100/soybean oil (TTO), TRITON X-100/soybean oil (TO), and TRITON X-100 (T) alone for 30 min.
- the concentration of TRITON X-100 was the same in all preparations used for treatment.
- Inhibition of influenza A infection was measured using cellular ELISA. Each data point represents the mean of three replicates +/- one standard error.
- Figure 24 shows that BCTP does not affect adenovirus infectivity.
- Adenoviral vector (AD.RSV ntlacZ) was treated with three dilutions of BCTP for 30 min. and subsequently used for transfection of 293 cells. Five days later the 6-galactosidase assay was performed. Each data point represents the mean of eight replicates +/- one standard error.
- Figure 25 illustrates the structures of influenza A and adenovirus viewed with electron microscopy. Viruses were either untreated or incubated with BCTP at 1:100 dilution for 15 and 60 min at room temperature and were subjected to electron microscopy fixation procedure as described in the Examples.
- Figure 25A illustrates the influenza A virus untreated
- Figure 25B illustrates influenza A virus incubated with BCTP for 15 min
- Figure 25C illustrates the adenovirus untreated
- Figure 25D illustrates the adenovirus incubated with BCTP for 60 min.
- magnification 200,000x.
- the bar represents 200nm.
- Figure 26 illustrates the antibacterial properties of 1% and 10% BCTP. The bactericidal effect (% killing) was calculated as: cfu(initial) - cfu(post-treatmenf) x 100 cfu(initial)
- Figure 27 illustrates the antiviral properties of 10% and 1% BCTP as assessed by plaque reduction assays.
- Figure 28 illustrates exemplary organisms that are target for the emulsions of the present invention.
- Figure 29 illustrates several particular embodiments of the various emulsion compositions invention and certain uses for the emulsions.
- Figure 30 illustrates several particular embodiments of the various emulsion compositions invention and certain uses for the emulsions.
- Figure 31 schematically depicts various generalized formulations and uses of certain embodiments of the present invention.
- Figure 31 A shows the log reduction of E. coli by various nanoemulsions of the present invention for 10%, 1% and 0.10% dilutions of the nanoemulsion.
- Figure 3 IB shows log reduction of B. globigii spores by various nanoemulsions of the present invention for 10%, 1% and 0.10% dilutions of the nanoemulsion.
- Figure 31C shows log reduction of influenza A (pfu/ml) by various nanoemulsions of the present invention for 10%, 1% and 0.10% dilutions of the nanoemulsion.
- Figure 32 shows a graph of the log reduction of S. typhimurium treated with an emulsion of the present invention in the presence of ⁇ DTA at 40°C.
- Figure 33 shows a graph of the log reduction of S. typhimurium treated with an emulsion of the present invention in the presence of ⁇ DTA at 50°C.
- Figure 34 shows the lytic effect of an emulsion of the present invention compared to the lytic effect of its non-emulsified ingredients.
- Figure 35 shows the log reduction of Mycobacteria fortuitum by an emulsion of the present invention at room temperature and 37°C.
- Figure 36 shows data for the decontamination of a surface using an emulsion of the present invention.
- microorganism refers to microscopic organisms and taxonomically related macroscopic organisms within the categories of algae, bacteria, fungi (including lichens), protozoa, viruses, and subviral agents.
- the term microorganism encompasses both those organisms that are in and of themselves pathogenic to another organism (e.g., animals, including humans, and plants) and those organisms that produce agents that are pathogenic to another organism, while the organism itself is not directly pathogenic or infective to the other organism.
- pathogen refers to an organism, including microorganisms, that causes disease in another organism (e.g., ammals and plants) by directly infecting the other organism, or by producing agents that causes disease in another organism (e.g., bacteria that produce pathogenic toxins and the like).
- disease refers to a deviation from the condition regarded as normal or average for members of a species, and which is detrimental to an affected individual under conditions that are not inimical to the majority of individuals of that species (e.g., diarrhea, nausea, fever, pain, and inflammation etc).
- a disease may be caused or result from contact by microorganisms and/or pathogens.
- host refers to organisms to be treated by the compositions of the present invention. Such organisms include organisms that are exposed to, or suspected of being exposed to, one or more pathogens. Such organisms also include organisms to be treated so as to prevent undesired exposure to pathogens. Organisms include, but are not limited to animals (e.g., humans, domesticated animal species, wild animals) and plants.
- the term "inactivating,” and grammatical equivalents, means having the ability to kill, eliminate or reduce the capacity of a pathogen to infect and/or cause a pathological responses in a host.
- fusigenic is intended to refer to an emulsion that is capable of fusing with the membrane of a microbial agent (e.g., a bacterium or bacterial spore).
- a microbial agent e.g., a bacterium or bacterial spore.
- fusigenic emulsions include, but are not limited to, W 80 8P described in U.S. Pat. Nos. 5,618,840; 5,547,677; and 5,549,901 and NP9 described in U.S. Pat. No. 5,700,679, each of which is herein incorporated by reference in their entireties.
- NP9 is a branched poly(oxy-l,2 ethaneolyl),alpha-(4-nonylphenal)-omega-hydroxy-surfactant. While not being limited to the following, NP9 and other surfactants that may be useful in the present invention are described in Table 1 of U.S. Patent 5,662,957, herein incorporated by reference in its entirety.
- lysogenic refers to an emulsion that is capable of disrupting the membrane of a microbial agent (e.g., a bacterium or bacterial spore).
- a microbial agent e.g., a bacterium or bacterial spore.
- An exemplary lysogenic composition is BCTP.
- the presence of both a lysogenic and a fusigenic agent in the same composition produces an enhanced inactivating effect than either agent alone. Methods and compositions using this improved antimicrobial composition are described in detail herein.
- emulsion includes classic oil-in-water dispersions or droplets, as well as other lipid structures that can form as a result of hydrophobic forces that drive apolar residues (i.e., long hydrocarbon chains) away from water and drive polar head groups toward water, when a water immiscible oily phase is mixed with an aqueous phase.
- lipid structures include, but are not limited to, unilamellar, paucilamellar, and multilamellar lipid vesicles, micelles, and lamellar phases.
- nanoemulsion refers to oil-in-water dispersions comprising small lipid structures.
- the nanoemulsion comprise an oil phase having droplets with a mean particle size of approximately 0.1 or less to 5 microns (e.g., 0.1 to 1.0).
- emulsion and nanoemulsion are often used herein, interchangeably, to refer to the nanoemulsions of the present invention.
- the terms "contacted” and “exposed,” refers to bringing one or more of the compositions of the present invention into contact with a pathogen or a sample to be protected against pathogens such that the compositions of the present invention may inactivate the microorganism or pathogenic agents, if present.
- the present invention contemplates that the disclosed compositions are contacted to the pathogens or microbial agents in sufficient volumes and/or concentrations to inactivate the pathogens or microbial agents.
- surfactant refers to any molecule having both a polar head group, which energetically prefers solvation by water, and a hydrophobic tail which is not well solvated by water.
- cationic surfactant refers to a surfactant with a cationic head group.
- anionic surfactant refers to a surfactant with an anionic head group.
- HLB Index Number refers to an index for correlating the chemical structure of surfactant molecules with their surface activity.
- the HLB Index Number may be calculated by a variety of empirical formulas as described by Meyers, (Meyers, Surfactant Science and Technology, VCH Publishers Inc., New York, pp. 231-245 [1992]), incorporated herein by reference.
- the HLB Index Number of a surfactant is the HLB Index Number assigned to that surfactant in McCutcheon's Volume 1: Emulsifiers and Detergents North American Edition, 1996 (incorporated herein by reference).
- the HLB Index Number ranges from 0 to about 70 or more for commercial surfactants. Hydrophilic surfactants with high solubility in water and solubilizing properties are at the high end of the scale, while surfactants with low solubility in water which are good solubilizers of water in oils are at the low end of the scale.
- germination enhancers describe compounds that act to enhance the germination of certain strains of bacteria (e.g., L-amino acids [L-alanine], CaCl 2 , Inosine, etc).
- interaction enhancers describes compounds that act to enhance the interaction of an emulsion with the cell wall of a bacteria (e.g. , a Gram negative bacteria).
- Contemplated interaction enhancers include but are not limited to chelating agents (e.g., ethylenediaminetetraacetic acid [EDTA], ethylenebis(oxyethylenenitrilo)tetraacetic acid [EGTA], and the like) and certain biological agents (e.g., bovine serum albumin [BSA] and the like).
- buffer or “buffering agents” refer to materials which when added to a solution, cause the solution to resist changes in pH.
- reducing agent and "electron donor” refer to a material that donates electrons to a second material to reduce the oxidation state of one or more of the second material's atoms.
- monovalent salt refers to any salt in which the metal (e.g., Na, K, or Li) has a net 1+ charge in solution (i.e., one more proton than electron).
- divalent salt refers to any salt in which a metal (e.g., Mg, Ca, or Sr) has a net 2+ charge in solution.
- chelator or “chelating agent” refer to any materials having more than one atom with a lone pair of electrons that are available to bond to a metal ion.
- solution refers to an aqueous or non-aqueous mixture.
- the term "therapeutic agent,” refers to compositions that decrease the infectivity, morbidity, or onset of mortality in a host contacted by a pathogenic microorganism or that prevent infectivity, morbidity, or onset of mortality in a host contacted by a pathogenic microorganism.
- Such agents may additionally comprise pharmaceutically acceptable compounds (e.g., adjutants, excipients, stabilizers, diluents, and the like).
- the therapeutic agents of the present invention are administered in the form of topical emulsions, injectable compositions, ingestable solutions, and the like.
- the route is topical, the form may be, for example, a cream, ointment, salve or spray.
- compositions of the present invention may be formulated for horticultural or agricultural use. Such formulations include dips, sprays, seed dressings, stem injections, sprays, and mists.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, wetting agents (e.g., sodium lauryl sulfate), isotonic and absorption delaying agents, disintrigrants (e.g., potato starch or sodium starch glycolate), and the like.
- topically refers to application of the compositions of the present invention to the surface of the skin and mucosal cells and tissues (e.g., alveolar, buccal, lingual, masticatory, or nasal mucosa, and other tissues and cells which line hollow organs or body cavities).
- mucosal cells and tissues e.g., alveolar, buccal, lingual, masticatory, or nasal mucosa, and other tissues and cells which line hollow organs or body cavities.
- topically active agents refers to compositions of the present invention that elicit pharmacological responses at the site of application (contact) to a host.
- systemically active drugs is used broadly to indicate a substance or composition which will produce a pharmacological response at a site remote from the point of application or entry into a subject.
- Medical devices includes any material or device that is used on, in, or through a patient's body in the course of medical treatment (e.g., for a disease or injury).
- Medical devices include, but are not limited to, such items as medical implants, wound care devices, drug delivery devices, and body cavity and personal protection devices.
- the medical implants include, but are not limited to, urinary catheters, intravascular catheters, dialysis shunts, wound drain tubes, skin sutures, vascular grafts, implantable meshes, intraocular devices, heart valves, and the like.
- Wound care devices include, but are not limited to, general wound dressings, biologic graft materials, tape closures and dressings, and surgical incise drapes.
- Drug delivery devices include, but are not limited to, needles, drug delivery skin patches, drug delivery mucosal patches and medical sponges.
- Body cavity and personal protection devices include, but are not limited to, tampons, sponges, surgical and examination gloves, and toothbrushes.
- birth control devices include, but are not limited to, inter uterin devices (IUDs), diaphragms, and condoms.
- the term “purified” or “to purify” refers to the removal of contaminants or undesired compounds from a sample or composition.
- the term “substantially purified” refers to the removal of from about 70 to 90%, up to 100%, of the contaminants or undesired compounds from a sample or composition.
- the term "surface” is used in its broadest sense. In one sense, the term refers to the outermost boundaries of an organism or inanimate object (e.g., vehicles, buildings, and food processing equipment, etc.) that are capable of being contacted by the compositions of the present invention (e.g., for animals: the skin, hair, and fur, etc., and for plants: the leaves, stems, flowering parts, and fruiting bodies, etc.).
- an organism or inanimate object e.g., vehicles, buildings, and food processing equipment, etc.
- the compositions of the present invention e.g., for animals: the skin, hair, and fur, etc., and for plants: the leaves, stems, flowering parts, and fruiting bodies, etc.
- the term also refers to the inner membranes and surfaces of animals and plants (e.g., for animals: the digestive tract, vascular tissues, and the like, and for plants: the vascular tissues, etc.) capable of being contacted by compositions by any of a number of transdermal delivery routes (e.g., injection, ingestion, transdermal delivery, inhalation, and the like).
- transdermal delivery routes e.g., injection, ingestion, transdermal delivery, inhalation, and the like.
- sample is used in its broadest sense. In one sense it can refer to animal cells or tissues. In another sense, it is meant to include a specimen or culture obtained from any source, such as biological and environmental samples. Biological samples may be obtained from plants or animals (including humans) and encompass fluids, solids, tissues, and gases. Environmental samples include environmental material such as surface matter, soil, water, and industrial samples. These examples are not to be construed as limiting the sample types applicable to the present invention.
- the present invention comprises compositions and methods for decreasing the infectivity, morbidity, and rate of mortality associated with a variety of microbial and pathogenic organisms.
- the present invention also relates to methods and compositions for decontaminating areas colonized or otherwise infected by pathogenic organisms.
- the present invention relates to methods and compositions for decreasing the infectivity of pathogenic organisms in foodstuffs.
- decreased pathogenic organism infectivity, morbidity, and mortality is accomplished by contacting the pathogenic organism with an oil-in-water composition comprising an aqueous phase, and oil phase, an at least one other compound.
- compositions of the present invention are non-toxic, non-irritant, and non-corrosive, while possessing potency against a broad spectrum of microorganisms, including bacteria, fungi, viruses, and spores.
- Certain illustrative embodiments of the present invention are described below. The present invention is not limited to these specific embodiments. The description is provided in the following sections: I) Exemplary Compositions; II) Exemplary Formulation Techniques; III) Properties and Activities; IV) Uses; and V) Specific Examples.
- the emulsions of the present invention comprise (i) an aqueous phase; (ii) an oil phase; and at least one additional compound.
- these additional compounds are admixed into either the aqueous or oil phases of the composition.
- these additional compounds are admixed into a composition of previously emulsified oil and aqueous phases.
- one or more additional compounds are admixed into an existing emulsion composition immediately prior to its use.
- one or more additional compounds are admixed into an existing emulsion composition prior to the compositions immediate use.
- Additional compounds suitable for use in the compositions of the present invention include but are not limited to one or more organic, and more particularly, organic phosphate based solvents, surfactants and detergents, cationic halogen containing compounds, germination enhancers, interaction enhancers, food additives (e.g., flavorings, sweetners, bulking agents, and the like) and pharmaceutically acceptable compounds.
- organic phosphate based solvents e.g., benzyl phosphate based solvents, surfactants and detergents, cationic halogen containing compounds, germination enhancers, interaction enhancers, food additives (e.g., flavorings, sweetners, bulking agents, and the like) and pharmaceutically acceptable compounds.
- the emulsion comprises about 5 to 60, preferably 10 to 40, more preferably 15 to 30, vol. % aqueous phase, based on the total volume of the emulsion, although higher and lower amounts are contemplated.
- the aqueous phase comprises water at a pH of about 4 to 10, preferably about 6 to 8.
- the pH is preferably 6 to 8.
- the water is preferably deionized (hereinafter "DiH 2 O") or distilled.
- the aqueous phase comprises phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- the aqueous phase, and any additional compounds provided in the aqueous phase may further be sterile and pyrogen free.
- the oil phase (e.g., carrier oil) of the emulsion of the present invention comprises 30-90, preferably 60-80, and more preferably 60-70, vol. % of oil, based on the total volume of the emulsion, although higher and lower amounts are contemplated.
- suitable oils include, but are not limited to, soybean oil, avocado oil, flaxseed oil, coconut oil, cottonseed oil, squalene oil, olive oil, canola oil, corn oil, rapeseed oil, safflower oil, sunflower oil, pine oil (e.g., 15%), Olestra oil, fish oils, flavor oils, water insoluble vitamins and mixtures thereof.
- soybean oil is used.
- oils include motor oils, mineral oils, and butter.
- the oil phase is preferably distributed throughout the aqueous phase as droplets having a mean particle size in the range from about 1-2 microns, more preferably from 0.2 to 0.8, and most preferably about 0.8 microns.
- the aqueous phase can be distributed in the oil phase.
- very small droplet sizes are utilized (e.g., less than 0.5 microns) to produce stable nanoemulsion compositions. It is contemplated that small droplet comprosition also provide clear solutions, which may find desired use in certain product types.
- the oil phase comprises 3-15, preferably 5-10 vol. % of an organic solvent, based on the total volume of the emulsion, although higher and lower amounts are contemplated. While the present invention is not limited to any particular mechanism, it is contemplated that the organic phosphate-based solvents employed in the emulsions serve to remove or disrupt the lipids in the membranes of the pathogens. Thus, any solvent that removes the sterols or phospholipids in the microbial membranes finds use in the emulsions of the present invention. Suitable organic solvents include, but are not limited to, organic phosphate based solvents or alcohols.
- the organic phosphate based solvents include, but are not limited to, dialkyl- and trialkyl phosphates (e.g., tri-n-butyl phosphate [TBP]) in any combination.
- TBP tri-n-butyl phosphate
- a particularly preferred trialkyl phosphate in certain embodiments comprises tri-n-butyl phosphate, which is a plasticizer.
- each alkyl group of the di- or trialkyl phosphate has from one to ten or more carbon atoms, more preferably two to eight carbon atoms.
- the present invention also contemplates that each alkyl group of the di- or trialkyl phosphate may or may not be identical to one another.
- mixtures of different dialkyl and trialkyl phosphates can be employed.
- solvents include, but are not limited to, methanol, ethanol, propanol and octanol.
- the alcohol is ethanol.
- the oil phase, and any additional compounds provided in the oil phase may further be sterile and pyrogen free.
- compositions of the present invention further comprise one or more surfactants or detergents (e.g., from about 3 to 15 %, and preferably about 10%, although higher and lower amounts are contemplated). While the present invention is not limited to any particular mechanism, and an understanding of the mechanism is not required to practice the present invention, it is contemplated that surfactants, when present in the compositions, help to stabilize the compositions. Both non-ionic (non- anionic) and ionic surfactants are contemplated. Additionally, surfactants from the BRIJ family of surfactants find use in the compositions of the present invention. The surfactant can be provided in either the aqueous or the oil phase.
- Surfactants suitable for use with the emulsions include a variety of anionic and nonionic surfactants, as well as other emulsifying compounds that are capable of promoting the formation of oil-in-water emulsions.
- emulsifying compounds are relatively hydrophilic, and blends of emulsifying compounds can be used to achieve the necessary qualities.
- nonionic surfactants have advantages over ionic emulsifiers in that they are substantially more compatible with a broad pH range and often form more stable emulsions than do ionic (e.g., soap-type) emulsifiers.
- the compositions of the present invention comprises one or more non-ionic surfactants such as a polysorbate surfactants (e.g., polyoxyethylene ethers), polysorbate detergents, pheoxypolyethoxyethanols, and the like.
- a polysorbate surfactants e.g., polyoxyethylene ethers
- polysorbate detergents e.g., polysorbate detergents
- pheoxypolyethoxyethanols pheoxypolyethoxyethanols
- polysorbate detergents useful in the present invention include, but are not limited to, TWEEN 20, TWEEN 40, TWEEN 60, TWEEN 80, etc.
- TWEEN 60 polyoxyethylenesorbitan monostearate
- TWEEN 40 and TWEEN 80 comprise polysorbates that are used as emulsifiers in a number of pharmaceutical compositions. In some embodiments of the present invention, these compounds are also used as co-components with adjuvants. TWEEN surfactants also appear to have virucidal effects on lipid-enveloped viruses (See e.g., Eriksson et al, Blood Coagulation and Fibtinolysis 5 (Suppl. 3):S37-S44 [1994]).
- pheoxypolyethoxyethanols, and polymers thereof, useful in the present invention include, but are not limited to, TRITON (e.g., X-100, X-301, X-165, X-102, X-200), and TYLOXAPOL.
- TRITON X-100 is a strong non-ionic detergent and dispersing agent widely used to extract lipids and proteins from biological structures. It also has virucidal effect against broad spectrum of enveloped viruses (See e.g., Maha and Igarashi, Southeast Asian J. Trop. Med. Pub. Health 28:718 [1997]; and Portocala et al, Virologie 27:261 [1976]). Due to this anti-viral activity, it is employed to inactivate viral pathogens in fresh frozen human plasma (See e.g., Horowitz et al, Blood 79:826 [1992]).
- the surfactants TRITON X-100 t-octylphenoxypolyethoxyethanol
- TYLOXAPOL t-octylphenoxypolyethoxyethanol
- spermicides e.g., Nonoxynol-9
- Additional surfactants and detergents useful in the compositions of the present invention may be ascertained from reference works (e.g., McCutheon's Volume 1: Emulsions and Detergents - North American Edition, 2000).
- compositions that comprise a surfactant and an organic solvent are useful for inactivating enveloped viruses and Gram positive bacteria.
- compositions of the present invention further comprise a cationic halogen containing compound (e.g., from about 0.5 to 1.0 wt. % or more, based on the total weight of the emulsion, although higher and lower amounts are contemplated).
- a cationic halogen containing compound e.g., from about 0.5 to 1.0 wt. % or more, based on the total weight of the emulsion, although higher and lower amounts are contemplated.
- the cationic halogen-containing compound is preferably premixed with the oil phase; however, it should be understood that the cationic halogen-containing compound may be provided in combination with the emulsion composition in a distinct formulation.
- Suitable halogen containing compounds may be selected, for example, from compounds comprising chloride, fluoride, bromide and iodide ions.
- suitable cationic halogen containing compounds include, but are not limited to, cetylpyridinium halides, cetyltrimethylammonium halides, cetyldimethylethylammonium halides, cetyldimethylbenzylammonium halides, cetyltributylphosphonium halides, dodecyltrimethylammonium halides, or tetradecyltrimethylammonium halides.
- suitable cationic halogen containing compounds comprise, but are not limited to, cetylpyridinium chloride (CPC), cetyltrimethylammonium chloride, cetylbenzyldimethylammonium chloride, cetylpyridinium bromide (CPB), cetyltrimethylammonium bromide (CTAB), cetyidimethylethylammonium bromide, cetyltributylphosphonium bromide, dodecyltrimethylammonium bromide, and tetrad ecyltrimethylammonium bromide.
- the cationic halogen containing compound is CPC, although the compositions of the present invention are not limited to formulation with an particular cationic containing compound.
- addition of 1.0 % wt. or more of a cationic containing compound to the emulsion compositions of the present invention provides a composition that is useful in inactivating enveloped viruses, Gram positive bacteria, Gram negative bacteria and fungi.
- the compositions further comprise one or more germination enhancing compounds (e.g., from about 1 mM to 15 mM, and more preferably from about 5 mM to 10 mM, although higher and lower amounts are contemplated).
- the germination enhancing compound is provided in the aqueous phase prior to formation of the emulsion.
- the present invention contemplates that when germination enhancers are added to the disclosed compositions the sporicidal properties of the compositions are enhanced.
- the present invention further contemplates that such germination enhancers initiate sporicidal activity near neutral pH (between pH 6 - 8, and preferably 7).
- Such neutral pH emulsions can be obtained, for example, by diluting with phosphate buffer saline (PBS) or by preparations of neutral emulsions.
- PBS phosphate buffer saline
- the sporicidal activity of the compositions preferentially occurs when the spores initiate germination.
- the emulsions of the present invention have sporicidal activity. While the present invention is not limited to any particular mechanism, it is believed that the fusigenic component of the emulsions acts to initiate germination and before reversion to the vegetative form is complete the lysogenic component of the emulsion acts to lyse the newly germinating spore. These components of the emulsion thus act in concert to leave the spore susceptible to disruption by the emulsions. The addition of germination enhancer further facilitates the anti-sporicidal activity of the emulsions of the present invention, for example, by speeding up the rate at which the sporicidal activity occurs.
- Germination of bacterial endospores and fungal spores is associated with increased metabolism and decreased resistance to heat and chemical reactants. For germination to occur, the spore must sense that the environment is adequate to support vegetation and reproduction.
- the amino acid L-alanine stimulates bacterial spore germination (See e.g., Hills, J. Gen. Micro. 4:38 [1950]; and Halvorson and Church, Bacteriol Rev. 21 :112 [1957]).
- L-alanine and L-proline have also been reported to initiate fungal spore germination (Yanagita, Arch Mikrobiol 26:329 [1957]).
- Simple ⁇ -amino acids such as glycine and L-alanine, occupy a central position in metabolism.
- Transamination or deamination of ⁇ -amino acids yields the glycogenic or ketogenic carbohydrates and the nitrogen needed for metabolism and growth.
- transamination or deamination of L-alanine yields pyruvate which is the end product of glycolytic metabolism (Embden-Meyerhof-Parnas Pathway).
- Oxidation of pyruvate by pyruvate dehydrogenase complex yields acetyl-CoA, NADH, H + , and CO 2 .
- Acetyl-CoA is the initiator substrate for the tricarboxylic acid cycle (Kreb's Cycle) which in turns feeds the mitochondrial electron transport chain. Acetyl-CoA is also the ultimate carbon source for fatty acid synthesis as well as for sterol synthesis. Simple ⁇ -amino acids can provide the nitrogen, CO 2 , glycogenic and/or ketogenic equivalents required for germination and the metabolic activity that follows.
- suitable germination enhancing agents of the invention include, but are not limited to, ⁇ -amino acids comprising glycine and the L-enantiomers of alanine, valine, leucine, isoleucine, serine, threonine, lysine, phenylalanine, tyrosine, and the alkyl esters thereof. Additional information on the effects of amino acids on germination may be found in U.S. Pat. No. 5,510,104, herein inco ⁇ orated by reference in its entirety.
- a mixture of glucose, fructose, asparagine, sodium chloride (NaCl), ammonium chloride (NH 4 C1), calcium chloride (CaCl 2 ) and potassium chloride (KCl) also may be used.
- the formulation comprises the germination enhancers L-alanine, CaCl 2 , Inosine and NH 4 C1.
- the compositions further comprise one or more common forms of growth media (e.g., trypticase soy broth, and the like) that additionally may or may not itself comprise germination enhancers and buffers.
- a candidate germination enhancer should meet two criteria for inclusion in the compositions of the present invention: it should be capable of being associated with the emulsions of the present invention and it should increase the rate of germination of a target spore in the when inco ⁇ orated in the emulsions of the present invention.
- One skilled in the art can determine whether a particular agent has the desired function of acting as an germination enhancer by applying such an agent in combination with the compositions of the present invention to a target and comparing the inactivation of the target when contacted by the admixture with inactivation of like targets by the composition of the present invention without the agent. Any agent that increases germination, and thereby decrease or inhibits the growth of the organisms, is considered a suitable enhancer for use in the present invention.
- addition of a germination enhancer (or growth medium) to a neutral emulsion composition produces a composition that is useful in treating bacterial spores in addition to enveloped viruses, Gram negative bacteria, and Gram positive bacteria.
- the present invention provides antimicrobial compositions, including compositions that do not comprise emulsion or nanoemulsions, that comprise a germination enhancer.
- germination enhancers may be added to any other material (e.g., commercial disinfectants, solutions, etc.) to promote germination and increase the ability of a composition to kill or neutralize spores as compared to the acitivty of the composition in the absence of the germination enhancer(s).
- compositions of the present invention comprise one or more compounds capable of increasing the interaction of the compositions (i.e., "interaction enhancer") with target pathogens (e.g., the cell wall of Gram negative bacteria such as Vibrio, Salmonella, Shigella and Pseudomonas).
- target pathogens e.g., the cell wall of Gram negative bacteria such as Vibrio, Salmonella, Shigella and Pseudomonas.
- the interaction enhancer is preferably premixed with the oil phase; however, in other embodiments the interaction enhancer is provided in combination with the compositions after emulsification.
- the interaction enhancer is a chelating agent (e.g., ethylenediaminetetraacetic acid [EDTA] or ethylenebis(oxyethylenenitrilo)tetraacetic acid [EGTA] in a buffer [e.g., tris buffer]).
- chelating agents are merely exemplary interaction enhancing compounds. Indeed, other agents that increase the interaction of the compositions of the present invention with microbial agents and/or pathogens are contemplated.
- the interaction enhancer is at a concentration of about 50 to about 250 ⁇ M, although higher and lower amounts are contemplated.
- an interaction enhancer Any agent that increases the interaction and thereby decrease or inhibits the growth of the bacteria in comparison to that parameter in its absence is considered an interaction enhancer.
- the addition of an interaction enhancer to the compositions of the present invention produces a composition that is useful in treating enveloped viruses, some Gram positive bacteria and some Gram negative bacteria.
- the nanoemulsion composition comprise one or more additional components to provide a desired property or functionality to the nanoemulsions. These components may be inco ⁇ orated into the aqueous phase or the oil phase of the nanoemulsions and may be added prior to or following emulsification.
- the nanoemulsions further comprise phenols (e.g., triclosan, phenyl phenol), acidifying agents (e.g., citric acid [e.g., 1.5-6%], acetic acid, lemon juice), alkylating agents (e.g., sodium hydroxide [e.g., 0.3%]), buffers (e.g., citrate buffer, acetate buffer, and other buffers useful to maintain a specific pH), and halogens (e.g., polyvinylpyrrolidone, sodium hypochlorite, hydrogen peroxide).
- phenols e.g., triclosan, phenyl phenol
- acidifying agents e.g., citric acid [e.g., 1.5-6%], acetic acid, lemon juice
- alkylating agents e.g., sodium hydroxide [e.g., 0.3%]
- buffers e.g., citrate buffer, acetate buffer, and other buffers useful to maintain a specific
- section A the present invention describes exemplary techniques for making generic formulations of the disclosed compositions. Additionally, the present invention recites a number of specific, although exemplary, formulation recipes in section B) set forth below.
- the pathogen inactivating oil-in-water emulsions of the present invention can be formed using classic emulsion forming techniques.
- the oil phase is mixed with the aqueous phase under relatively high shear forces (e.g., using high hydraulic and mechanical forces) to obtain an oil-in-water nanoemulsion.
- the emulsion is formed by blending the oil phase with an aqueous phase on a volume-to-volume basis ranging from about 1:9 to 5:1, preferably about 5:1 to 3:1, most preferably 4:1, oil phase to aqueous phase.
- the oil and aqueous phases can be blended using any apparatus capable of producing shear forces sufficient to form an emulsion such as French Presses or high shear mixers (e.g., FDA approved high shear mixers are available, for example, from Admix, Inc., Manchester, NH). Methods of producing such emulsions are described in U.S. Pat. Nos. 5,103,497 and 4,895,452, herein inco ⁇ orated by reference in their entireties.
- compositions used in the methods of the present invention comprise droplets of an oily discontinuous phase dispersed in an aqueous continuous phase, such as water.
- the compositions of the present invention are stable, and do not decompose even after long storage periods (e.g., one or more years).
- Certain compositions of the present invention are non-toxic and safe when swallowed, inhaled, or contacted to the skin of a host. This is in contrast to many chemical microbicides, which are known irritants. Additionally, in some embodiments, the compositions are also non-toxic to plants.
- compositions of the present invention can be produced in large quantities and are stable for many months at a broad range of temperatures. Undiluted, they tend to have the texture of a semi-solid cream and can be applied topically by hand or mixed with water. Diluted, they tend to have a consistency and appearance similar to skim milk, and can be sprayed to decontaminate surfaces or potentially interact with aerosolized spores before inhalation. These properties provide a flexibility that is useful for a broad range of antimicrobial applications. Additionally, these properties make the compositions of the present invention particularly well suited to decontamination applications.
- the emulsion may be in the form of lipid structures including, but not limited to, umlamellar, multilamellar, and paucliamellar lipid vesicles, micelles, and lamellar phases.
- the emulsions of the present invention contain (i) an aqueous phase and (ii) an oil phase containing ethanol as the organic solvent and optionally a germination enhancer, and (iii) TYLOXAPOL as the surfactant (preferably 2-5%, more preferably 3%).
- This formulation is highly efficacious against microbes and is also non-irritating and non-toxic to mammalian users (and can thus be contacted with mucosal membranes).
- the emulsions of the present invention comprise a first emulsion emulsified within a second emulsion, wherein (a) the first emulsion comprises (i) an aqueous phase; and (ii) an oil phase comprising an oil and an organic solvent; and (iii) a surfactant; and (b) the second emulsion comprises (i) an aqueous phase; and (ii) an oil phase comprising an oil and a cationic containing compound; and (iii) a surfactant.
- BCTP comprises a water-in oil nanoemulsion, in which the oil phase was made from soybean oil, tri-n-butyl phosphate, and TRITON X-100 in 80% water.
- X 8 W 60 PC comprises a mixture of equal volumes of BCTP with W 80 8P.
- W 80 8P is a liposome-like compound made of glycerol monostearate, refined oya sterols (e.g., GENEROL sterols), TWEEN 60, soybean oil, a cationic ion halogen-containing CPC and peppermint oil.
- the GENEROL family are a group of a polyethoxylated soya sterols (Henkel Co ⁇ oration, Ambler, Pennsylvania).
- Emulsion formulations are given in Table 1 for certain embodiments of the present invention. These particular formulations may be found in U.S. Pat. Nos. 5,700,679 (NN); 5,618,840; 5,549,901 (W 80 8P); and 5,547,677,herein inco ⁇ orated by reference in their entireties.
- Certain other emulsion formulations are presented in Figure 29.
- Figure 30 schematically presents generalized formulations and uses of certain embodiments of the present invention.
- the X 8 W 60 PC emulsion is manufactured by first making the W 80 8P emulsion and BCTP emulsions separately. A mixture of these two emulsions is then re-emulsified to produce a fresh emulsion composition termed X 8 W 60 PC. Methods of producing such emulsions are described in U.S. Pat. Nos. 5,103,497 and 4,895,452 (herein inco ⁇ orated by reference in their entireties). These compounds have broad-spectrum antimicrobial activity, and are able to inactivate vegetative bacteria through membrane disruption.
- compositions listed above are only exemplary and those of skill in the art will be able to alter the amounts of the components to arrive at a nanoemulsion composition suitable for the pu ⁇ oses of the present invention.
- Those skilled in the art will understand that the ratio of oil phase to water as well as the individual oil carrier, surfactant CPC and organic phosphate buffer, components of each composition may vary.
- compositions comprising BCTP have a water to oil ratio of 4:1, it is understood that the BCTP may be formulated to have more or less of a water phase. For example, in some embodiments, there is 3, 4, 5, 6, 7, 8, 9, 10, or more parts of the water phase to each part of the oil phase. The same holds true for the W 80 8P formulation. Similarly, the ratio of Tri(N-butyl)phosphate:TRITON X-100:soybean oil also may be varied.
- Table 1 lists specific amounts of glycerol monooleate, polysorbate 60, GENEROL 122, cetylpyridinium chloride, and carrier oil for W 80 8P, these are merely exemplary.
- An emulsion that has the properties of W 80 8P may be formulated that has different concentrations of each of these components or indeed different components that will fulfill the same function.
- the emulsion may have between about 80 to about lOOg of glycerol monooleate in the initial oil phase.
- the emulsion may have between about 15 to about 30 g polysorbate 60 in the initial oil phase.
- the composition may comprise between about 20 to about 30 g of a GENEROL sterol, in the initial oil phase.
- the nanoemulsions structure of the certain embodiments of the emulsions of the present invention may play a role in their biocidal activity as well as contributing to the non-toxicity of these emulsions.
- the active component in BCTP TRITON-XIOO shows less biocidal activity against virus at concentrations equivalent to 11%) BCTP.
- Adding the oil phase to the detergent and solvent markedly reduces the toxicity of these agents in tissue culture at the same concentrations.
- the nanoemulsion enhances the interaction of its components with the pathogens thereby facilitating the inactivation of the pathogen and reducing the toxicity of the individual components. It should be noted that when all the components of BCTP are combined in one composition but are not in a nanoemulsion structure, the mixture is not as effective as an antimicrobial as when the components are in a nanoemulsion structure.
- the inventive formulation comprise from about 3 to 8 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % of cetylpyridinium chloride (CPC), about 60 to 70 vol. % oil (e.g., soybean oil), about 15 to 25 vol. % of aqueous phase (e.g., DiH 2 O or PBS), and in some formulations less than about 1 vol. % of IN NaOH.
- Some of these embodiments comprise PBS.
- one embodiment of the present invention comprises about 3 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % of CPC, about 64 vol. % of soybean oil, and about 24 vol. % of DiH 2 O (designated herein as Y3EC).
- Another similar embodiment comprises about 3.5 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, and about 1 vol. % of CPC, about 64 vol.
- Yet another embodiment comprises about 3 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % of CPC, about 0.067 vol. % of IN NaOH, such that the pH of the formulation is about 7.1, about 64 vol. % of soybean oil, and about 23.93 vol. % of DiH 2 O (designated herein as Y3EC pH 7.1). Still another embodiment comprises about 3 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % of CPC, about 0.67 vol.
- the formulation comprises about 8% TYLOXAPOL, about 8% ethanol, about 1 vol. % of CPC, and about 64 vol. % of soybean oil, and about 19 vol. % of DiH 2 O (designated herein as Y8EC).
- a further embodiment comprises about 8 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % of CPC, about 64 vol. % of soybean oil, and about 19 vol. % of lx PBS (designated herein as Y8EC PBS).
- the inventive formulations comprise about 8 vol. % of ethanol, and about 1 vol. % of CPC, and about 64 vol. % of oil (e.g., soybean oil), and about 27 vol. % of aqueous phase (e.g., DiH 2 O or PBS) (designated herein as EC).
- oil e.g., soybean oil
- aqueous phase e.g., DiH 2 O or PBS
- some embodiments comprise from about 8 vol. % of sodium dodecyl sulfate (SDS), about 8 vol. % of tributyl phosphate (TBP), and about 64 vol. % of oil (e.g., soybean oil), and about 20 vol. % of aqueous phase (e.g., DiH 2 O or PBS) (designated herein as S8P).
- SDS sodium dodecyl sulfate
- TBP tributyl phosphate
- oil e.g., soybean oil
- aqueous phase e.g., DiH 2 O or PBS
- the inventive formulation comprise from about 1 to 2 vol. % of TRITON X-100, from about 1 to 2 vol. % of TYLOXAPOL, from about 7 to 8 vol. % of ethanol, about 1 vol. % of cetylpyridinium chloride (CPC), about 64 to 57.6 vol. % of oil (e.g., soybean oil), and about 23 vol. % of aqueous phase (e.g., DiH 2 O or PBS). Additionally, some of these formulations further comprise about 5 mM of L-alanine/Inosine, and about 10 mM ammonium chloride. Some of these formulations comprise PBS.
- one embodiment of the present invention comprises about 2 vol. % of TRITON X-100, about 2 vol. % of TYLOXAPOL, about 8 vol. % of ethanol, about 1 vol. % CPC, about 64 vol. % of soybean oil, and about 23 vol. % of aqueous phase DiH 2 O.
- the formulation comprises about 1.8 vol. % of TRITON X-100, about 1.8 vol. % of TYLOXAPOL, about 7.2 vol. % of ethanol, about 0.9 vol.
- the formulations comprise from about 5 vol. % of TWEEN 80, from about 8 vol. % of ethanol, from about 1 vol. % of CPC, about 64 vol. % of oil (e.g., soybean oil), and about 22 vol. % of DiH 2 O (designated herein as W 80 5EC).
- the formulations comprise from about 5 vol. % of TWEEN 20, from about 8 vol. % of ethanol, from about 1 vol. % of CPC, about 64 vol. % of oil (e.g., soybean oil), and about 22 vol. % of DiH 2 O (designated herein as W 20 5EC).
- the formulations comprise from about 2 to 8 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 1 vol. % of CPC, about 60 to 70 vol. % of oil (e.g., soybean, or olive oil), and about 15 to 25 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- oil e.g., soybean, or olive oil
- aqueous phase e.g., DiH 2 O or PBS
- the present invention contemplates formulations comprising about 2 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 26 vol. % of DiH 2 O (designated herein as X2E).
- the formulations comprise about 3 vol.
- the formulations comprise about 4 vol. % Triton of X-100, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 24 vol. % of DiH 2 O (designated herein as X4E). In yet other embodiments, the formulations comprise about 5 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 23 vol. % of DiH 2 O (designated herein as X5E).
- Another embodiment of the present invention comprises about 6 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 22 vol. % of DiH 2 O (designated herein as X6E).
- the formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 20 vol. % of DiH 2 O (designated herein as X8E).
- the formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of ethanol, about 64 vol. % of olive oil, and about 20 vol.
- % of DiH 2 O (designated herein as X8E O).
- X8E O 8 vol. % of DiH 2 O
- In yet another embodiment comprises 8 vol. % of TRITON X-100, about 8 vol. % ethanol, about 1 vol. % CPC, about 64 vol. % of soybean oil, and about 19 vol. % of DiH 2 O (designated herein as X8EC).
- the formulations comprise from about 1 to 2 vol. % of TRITON X-100, from about 1 to 2 vol. % of TYLOXAPOL, from about 6 to 8 vol. % TBP, from about 0.5 to 1.0 vol. % of CPC, from about 60 to 70 vol. % of oil (e.g., soybean), and about 1 to 35 vol. % of aqueous phase (e.g., DiH 2 O or PBS). Additionally, certain of these formulations may comprise from about 1 to 5 vol. % of trypticase soy broth, from about 0.5 to 1.5 vol.
- the formula comprises a casein hydrolysate (e.g., Neutramigen, or Progestimil, and the like).
- the inventive formulations further comprise from about 0.1 to 1.0 vol. % of sodium thiosulfate, and from about 0.1 to 1.0 vol. % of sodium citrate.
- PBS phosphate buffered saline
- one embodiment comprises about 2 vol.
- the inventive formulation comprises about 2 vol. % of TRITON X-100, about 2 vol. % TYLOXAPOL, about 8 vol. % TBP, about 1 vol. % of CPC, about 64 vol. % of soybean oil, and about 23 vol. % of DiH 2 O (designated herein as X2Y2EC).
- the inventive formulation comprises about 2 vol. % of TRITON X-100, about 2 vol. % TYLOXAPOL, about 8 vol. % TBP, about 1 vol. % of CPC, about 0.9 vol. % of sodium thiosulfate, about 0.1 vol. % of sodium citrate, about 64 vol. % of soybean oil, and about 22 vol.
- the formulations comprise about 1.7 vol. % TRITON X- 100, about 1.7 vol. % TYLOXAPOL, about 6.8 vol. % TBP, about 0.85% CPC, about 29.2% NEUTRAMIGEN, about 54.4 vol. % of soybean oil, and about 4.9 vol. % of DiH 2 O (designated herein as 85% X2Y2PC/baby).
- the formulations comprise about 1.8 vol. % of TRITON X-100, about 1.8 vol. % of TYLOXAPOL, about 7.2 vol. % of TBP, about 0.9 vol.
- the formulations comprise about 1.8 vol. % of TRITON X-100, about 1.8 vol. % of TYLOXAPOL, about 7.2 vol. % TBP, about 0.9 vol. % of CPC, and about 3 vol. % trypticase soy broth, about 57.6 vol. % of soybean oil, and about 27.7 vol.
- the formulations comprise about 1.8 vol. % TRITON X-100, about 1.8 vol. % TYLOXAPOL, about 7.2 vol. % TBP, about 0.9 vol. % CPC, about 1 vol. % yeast extract, about 57.6 vol. % of soybean oil, and about 29.7 vol. % of DiH 2 O (designated herein as 90% X2Y2PC/YE).
- the inventive formulations comprise about 3 vol. % of TYLOXAPOL, about 8 vol. % of TBP, and about 1 vol. % of CPC, about 60 to 70 vol. % of oil (e.g., soybean or olive oil), and about 15 to 30 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- the inventive formulations comprise about 3 vol. % of TYLOXAPOL, about 8 vol. % of TBP, and about 1 vol. % of CPC, about 64 vol. % of soybean, and about 24 vol. % of DiH 2 O (designated herein as Y3PC).
- the inventive formulations comprise from about 4 to 8 vol. % of TRITON X-100, from about 5 to 8 vol. % of TBP, about 30 to 70 vol. % of oil (e.g., soybean or olive oil), and about 0 to 30 vol. % of aqueous phase (e.g., DiH 2 O or PBS). Additionally, certain of these embodiments further comprise about 1 vol. % of CPC, about 1 vol. % of benzalkonium chloride, about 1 vol. % cetylyridinium bromide, about 1 vol.
- the inventive formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 20 vol. % of DiH 2 O (designated herein as X8P).
- the inventive formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 1% of CPC, about 64 vol.
- the formulations comprise about 8 vol. % TRITON X-100, about 8 vol. % of TBP, about 1 vol. % of CPC, about 50 vol. % of soybean oil, and about 33 vol. % of DiH 2 O (designated herein as ATB-X1001).
- the formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 2 vol. % of CPC, about 50 vol. % of soybean oil, and about 32 vol. % of DiH 2 O (designated herein as ATB-X002).
- Another embodiment of the present invention comprises about 4 vol. % TRITON X-100, about 4 vol. % of TBP, about 0.5 vol. % of CPC, about 32 vol. % of soybean oil, and about 59.5 vol. % of DiH 2 O (designated herein as 50% X8PC). Still another related embodiment comprises about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 0.5 vol. % CPC, about 64 vol. % of soybean oil, and about 19.5 vol. % of DiH 2 O (designated herein as X8PC 1/2 ). In some embodiments of the present invention, the inventive formulations comprise about 8 vol. % of TRITON X-100, about 8 vol.
- the inventive formulations comprise about 8 vol. % of TRITON X-100, about 8% of TBP, about 1% of benzalkonium chloride, about 50 vol. % of soybean oil, and about 33 vol. % of DiH 2 O (designated herein as X8P BC).
- the formulation comprise about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 1 vol. % of cetylyridinium bromide, about 50 vol.
- the formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 1 vol. % of cetyldimethyletylammonium bromide, about 50 vol. % of soybean oil, and about 33 vol. % of DiH 2 O (designated herein as X8P CTAB).
- the present invention comprises about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 1 vol. % of CPC, about 500 ⁇ M EDTA, about 64 vol.
- inventive formulations further comprise about 5 vol. % of TRITON X-100, about 5% of TBP, about 1 vol. % of CPC, about 40 vol.
- the inventive formulations comprise about 2 vol. % TRITON X-100, about 6 vol. % TYLOXAPOL, about 8 vol. % ethanol, about 64 vol. % of soybean oil, and about 20 vol. % of DiH 2 O (designated herein as X2Y6E).
- the formulations comprise about 8 vol. % of TRITON X-100, and about 8 vol. % of glycerol, about 60 to 70 vol. % of oil (e.g., soybean or olive oil), and about 15 to 25 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- Certain related embodiments further comprise about 1 vol. % L- ascorbic acid.
- one particular embodiment comprises about 8 vol. % of TRITON X-100, about 8 vol. % of glycerol, about 64 vol. % of soybean oil, and about 20 vol. % of DiH 2 O (designated herein as X8G).
- the inventive formulations comprise about 8 vol. % of TRITON X-100, about 8 vol. % of glycerol, about 1 vol. % of L-ascorbic acid, about 64 vol. % of soybean oil, and about 19 vol. % of DiH 2 O (designated herein as X8GV C ).
- the inventive formulations comprise about 8 vol. % of TRITON X-100, from about 0.5 to 0.8 vol. % of TWEEN 60, from about 0.5 to 2.0 vol. % of CPC, about 8 vol. % of TBP, about 60 to 70 vol. % of oil (e.g., soybean or olive oil), and about 15 to 25 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- the formulations comprise about 8 vol. % of TRITON X-100, about 0.70 vol. % of TWEEN 60, about 1 vol. % of CPC, about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 18.3 vol.
- X8W60PC DiH 2 O
- Another related embodiment comprises about 8 vol. % of TRITON X-100, about 0.71 vol. % of TWEEN 60, about 1 vol. % of CPC, about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 18.29 vol. % of DiH 2 O (designated herein as W60 07 X8PC).
- the inventive formulations comprise from about 8 vol. % of TRITON X-100, about 0.7 vol. % of TWEEN 60, about 0.5 vol. % of CPC, about 8 vol. % of TBP, about 64 to 70 vol. % of soybean oil, and about 18.8 vol.
- the present invention comprises about 8 vol. % of TRITON X-100, about 0.71 vol. % of TWEEN 60, about 2 vol. % of CPC, about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 17.3 vol. % of DiH 2 O.
- the formulations comprise about 0.71 vol. % of TWEEN 60, about 1 vol. % of CPC, about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 25.29 vol. % of DiH 2 O (designated herein as W60 07 PC).
- the inventive formulations comprise about 2 vol. % of dioctyl sulfosuccinate, either about 8 vol. % of glycerol, or about 8 vol. % TBP, in addition to, about 60 to 70 vol. % of oil (e.g., soybean or olive oil), and about 20 to 30 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- oil e.g., soybean or olive oil
- aqueous phase e.g., DiH 2 O or PBS
- one embodiment of the present invention comprises about 2 vol. % of dioctyl sulfosuccinate, about 8 vol. % of glycerol, about 64 vol. % of soybean oil, and about 26 vol. % of DiH 2 O (designated herein as D2G).
- the inventive formulations comprise about 2 vol. % of dioctyl sulfosuccinate, and about 8 vol. % of TBP, about 64 vol. % of soybean oil, and about 26 vol. % of DiH 2 O (designated herein as D2P).
- the inventive formulations comprise about 8 to 10 vol. % of glycerol, and about 1 to 10 vol. % of CPC, about 50 to 70 vol. % of oil (e.g., soybean or olive oil), and about 15 to 30 vol. % of aqueous phase (e.g., DiH 2 O or PBS).
- the compositions further comprise about 1 vol. % of L-ascorbic acid.
- one particular embodiment comprises about 8 vol. % of glycerol, about 1 vol. % of CPC, about 64 vol. % of soybean oil, and about 27 vol. % of DiH 2 O (designated herein as GC).
- An additional related embodiment comprises about 10 vol.
- the inventive formulations comprise about 10 vol. % of glycerol, about 1 vol. % of CPC, about 1 vol. % of L-ascorbic acid, about 64 vol. % of soybean or oil, and about 24 vol. % of DiH 2 O (designated herein as GCV C ).
- the inventive formulations comprise about 8 to 10 vol. % of glycerol, about 8 to 10 vol. % of SDS, about 50 to 70 vol. % of oil (e.g., soybean or olive oil), and about 15 to 30 vol. % of aqueous phase (e.g., DiH 2 O or PBS). Additionally, in certain of these embodiments, the compositions further comprise about 1 vol. % of lecithin, and about 1 vol. % of p-Hydroxybenzoic acid methyl ester. Exemplary embodiments of such formulations comprise about 8 vol. % SDS, 8 vol. % of glycerol, about 64 vol. % of soybean oil, and about 20 vol.
- a related formulation comprises about 8 vol. % of glycerol, about 8 vol. % of SDS, about 1 vol. % of lecithin, about 1 vol. % of p- Hydroxybenzoic acid methyl ester, about 64 vol. % of soybean oil, and about 18 vol. % of DiH 2 O (designated herein as S8GL1B1).
- the inventive formulations comprise about 4 vol. % of TWEEN 80, about 4 vol. % of TYLOXAPOL, about 1 vol. % of CPC, about 8 vol. % of ethanol, about 64 vol. % of soybean oil, and about 19 vol. % of DiH 2 O (designated herein as W 80 4Y4EC).
- the inventive formulations comprise about 0.01 vol. % of CPC, about 0.08 vol. % of TYLOXAPOL, about 10 vol. % of ethanol, about 70 vol. % of soybean oil, and about 19.91 vol. % of DiH 2 O (designated herein as Y.08EC.01).
- the inventive formulations comprise about 8 vol. % of sodium lauryl sulfate, and about 8 vol. % of glycerol, about 64 vol. % of soybean oil, and about 20 vol. % of DiH 2 O (designated herein as SLS8G).
- a candidate emulsion is suitable for use with the present invention.
- three criteria may be analyzed. Using the methods and standards described herein, candidate emulsions can be easily tested to determine if they are suitable.
- the desired ingredients are prepare using the methods described herein, to determine if an emulsion can be formed. If an emulsion cannot be formed, the candidate is rejected. For example, a candidate composition made of 4.5% sodium thiosulfate, 0.5% sodium citrate, 10% n-butanol, 64% soybean oil, and 21% DiH 2 O did not form an emulsion.
- the candidate emulsion should form a stable emulsion.
- An emulsion is stable if it remains in emulsion form for a sufficient period to allow its intended use. For example, for emulsions that are to be stored, shipped, etc., it may be desired that the composition remain in emulsion form for months to years. Typical emulsions that are relatively unstable, will lose their form within a day. For example, a candidate composition made of 8% 1-butanol, 5% Tween 10, 1% CPC, 64% soybean oil, and 22% DiH 2 O did not form a stable emulsion.
- the candidate emulsion should have efficacy for its intended use.
- an anti-bacterial emulsion should kill or disable bacteria to a detectable level or to a preferred kill level (e.g., 1 log, 2 log, 3 log, 4 log, . . . reduction).
- a preferred kill level e.g. 1 log, 2 log, 3 log, 4 log, . . . reduction.
- certain emulsions of the present invention have efficacy against specific microorganisms, but not against others. Using the methods described herein, one is capable of deteimining the suitability of a particular candidate emulsion against the desired microorganism.
- this involves exposing the microorganism to the emulsion for one or more time periods in a side-by-side experiment with the appropriate control samples (e.g., a negative control such as water) and determining if, and to what degree, the emulsion kills or disable the microorganism.
- a control sample e.g., a negative control such as water
- a candidate composition made of 1% ammonium chloride, 5% Tween 20, 8%> ethanol, 64%> soybean oil, and 22% DiH 2 O was shown not to be an effective emulsion.
- the nanoemulsions are nontoxic (e.g., to humans, plants, or animals), non-irritant (e.g., to humans, plants, or animals), and non-corrosive (e.g., to humans, plants, or animals or the environment), while possessing potency against a broad range of microorganisms including bacteria, fungi, viruses, and spores. While a number of the above described nanoemulsions meet these qualifications, the following description provides a number of preferred non-toxic, non-irritant, non-corrosive, anti-microbial nanoemulsions of the present invention (hereinafter in this section referred to as "non-toxic nanoemulsions").
- the non-toxic nanoemulsions comprise surfactant lipid preparations (SLPs) for use as broad-spectrum antimicrobial agents that are effective against bacteria and their spores, enveloped viruses, and fungi.
- SLPs surfactant lipid preparations
- these SLPs comprises a mixture of oils, detergents, solvents, and cationic halogen-containing compounds in addition to several ions that enhance their biocidal activities.
- SLPs are characterized as stable, non-irritant, and non-toxic compounds compared to commercially available bactericidal and sporicidal agents, which are highly irritant and/or toxic.
- ingredients for use in the non-toxic nanoemulsions include, but are not limited to: detergents (e.g., TRITON X-100 [5-15%] or other members of the TRITON family, TWEEN 60 [0.5-2%] or other members of the TWEEN family, or TYLOXAPOL [1- 10%]); solvents (e.g., tributyl phosphate [5-15%]); alcohols (e.g., ethanol [5-15%] or glycerol [5-15%]); oils (e.g., soybean oil [40-70%]); cationic halogen-containing compounds (e.g., cetylpyridinium chloride [0.5-2%], cetylpyridinium bromide [0.5-2%>]), or cetyldimethylethyl ammonium bromide [0.5-2%o]); quaternary ammonium compounds (e.g., benzalkonium chloride [0.5-2%>], N-alkyldimethylbenzy
- Quaternary ammonium compounds for use in the present include, but are not limited to, N-alkyldimethyl benzyl ammonium saccharinate; 1,3,5-Triazine- l,3,5(2H,4H,6H)-triethanol; 1-Decanaminium, N-decyl-N, N-dimethyl-, chloride (or) Didecyl dimethyl ammonium chloride; 2-(2-(p-(Diisobuyl)cresosxy)ethoxy)ehyl dimethyl benzyl ammonium chloride; 2-(2-(p-(Diisobutyl)phenoxy)ethoxy)ethyl dimethyl benzyl ammonium chloride; alkyl 1 or 3 benzyl- l-(2-hydroxethyl)-2-imidazolinium chloride; alkyl bis(2-hydroxyethyl) benzyl ammonium chloride; alkyl demethyl benzyl am
- the preferred non-toxic nanoemulsions are characterized by the following: they are approximately 200-800 nm in diameter, although both larger and smaller diameter nanoemulsions are contemplated; the charge depends on the ingredients; they are stable for relatively long periods of time (e.g., up to two years), with preservation of their biocidal activity; they are non-irritant and non-toxic compared to their individual components due, at least in part, to their oil contents that markedly reduce the toxicity of the detergents and the solvents; they are effective at concentrations as low as 0.1%; they have antimicrobial activity against most vegetative bacteria (including Gram-positive and Gram-negative organisms), fungi, and enveloped and nonenveloped viruses in 15 minutes (e.g., 99.99%> killing); and they have sporicidal activity in 1-4 hours (e.g., 99.99% killing) when produced with germination enhancers.
- compositions of the present invention possess a range of beneficial activities and properties.
- a number of the exemplary beneficial properties and activities are set forth below: A) Microbicidal and Microbistatic Activity; B) Sporicidial and Sporistatic Activity: C) Viricidal and Viralstatic Activity; D) Fungicidal and Fungistatic Activity; and E) In vivo Effects.
- Figure 31A-C provides properties of certain exemplary formulations of the present invention.
- the nanoemulsions of the present invention have broad spectrum killing activities, whereby they kill or disable, two or more of: 1) bacteria (gram positive and gram negative), 2) viruses, 3) fungi, and 4) spores (e.g., 1 log, 2 log, 3 log, 4 log, . . . reduction).
- the methods of the present invention can be used to rapidly inactivate bacteria.
- the compositions are particularly effective at inactivating Gram positive bacteria.
- the inactivation of bacteria occurs after about five to ten minutes.
- bacteria may be contacted with an emulsion according to the present invention and will be inactivated in a rapid and efficient manner. It is expected that the period of time between the contacting and inactivation may be as little as 5-10 minutes or less where the bacteria is directly exposed to the emulsion.
- the inactivation may occur over a longer period of time including, but not limited to, 5, 10, 15, 20, 25, 30, 60 minutes post application.
- the inactivation may take two, three, four, five or six hours to occur.
- the compositions and methods of the invention can also rapidly inactivate certain Gram negative bacteria.
- the bacteria inactivating emulsions are premixed with a compound that increases the interaction of the emulsion by the cell wall.
- the use of these enhancers in the compositions of the present invention is discussed herein below. It should be noted that certain emulsions especially those comprising enhancers are effective against certain Gram positive and negative bacteria and may be administered orally where they will come in contact with necessary gut bacteria.
- the present invention has shown that the emulsions of the present invention have potent, selective biocidal activity with minimal toxicity against vegetative bacteria.
- BCTP was highly effective against B. cereus, B. circulans and B. megaterium, C perfringens, H influenzae, N. gonorrhoeae, S. agalactiae, S. pneumonia, S. pyogenes and V. cholerae classical and Eltor (FIG. 26). This inactivation starts immediately on contact and is complete within 15 to 30 minutes for most of the susceptible microorganisms.
- Figure 31 A shows the effectiveness of a number of exemplary nanoemulsions of the present invention against E. coli.
- the present invention has demonstrated that the emulsions of the present invention have sporicidal activity. Without being bound to any theory (an understanding of the mechanism is not necessary to practice the present invention, and the present invention is not limited to any particular mechanism), it is proposed the that the sporicidal ability of these emulsions occurs through initiation of germination without complete reversion to the vegetative form leaving the spore susceptible to disruption by the emulsions. The initiation of germination could be mediated by the action of the emulsion or its components.
- the present invention demonstrates that mixing BCTP with B. cereus spores before injecting into mice prevented the pathological effect of B. cereus. Further, the present invention shows that BCTP treatment of simulated wounds contaminated with B. oereus spores markedly reduced the risk of infection and mortality in mice. The control animals, that were injected with BCTP alone diluted 1:10, did not show any inflammatory effects proving that BCTP does not have cutaneous toxicity in mice. These results suggest that immediate treatment of spores prior to or following exposure can effectively reduce the severity of tissue damage of the experimental cutaneous infection.
- BCTP diluted up to 1:1000 (v/v) inactivated more than 90% of B. anthracis spores in four hours, and was also sporicidal against three other Bacillus species through the apparent disruption of spore coat.
- X 8 W 60 PC diluted 1:1000 had more sporicidal activity against B. anthracis, B. cereus, and B. subtilis and had an onset of action in less than 30 minutes.
- mice mixing BCTP with B.
- compositions are stable, easily dispersed, non-irritant and nontoxic compared to the other available sporicidal agents.
- the bacteria-inactivating oil-in-water emulsions used in the methods of the present invention can be used to inactivate a variety of bacteria and bacterial spores upon contact.
- the presently disclosed emulsions can be used to inactivate Bacillus including B. cereus, B. circulans and B. megatetium, also including Clostridium (e.g., C. botulinum and C. tetani).
- the methods of the present invention may be particularly useful in inactivating certain biological warfare agents (e.g., B. anthracis).
- the formulations of the present invention also find use in combating C. perftingens, H influenzae, N. gonorrhoeae, S. agalactiae, S. pneumonia, S. pyogenes and V. cholerae classical and Eltor (FIG. 26).
- BCTP contains TRITON X-100 while SS and W 80 8P contain TWEEN 60, and NN contained nonoxynol-9 surfactant. Each is a non-ionic surfactant, but differs in its chemistry and biological characteristics.
- Nonoxynol-9 has strong spermicidal activity and it is widely used as a component of vaginally delivered contraceptive products (Lee, 1996). It has been claimed to have virucidal effect against enveloped viruses (Hermonat et al, 1992; Zeitlin et al, 1997). However, nanoxynol-9 has not been shown to be effective against nonenveloped viruses (Hermonat et al, 1992).
- Figure 3 IB shows the effectiveness of a number of exemplary nanoemulsions of the present invention against B. globigii spores.
- the nanoemulsion compositions of the present invention have anti- viral properties.
- the effect of these emulsions on viral agents was monitored using plaque reduction assay (PRA), cellular enzyme-linked immunosorbent assay (ELISA), P-galactosidase assay, and electron microscopy (EM) and the cellular toxicity of lipid preparations was assessed using a (4,5-dimethylthiazole-2-yl)-2,5 diphenyltetrazolium (MTT) staining assay (Mosmann 1983).
- PRA plaque reduction assay
- ELISA cellular enzyme-linked immunosorbent assay
- EM electron microscopy
- TRITON X-100 an active compound of BCTP, at dilution 1:5000 only partially inhibited the infectivity of virus as compared to BCTP, indicating that the nanoemulsion itself contributes to the anti-viral efficacy.
- the BCTP treatment did not affect the replication of lacZ adenovirus construct in 293 cells as measured using ⁇ -galactosidase assay. When examined with EM, influenza A virus was completely disrupted after incubation with BCTP while adenovirus remained intact.
- the nanoemulsions of the present invention are used in conjunction with a low pH buffer.
- Such nanoemulsions find use as rapid killers of viruses (e.g., rhinovirus or other picornaviruses).
- Figure 31C shows the effectiveness of a number of exemplary nanoemulsions of the present invention against influenza A.
- nanoemulsions of the present invention possess antifungal activity.
- Common agents of fungal infections include various species of the genii Candida and Aspergillus, and types thereof, as well as others. While external fungus infections can be relatively minor, systemic fungal infections can give rise to serious medical consequences.
- Fungal disease particularly when systemic, can be life threatening to patients having an impaired immune system.
- BCTP has a greater than 92% fungistatic activity when applied to Candida albicans.
- Candida was grown at 37oC overnight. Cells were then washed and counted using a hemacytometer. A known amount of cells were mixed with different concentrations of BCTP and incubated for 24 hours. The Candida was then grown on dextrose agar, incubated overnight, and the colonies were counted.
- the fungistatic effect of the BCTP was determined as follows:
- FSE Fungistatic effect
- the nanoemulsions of the present invention find use in combatting infections such as athletes foot, candidosis and other acute or systemic fungal infections.
- Bacillus cereus infection in experimental animals has been used previously as a model system for the study of anthrax (See e.g., Burdon and Wende, J Infect. Diseas. 170(2):272 [I960]; Lamanna and Jones, J. Bact. 85:532 [1963]; and Burdon et al, J Infect. Diseas. 117:307 [1967]).
- the disease syndrome induced in animals experimentally infected with B. cereus is similar to anthrax (Drobniewski, Clin. microbio. Rev. 6:324 [1993]; and Fritz et al, Lab. Invest. 73:691 [1995]).
- Guinea Pigs were employed as experimental animals for the study of C. perftingens infection.
- a 1.5 cm skin wound was made, the underlying muscle was crushed and infected with 5xl0 7 cfu of C. perftingens without any further treatment.
- Another group was infected with the same number of bacteria, then 1 hour later it was irrigated with either saline or BCTP to simulate post-exposure decontamination. Irrigation of experimentally infected wounds with saline did not result in any apparent benefit.
- BCTP irrigation of the wound infected with C. perfingens showed marked reduction of edema, inflammatory reaction and necrosis.
- compositions disclosed herein A) Pharmaceuticals and Therapeutics; B) Decontamination and Sterilization; C) Food Preparation; and D) Kits, as well as a description of methods and systems for the E) Modification, Preparation, and Delivery of the compositions of the present invention.
- the present invention contemplates formulations that may be employed in pharmaceutical and therapeutic compositions and applications suitable for combatting and/or treating microbial infections. Such compositions may be employed to reduce infection, kill microbes, inhibit microbial growth or otherwise abrogate the deleterious effects of microbial infection.
- compositions can be administered in any effective pharmaceutically acceptable form to warm blooded animals, including human and animal subjects.
- this entails preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.
- compositions of the present invention include but are not limited to oral, nasal, buccal, rectal, vaginal, topical or nasal spray or in any other form effective to deliver active compositions of the present invention to a site of microorganism infection.
- the route of administration is designed to obtain direct contact of the compositions with the infecting microorganisms.
- administration may be by orthotopic, intradermal, subcutaneous, intramuscular or intraperitoneal injection.
- the compositions may also be administered to subjects parenterally or intraperitonealy. Such compositions would normally be administered as pharmaceutically acceptable compositions.
- supplementary active ingredients also can be inco ⁇ orated into the compositions.
- the pharmaceutically acceptable carrier may take the form of a liquid, cream, foam, lotion, or gel, and may additionally comprise organic solvents, emulsifiers, gelling agents, moisturizers, stabilizers, surfactants, wetting agents, preservatives, time release agents, and minor amounts of humectants, sequestering agents, dyes, perfumes, and other components commonly employed in pharmaceutical compositions for topical administration.
- compositions in which the emulsions are formulated for oral or topical administration include liquid capsules, and suppositories.
- the compositions may be admixed with one or more substantially inert diluent (e.g., sucrose, lactose, or starch, and the like) and may additionally comprise lubricating agents, buffering agents, enteric coatings, and other components well known to those skilled in the art.
- the compositions of the invention may be specifically designed for in vitro applications, such as disinfecting or sterilization of medical instruments and devices, contact lenses and the like, particularly when the devices or lenses are intended to be used in contact with a patient or wearer.
- the compositions may be used to cleanse and decontaminate medical and surgical instruments and supplies prior to contacting a subject.
- the compositions may be used to post-operatively, or after any invasive procedure, to help minimize the occurrence of post operative infections.
- the compositions are administered to subjects with compromised or ineffective immunological defenses (e.g., the elderly and the very young, burn and trauma victims, and those infected with HIV and the like).
- compositions may be conveniently provided in the form of a liquid, foam, paste or gel and may be provided with emulsifiers, surfactants, buffering agents, wetting agents, preservatives, metal ions, antibiotics and other components commonly found in compositions of this type.
- the compositions are used in association with organ or artifical tissue transplantation or maintenance.
- the composition may be used on the surface of a transplanted organ to sterilize the organ.
- the compositions may also be used in conjuction with organ preservation or storage solutions (e.g., VIASPAN, Barr Laboratories).
- compositions may be impregnated into abso ⁇ tive materials, such as sutures, bandages, and gauze, or coated onto the surface of solid phase materials, such as surgical staples, zippers and catheters to deliver the compositions to a site for the prevention of microbial infection.
- abso ⁇ tive materials such as sutures, bandages, and gauze
- solid phase materials such as surgical staples, zippers and catheters
- the compositions can be used in the personal health care industry in deodorants, soaps, acne/dermatophyte treatment agents, treatments for halitosis, treatments for vaginal yeast infections, and the like.
- the compositions can also be used to treat other internal and external microbial infections (e.g., influenza, H. simplex, toe-nail fungus, etc.).
- the emulsions can be formulated with therapeutic carriers as described above.
- the nanoemulsions of the present invention are formulated into gels, wherein the gels are applied topically.
- the antimicrobial compositions and methods of the present invention also include a variety of combination therapies.
- combination therapies For example, often single antimicrobial agents are much less effective at inhibiting microbes than are several agents employed in conjunction with each other. This approach is often advantageous in avoiding the problems encountered as a result of multidrug resistance. This is particularly prevalent in bacteria that have drug transporters that mediate the efflux of drugs from the organism.
- the present invention further contemplates the use of the present methods and compositions in such combination therapies.
- the nanoemulsion compositions of the present invention are used as a delivery system for another agent (e.g., a pharmaceutical agent).
- the agent has antimicrobial properties.
- the nanoemulsions of the present invention increase the antimicrobial effect, compared to the delivery of the agent in the absence of the nanoemulsions of the present invention.
- the nanoemulsions are used without another antimicrobial agent (i.e., the nanoemulsion itself is the only antimicrobial portion of the composition).
- these agents include agents that inhibit cell wall synthesis (e.g., penicillins, cephalosporins, cycloserine, vancomycin, bacitracin); and the imidazole antifungal agents (e.g., miconazole, ketoconazole and clotrimazole); agents that act directly to disrupt the cell membrane of the microorganism (e.g., detergents such as polmyxin and colistimethate and the antifungals nystatin and amphotericin B); agents that affect the ribosomal subunits to inhibit protein synthesis (e.g., chloramphenicol, the tetracyclines, erthromycin and clindamycin); agents that alter protein synthesis and lead to cell death (e.g., aminoglycosides); agents that affect nucleic acid metabolism (e.g., the rifamycins and the quinolones); the antimetabolites (e.g., trimethoprim and sulf
- compositions and any enhancing agents in the compositions may be varied so as to obtain amounts of emulsion and enhancing agents at the site of treatment that are effective in killing vegetative as well as sporular microorganisms and neutralizing their toxic products. Accordingly, the selected amounts will depend on the nature and site for treatment, the desired response, the desired duration of biocidal action and other factors.
- the emulsion compositions of the invention will comprise at least 0.001%> to 100%>, preferably 0.01 to 90%, of emulsion per ml of liquid composition. It is envisioned that viral infections may be treated using between about 0.01% to 100%) of emulsion per ml of liquid composition.
- Bacterial infections may be attacked with compositions comprising between about 0.001% to about 100% of emulsion per ml of liquid composition. Spores can be killed by emulsions comprising from about 0.001%> to about 100%) of emulsion per ml of liquid composition. These are merely exemplary ranges. It is envisioned that the formulations may comprise about 0.001%, about 0.0025%, about 0.005%, about 0.0075%, about 0.01%, about 0.025%, about 0.05%), about 0.075%, about 0.
- the present invention contemplates compositions and methods that find use as environmental decontamination agents and for treatment of casualties in both military and terrorist attack.
- the inactivation of a broad range of pathogens including vegetative bacteria and enveloped viruses (See e.g., Chatlyyne et al, "A lipid emulsion with effective virucidal activity against HIV-1 and other common viruses," Foundation for Retrovirology and Humna Health, 3rd Conference on retroviruses and Opportunistic Infections, Washington, DC, U.S.A. [1996]) and bacterial spores, combined with low toxicity in experimental animals, makes the present emulsions suitable for use as general decontamination agents before a specific pathogen is identified.
- Preferred compositions of the present invention can be rapidly produced in large quantities and are stable for many months at a broad range of temperatures. These properties provide a flexibility that is useful for a broad range of decontamination applications.
- compositions and methods of the present are useful in decontaminating personnel and materials contaminated by biological warfare agents.
- Solutions of present compositions may be sprayed directly onto contaminated materials or personnel from ground based, or aerial spraying systems.
- the present invention contemplates that an effective amount of composition be contacted to contaminated materials or personnel such that decontamination occurs.
- personal decontamination kits can be supplied to military or civilians likely to become contaminated with biological agents.
- certain embodiments of the present invention specifically contemplate the use of the present compositions in disinfectants and detergents to decontaminate soil, machinery, vehicles and other equipment, and waterways that may have been subject to an undesired pathogen.
- Such decontamination procedures may involve simple application of the formulation in the form of a liquid spray or may require a more rigorous regimen.
- the present emulsions can be used to treat crops for various plant viruses (in place of or for use with conventional antibiotics). Nanoemulsions may also be used to decontaminate farm animals, animal pens, surrounding surfaces, and animal carcasess to eliminate, for example, noneveloped virus of hoof and mouth disease.
- the formulations also find use in household detergents for general disinfectant pu ⁇ oses.
- some embodiments of the present invention can be used to prevent contamination of food with bacteria or fungi (e.g., non-toxic compositions). This can be done either in the food preparation process, or by addition to the food as an additive, disinfectant, or preservative.
- the inventive emulsions are preferably used on hard surfaces in liquid form. Accordingly, the foregoing components are admixed with one or more aqueous carrier liquids.
- aqueous carrier liquid comprises solvents commonly used in hard surface cleaning compositions. Such solvents should be compatible with the inventive emulsions and should be chemically stable at the pH of the emulsions. They should also have good filming/residue properties. Solvents for use in hard surface cleaners are described, for example, in U.S. Pat. No. 5,108,660, herein inco ⁇ orated by reference in its entirety.
- the aqueous carrier is water or a miscible mixture of alcohol and water.
- the alcohol can be used to adjust the viscosity of the compositions.
- the alcohols are preferably C2 -C4 alcohols.
- ethanol is employed.
- the aqueous carrier liquid is water or a water-ethanol mixture containing from about 0 to about 50%) ethanol.
- the present invention also embodies non-liquid compositions. These non-liquid compositions can be in granular, powder or gel forms, preferably in granular forms.
- compositions contain auxiliary materials that augment cleaning and aesthetics so long as they do not interfere with the activity of the inventive emulsions.
- the compositions can optionally comprise a non-interfering auxiliary surfactant.
- auxiliary surfactant A wide variety of organic, water-soluble surfactants can optionally be employed.
- auxiliary surfactant depends on the desires of the user with regard to the intended pu ⁇ ose of the compositions and the commercial availability of the surfactant.
- Other optional additives such as perfumes, brighteners, enzymes, colorants, and the like can be employed in the compositions to enhance aesthetics and/or cleaning performance.
- Detergent builders can also be employed in the compositions.
- Detergent builders sequester calcium and magnesium hardness ions that might otherwise bind with and render less effective the auxiliary surfactants or co-surfactants. Detergent builders are especially useful when auxiliary surfactants or co-surfactants are employed, and are even more useful when the compositions are diluted prior to use with exceptionally hard tap water e.g., above about 12 grains/gallon.
- the composition further comprise, suds suppressors.
- the compositions preferably comprise a sufficient amount of a suds suppressor to prevent excessive sudsing when contacting the compositions to hard surfaces. Suds suppressors are especially useful in formulations for no-rinse application of the composition.
- the suds suppressor can be provided by known and conventional means. Selection of the suds suppressor depends on its ability to formulate in the compositions, and the residue and cleaning profile of the compositions.
- the suds suppressor must be chemically compatible with the components in the compositions, it must be functional at the pH range described herein, and it should not leave a visible residue on cleaned surfaces.
- Low-foaming co- surfactants can be used as suds suppressor to mediate the suds profile in the compositions. Co-surfactant concentrations between about 1 part and about 3% are normally sufficient.
- Suitable co-surfactants for use herein include block copolymers (e.g., PLURONIC and TETRONIC gels [polyethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer gels, BASF Company, Parispany, NJ]) and alkylated (e.g., ethoxylated/propoxylated) primary and secondary alcohols (e.g., TERIGTOL [Union Carbide, Danbury, CT]; POLY-TERGENTO [Olin Co ⁇ oration, Norwalk, CT]).
- the optional suds suppressor preferably comprises a silicone-based material. These materials are effective as suds suppressors at very low concentrations.
- silicone-based suds suppressor is less likely to interfere with the cleaning performance of the compositions.
- suitable silicone-based suds suppressors for use in the compositions is Dow Corning DSE. These optional but preferred silicone-based suds suppressors can be inco ⁇ orated into the composition by known and conventional means.
- the compositions may be used by health care workers, or any persons contacting persons or areas with microbial infections, for their personal health-safety and decontamination needs.
- inventive emulsions can be formulated into sprays for hospital and household uses such as cleaning and disinfecting medical devices and patient rooms, household appliances, kitchen and bath surfaces, etc.
- the compositions may be used by sanitation and environmental services workers, food processing and agricultural workers and laboratory personnel when these individuals are likely to contact infectious biological agents.
- the compositions may be used by travelers and persons contacting ares likely to harbor infectious and pathological agents.
- compositions described herein may be employed in the food processing and preparation industries in preventing and treating food contaminated with food born bacteria, fungi and toxins.
- such compositions may be employed to reduce or inhibit microbial growth or otherwise abrogate the deleterious effects of microbial contamination of food.
- the emulsion compositions are applied in food industry acceptable forms such as additives, preservatives or seasonings.
- accepted in the food industry refers to compositions that do not substantially produce adverse, or allergic reactions when taken orally by humans or animals.
- accepted in food industry media includes any and all solvents, dispersion substances, any and all spices and herbs and their extracts. Except insofar as any conventional additives, preservatives and seasonings are incompatible with the emulsions of the present invention, their use in preventing or treating food born microbes and their toxic products is contemplated. Supplementary active ingredients may also be inco ⁇ orated into the compositions.
- acceptable carriers may take the form of liquids, creams, foams, gels and may additionally comprise solvents, emulsifiers, gelling agents, moisturizers, stabilizers, wetting agents, preservatives, sequestering agents, dyes, perfumes and other components commonly employed in food processing industry.
- the compositions may be specifically designed for applications such as disinfecting or sterilization food industry devices, equipment, and areas where food is processed, packaged and stored.
- the compositions may be conveniently provided in the form of a liquid or foam, and may be provided with emulsifiers, surfactants, buffering agents, wetting agents, preservatives, and other components commonly found in compositions of this type.
- the compositions are applied to produce or agricultural products prior to or during transportation of those goods.
- Compositions of the invention may be impregnated into abso ⁇ tive materials commonly used in packaging material for the prevention of food contamination during transport and storage (e.g. , cardboard or paper packaging). Other delivery systems of this type will be readily apparent to those skilled in the art.
- the emulsion compositions of the invention may be varied so as to obtain appropriate concentrations of emulsion and enhancing agents to effectively prevent or inhibit food contamination caused by food born microbes and their toxic products. Accordingly, the selected concentrations will depend on the nature of the food product, packaging, storage procedure and other factors. Generally, the emulsion compositions of the invention will comprise at least 0.001 % to about 90% of emulsion in liquid composition.
- the formulations may comprise about 0.001 %, about 0.0025%, about 0.005%, about 0.0075%, about 0.01%, about 0.025%, about 0.05%, about 0.015%, about 0.1%, about 0.25%, about 0.5%, about 1.0%, about 2.5%, about 5%, about 7.5%, about 10%, about 12.5%, about 15%, about 20%, about 25%o, about 30%, about 35%, about 40%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or about 100% of emulsion per ml of liquid composition. It should be understood that a range between any two figures listed above is specifically contemplated to be encompassed within the metes and bounds of the present invention.
- emulsions can be used as disinfectants and detergents to decontaminate and prevent microbial infection of food, soil and water, machinery and other equipment, and animals.
- inventive emulsions can be used by the food industry to prevent contamination.
- inclusion of the emulsion within the food product itself would be effective in killing bacteria that may have been accidentally contaminated meat or poultry. This could also allow the industry to use a potentially broader spectrum of food products and reduce costs.
- inventive emulsions could be included in juice products to prevent growth of certain fungi, which cause contamination and lead to production of mycotoxins, which are dangerous to consumers.
- inventive emulsions Through the addition of small amounts of the inventive emulsions, the most common fungal contaminants in fruit juice were prevented. This effect was achieved with as little as one part in 10,000 of the emulsion (an amount which did not alter the flavor or the composition of the juice product).
- contamination of productes such are GATORADE by organisms such as Byssochlamys fulva are presented with the use of the nanoemulsions of the present invention.
- the inventive emulsions can be used to essentially remove infectious agents on machinery and other equipment.
- the emulsions can be used to eliminate contaminations in meat processing plants, particularly of organisms such as Listeria monocytogenes and Salmonellae microorganisms, by cleaning slaughterhouses or food packaging facilities on a continual basis with the emulsion.
- the methods and compositions, or components of the methods and compositions may be formulated in a single formulation, or may be separated into separate formulations for later mixing during use, as may be desired for a particular application.
- Such components may advantageously be placed in kits for use against microbial infections, decontaminating instruments and the like.
- such kits contain all the essential materials and reagents required for the delivery of the formulations of the present invention to the site of their intended action.
- the methods and compositions of the present invention may be formulated into a single or separate pharmaceutically acceptable syringeable compositions.
- the container means may itself be an inhalant, syringe, pipette, eye dropper, or other like apparatus, from which the formulation may be applied to an infected area of the body, such as the lungs, injected into an animal, or even applied to and mixed with the other components of the kit.
- kits of the present invention also typically include a means for containing the vials in close confinement for commercial sale (e.g., injection or blow-molded plastic containers into which the desired vials are retained). Irrespective of the number or type of containers, the kits of the invention also may comprise, or be packaged with, an instrument for assisting with the injection/ad ministration or placement of the ultimate complex composition within the body of an animal.
- an instrument may be an inhalant, syringe and antiseptic wipe, pipette, forceps, measured spoon, eyedropper or any such medically approved delivery vehicle.
- the present invention further provides a variety of methods and systems for the modification of the nanoemulsions of the present invention, the inco ⁇ oration of the nanoemulsions into other products, packaging and delivery of the compositions of the present invention, and methods for reducing the costs associated with the use or handling of materials or samples that might be contaminated with microorganisms.
- the following description is intended to simply provide some examples of the modification, preparation, and delivery of the compositions of the present invention. Those skilled in the art will appreciate variations of such methods.
- the present invention provides methods for improving or altering the nanoemulsions described herein. Such methods include, for example, taking a nanoemulsion described herein and changing one or more components of the nanoemulsion.
- nanoemulsions of the present invention are diluted.
- the diluted samples can then be tested to determine if they maintain the desired functionality.
- the nanoemulsions of the present invention, or those derived from the nanoemulsions of the present invention are pass through a quality control (QC) and/or quality assurance (QA) procedure to confirm the suitability of the nanoemulsion for sale or delivery to a user or retailer.
- QC quality control
- QA quality assurance
- the nanoemulsions of the present invention are added to another product to add or improve anti-microbial capabilities of the product or to test a suspected or provide a perceived improved anti-microbial capability to the product (i.e., it is contemplated that the addition of a nanoemulsion of the present invention into a product is within the scope of the present invention regardless of whether it has a detectable, or any, antimicrobial capabilities).
- the nanoemulsions of the present invention. are added to cleaning or disinfectant materials (e.g., household cleaning agents).
- the nanoemulsions are added to medical or first aid materials.
- the nanoemulsions may be added to (or used directly as) sterilization agents and wound care products.
- the nanoemulsions are added to industrial products.
- the nanoemulsions are added to motor oils to prevent or reduce, for example, fungal contamination.
- effective, stable emulsion can even be synthesized using motor oil as the oil component (e.g., W 20 5GC Mobil 1).
- the nanoemulsions are added to food products.
- the nanoemulsions can be added to beverages to prevent the growth of unwanted organisms in the beverage.
- the nanoemulsion of the present invention can be provided in many different types of containers and delivery systems.
- the nanoemulsions are provided in a cream or other solid or semi-solid form.
- the emulsions of the present invention may be inco ⁇ orated into hyrdogel formulations while maintaining antimicrobial capabilities.
- the use of the emulsions in hydrogel provides a number of useful features.
- hydrogels can be prepared in semi-solid structures of desired sizes and shapes. This allows, for example, the insertion of the hydrogel materials into tubes or other passageways to create antimicrobrial filters (i.e., materials passed through the hydrogel are decontaminated by the emulsions of the present invention).
- the nanoemulsions can be delivered (e.g., to user or customers) in any suitable container.
- Container can be used that provide one or more single use or multi-use dosages of the nanoemulsion for the desired application.
- the nanoemulsions are provided in a suspension or liquid form.
- Such nanoemulsions can be delivered in any suitable container including spray bottles (e.g. , pressurized spray bottles).
- spray bottles e.g. , pressurized spray bottles.
- large volumes (e.g., tens to thousands of liters) of nanoemulsion may be provided in a single container configured appropriately to allow distribution or use of the nanoemulsion.
- Such containers may be used in conjunction with large-scale manufacturing facilities.
- nanoemulsions of the present invention are used in conjunction with an existing business practice to reduce the costs associated with or improve the safety of the operation of the business practice.
- the use of the nanoemulsions of the present invention can reduce costs associated with the use or handling of materials or samples that might be contaminated with microorganisms.
- the nanoemulsions of the present invention are used to improve safety or reduce the costs associated with the medical industries.
- the nanoemulsions find use as cheap and efficient sterilization agents for use on medical materials (e.g., surface that come in contact with animals, people, or biological samples) or with patients (e.g., internally or externally).
- the present invention provides non-toxic nanoemulsions.
- nanoemulsions are provided herein that include ingredients that are currently approved by the appropriate regulatory agencies (e.g., FDA, USDA, etc.) for use in medical, agriculture, and food applications.
- methods are provided herein for the generation of additional nanoemulsions with the desired functionality that can be composed entirely of non-toxic and approved substances.
- the nanoemulsions of the present invention can be used in applications without incurring having to undergo the time consuming and expensive process of gaining regulatory approval. Indeed, the emulsions can be less toxic than the sum of their individual components.
- X8PC was tested to compare the lytic effect of the emulsion on sheep red blood cells tested on blood agar plates as compared to the lytic effect of mixtures of the non-emulsified ingredients.
- the data is present in Figure 34.
- the two black bars in Figure 34 show the lytic effect of the X8PC nanoemulsion compared to the lytic effect of a non-emulsified mixture of all the ingredients.
- the nanoemulsions of the present invention may be used alone, or in conjunction with other materials and products to perform specific desired functions.
- the nanoemulsions may be added to or formulated with health care products, hygiene products, and household products to prevent contamination of the products and/or to add or improve anti-microbial properties of the products.
- the functional components of the products are included in the aqueous phase or oil phase of the nanoemulsion (e.g., any of the nanoemulsion compositions described above). Components may be added prior to, during, or following emulsification.
- formulations and uses include (ingredients and concentrations are illustrative; modifications may be made as appropriate or desired): acne treatment (e.g., 0.10% adapalene, 20%> azelaic acid, 2.5-20% benzoyl peroxide, 1% clindamycin, 1.5-2% erythromycin, 0.05% isotetrinoin, 1%> meclocycline, 4%> nicotinamide, 1-3% resorcinol, 0.5-5%) salicylic acid, 0.5-5% sulfur, 6% sulfurated lime [dilute 1:10], 2.2 mg/ml tetracycline hydrochloride, and 0.025-0.1% tretinoin); deep pore purifying astringent (Witch Hazel); antacids (e.g., ⁇ 600 mg/5 ml alumina [aluminum hydroxide], aluminum carbonate, aluminium phosphate, ⁇ 850 mg/5 ml calcium carbonate, 540 mg/5 ml magn
- the present invention provides antimicrobial oil-in- water nanoemulsions having one or more of a first component comprising a solvent (e.g., ethanol, glycerol, polyethylene glycol, isopropanol), a second component comprising a halogen-containing compound (e.g., benzethonium chloride, methylbenzethonium chloride, N-alkyldimethyl benzylammonium chloride), alkyldimethyl-3,4-dichlorobenzyl ammonium chloride, cetypyridinium chloride), a third component comprising a surfactant (e.g., TWEEN-20, TRITON X-100, SDS, Poloxamer, sodium lauryl sulfate), and a fourth component (e.g., an addition surfactant, methanol, EDTA, tribuyl phosphate, tyloxapol, 2-phenylphenol, sodium chloride, triso
- a solvent
- the emulsion is produced as follows: an oil phase is made by blending organic solvent, oil, and surfactant and then heating the resulting mixture at 37-90°C for up to one hour.
- the emulsion is formed either with a reciprocating syringe instrumentation or Silverson high sheer mixer.
- the water phase is added to the oil phase and mixed for 1-30 minutes, preferably for 5 minutes.
- the volatile ingredients are added along with the aqueous phase.
- the emulsion was formed as follows: an oil phase was made by blending tri-butyl phosphate, soybean oil, and a surfactant (e.g., TRITON X-100) and then heating the resulting mixture at 86°C for one hour. An emulsion was then produced by injecting water into the oil phase at a volume/volume ratio of one part oil phase to four parts water.
- the emulsion can be produced manually, with reciprocating syringe instrumentation, or with batch or continuous flow instrumentation. Methods of producing these emulsions are well known to those of skill in the art and are described in e.g., U.S. Pat. Nos.
- Table 2 shows the proportions of each component, the pH, and the size of the emulsion as measured on a Coulter LS 130 laser sizing instrument equipped with a circulating water bath.
- the emulsions of the present invention are highly stable. Indeed, emulsions were produced as described above and allowed to stand overnight at room temperature in sealed 50 to 1000 mL polypropylene tubes. The emulsions were then monitored for signs of separation. Emulsions that showed no signs of separation were considered “stable.” Stable emulsions were then monitored over 1 year and were found to maintain stability.
- Emulsions were again produced as described above and allowed to stand overnight at -20°C in sealed 50 mL polypropylene tubes. The emulsions were then monitored for signs of separation. Emulsions that showed no signs of separation were considered “stable.” The BCTP and BCTP 0.1, emulsions have been found to be substantially unchanged after storage at room temperature for at least 24 months.
- a bacteria inactivating emulsion of the present invention designated X 8 W 60 PC, was formed by mixing a lipid-containing oil-in-water emulsion with BCTP.
- a lipid-containing oil-in-water emulsion having glycerol monooleate (GMO) as the primary lipid and cetylpyridinium chloride (CPC) as a positive charge producing agent (referred to herein as GMO/CPC lipid emulsion or "W 80 8P") and BCTP were mixed in a 1 :1 (volume to volume) ratio.
- the emulsions of the present invention were mixed with various bacteria for 10 minutes and then plated on standard microbiological media at varying dilutions. Colony counts were then compared to untreated cultures to determine the percent of bacteria killed by the treatment. Table 3 summarizes the results of the experiment.
- EDTA ethylenediamine-tetraacetic acid
- Bacillus cereus (B. cereus, ATCC #14579) was utilized as a model system for Bacillus anthracis.
- BCTP diluted preparations to study the bactericidal effect of the compounds of the present invention on the vegetative form (actively growing) of B. cereus were performed. Treatment in medium for 10 minutes at 37°C was evaluated.
- Table 6 the BCTP emulsion is efficacious against the vegetative form of 5. cereus. A 10 minute exposure with this preparation is sufficient for virtually complete killing of vegetative forms of B. cereus at all concentrations tested including dilutions as high as 1:100.
- the spore form of B. anthracis is one of the most likely organisms to be used as a biological weapon. Spores are well known to be highly resistant to most disinfectants. As describe above, effective killing of spores usually requires the use of toxic and irritating chemicals such as formaldehyde or sodium hypochlorite (i.e., bleach). The same experiment was therefore performed with the spore form of B. cereus. As shown in Table 7, treatment in both medium for 10 minutes at 37°C was not sufficient to kill B. cereus spores.
- a spore preparation was treated with BCTP at a dilution of 1 :100 and compared to an untreated control.
- the number of colony forming units per milliliter (CFU/ml) was quantitated after 0.5, 1, 2, 4, 6, and 8 hours.
- CFU/ml in the untreated control increased over the first 4 hours of incubation and then reached a plateau.
- Bacterial smears prepared at time zero, 1, 2, 4 and 6 hours, and stained for spore structures, revealed that by 2 hours no spore structures remained (FIGS. 2A-2C).
- a 1 cm skin wound was infected with 2.5xl0 7 B. cereus spores then closed without any further treatment.
- the other groups were infected with the same number of spores.
- the wounds were irrigated with either inventive emulsion or saline to simulate post-exposure decontamination.
- 60%> of the animals in this group died as a result of the infection. Histology of these lesions indicated total necrosis of the dermis and subdermis and large numbers of vegetative Bacillus organisms. Irrigation of experimentally infected wounds with saline did not result in any apparent benefit.
- CD-I mice were injected with inventive emulsion diluted 1:10 in saline as a control and did not exhibit signs of distress or inflammatory reaction, either in gross or histological analysis.
- inventive emulsion diluted 1:10 in saline as a control and did not exhibit signs of distress or inflammatory reaction, either in gross or histological analysis.
- a suspension of 4x10 7 B. cereus spores was mixed with saline or with inventive emulsion at a final dilution of 1:10 and then immediately injected subcutaneously into the back of CD-I mice.
- Mice that were infected subcutaneously with B. cereus spores without inventive emulsion developed severe edema at 6-8 hours. This was followed by a gray, necrotic area surrounding the injection site at 18-24 hours, with severe sloughing of the skin present by 48 hours, leaving a dry, red-colored lesion.
- the cornea of rabbits were irrigated with various concentrations of the inventive emulsions and monitored at 24 and 48 hours. No irritations or abnormalities were observed when compositions were used in therapeutic amounts.
- Intranasal toxicity was preformed in mice by installation of 25 ⁇ L of 4%> of the nanoemulsion per nare. No clinical or histopathological changes were observed in these mice.
- Oral toxicity testing in rats was performed by gavaging up to 8 mL per kg of 25% nanoemulsion. The rats did not lose weight or show signs of toxicity either clinically or histopathologically. There were no observed changes in the gut bacterial flora as a result of oral administration of the emulsions.
- Bacillus cereus was passed three times on blood agar (TSA with 5% sheep blood, REMEL). B. cereus was scraped from the third passage plate and resuspended in trypticase soy broth (TSB) (available from BBL). The B. cereus suspension was divided into two tubes. An equal volume of sterile saline was added to one tube and mixed 0.1 cc of the B. cereus suspension/saline was injected subcutaneously into 5 CD-I mice. An equal volume of BCTP (diluted 1:5 in sterile saline) was added to one tube and mixed, giving a final dilution of BCTP at 1:10. The B.
- TSA blood agar
- REMEL trypticase soy broth
- Bacillus cereus was grown on Nutrient Agar (Difco) with 0.1% Yeast Extract (Difco) and 50 ⁇ g/ml MnSO 4 for induction of spore formation.
- the plate was scraped and suspended in sterile 50% ethanol and incubated at room temperature for 2 hours with agitation in order to lyse remaining vegetative bacteria.
- the suspension was centrifuged at 2,500 x g for 20 minutes and the supernatant discarded.
- the pellet was resuspended in diH 2 O, centrifuged at 2,500 X g for 20 minutes, and the supernatant discarded.
- the spore suspension was divided.
- the pellet was resuspended in TSB. 0.1 cc of the B.
- cereus spore suspension diluted 1:2 with saline was injected subcutaneously into 3 CD-I mice. Equal volumes of BCTP (diluted 1:5 in sterile saline) and B. cereus spore suspension were mixed, giving a final dilution of BCTP at 1:10 (preincubation time). 0.1 cc of the BCTP/5. cereus spore suspension was injected subcutaneously into 3 CD-I mice. The number of colony forming units (cfu) of B. cereus in the inoculum was quantitated as follows. 10-fold serial dilutions of the B. cereus and B. cereus/BCTP suspensions were made in distilled H 2 O.
- Bacillus cereus was grown on Nutrient Agar (Difco) with 0.1 % Yeast Extract (Difco) and 50 (g/ml MnSO 4 for induction of spore formation). The plate was scraped and suspended in sterile 50%, ethanol and incubated at room temperature for 2 hours with agitation in order to lyse remaining vegetative bacteria. The suspension was centrifuged at 2,500 X g for 20 minutes and the supernatant discarded. The pellet was resuspended in distilled H 2 O, centrifuged at 2,500 X g for 20 minutes, and the supernatant discarded. The pellet was resuspended in TSB. The B. cereus spore suspension was divided into three tubes.
- B. cereus Re-isolation of B. cereus was attempted from skin lesions, blood, liver, and spleen (Table 13). Skin lesions were cleansed with betadine followed by 70%, sterile isopropyl alcohol. An incision was made at the margin of the lesion and swabbed. The chest was cleansed with betadine followed by 70% sterile isopropyl alcohol. Blood was drawn by cardiac puncture. The abdomen was cleansed with betadine followed by 70% sterile isopropyl alcohol. The skin and abdominal muscles were opened with separate sterile instruments. Samples of liver and spleen were removed using separate sterile instruments. Liver and spleen samples were passed briefly through a flame and cut using sterile instruments. The freshly exposed surface was used for culture. BHI agar (Difco) was inoculated and incubated aerobically at 37°C overnight.
- CD-I mice were injected subcutaneously with 0.1 cc of the compounds of the present invention and observed for 4 days for signs of inflammation and/or necrosis. Dilutions of the compounds were made in sterile saline. Tissue samples from mice were preserved in 10%, neutral buffered formalin for histopathologic examination. Samples of skin and muscle (from mice which were injected with undiluted compounds) sent for histological review were reported to show indications of tissue necrosis. Tissue samples from mice which were injected with diluted compounds were not histologically examined. Tables 14 and 15 show the results of two individual experiments.
- Guinea pigs were injected intramuscularly (in both hind legs) with 1.0 cc of compounds of the present invention per site and observed for 4 days for signs of inflammation and/or necrosis. Dilutions of the compounds were made in sterile saline.
- Tissue samples from guinea pigs were preserved in 10% neutral buffered formalin for histological examination. Tissue samples were not histologically examined.
- Rats were placed in individual cages and acclimated for five days before dosing. Rats were dosed daily for 14 days. On day 0-13, for 14 consecutive days each rat in Group 1 received by gavage three milliliters of BCTP, 1:100 concentration, respectively. The three-milliliter volume was determined to be the maximum allowable oral dose for rats.
- each rat Prior to dosing on Day 0 and Day 7, each rat was weighed. Thereafter rats were weighed weekly for the duration of the study. Animals were observed daily for sickness or mortality. Animals were allowed to rest for 14 days. On Day 28 the rats were weighed and euthanized. The mean weight results of the oral toxicity study are shown in Table 17. Mean weights for males and females on Days 0, 7, and 14, 21 and 28 and the mean weight gains from Day 0 - Day 28, are also shown in Table 17. One rat died due to mechanical trauma from manipulation of the gavage tubing during dosing on Day 14. All surviving rats gained weight over the 28 day course of the study and there was no illness reported.
- General techniques for toxicity testing include dermal irritation testing, eye irritation testing, subcutaneous test, intramuscular tests, open wound irrigation, intranasal tests, and oral tests.
- Dermal tests can be conducted on rabbits wherein 0.5 ml of 10%> emulsion is applied to the skin or rabbits for four hours. The skin reaction is recorded for up to 72 hours.
- a Draize scale is used to score the irritation.
- For eye irritation testing 0.1 ml of 10%, emulsion is applied to the eye of rabbits and the eye reaction is recorded for up to 72 hours.
- a Draize scale is used to score the irritation.
- Subcutaneous and intramuscular tests inject 0.1 ml of 10%, emulsion in mice. Two ml of 10% emulsion is applied in an open wound irrigation test using mice.
- mice For intranasal testing, 0.25 m/naris of 2-4% emulsion are applied to mice. For oral testing, 4 ml/kg/day of 10% emulsion are given orally for 1 week or 8 ml/kg of 100% emulsion is given in a single dose.
- FIG. 7 shows the time course for the sporicidal activity of X 8 W 60 PC against the Del Rio, TX strain of B. anthracis compared with zero time at room temperature. As shown, X 8 W 60 PC can kill anthrax spores in as little as 30 minutes.
- Example 2 provides an insight into a proposed the mechanisms of action of the emulsions of the present invention and to show their sporicidal activity. This mechanism is not intended to limit the scope of the invention an understanding of the mechanism is not necessary to practice the present invention, and the present invention is not limited to any particular mechanism.
- the effect of a GMO/CPC lipid emulsion ("W 80 8P") and BCTP on E. coli was examined. W 80 8P killed the E. coli (in deionized H 2 O) but BCTP was ineffective against this organism.
- FIG. 8 shows the control and FIG. 9 shows the E. coli treated with BCTP. As shown in FIG. 9, the BCTP treated E. coli look normal, with defined structure and intact lipid membranes.
- FIG. 8 shows the control and FIG. 9 shows the E. coli treated with BCTP. As shown in FIG. 9, the BCTP treated E. coli look normal, with defined structure and intact lipid membranes.
- FIG. 9 shows the BCTP treated E. coli look normal
- the W 80 8P treated Vibrio cholerae again shows swelling and changes in the interior of the organism, but the cells remain intact.
- the BCTP treated Vibrio cholerae (FIG. 13) are completely lysed with only cellular debris remaining.
- X 8 W 60 PC (FIG. 14) showed a combination of effects, where some of the organisms are swelled but intact and some are lysed. This clearly suggests that BCTP, W 80 8P and X 8 W 60 PC work by different mechanisms.
- the present Example provides the results of additional investigations of the ability of particular embodiments of the emulsions of the present invention to inactivate different Bacillus spores.
- the methods and results from these studies are outlined below.
- Surfactant lipid preparations BCTP, a water-in-oil nanoemulsion, in which the oil phase was made from soybean oil, tri-n-butyl phosphate, and TRITON X-100 in 80%, water.
- X 8 W 60 PC was prepared by mixing equal volumes of BCTP with W 80 8P which is a liposome-like compound made of glycerol monostearate, refined Soya sterols, TWEEN 60, soybean oil, a cationic ion halogen-containing CPC and peppermint oil.
- Bacillus cereus (ATTC 14579), B. circulans (ATC 4513), B. megaterium (ATCC 14581), and B. subtilis (ATCC 11774) were grown for a week at 37°C on NAYEMn agar (Nutrient Agar with 0.1%, Yeast Extract and 5 mg/1 MnS0 4 ).
- NAYEMn agar Nutrient Agar with 0.1%, Yeast Extract and 5 mg/1 MnS0 4
- the plates were scraped and the bacteria spores suspended in sterile 50%, ethanol and incubated at room temperature (27°C) for 2 hours with agitation in order to lyse the remaining vegetative bacteria.
- the suspension was centrifuged at 2,500 X g for 20 minutes and the pellet washed twice in cold diH 2 O.
- the spore pellet was resuspended in trypticase soy broth (TSB) and used immediately for experiments.
- TTB trypticase soy broth
- B. anthracis spores, Ames and Vollum 1 B strains were kindly supplied by Dr. Bruce Ivins (USAMRIID, Fort Derrick, Frederick, MD), and prepared as previously described (Ivins et al, 1995).
- Four other strains of anthrax were kindly provided by Dr. Martin Hugh- Jones (LSU, Baton Rouge, LA). These strains represent isolates with high allelic dissimilarity from South Africa; Mozambique; Bison, Canada; and Del Rio, Texas.
- TSA trypticase Soy Agar
- BCTP was added to the TSA at a 1:100 final dilution and continuously stirred while the plates were poured.
- the spore preparations were serially diluted (ten-fold) and 10 ⁇ l aliquots were plated in duplicate (highest inoculum was 10 5 spores per plate). Plates were incubated for 48 hours aerobically at 37°C and evaluated for growth.
- spores were resuspended in TSB. 1 ml of spore suspension containing 2xl0 6 spores (final concentration 10 6 spores/ml) was mixed with 1 ml of BCTP or X 8 W 60 PC (at 2X final concentration in diH 2 O) in a test tube. The tubes were incubated in a tube rotator at 37°C for four hours. After treatment, the suspensions were diluted 10-fold in diH 2 O. Duplicate aliquots (25 ⁇ l) from each dilution were streaked on TSA, incubated overnight at 37°C, and then colonies were counted. Sporicidal activity expressed as a percentage killing was calculated: cfu finitiaTI - cfu Tpost - treatment] x 100. cfu[initial]
- Electron microscopy B. cereus spores were treated with BCTP at a 1:100 final dilution in TSB using Erlenmeyer flasks in a 37°C shaker incubator. Fifty ml samples were taken at intervals and centrifuged at 2,500 X g for 20 minutes and the supernatant discarded. The pellet was fixed in 4% glutaraldehyde in 0.1 M cacodylate (pH 7.3). Spore pellets were processed for transmission electron microscopy and thin sections examined after staining with uranyl acetate and lead citrate.
- Germination inhibitors/simulators B. cereus spores (at a final concentration 10 6 spores/ml) were suspended in TSB with either the germination inhibitor D-alanine (at final concentration of 1 ⁇ M) or with the germination stimulator L-alanine + inosine (at final concentration of 50 ⁇ M each) (Titball and Manchee, 1987; Foster and Johnston., 1990; Shibata et al, 1976) and then immediately mixed with BCTP (at a final dilution of 1:100) and incubated for variable interval. Then the mixtures were serially diluted, plated and incubated overnight. The next day the plates were counted and percentage sporicidal activity was calculated.
- In vivo sporicidal activity Two animal models were developed; in the first B. cereus spores (suspended in sterile saline) were mixed with an equal volume of BCTP at a final dilution of 1:10. As a control, the same B. cereus spore suspension was mixed with an equal volume of sterile saline. 100 ⁇ l of the suspensions containing 4xl0 7 spores was then immediately injected subcutaneously into CD-I mice.
- a simulated wound was created by making an incision in the skin of the back of the mice.
- the skin was separated from the underlying muscle by blunt dissection.
- the "pocket" was inoculated with 200 ⁇ l containing 2.5xl0 7 spores (in saline) and closed using wound clips.
- the clips were removed and the wound irrigated with either 2 ml of sterile saline or with 2 ml of BCTP (1:10 in sterile saline).
- the wounds were then closed using wound clips.
- the animals were observed for clinical signs. Gross and histopathology were performed when the animals were euthanized 5 days later.
- the wound size was calculated by the following formula: l A a x Vi b x ⁇ where a and b are two perpendicular diameters of the wound.
- BCTP In vitro sporicidal activity: To assess the sporicidal activity of BCTP, spores from four species of Bacillus genus, B. cereus, B. circulans, B. megatetium, and B. subtilis were tested. BCTP at 1:100 dilution showed over 91%, sporicidal activity against B. cereus and B. megaterium in 4 hours (FIG. 16). B. circulans was less sensitive to BCTP showing 80%, reduction in spore count, while B. subtilis appeared resistant to BCTP in 4 hours. A comparison of the sporicidal effect of BCTP (at dilutions of 1:10 and 1:100) on B.
- B. cereus sporicidal time course A time course was performed to analyze the sporicidal activity of BCTP diluted 1 :100 and X 8 W 60 PC diluted 1:1000 against B. cereus over an eight hour period. Incubation of BCTP diluted 1:100 with B. cereus spores resulted in a 77% reduction in the number of viable spores in one hour and a 95%, reduction after 4 hours. Again, X 8 W 60 PC diluted 1:1000 was more effective than BCTP 1 :100 and resulted in about 95% reduction in count after 30 minutes (FIG. 17).
- BCTP B. anthracis sporicidal activity Following initial in vitro experiments, BCTP sporicidal activity was tested against two virulent strains of B. anthracis (Ames and Vollum IB). It was found that BCTP at a 1:100 final dilution incorporated into growth medium completely inhibited the growth of lxl 0 5 B. anthracis spores. Also, 4 hours incubation with BCTP at dilutions up to 1:1000 with either the Ames or the Vollum 1 B spores resulted in over 91%, sporicidal activity when the mixtures were incubated at RT, and over 96% sporicidal activity when the mixtures were incubated at 37°C (Table 19).
- Table 19 BCTP sporicidal activity against 2 different strains of Bacillus anthracis spores as determined by colony reduction assay (% killing). BCTP at dilutions up to 1:1000 effectively killed > 91 %> of both spore strains in 4 hours at either 27 or 37°C; conditions that differed markedly in the extent of spore germination. Sporicidal activity was consistent at spore concentrations up to lxl0 6 /ml.
- X g W 60 PC B. anthracis sporicidal activity Since X 8 W 60 PC was effective at higher dilutions and against more species of Bacillus spores than BCTP, it was tested against 4 different strains of B. anthracis at dilutions up to 1:10,000 at RT to prevent germination. X 8 W 60 PC showed peak killing between 86%, and 99.9%, at 1:1000 dilution (Table 20).
- Table 20 X 8 W 60 PC sporicidal activity against 4 different strains of B. anthracis representing different clinical isolates.
- the spores were treated with X 8 W 60 PC at different dilutions in RT to reduce germination. There as no significant killing at low dilutions. The maximum sporicidal effect was observed at 1:1000 dilution.
- Electron microscopy examination of the spores Investigations were carried out using B. cereus because it is the most closely related to B. anthracis. Transmission electron microscopy examination of the B. cereus spores treated with BCTP diluted 1:100 in TSB for four hours revealed physical damage to the B. cereus spores, including extensive disruption of the spore coat and cortex with distortion and loss of density in the core (FIG. 18).
- Germination stimulation and inhibition To investigate the effect of initiation of germination on the sporicidal effect of BCTP on Bacillus spores, the germination inhibitors D-alanine (Titball and Manchee, 1987; Foster and Johnston, 1990), and germination simulators L-alanine and inosine (Shibata et al, 1976) were incubated with the spores and BCTP for 1 hour. The sporicidal effect of BCTP was delayed in the presence of 10 mM D-alanine and accelerated in the presence of 50 ⁇ M L-alanine and 50 ⁇ M inosine (FIG. 19).
- BCTP BCTP. Because these models involve subcutaneous administration of the nanoemulsion, in vivo toxicity testing of BCTP was performed prior to this application.
- a suspension of 4xl0 7 B. cereus spores was mixed with saline or with BCTP at a final dilution of 1:10 and then immediately injected subcutaneously into the back of CD-I mice. Mice which were infected subcutaneously with B.
- FIG. 21 A, FIG.21 B The other groups were infected with the same number of spores, then 1 hour later the wounds were irrigated with either BCTP or saline to simulate post-exposure decontamination. Irrigation of experimentally infected wounds with saline did not result in any apparent benefit (FIG. 21C, FIG. 21 D). BCTP irrigation of wounds infected with B. cereus spores showed substantial benefit, resulting in a consistent 98%, reduction in the lesion size from 4.86 cm 2 to 0.06 cm 2 (FIG. 21E, FIG. 21F). This reduction in lesion size was accompanied by a four-fold reduction in mortality (80%, to 20%,) when compared to experimental animals receiving either no treatment or saline irrigation.
- Enveloped viruses are of great concern as pathogens. They spread rapidly and are capable of surviving out of a host for extended periods. Influenza A virus was chosen because it is a well accepted model to test anti-viral agents (Karaivanova and Spiro, 1998; Mammen et al, 1995; Huang et al, 1991). Influenza is a clinically important respiratory pathogen that is highly contagious and responsible for severe pandemic disease (Mulder and Hers, 1972).
- the envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA) not only determine the antigenic specificity of influenza subtypes (Schulze, 1997), but they mutate readily and, as a result, may allow the virus to evade host defense systems. This may result in the initiation of disease in individuals that are immune to closely related strains.
- HA hemagglutinin
- NA neuraminidase
- SLPs Surfactant lipid preparations
- An oil phase was prepared by blending soybean oil with reagents listed in Table 1 and heating at 86°C for one hour (Florence, 1993).
- the SLPs were then formed by injecting water or 1% bismuth in water (SS) into the oil phase at a volume/volume ratio using a reciprocating syringe pump.
- Viruses Influenza virus A/AA/6/60 (Hedocher et al, 1996) was kindly provided by Dr. Hunein F. Maassab (School of Public Health, University of Michigan).
- Influenza A virus was propagated in the allantoic cavities of fertilized pathogen- free hen eggs (SPAFAS, Norwich, CT) using standard methods (Barrett and Inglis, 1985). Virus stock was kept in aliquots (10 8 pfu/ml) of infectious allantoic fluids at -80°C.
- Adenoviral vector (AD.RSV ntlacZ) was provided by Vector Core Facility (University of Michigan Medical Center, Ann Arbor, MI) and was kept in aliquots (10 12 pfu/ml at -80°C).
- the vector is based on a human adenoviral (serotype 5) genomic backbone deleted of the nucleotide sequence spanning EIA and E1B and a portion of E3 region. This impairs the ability of the virus to replicate or transform nonpermissive cells. It carries the Eschetichia coli LacZ gene, encoding, ⁇ -galactosidase, under control of the promoter from the Rouse sarcoma virus long terminal repeat (RSV-LTR). It contains a nuclear targeting (designated as nt) epitope linked to the 5' end of the LacZ gene to facilitate the detection of protein expression (Baragi et al, 1995).
- nt nuclear targeting
- MDCK Madin Darby Canine Kidney cells were purchased, from the American Type Culture Collection (ATCC; Rockville, MD) and 293 cells (CRL 1573; transformed primary embryonic human kidney) were obtained from the Vector Core Facility (University of Michigan Medical Center, Ann Arbor, MI).
- the 293 cells express the transforming gene of adenovirus 5 and therefore restore the ability of Ad.RSV ntlacZ vector to replicate in the host cell (Graham et al, 1977).
- MDCK cells were maintained in Eagle's minimal essential medium with Earle's salts, 2 mM L-glutamine, and 1.5 g/1 sodium bicarbonate (Mediatech, Inc., Hemdon, VA) containing 10%, fetal bovine serum (FBS; Hyclone Laboratories, Logan, UT). The medium was supplemented with 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate, 100 U penicillin ml and streptomycin 100 ⁇ g/ml (Life Technologies, Gaithersburg, MD).
- the 293 cells were maintained in Dulbecco's modified Eagle medium (Mediatech, Inc., Herndon, VA), containing 2 mM L-glutamine, 0.1 mM non-essential amino acids, and 1.0 mM sodium pyruvate. It also contained 100 U penicillin/ml and streptomycin 100 ⁇ g/ml (Life Technologies, Gaithersburg, MD) and was supplemented with 10% FBS (Hyclone Laboratories, Logan, UT).
- Dulbecco's modified Eagle medium Mediatech, Inc., Herndon, VA
- penicillin/ml and streptomycin 100 ⁇ g/ml
- FBS Hyclone Laboratories, Logan, UT
- Influenza A infection medium was the MDCK cell maintenance medium (without FBS) supplemented with 3.0 ⁇ g/ml of tolylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin (Worthington Biochemical Corporation, Lakewood, NJ).
- TPCK tolylsulfonyl phenylalanyl chloromethyl ketone
- Adenovirus infection medium was 293) cell maintenance medium with a reduced concentration of serum (2% FBS).
- Influenza A overlay medium consisted of equal amounts of 2x infection medium and 1.6% SEAKEM ME agarose (FMC BioProducts, Rockland, MD). Staining agarose overlay medium consisted of agarose overlay medium plus 0.01 % neutral red solution (Life Technologies, Gaithersburg, MD) without TPCK-treated trypsin.
- Plaque reduction assays The plaque reduction assay was performed with a modification of the method described elsewhere (Hayden et al, 1980). MDCK cells were seeded at 1 X 10 5 cells/well in 12-well FALCON plates and incubated at 37°C/5%, CO 2 for 3 days. Approximately lxl 0 8 pfu of influenza A virus was incubated with surfactant lipid preparations as described below. The influenza A virus-SLP treatments and controls were diluted in infection medium to contain 30-100 pfu/250 ⁇ l. Confluent cell monolayers were inoculated in triplicate on 3 plates and incubated at 37°C/5%> CO 2 for 1 h.
- the inoculum/medium was aspirated and 1 ml of agarose overlay medium/well was added and plates were incubated at 37°C/5% CO 2 until plaques appeared. Monolayers were stained with the agarose overlay medium and incubation was continued at 37°C/5% CO 2 . Plaques were counted 6-12 h after staining. The average plaque count from 9 wells with lipid preparation concentration was compared with the average plaque count of untreated virus wells.
- In situ cellular enzyme-linked immunosorbent assay To detect and quantitate viral proteins in MDCK cells infected with influenza A virus, the in situ cellular ELISA was optimized. Briefly, 2xl0 4 MDCK cells in 100 ⁇ l complete medium were added to flat-bottom 96-well microtitre plates and incubated overnight. On the next day, the culture medium was removed and cells were washed with serum free maintenance medium. One hundred ⁇ l of viral inoculum was added to the wells and incubated for 1 hour. The viral inoculum was removed and replaced with 100 ⁇ l of MDCK cell maintained medium plus 2% FBS. The infected MDCK cells were incubated for an additional 24 h.
- ELISA enzyme-linked immunosorbent assay
- the cells were washed once with PBS and fixed with ice cold ethanol: acetone mixture (1:1) and stored at -20°C.
- the wells of fixed cells were washed with PBS and blocked with 1%> dry milk in PBS for 30 min. at 37°C.
- One hundred ⁇ l of fe ⁇ et anti-influenza A virus polyclonal antibody at 1:1000 dilution was added to the wells for 1 hr at 37°C.
- the cells were washed 4 times with washing buffer (PBS and 0.05% TWEEN-20), and incubated with 100 ⁇ l at 1:1000 dilution of goat anti-fe ⁇ et peroxidase conjugated antibody (Kirkegaard & Perry Laboratories, Gaithersburg, MA) for 30 min. at 37°C. Cells were washed 4 times and incubated with 100 ⁇ l of 1-STEP TURBO TMB-ELISA substrate (Pierce, Rockford, IL) until color had developed. The reaction was stopped with 1 N sulfuric acid and plates were read at a wavelength of 450 nm in an ELISA microtiter reader.
- washing buffer PBS and 0.05% TWEEN-20
- ⁇ -galactosidase assay was performed on cell extracts as described elsewhere (Lim, 1989). Briefly, 293 cells were seeded on 96-well "U"- bottom tissue culture plates at approximately 4xl0 4 cells/well and incubated overnight at 37°C/5%CO 2 in maintenance medium. The next day, the medium was removed and the cells were washed with 100 ⁇ l Dulbecco's phosphate buffered saline (DPBS). Adenovirus stock was diluted in infection medium to a concentration of 5x10 7 pfu/mi and mixed with different concentrations of BCTP as described below.
- DPBS Dulbecco's phosphate buffered saline
- virus was diluted with infection medium to a concentration of lxlO 4 pfu/mi and overlaid on 293 cells.
- Cells were incubated at 37°C/5% CO 2 for 5 days, after which the plates were centrifuged, the medium was removed and the cells were washed three times with PBS without Ca++ and Mg++. After the third wash, the PBS was aspirated and 100 ⁇ l of 1 x Reporter Lysis Buffer (Promega, Madison, WI) was placed in each well.
- ⁇ -galactosidase assay was performed following the instruction provided by the vendor of ⁇ -galactosidase (Promega, Madison, WI) with some modifications.
- Five microliters of cell extract was transferred to a 96-well flat bottom plate and mixed with 45 ⁇ l of lx Reporter Lysis Buffer (1:10).
- 50 ⁇ l of 2x assay buffer 120 mM 80 mM NaH 2 PO 4 , 2 mM MgCl 2 , 100 mM ⁇ -mercaptoethanol, 1.33 mg/ml ONPG (Sigma, St. Louis, MO) were added and mixed with the cell extract.
- cytotoxicity and virus treatment with lipid preparations Prior to viral susceptibility testing, cytotoxicity of SLPs on MDCK and 293) cells was assessed by microscope inspection and MTT assay. The dilutions of the mixture of virus and SLPs applied in susceptibility testing were made to be at least one order of magnitude higher than the safe concentration of SLP assessed. Approximately lxl 0 8 pfu of either influenza A or adenovirus were incubated with lipid preparation at final concentrations of 1:10, 1:100, and 1:1000 for different time periods as indicated in results on a shaker.
- serial dilutions of the SLP/virus mixture were made in proper infection media and overlaid on MDCK (influenza A) or 293 (adenovirus) cells to perform PRA, cellular ELISA or ⁇ -galactosidase assays as described above.
- Influenza A virus was semi-purified from allantoic fluid by passing through a 30%, sucrose cushion prepared with GTNE (glycine 200 mM, Tris-HCl 10 mM (pH 8.8), NaCl 100 mM, and EDTA 1 mM) using ultra centrifugation (Beckman rotor SW 28 Ti, at 20,000 rpm for 16 hours). Pelleted virus was reconstituted in GTNE. Ten micro liters of respective samples (adenovirus, influenza virus, adenovirus + BCTP, influenza virus + BCTP) were incubated for 15 and 60 min, then placed on parlodian coated 200 mesh copper grids for 2 min.
- GTNE glycine 200 mM, Tris-HCl 10 mM (pH 8.8), NaCl 100 mM, and EDTA 1 mM
- BCTP and SS both showed strong inhibitory effect on virus infectivity
- PRA was used to verify data obtained from cellular ELISA. PRA confirmed the efficacy of BCTP and SS.
- BCTP reduced the number of plaques from an average of 50.88 to 0 at a 1:10 dilution (Table 21). At dilution 1:100, BCTP maintained virucidal effectiveness. At dilution 1:100 SS reduced the number of plaques only approximately 7% as compared with untreated virus.
- Anti-influenza A efficacy of BCTP Since TRITON X-100 detergent has anti- viral activity (Maha and Igarashi, 1997; Portocala et al, 1976), it was investigated whether TRITON X-100 alone or combined with individual BCTP components inhibits influenza A infectivity to the same extent as BCTP. Influenza A virus was treated with: 1) BCTP, 2) the combination of tri(n-butyl)phos ⁇ hate, TRITON X-100, and soybean oil (TTO), 3) TRITON X-100 and soybean oil (TO), or 4) TRITON X-100 (T) alone.
- BCTP was significantly more effective against influenza A virus at 1:10 and 1:100 dilutions (TRITON X-1 00 dilution of 1:500, and 1:5000) than TRITON X-1 00 alone or mixed with the other components tested (FIG. 23).
- TRITON X-1 00 dilution of 1:500, and 1:5000 TRITON X-1 00 alone or mixed with the other components tested.
- BCTP TRITON X-100 dilution of 1 :50,000
- BCTP does not affect infectivity of non-enveloped virus: To investigate whether BCTP may affect the infectivity of non-enveloped virus, genetically engineered adenovirus containing LacZ gene was used, encoding ⁇ -galactosidase. This adenovirus construct was deficient in the transforming gene and therefore can replicate and transform only permissive cells containing the transforming gene of adenovirus 5.
- the 293 cells which constitutively express transforming gene, were employed to promote adenovirus replication and production of ⁇ -galactosidase enzyme. As shown in FIG. 24, BCTP treatment did not affect the ability of adenovirus to replicate and express ⁇ -galactosidase activity in 293 cells. Both BCTP treated and untreated adenovirus produced approximately 0.11 units of ⁇ -galactosidase enzyme.
- Figures 31 and 32 show the treatment of Salmonellae with different emulsions of the present invention with the addition of 0.1%, EDTA.
- the EDTA improved the bactericidal activity of the emulsion at both 40°C ( Figure 32) and 50°C ( Figure 33).
- the emulsions were tested at 10.0%,, 1.0%, and 0.1%, dilutions.
- the emulsion X8PC is composed of about 8 vol. % of TRITON X-100, about 8 vol. % of TBP, about 1% of CPC, about 64 vol. % of soybean oil, and about 19 vol. % of DiH 2 O and the emulsion W 20 5EC is composed of from about 5 vol. % of TWEEN 20, from about 8 vol. % of ethanol, from about 1 vol. % of CPC, about 64 vol. % of oil (e.g., soybean oil), and about 22 vol. % of DiH 2 O.
- X8PC and W 20 5EC were tested for their ability to reduce the growth of a number of microorganisms under various conditions.
- Figure 35 shows the log reduction of Mycobacteria fortuitum by X8PC at 10%, 1% and 0.1% dilutions at room temperature and 37°C.
- a rubber surface experiment was conducted to test the bactericidal activity of 1% W 20 5EC at multiple temperatures and diluted in different types of water.
- a one foot surface was smeared with 20 g of belt scrapings.
- S. typhimurium was manually sprayed onto the surface and allowed to dry for 20 minutes. The treatment was applied in three one minute intervals with a one minute time pause between each interval. A ten minute incubation period at room temperature was allowed. The results are shown in Figure 36.
- the data demonstrate that W 20 5EC is effective using diH 2 O, distilled water, and tap water at each temperature tested.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Dispersion Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nanotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Birds (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oncology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Communicable Diseases (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US891086 | 1986-07-31 | ||
US09/891,086 US6559189B2 (en) | 1999-04-28 | 2001-06-25 | Non-toxic antimicrobial compositions and methods of use |
US965447 | 2001-09-27 | ||
US09/965,447 US6635676B2 (en) | 1999-04-28 | 2001-09-27 | Non-toxic antimicrobial compositions and methods of use |
PCT/US2002/020179 WO2003000243A1 (en) | 2001-06-25 | 2002-06-25 | Antimicrobial nanoemulsion compositions and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1411913A1 EP1411913A1 (en) | 2004-04-28 |
EP1411913A4 true EP1411913A4 (en) | 2009-09-02 |
Family
ID=27128968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02752094A Withdrawn EP1411913A4 (en) | 2001-06-25 | 2002-06-25 | Antimicrobial nanoemulsion compositions and methods |
Country Status (5)
Country | Link |
---|---|
US (1) | US6635676B2 (en) |
EP (1) | EP1411913A4 (en) |
JP (1) | JP2005514325A (en) |
AU (2) | AU2002350587B2 (en) |
WO (1) | WO2003000243A1 (en) |
Families Citing this family (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655252B2 (en) | 1999-04-28 | 2010-02-02 | The Regents Of The University Of Michigan | Antimicrobial nanoemulsion compositions and methods |
US7767216B2 (en) * | 1999-04-28 | 2010-08-03 | The Regents Of The University Of Michigan | Antimicrobial compositions and methods of use |
US8236335B2 (en) * | 1999-04-28 | 2012-08-07 | The Regents Of The University Of Michigan | Antimicrobial nanoemulsion compositions and methods |
US8173709B2 (en) * | 1999-09-22 | 2012-05-08 | Quadex Pharmaceuticals, Llc | Anti-infective methods for treating pathogen-induced disordered tissues |
US6794352B2 (en) * | 2000-06-12 | 2004-09-21 | Jeffrey S. Svendsen | Cleaning towel having a color identifying label and sanitizer release polymer composition |
US6667290B2 (en) | 2001-09-19 | 2003-12-23 | Jeffrey S. Svendsen | Substrate treated with a binder comprising positive or neutral ions |
US7799968B2 (en) * | 2001-12-21 | 2010-09-21 | Kimberly-Clark Worldwide, Inc. | Sponge-like pad comprising paper layers and method of manufacture |
US20040211923A1 (en) * | 2003-04-24 | 2004-10-28 | Bridges John H. | Anthrax remediation and response |
AU2003267955A1 (en) | 2002-04-24 | 2003-12-22 | Dennis Baca | Anthrax remediation and response |
AU2003299574A1 (en) * | 2002-12-02 | 2004-06-23 | Byocoat Llc | Composition ad method for treating plant fungal disease |
US7994079B2 (en) | 2002-12-17 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | Meltblown scrubbing product |
WO2004075854A2 (en) * | 2003-02-26 | 2004-09-10 | Program For Appropriate Technology In Health | Microbicidal compositions and method of use |
JP4691018B2 (en) | 2003-03-05 | 2011-06-01 | ビオコート エンタープライジズ, インコーポレイテッド | Antibacterial solutions and processes |
WO2004105662A1 (en) * | 2003-05-23 | 2004-12-09 | Program For Appropriate Technology In Health | Microbicidal compositions and methods of use |
US20050208083A1 (en) | 2003-06-04 | 2005-09-22 | Nanobio Corporation | Compositions for inactivating pathogenic microorganisms, methods of making the compositons, and methods of use thereof |
ES2297442T3 (en) * | 2003-07-07 | 2008-05-01 | Nares Ab | MICROEMULSIONS AND ITS USE TO PREVENT DISEASES OF RESPIRATORY ROADS. |
US8425926B2 (en) * | 2003-07-16 | 2013-04-23 | Yongxing Qiu | Antimicrobial medical devices |
US20050058673A1 (en) | 2003-09-09 | 2005-03-17 | 3M Innovative Properties Company | Antimicrobial compositions and methods |
US20050100601A1 (en) * | 2003-11-07 | 2005-05-12 | Viratox, L.L.C. | Virucidal activities of cetylpyridinium chloride |
EP1686993B1 (en) * | 2003-11-07 | 2011-01-12 | Viratox, L.L.C. | Virucidal activities of a composition comprising cetylpyridinium chloride and citric acid |
US20090232748A1 (en) * | 2003-11-07 | 2009-09-17 | Viratox, L.L.C. | Virucidal activities of cetylpyridinium chloride |
US20050130536A1 (en) * | 2003-12-11 | 2005-06-16 | Kimberly-Clark Worldwide, Inc. | Disposable scrubbing product |
US20050129897A1 (en) * | 2003-12-11 | 2005-06-16 | Kimberly-Clark Worldwide, Inc. | Disposable scrubbing product |
US20040259744A1 (en) * | 2003-12-19 | 2004-12-23 | Meidong Yang | Skin and hair cleansers containing sulfur |
WO2005063308A1 (en) * | 2003-12-22 | 2005-07-14 | Institute For Environmental Health, Inc. | Adherent antimicrobial barrier and sanitizing agent |
US20050232974A1 (en) * | 2004-04-19 | 2005-10-20 | Gore Makarand P | System and a method for pharmaceutical dosage preparation using jettable microemulsions |
WO2006012693A1 (en) * | 2004-08-05 | 2006-02-09 | Great Southern Coatings Group Pty Ltd | Biocidal compositions and a biocidal composition delivery system |
US20060051384A1 (en) * | 2004-09-07 | 2006-03-09 | 3M Innovative Properties Company | Antiseptic compositions and methods of use |
US9028852B2 (en) * | 2004-09-07 | 2015-05-12 | 3M Innovative Properties Company | Cationic antiseptic compositions and methods of use |
US8198326B2 (en) * | 2004-09-07 | 2012-06-12 | 3M Innovative Properties Company | Phenolic antiseptic compositions and methods of use |
GB0421164D0 (en) | 2004-09-23 | 2004-10-27 | Univ Nottingham | Medical devices and methods of making medical devices |
US8974772B2 (en) * | 2004-12-28 | 2015-03-10 | Colgate-Palmolive Company | Two phase toothpaste composition |
US20060140882A1 (en) * | 2004-12-29 | 2006-06-29 | Tambs Gary E | Two phase whitening oral care composition |
CA2600054A1 (en) * | 2005-03-09 | 2006-09-21 | Combe Incorporated | Stable mixed emulsions |
BRPI0608691A2 (en) | 2005-03-10 | 2010-12-07 | 3M Innovative Properties Co | antimicrobial composition, and methods for killing or inactivating microorganisms in mammalian mucosal tissue, for treating an infected injury or wound, for decolonizing microorganisms, for providing residual antimicrobial efficacy on a surface, and for treating a condition |
EP1858482B1 (en) | 2005-03-10 | 2014-04-23 | 3M Innovative Properties Company | Methods of reducing microbial contamination |
US8476319B2 (en) | 2005-03-10 | 2013-07-02 | 3M Innovative Properties Company | Methods of treating ear infections |
EP1871349A1 (en) * | 2005-04-11 | 2008-01-02 | Nanobio Corporation | Quaternary ammonium halides for treatment of infectious conditions |
GB0513058D0 (en) * | 2005-06-27 | 2005-08-03 | Sandoz Ag | Organic compounds |
US20070015738A1 (en) * | 2005-07-15 | 2007-01-18 | Walker Stephen G | Use of non-antibacterial tetracycline formulations for inhibiting bacterial spores from becoming infectious vegetative cells |
US20070027153A1 (en) * | 2005-07-27 | 2007-02-01 | Reeth Kevin M | Topical skin-protectant and anti-pruritic compositions |
CA2618974C (en) * | 2005-08-09 | 2014-01-28 | Nanobio Corporation | Nanoemulsion compositions having anti-inflammatory activity |
CN101316516B (en) * | 2005-09-03 | 2012-05-30 | 拜奥科特企业有限公司 | Antiseptic solution and correlation technique thereof |
WO2007040598A2 (en) * | 2005-09-19 | 2007-04-12 | Combe Incorporated | Stable emulsion systems with high salt tolerance |
US9486408B2 (en) | 2005-12-01 | 2016-11-08 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
WO2007070795A2 (en) * | 2005-12-12 | 2007-06-21 | The Trustees Of Columbia University In The City Of New York | Broad spectrum non-traditional preservative system |
US9107844B2 (en) * | 2006-02-03 | 2015-08-18 | Stiefel Laboratories Inc. | Topical skin treating compositions |
US20070238652A1 (en) * | 2006-02-08 | 2007-10-11 | Biosynexus Incorporated | Neutralization of bacterial spores |
US7246628B1 (en) * | 2006-02-21 | 2007-07-24 | Johnsondiversey, Inc. | Method for cleaning floor drains |
CN101466355A (en) * | 2006-04-07 | 2009-06-24 | 诺瓦瓦克斯股份有限公司 | Nanostructured compositions having antibacterial, anti-fungal, anti-yeast, and/or anti-viral properties |
US9839685B2 (en) * | 2006-04-13 | 2017-12-12 | The Regents Of The University Of Michigan | Methods of inducing human immunodeficiency virus-specific immune responses in a host comprising nasally administering compositions comprising a naonemulsion and recombinant GP120 immunogen |
US10138279B2 (en) | 2006-04-13 | 2018-11-27 | Regents Of The University Of Michigan | Compositions and methods for Bacillus anthracis vaccination |
US20070280890A1 (en) * | 2006-05-30 | 2007-12-06 | Joseph Frank Gravlee | System and method for disinfecting and drying a surface |
US9132071B2 (en) * | 2006-07-28 | 2015-09-15 | Santen Sas | Compositions containing quaternary ammonium compounds |
WO2008035246A2 (en) | 2006-07-28 | 2008-03-27 | Novagali Pharma Sa | Compositions containing quaternary ammonium compounds |
US8338491B2 (en) | 2006-10-27 | 2012-12-25 | 3M Innovative Properties Company | Antimicrobial compositions |
JP2010528981A (en) | 2006-12-01 | 2010-08-26 | アンテリオス, インコーポレイテッド | Amphiphilic entity nanoparticles |
KR20150028308A (en) | 2006-12-01 | 2015-03-13 | 안테리오스, 인코퍼레이티드 | Peptide nanoparticles and uses therefor |
US20080181931A1 (en) * | 2007-01-31 | 2008-07-31 | Yongxing Qiu | Antimicrobial medical devices including silver nanoparticles |
WO2008103416A1 (en) * | 2007-02-21 | 2008-08-28 | Capps Charles L | Synergistic enhancement of calcium propionate |
US8747872B2 (en) * | 2007-05-02 | 2014-06-10 | The Regents Of The University Of Michigan | Nanoemulsion therapeutic compositions and methods of using the same |
CN101765423B (en) | 2007-05-31 | 2014-08-06 | 安特里奥公司 | Nucleic acid nanoparticles and uses therefor |
FR2916966B1 (en) * | 2007-06-11 | 2011-01-14 | Galderma Res & Dev | COMPOSITIONS COMPRISING AT LEAST ONE RETINOID COMPOUND, ANTI-IRRITANT COMPOUND AND BENZOYL PEROXIDE, AND USES THEREOF |
US20090035228A1 (en) * | 2007-08-02 | 2009-02-05 | Shanta Modak | Skin and surface disinfectant compositions containing botanicals |
US9511040B2 (en) | 2007-06-20 | 2016-12-06 | The Trustees Of Columbia University In The City Of New York | Skin and surface disinfectant compositions containing botanicals |
EP2207539A4 (en) * | 2007-06-20 | 2013-03-27 | Univ Columbia | Skin and surface disinfectant compositions containing botanicals |
US9687429B2 (en) * | 2007-06-20 | 2017-06-27 | The Trustees Of Columbia University In The City Of New York | Antimicrobial compositions containing low concentrations of botanicals |
US9981069B2 (en) | 2007-06-20 | 2018-05-29 | The Trustees Of Columbia University In The City Of New York | Bio-film resistant surfaces |
WO2008157092A1 (en) * | 2007-06-20 | 2008-12-24 | The Trustees Of Columbia University In The City Of New York | Bio-film resistant surfaces |
WO2009009065A1 (en) * | 2007-07-09 | 2009-01-15 | The Trustees Of The University Of Pennsylvania | Biofilm prevention using lactoferrin |
JP5366950B2 (en) | 2007-08-16 | 2013-12-11 | ザ ユニバーシティー オブ シカゴ | Plant pathogen resistance |
BRPI0819566A2 (en) | 2007-12-31 | 2015-05-05 | 3M Innovative Properties Co | "antiseptic compositions for fabrics" |
EP2625957A1 (en) * | 2007-12-31 | 2013-08-14 | 3M Innovative Properties Company | Antimicrobial compositions |
US20090170944A1 (en) * | 2008-01-02 | 2009-07-02 | Novagali Pharma Sa | Ophthalmic micellar compositions with enhanced stability |
WO2009129470A2 (en) * | 2008-04-18 | 2009-10-22 | Nanobio Corporation | Methods for treating herpes virus infections |
US9144606B2 (en) | 2008-04-21 | 2015-09-29 | Nanobio Corporation | Nanoemulsion influenza vaccine |
CA2722445A1 (en) * | 2008-04-25 | 2009-10-29 | Nanobio Corporation | Nanoemulsions for treating fungal, yeast and mold infections |
US20090269394A1 (en) * | 2008-04-25 | 2009-10-29 | Nanobio Corporation | Methods and compositions for treating onchomycosis |
EP2293813A4 (en) * | 2008-05-23 | 2012-07-11 | Univ Michigan | Nanoemulsion vaccines |
CA2725381A1 (en) * | 2008-05-23 | 2010-03-25 | The Regents Of The University Of Michigan | Nanoemulsion adjuvants |
BRPI0914630A2 (en) * | 2008-06-26 | 2019-09-24 | Anterios Inc | dermal release |
FR2933104B1 (en) * | 2008-06-26 | 2015-10-09 | Biomerieux Sa | A CULTURE MEDIUM COMPRISING AN INHIBITOR OR SPHERES GERMINATION RETARDANT COMPOUND |
CN102159216A (en) * | 2008-07-17 | 2011-08-17 | G·莱维斯 | Methods and materials for treatment of acne |
US20100172848A1 (en) * | 2008-08-01 | 2010-07-08 | The Trustees Of Columbia University In The City Of New York | Skin and surface disinfectant compositions containing botanicals |
AU2009296458A1 (en) * | 2008-09-26 | 2010-04-01 | Nanobio Corporation | Nanoemulsion therapeutic compositions and methods of using the same |
JP5753784B2 (en) | 2008-10-10 | 2015-07-22 | ダラ・バイオサイエンシズ,インコーポレイテッド | Method for treating or preventing pain using spicamycin derivatives |
EP2376089B1 (en) | 2008-11-17 | 2018-03-14 | The Regents of the University of Michigan | Cancer vaccine compositions and methods of using the same |
WO2010087964A2 (en) | 2009-01-28 | 2010-08-05 | Nanobio Corporation | Compositions for treatment and prevention of acne, methods of making the compositions, and methods of use thereof |
WO2010132833A1 (en) | 2009-05-14 | 2010-11-18 | The Regents Of The University Of Michigan | Streptococcus vaccine compositions and methods of using the same |
MY159500A (en) | 2009-05-22 | 2017-01-13 | Genocea Biosciences Inc | Vaccines against herpes simplex virus type 2: compositions and methods for eliciting an immune response |
CN102596243B (en) * | 2009-06-16 | 2015-10-21 | 密执安大学评议会 | Nanoemulsion vaccines |
BRPI0902837A2 (en) * | 2009-08-11 | 2011-04-12 | Milton De Moura Muzel | process of using ions in agriculture, human and animal health |
US20110229516A1 (en) * | 2010-03-18 | 2011-09-22 | The Clorox Company | Adjuvant phase inversion concentrated nanoemulsion compositions |
WO2011116262A2 (en) * | 2010-03-19 | 2011-09-22 | The Regents Of The University Of Michigan | Compositions and methods for diagnosing and treating urinary tract infections |
EP2680818B1 (en) | 2011-03-02 | 2017-11-29 | Deb IP Limited | Chemical composition with hydrogen peroxide and a nanoemulsion of long-chained alcohols |
EP2729169A1 (en) | 2011-07-06 | 2014-05-14 | Nanobio Corporation | Human respiratory syncytial virus vaccine |
JP6205360B2 (en) | 2011-08-22 | 2017-09-27 | ナノバイオ コーポレーション | Herpes simplex virus nanoemulsion vaccine |
CN104093421A (en) | 2011-09-09 | 2014-10-08 | 纳诺碧欧公司 | Nanoemulsion respiratory syncytial virus (RSV) subunit vaccine |
WO2013043830A1 (en) * | 2011-09-20 | 2013-03-28 | Molecular Express, Inc. | Nanoparticle formulations of poorly soluble compounds |
US9968101B2 (en) | 2011-11-03 | 2018-05-15 | The Trustees Of Columbia University In The City Of New York | Botanical antimicrobial compositions |
EP2773334B1 (en) | 2011-11-03 | 2019-08-28 | The Trustees of Columbia University in the City of New York | Composition with sustained antimicrobial activity |
WO2013078299A1 (en) | 2011-11-23 | 2013-05-30 | Genocea Biosciences, Inc. | Nucleic acid vaccines against herpes simplex virus type 2: compositions and methods for eliciting an immune response |
US20130344120A1 (en) * | 2012-06-21 | 2013-12-26 | Douglas Craig Scott | Mouth Rinse Emulsions |
GB201211701D0 (en) | 2012-07-02 | 2012-08-15 | Reckitt Benckiser Llc | Aqueous alcoholic microbicidal compositions comprising zinc ions |
GB201211688D0 (en) | 2012-07-02 | 2012-08-15 | Reckitt Benckiser Llc | Aqueous alcoholic microbicidal compositions comprising zinc ions |
GB201211702D0 (en) | 2012-07-02 | 2012-08-15 | Reckitt Benckiser Llc | Sprayable aqueous alcoholic microbicidal compostions comprising zinc ions |
GB201211691D0 (en) | 2012-07-05 | 2012-08-15 | Reckitt Benckiser Llc | Sprayable aqueous alcoholic microbicidal compositions comprising zinc ions |
US9707162B2 (en) | 2012-11-30 | 2017-07-18 | Reckitt & Colman (Overseas) Limited | Microbicidal personal care compositions comprising metal ions |
US20140206767A1 (en) * | 2013-01-22 | 2014-07-24 | Miraculum Applications AB | Product for mold prevention and treatment |
US9532568B2 (en) | 2013-01-22 | 2017-01-03 | Miraculum, Inc. | Product for mold prevention and treatment |
WO2014117236A1 (en) * | 2013-01-30 | 2014-08-07 | Universidade Federal Do Rio De Janeiro - Ufrj | Oil-in-water nanoemulsion and process for producing same |
US9549930B2 (en) | 2013-03-14 | 2017-01-24 | Quadex Pharmaceuticals, Llc | Combined systemic and topical treatment of disordered and/or prodromal stage tissue |
US9125911B2 (en) | 2013-03-14 | 2015-09-08 | Quadex Pharmaceuticals, Llc | Combined systemic and topical treatment of disordered tissues |
US9463180B2 (en) | 2013-03-14 | 2016-10-11 | Quadex Pharmaceuticals, Llc | Treatment of molluscum contagiosum |
WO2015112195A1 (en) * | 2014-01-22 | 2015-07-30 | Miraculum Applications AB | Product for mold prevention and treatment |
WO2016057921A1 (en) | 2014-10-10 | 2016-04-14 | Baker Jr James R | Nanoemulsion compositions for preventing, suppressing or eliminating allergic and inflammatory disease |
WO2016179112A1 (en) | 2015-05-01 | 2016-11-10 | Precision Biosciences, Inc. | Precise deletion of chromoscomal sequences in vivo and treatment of nucleotide repeat expansion disorders using engineered nucleases |
US11173197B2 (en) | 2015-07-07 | 2021-11-16 | Bluewillow Biologics, Inc. | Methods and compositions for nanoemulsion vaccine formulations |
CA2997909A1 (en) | 2015-09-08 | 2017-03-16 | Precision Biosciences, Inc. | Treatment of retinitis pigmentosa using engineered meganucleases |
IL287319B2 (en) | 2015-10-05 | 2023-02-01 | Prec Biosciences Inc | Genetically-modified cells comprising a modified human t cell receptor alpha constant region gene |
ES2883116T3 (en) | 2015-10-05 | 2021-12-07 | Prec Biosciences Inc | Meganucleases Engineered with Recognition Sequences Found in the Human T Cell Receptor Alpha Constant Region Gene |
JP6846429B2 (en) | 2015-12-23 | 2021-03-24 | プレシジョン バイオサイエンシズ,インク. | An engineered meganuclease with a recognition sequence found in the human β-2 microglobulin gene |
DE212017000118U1 (en) | 2016-04-27 | 2018-12-05 | University Of Puerto Rico | 1,5-Disubstituted 1,2,3-triazoles are inhibitors of Rac / Cdc42 GTPases |
WO2017192741A1 (en) | 2016-05-03 | 2017-11-09 | Precision Biosciences, Inc. | Engineered nucleases useful for treatment of hemophilia a |
EP3454891A4 (en) | 2016-05-10 | 2019-12-25 | The Regents of The University of Michigan | Emulsion adjuvant for intramuscular, intradermal and subcutaneous administration |
US11173207B2 (en) | 2016-05-19 | 2021-11-16 | The Regents Of The University Of Michigan | Adjuvant compositions |
JP2019537555A (en) | 2016-09-28 | 2019-12-26 | ジェノセア バイオサイエンシーズ, インコーポレイテッド | Methods and compositions for treating herpes |
DK3523326T3 (en) | 2016-10-04 | 2020-08-03 | Prec Biosciences Inc | COSTIMULATING DOMAINS FOR USE IN GENETICALLY MODIFIED CELLS |
CR20190181A (en) | 2016-10-14 | 2019-08-21 | Prec Biosciences Inc | Engineered meganucleases specific for recognition sequences in the hepatitis b virus genome |
WO2018073393A2 (en) | 2016-10-19 | 2018-04-26 | Cellectis | Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy |
WO2018093465A1 (en) | 2016-11-21 | 2018-05-24 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
AU2018254576B2 (en) | 2017-04-21 | 2022-12-22 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the PCSK9 gene |
WO2018201144A1 (en) | 2017-04-28 | 2018-11-01 | Precision Biosciences, Inc. | Methods for reducing dna-induced cytotoxicity and enhancing gene editing in primary cells |
AU2018266698A1 (en) | 2017-05-08 | 2019-11-28 | Precision Biosciences, Inc. | Nucleic acid molecules encoding an engineered antigen receptor and an inhibitory nucleic acid molecule and methods of use thereof |
JP2020529834A (en) | 2017-06-30 | 2020-10-15 | プレシジョン バイオサイエンシズ,インク. | Genetically modified T cells containing modified introns of the T cell receptor alpha gene |
WO2019070856A1 (en) | 2017-10-03 | 2019-04-11 | Precision Biosciences, Inc. | Modified epidermal growth factor receptor peptides for use in genetically-modified cells |
EP3704238B1 (en) | 2017-11-01 | 2024-01-03 | Precision Biosciences, Inc. | Engineered nucleases that target human and canine factor viii genes as a treatment for hemophilia a |
US11116220B2 (en) | 2017-12-22 | 2021-09-14 | Ecolab Usa Inc. | Antimicrobial compositions with enhanced efficacy |
KR102617818B1 (en) | 2018-04-12 | 2023-12-27 | 프리시젼 바이오사이언시스 인코포레이티드 | Optimized engineered nuclease with specificity for human T cell receptor alpha constant region gene |
US11142750B2 (en) | 2018-04-12 | 2021-10-12 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
US20210393554A1 (en) | 2018-11-15 | 2021-12-23 | Bluewillow Biologics, Inc. | Nanoemulsion compositions having enhanced permeability |
US11369578B2 (en) | 2018-11-15 | 2022-06-28 | Bluewillow Biologics, Inc. | Persistent topical antimicrobial compositions and methods of using the same |
US20220090047A1 (en) | 2018-12-21 | 2022-03-24 | Precision Biosciences, Inc. | Genetic modification of the hydroxyacid oxidase 1 gene for treatment of primary hyperoxaluria |
EP3947682B1 (en) | 2019-04-03 | 2023-10-11 | Precision Biosciences, Inc. | Genetically-modified immune cells comprising a microrna-adapted shrna (shrnamir) |
EP4004216A1 (en) | 2019-07-25 | 2022-06-01 | Precision BioSciences, Inc. | Compositions and methods for sequential stacking of nucleic acid sequences into a genomic locus |
WO2021035054A1 (en) | 2019-08-20 | 2021-02-25 | Precision Biosciences, Inc. | Lymphodepletion dosing regimens for cellular immunotherapies |
US20220411479A1 (en) | 2019-10-30 | 2022-12-29 | Precision Biosciences, Inc. | Cd20 chimeric antigen receptors and methods of use for immunotherapy |
CA3160096A1 (en) | 2019-12-06 | 2021-06-10 | Bruce J. Mccreedy Jr. | Methods for cancer immunotherapy |
WO2021113765A1 (en) | 2019-12-06 | 2021-06-10 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome |
WO2021231259A1 (en) | 2020-05-11 | 2021-11-18 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
CA3172171A1 (en) | 2020-05-12 | 2021-11-18 | Victor Bartsevich | Treatment of retinitis pigmentosa using improved engineered meganucleases |
WO2021262728A1 (en) * | 2020-06-23 | 2021-12-30 | Virogenomics Biodevelopment, Inc. | Compositions and methods for viral detection |
WO2022035793A1 (en) | 2020-08-10 | 2022-02-17 | Precision Biosciences, Inc. | Antibodies and fragments specific for b-cell maturation antigen and uses thereof |
CA3172292A1 (en) | 2020-08-21 | 2022-02-24 | Cassandra GORSUCH | Engineered meganucleases having specificity for a recognition sequence in the transthyretin gene |
WO2022104062A1 (en) | 2020-11-12 | 2022-05-19 | Precision Biosciences, Inc. | Engineered meganucleases having specificity for recognition sequences in the dystrophin gene |
US20240299585A1 (en) | 2021-01-08 | 2024-09-12 | Precision Biosciences, Inc. | Engineered meganucleases having specificity for a recognition sequence in the hydroxyacid oxidase 1 gene |
EP4284823A1 (en) | 2021-01-28 | 2023-12-06 | Precision BioSciences, Inc. | Modulation of tgf beta signaling in genetically-modified eukaryotic cells |
CA3173051A1 (en) | 2021-04-22 | 2022-10-22 | Precision Biosciences, Inc. | Engineered meganucleases that target human mitochondrial genomes |
CA3173245A1 (en) | 2021-04-22 | 2022-10-22 | James Jefferson Smith | Engineered meganucleases that target human mitochondrial genomes |
US20230107290A1 (en) * | 2021-09-20 | 2023-04-06 | The Procter & Gamble Company | Jammed Emulsion Toothpaste Compositions |
AU2022371430A1 (en) | 2021-10-19 | 2024-05-30 | Precision Biosciences, Inc. | Gene editing methods for treating alpha-1 antitrypsin (aat) deficiency |
WO2023070002A2 (en) | 2021-10-19 | 2023-04-27 | Precision Biosciences, Inc. | Gene editing methods for treating alpha-1 antitrypsin (aat) deficiency |
WO2023081767A1 (en) | 2021-11-05 | 2023-05-11 | Precision Biosciences, Inc. | Methods for immunotherapy |
US11793754B1 (en) * | 2022-06-16 | 2023-10-24 | King Abdulaziz University | Sodium hypochlorite and chlorhexidine based nanoemulsions and a method of preparation thereof |
WO2023249480A1 (en) * | 2022-06-21 | 2023-12-28 | Tnh Medicaux Solutions Sdn. Bhd. | Oral rinse composition |
WO2024148167A1 (en) | 2023-01-05 | 2024-07-11 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for the human t cell receptor alpha constant region gene |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547677A (en) * | 1994-05-20 | 1996-08-20 | Novavax, Inc. | Antimicrobial oil-in-water emulsions |
WO2001049296A1 (en) * | 1999-12-30 | 2001-07-12 | The Regents Of The University Of Michigan | Antimicrobial compositions and methods of use |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA975500A (en) * | 1969-02-06 | 1975-09-30 | Joseph G. Spitzer | Structures such as applicator pads for cleaning and other purposes, propellant compositions for forming the same, and process |
US4895452A (en) | 1988-03-03 | 1990-01-23 | Micro-Pak, Inc. | Method and apparatus for producing lipid vesicles |
US5103497A (en) | 1989-11-14 | 1992-04-07 | Hicks John W | Flying spot endoscope |
US5108660A (en) | 1990-01-29 | 1992-04-28 | The Procter & Gamble Company | Hard surface liquid detergent compositions containing hydrocarbyl amidoalkylenesulfobetaine |
DE4008852A1 (en) * | 1990-03-20 | 1991-09-26 | Octapharma Ag | METHOD FOR PRODUCING NON-INFECTIOUS BLOOD PLASMA |
US5709879A (en) | 1990-06-29 | 1998-01-20 | Chiron Corporation | Vaccine compositions containing liposomes |
US5073372A (en) * | 1990-11-30 | 1991-12-17 | Richardson-Vicks, Inc. | Leave-on facial emulsion compositions |
US5389369A (en) | 1991-02-21 | 1995-02-14 | Exoxemis, Inc. | Halo peroxidase containing compositions for killing yeast and sporular microorganisms |
US5188822A (en) * | 1991-08-07 | 1993-02-23 | Chesebrough-Pond's Usa Co., Division Of Conopco Inc. | Oral compositions containing an aminosilicone and a lipophilic compound |
US5405604A (en) * | 1992-10-16 | 1995-04-11 | The Procter & Gamble Company | Concentrated mouthrinse for efficient delivery of antimicrobials |
US5951988A (en) * | 1993-03-30 | 1999-09-14 | University Of Saskatchewan | Adjuvant formulation with enhanced immunogenic activity, and related compositions and methods |
DE69434445T2 (en) * | 1993-05-28 | 2006-05-18 | New York Blood Center, Inc. | PROCESS FOR STERILIZING BIOLOGICAL COMPOSITIONS AND THE PRODUCT OBTAINED THEREFROM |
JPH0767893A (en) * | 1993-07-09 | 1995-03-14 | Koki Bussan Kk | Sterilizing method for medical appliance and its device |
US5961970A (en) | 1993-10-29 | 1999-10-05 | Pharmos Corporation | Submicron emulsions as vaccine adjuvants |
US5368837A (en) | 1994-04-14 | 1994-11-29 | Sterling Winthrop Inc. | X-ray contrast compositions containing an organic crystalline X-ray contrast agent and a cellulose derivative |
US5549901A (en) | 1994-05-20 | 1996-08-27 | Novavax, Inc. | Antimicrobial oil-in-water emulsions |
JPH10500686A (en) * | 1994-05-20 | 1998-01-20 | ノババックス インコーポレイテッド | Antibacterial oil-in-water emulsion |
US5656280A (en) * | 1994-12-06 | 1997-08-12 | Helene Curtis, Inc. | Water-in-oil-in-water compositions |
US5651959A (en) * | 1995-06-05 | 1997-07-29 | Whitehill Oral Technologies, Inc. | Ultramulsion based oral care compositions |
US5883103A (en) * | 1995-06-07 | 1999-03-16 | Shire Laboratories Inc. | Oral acyclovir delivery |
SE9503380D0 (en) * | 1995-09-29 | 1995-09-29 | Pharmacia Ab | Protein derivatives |
US6348187B1 (en) | 1996-01-24 | 2002-02-19 | Warner-Lambert Company | Peroxide/essential oils containing mouthwash compositions and two-part mouthwash systems |
US5662957A (en) | 1996-05-03 | 1997-09-02 | Novavax, Inc. | Oil containing lipid vesicles with marine applications |
US5700679A (en) | 1996-06-07 | 1997-12-23 | Novavax, Inc. | Lipid vesicles having a bilayer containing a surfactant with anti-viral and spermicidal activity |
FI106923B (en) * | 1997-01-03 | 2001-05-15 | Cultor Ltd Finnsugar Bioproduc | Use of trimethylglycine in preparations for hygiene and care of the mucous membranes of the body |
US6015832A (en) * | 1997-12-31 | 2000-01-18 | The Regents Of The University Of Michigan | Methods of inactivating bacteria including bacterial spores |
US6361787B1 (en) | 1998-05-27 | 2002-03-26 | The Clorox Company | Enhanced antimicrobial composition |
US6159977A (en) * | 1998-11-16 | 2000-12-12 | Astan, Inc. | Therapeutic anti-fungal nail preparation |
US6592853B2 (en) * | 1999-03-10 | 2003-07-15 | Block Drug Company, Inc. | Dentin desensitizer containing stannous fluoride |
DE19939139A1 (en) * | 1999-08-18 | 2001-02-22 | Beiersdorf Ag | Emulsifier-free finely dispersed systems of the water-in-oil type |
-
2001
- 2001-09-27 US US09/965,447 patent/US6635676B2/en not_active Expired - Lifetime
-
2002
- 2002-06-25 WO PCT/US2002/020179 patent/WO2003000243A1/en active IP Right Grant
- 2002-06-25 AU AU2002350587A patent/AU2002350587B2/en not_active Ceased
- 2002-06-25 JP JP2003506890A patent/JP2005514325A/en active Pending
- 2002-06-25 EP EP02752094A patent/EP1411913A4/en not_active Withdrawn
-
2005
- 2005-03-23 AU AU2005201276A patent/AU2005201276B2/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547677A (en) * | 1994-05-20 | 1996-08-20 | Novavax, Inc. | Antimicrobial oil-in-water emulsions |
WO2001049296A1 (en) * | 1999-12-30 | 2001-07-12 | The Regents Of The University Of Michigan | Antimicrobial compositions and methods of use |
Non-Patent Citations (1)
Title |
---|
See also references of WO03000243A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2002350587B2 (en) | 2004-12-23 |
US20020119207A1 (en) | 2002-08-29 |
WO2003000243A1 (en) | 2003-01-03 |
EP1411913A1 (en) | 2004-04-28 |
JP2005514325A (en) | 2005-05-19 |
US6635676B2 (en) | 2003-10-21 |
AU2005201276A1 (en) | 2005-04-14 |
AU2005201276B2 (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6559189B2 (en) | Non-toxic antimicrobial compositions and methods of use | |
AU2002350587B2 (en) | Antimicrobial nanoemulsion compositions and methods | |
US8771731B2 (en) | Antimicrobial nanoemulsion compositions and methods | |
US8232320B2 (en) | Antimicrobial nanoemulsion compositions and methods | |
EP2364709B1 (en) | Antimicrobial compositions and methods of use | |
US7767216B2 (en) | Antimicrobial compositions and methods of use | |
AU2002350587A1 (en) | Antimicrobial nanoemulsion compositions and methods | |
AU2004273779B2 (en) | Compositions for inactivating pathogenic microorganisms, methods of making the compositions, and methods of use thereof | |
US8703164B2 (en) | Compositions for inactivating pathogenic microorganisms, methods of making the compositions, and methods of use thereof | |
Hamouda et al. | A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species | |
AU749817B2 (en) | Methods of inactivating bacteria including bacterial spores | |
WO2005030172A1 (en) | Antimicrobial nanoemulsion compositions and methods | |
JP2010209109A (en) | Composition and method for anti-microbial nanoemulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1064942 Country of ref document: HK |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20090730 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61K 8/06 20060101ALI20090724BHEP Ipc: A61K 31/14 20060101AFI20030107BHEP Ipc: A61K 9/10 20060101ALI20090724BHEP |
|
17Q | First examination report despatched |
Effective date: 20100201 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100812 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1064942 Country of ref document: HK |