EP1406345B1 - PIFA-antenna with additional inductance - Google Patents

PIFA-antenna with additional inductance Download PDF

Info

Publication number
EP1406345B1
EP1406345B1 EP02016026A EP02016026A EP1406345B1 EP 1406345 B1 EP1406345 B1 EP 1406345B1 EP 02016026 A EP02016026 A EP 02016026A EP 02016026 A EP02016026 A EP 02016026A EP 1406345 B1 EP1406345 B1 EP 1406345B1
Authority
EP
European Patent Office
Prior art keywords
antenna
inductance
pifa
frequency
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02016026A
Other languages
German (de)
French (fr)
Other versions
EP1406345A1 (en
Inventor
Sheng-Gen Dr. Pan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BenQ Corp
Original Assignee
BenQ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BenQ Corp filed Critical BenQ Corp
Priority to DE50206584T priority Critical patent/DE50206584D1/en
Priority to DK02016026T priority patent/DK1406345T3/en
Priority to EP02016026A priority patent/EP1406345B1/en
Priority to AT02016026T priority patent/ATE324680T1/en
Publication of EP1406345A1 publication Critical patent/EP1406345A1/en
Application granted granted Critical
Publication of EP1406345B1 publication Critical patent/EP1406345B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the invention relates to a PIFA antenna for a mobile communication terminal, according to the preamble of claim 1.
  • Such antennas are used for example in mobile telephones for communication links with associated base stations of a mobile radio network. They are designed either as a monoband antenna, but increasingly as a multiband antenna, in order to take into account the fact that in different regions of the world, respective mobile radio services use different radio frequency ranges.
  • a multi-band antenna namely a triband antenna, is known for example from WO 02/43182 A.
  • EP 0 993 070 A1 discloses a PIFA antenna structure with a switchable impedance, wherein the impedance between a ground terminal of the antenna structure and a ground plane can be added.
  • JP-A-10190345 an antenna structure is known in which an antenna surface can be switched on by driving a diode of a main antenna surface. By the connection, the resonance behavior of the unit of switchable antenna surface and main antenna surface is changed so that a relation to the main antenna surface changed frequency range can be supported.
  • both dual-band and triband antennas have been developed in the prior art, which are capable of multiple, through Mobile radio standards in respective regions defined frequency ranges to serve.
  • a frequency band at 850 MHz and a frequency band at 1,900 MHz are used, while in Europe frequency bands at 900 MHz (GSM) and 1,800 MHz are used.
  • GSM Global System for Mobile Communications
  • an antenna is a frequency dependent device, a particular design of the antenna is needed for each possible combination of frequency bands. If the antenna is designed as an internal antenna, as is the case with the PIFA antenna, different sizes and volumes of the antennas require different ones Housing, so that for the respective frequency bands in which a mobile phone should be usable, often adjustments are required.
  • the object of the invention is to provide a PIFA antenna which can be changed in a simple manner with regard to at least one of its resonance frequency ranges.
  • a resonant frequency range of a PIFA antenna which corresponds for example to a first standard mobile radio frequency range
  • the PIFA antenna has a resonant frequency range which is suitable for a second standard mobile radio frequency range.
  • the additional inductance when changing between two standard mobile radio frequency bands has significant advantages.
  • the additional inductance it is not necessary to have to provide different tools for producing different antennas in order to be able to switch between standard mobile radio frequency ranges. Rather, the invention makes it possible to maintain a given PIFA antenna configuration and, if necessary, to supplement it with an inductance of suitable size, so that the resonant frequency range is moved to another standard mobile radio frequency band.
  • An electrical connection between the inductance and the high-frequency feed point is formed such that the inductance can be decoupled from the PIFA antenna. In this way, a simple switch between two standard mobile radio frequency bands can be achieved.
  • a monoband PIFA antenna is shown, which is not part of the invention and which has an antenna surface P1, a ground contact point G1 and a high-frequency supply point S1, via which a high-frequency signal is supplied, which is emitted via the antenna.
  • an inductance L_p is connected, wherein the mass is electrically conductively connected to the ground point G1.
  • the inductance L_p is dimensioned such that in the case when the inductance L_p is present, the PIFA antenna is adapted for a first standard mobile radio frequency range.
  • the antenna is equipped with the inductance L_p, whereby a resonant frequency range of the antenna is shifted as desired.
  • the size of the inductance can be determined empirically readily and is generally in the range of a few nH.
  • FIG. 2 shows an equivalent circuit diagram of the monoband PIFA antenna shown in FIG.
  • the PIFA antenna without the inductance L_p is reproduced by the parallel connection of an inductance L_a and a capacitance C_a.
  • the additional inductance L_p is shown in FIG. 2, which influences the resonant frequency range of the monoband PIFA antenna.
  • FIG. 3 shows a tri-band PIFA antenna which has a first antenna surface P1, which is shaped substantially in accordance with a rectangular line, but has an opening O in the region of a corner of the rectangle and substantially encloses a second antenna surface P2 formed at right angles. Both the antenna surface P2 and the antenna surface P1 have associated ground contact points G1, G2.
  • the second antenna surface P2 is electromagnetically coupled to the antenna surface P1.
  • a high frequency feed point S1 is provided, from which the antenna surface P1 extends to one side over two corners and to the other side over a corner of the rectangle line.
  • An arm long in relation to the high-frequency feed point S1 of the antenna surface P1 is provided for the mobile radio standard frequency range at 850 MHz (North American GSM standard) or for the mobile radio standard frequency range at 900 MHz (European GSM standard).
  • the short arm of the antenna surface P1 with respect to the high-frequency feed point S1, together with the second antenna surface P2, serves the GSM frequency bands at 1,800 MHz (European GSM standard) and 1,900 MHz (North American GSM standard).
  • an inductance L_p is provided between the high frequency feed point S1 and ground, wherein components which are basically similar in FIGS. 3 and 1 have the same reference numerals be designated.
  • the long arm of the antenna surface P1 will operate the standard mobile radio frequency band at 900 MHz. If the inductance L_p is switched on, the resonance frequency range of the long arm of the antenna surface P1 is shifted by 50 MHz to 850 MHz. This is particularly clear from the figure 4. In this example, the value of the inductance L_p in the range between 8 and 35 nH to switch between the two low frequency GSM standard frequency bands or ranges.
  • a connection of the inductance L_p can be chosen so that effects on the resonance frequency characteristics of the short arm of the antenna surface P1 and the antenna surface P2 are to be expected only to a negligible extent. Due to this, by connecting the inductance L_p, the triband PIFA antenna shown in FIG. 3 can be changed simply by adding or omitting the inductance L_p with respect to its lowest mobile radio standard frequency range.

Abstract

The PIFA antenna has an earth point (G1, G2) and a high frequency feed point (S1) and an inductance (Lp) between the earth point and the high frequency feed point for changing a resonant frequency of the PIFA antenna. An electrical connection between the inductance and the high frequency feed point is designed to allow the inductance to be decoupled from the antenna. AN Independent claim is also included for the following: (a) a method of changing over an inventive device between standard mobile frequency ranges.

Description

Die Erfindung bezieht sich auf eine PIFA-Antenne für ein mobiles Kommunikationsendgerät, nach dem Oberbegriff des Anspruchs 1.The invention relates to a PIFA antenna for a mobile communication terminal, according to the preamble of claim 1.

Solche Antennen werden beispielsweise in Mobiltelefonen für Kommunikationsverbindungen mit zugehörigen Basisstationen eines Mobilfunknetzes verwendet. Sie sind entweder als Monoband-Antenne, zunehmend jedoch als Multiband-Antenne ausgebildet, um der Tatsache Rechnung zu tragen, dass in verschiedenen Regionen der Welt jeweilige Mobilfunkdienste verschiedene Funkfrequenz-Bereiche nutzen. Eine solche Multiband-Antenne, nämlich eine Triband-Antenne, ist beispielsweise aus der WO 02/43182 A bekannt.Such antennas are used for example in mobile telephones for communication links with associated base stations of a mobile radio network. They are designed either as a monoband antenna, but increasingly as a multiband antenna, in order to take into account the fact that in different regions of the world, respective mobile radio services use different radio frequency ranges. Such a multi-band antenna, namely a triband antenna, is known for example from WO 02/43182 A.

Aus der EP 0 993 070 A1 geht eine PIFA-Antennenstruktur mit schaltbarer Impedanz hervor, wobei die Impedanz zwischen einem Masseanschluss der Antennenstruktur und einer Masseebene zuschaltbar ist. Aus der JP-A-10190345 ist eine Antennenstruktur bekannt, bei der eine Antennenfläche durch Ansteuern einer Diode einer Haupt-Antennenfläche zuschaltbar ist. Durch die Zuschaltung wird das Resonanzverhalten der Einheit aus zuschaltbarer Antennenfläche und Hauptantenennfläche so geändert, dass ein gegenüber der Haupt-Antennenfläche geänderter Frequenzbereich unterstützt werden kann.EP 0 993 070 A1 discloses a PIFA antenna structure with a switchable impedance, wherein the impedance between a ground terminal of the antenna structure and a ground plane can be added. From JP-A-10190345 an antenna structure is known in which an antenna surface can be switched on by driving a diode of a main antenna surface. By the connection, the resonance behavior of the unit of switchable antenna surface and main antenna surface is changed so that a relation to the main antenna surface changed frequency range can be supported.

Daher besteht für Hersteller von Mobiltelefonen Bedarf, diese mit Antennen auszurüsten, die im wesentlichen ungeändert weltweit benutzt werden können. Beispielsweise sind im Stand der Technik bereits sowohl Dualband- als auch Triband-Antennen entwickelt worden, die in der Lage sind, mehrere, durch Mobilfunk-Standards in jeweilige Regionen festgelegte Frequenzbereiche zu bedienen.Therefore, there is a need for handset manufacturers to equip them with antennas that can be used essentially unchanged worldwide. For example, both dual-band and triband antennas have been developed in the prior art, which are capable of multiple, through Mobile radio standards in respective regions defined frequency ranges to serve.

Beispielsweise wird für die Mobiltelefonie in Nordamerika ein Frequenzband bei 850 MHz und ein Frequenzband bei 1.900 MHz verwendet, während in Europa Frequenzbänder bei 900 MHz (GSM) und 1.800 MHz im Einsatz sind. Da eine Antenne ein frequenzabhängiges Gerät ist, wird eine besondere Gestaltung der Antenne für jede mögliche Kombination von Frequenzbändern benötigt. Sofern die Antenne als interne Antenne ausgebildet ist, wie dies bei der PIFA-Antenne der Fall ist, erfordern verschiedene Größen und Volumina der Antennen verschiedene Gehäuse, so dass für die jeweiligen Frequenzbänder, in denen ein Mobiltelefon nutzbar sein soll, häufig Anpassungen erforderlich sind.For example, for mobile telephony in North America, a frequency band at 850 MHz and a frequency band at 1,900 MHz are used, while in Europe frequency bands at 900 MHz (GSM) and 1,800 MHz are used. Since an antenna is a frequency dependent device, a particular design of the antenna is needed for each possible combination of frequency bands. If the antenna is designed as an internal antenna, as is the case with the PIFA antenna, different sizes and volumes of the antennas require different ones Housing, so that for the respective frequency bands in which a mobile phone should be usable, often adjustments are required.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, eine PIFA-Antenne zu schaffen, die auf einfache Art und Weise hinsichtlich wenigstens eines ihrer Resonanzfrequenz-Bereiche veränderbar ist.Proceeding from this, the object of the invention is to provide a PIFA antenna which can be changed in a simple manner with regard to at least one of its resonance frequency ranges.

Diese Aufgabe wird bei der eingangs genannten PIFA-Antenne durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved in the aforementioned PIFA antenna by the characterizing features of claim 1.

Es ist somit vorgesehen, einen Resonanzfrequenz-Bereich einer PIFA-Antenne, der beispielsweise einem ersten Mobilfunk-Standardfrequenzbereich entspricht, mittels einer zusätzlichen Induktivität so zu ändern, dass die PIFA-Antenne einen Resonanzfrequenzbereich aufweist, der für einen zweiten Mobilfunk-Standardfrequenzbereich geeignet ist. Dies hat den Vorteil, dass am Antennenvolumen oder einer räumlichen Anordnung einzelner Antennenelemente, insbesondere bei Multiband-Antennen, keine Änderungen vorgenommen werden müssen, um ein weiteres Mobilfunk-Standardfrequenzband zu bedienen.It is thus intended to change a resonant frequency range of a PIFA antenna, which corresponds for example to a first standard mobile radio frequency range, by means of an additional inductance so that the PIFA antenna has a resonant frequency range which is suitable for a second standard mobile radio frequency range. This has the advantage that no changes have to be made to the antenna volume or a spatial arrangement of individual antenna elements, in particular in the case of multiband antennas, in order to serve a further mobile radio standard frequency band.

Insbesondere bei niedrigen Frequenzbändern, wie diejenigen für GSM 850 und EGSM 900, ist es schwierig, allein mit Hilfe einer Änderung der Antennenkonfiguration von einem ersten Mobilfunk-Standardfrequenzbereich zu einem zweiten Mobilfunk-Standardfrequenzbereich umzuschalten. Insofern weist die zusätzliche Induktivität beim Wechsel zwischen zwei Mobilfunk-Standardfrequenzbereichen erhebliche Vorteile auf. Außerdem ist es aufgrund der zusätzlichen Induktivität nicht erforderlich, verschiedene Werkzeuge zur Herstellung verschiedener Antennen vorsehen zu müssen, um zwischen Mobilfunk-Standardfrequenzbereichen wechseln zu können. Vielmehr gestattet es die Erfindung, eine vorgegebene PIFA-Antennenkonfiguration beizubehalten und im Bedarfsfall um eine Induktivität geeigneter Größe zu ergänzen, so dass der Resonanzfrequenzbereich auf einen anderen Mobilfunk-Standardfrequenzbereich verschoben wird.Particularly at low frequency bands, such as those for GSM 850 and EGSM 900, it is difficult to switch from a first standard mobile radio frequency band to a second standard mobile radio band frequency only by means of a change in the antenna configuration. In this respect, the additional inductance when changing between two standard mobile radio frequency bands has significant advantages. In addition, due to the additional inductance, it is not necessary to have to provide different tools for producing different antennas in order to be able to switch between standard mobile radio frequency ranges. Rather, the invention makes it possible to maintain a given PIFA antenna configuration and, if necessary, to supplement it with an inductance of suitable size, so that the resonant frequency range is moved to another standard mobile radio frequency band.

Eine elektrische Verbindung zwischen der Induktivität und dem Hochfrequenz-Zuführungspunkt ist derart ausgebildet, dass die Induktivität von der PIFA-Antenne abkoppelbar ist. Auf diese Weise lässt sich ein einfaches Umschalten zwischen zwei Mobilfunk-Standardfrequenzbereichen erreichen.An electrical connection between the inductance and the high-frequency feed point is formed such that the inductance can be decoupled from the PIFA antenna. In this way, a simple switch between two standard mobile radio frequency bands can be achieved.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen noch näher erläutert. Es zeigen:

Figur 1
eine Monoband-PIFA-Antenne mit einer zusätzlichen Induktivität,
Figur 2
ein Ersatzschaltbild der Monoband-PIFA-Antenne von Figur 1,
Figur 3
eine Multiband-PIFA-Antenne mit zusätzlicher Induktivität und
Figur 4
eine grafische Darstellung des Reflektionskoeffizienten S11 der PIFA-Antenne von Figur 3 im Frequenzbereich von 800 bis 1.000 MHz.
The invention will be explained in more detail with reference to embodiments. Show it:
FIG. 1
a monoband PIFA antenna with an additional inductance,
FIG. 2
an equivalent circuit diagram of the monoband PIFA antenna of Figure 1,
FIG. 3
a multiband PIFA antenna with additional inductance and
FIG. 4
a graphical representation of the reflection coefficient S11 of the PIFA antenna of Figure 3 in the frequency range of 800 to 1,000 MHz.

In der Figur 1 ist eine Monoband-PIFA-Antenne dargestellt, die nicht Teil der Erfindung ist und die eine Antennefläche P1, einen Massekontaktpunkt G1 und einen Hochfrequenz-Zuführungspunkt S1 aufweist, über den ein Hochfrequenzsignal zugeleitet wird, dass über die Antenne abgestrahlt wird. Zwischen den Hochfrequenz-Zuführungspunkt S1 und Masse ist eine Induktivität L_p geschaltet, wobei die Masse mit dem Massepunkt G1 elektrisch leitend verbunden ist. Die Induktivität L_p ist so bemessen, dass in dem Fall, wenn die Induktivität L_p vorhanden ist, die PIFA-Antenne für einen ersten Mobilfunk-Standardfrequenzbereich angepasst ist. Soll ein Mobiltelefon, das mit der Antenne ausgestattet ist, in einem anderen Mobilfunk-Standardfrequenzbereich betrieben werden, wird die Antenne mit der Induktivität L_p ausgestattet, wodurch ein Resonanzfrequenzbereich der Antenne wie gewünscht verschoben wird. Die Größe der Induktivität lässt sich empirisch ohne weiteres ermitteln und liegt grundsätzlich im Bereich von einigen nH.In the figure 1 a monoband PIFA antenna is shown, which is not part of the invention and which has an antenna surface P1, a ground contact point G1 and a high-frequency supply point S1, via which a high-frequency signal is supplied, which is emitted via the antenna. Between the high-frequency supply point S1 and ground, an inductance L_p is connected, wherein the mass is electrically conductively connected to the ground point G1. The inductance L_p is dimensioned such that in the case when the inductance L_p is present, the PIFA antenna is adapted for a first standard mobile radio frequency range. If a mobile phone equipped with the antenna is to be operated in another standard mobile radio frequency range, the antenna is equipped with the inductance L_p, whereby a resonant frequency range of the antenna is shifted as desired. The size of the inductance can be determined empirically readily and is generally in the range of a few nH.

Figur 2 zeigt ein Ersatzschaltbild der in Figur 1 dargestellten Monoband-PIFA-Antenne. In diesem Schaltbild wird die PIFA-Antenne ohne die Induktivität L_p durch die Parallelschaltung einer Induktivität L_a und einer Kapazität C_a wiedergegeben. Parallel zu der Induktivität L_a und der Kapazität C_a ist in Figur 2 die zusätzliche Induktivität L_p dargestellt, die Einfluss auf den Resonanzfrequenzbereich der Monoband-PIFA-Antenne nimmt.FIG. 2 shows an equivalent circuit diagram of the monoband PIFA antenna shown in FIG. In this circuit diagram, the PIFA antenna without the inductance L_p is reproduced by the parallel connection of an inductance L_a and a capacitance C_a. Parallel to the inductance L_a and the capacitance C_a, the additional inductance L_p is shown in FIG. 2, which influences the resonant frequency range of the monoband PIFA antenna.

Aus Figur 3 geht eine Triband-PIFA-Antenne hervor, die eine erste Antennenfläche P1 aufweist, die im wesentlichen entsprechend einer Rechtecklinie geformt ist, jedoch im Bereich einer Ecke des Rechtecks eine Öffnung O aufweist und eine rechtwinklig geformte zweite Antennenfläche P2 im wesentlichen umschließt. Sowohl die Antennefläche P2 als auch die Antennenfläche P1 weisen zugehörige Massekontaktpunkte G1, G2 auf. Die zweite Antennenfläche P2 ist elektromagnetisch an die Antennefläche P1 gekoppelt. Am äußeren Rand der Antennenfläche P1 ist ein Hochfrequenz-Zuführungspunkt S1 vorgesehen, von dem aus sich die Antennenfläche P1 zur einen Seite hin über zwei Ecken und zur anderen Seite hin über eine Ecke der Rechtecklinie erstreckt. Ein in bezug auf den Hochfrequenz-Zuführungspunkt S1 langer Arm der Antennenfläche P1 ist für den Mobilfunk-Standardfrequenzbereich bei 850 MHz (nordamerikanischer GSM-Standard) oder für den Mobilfunk-Standardfrequenzbereich bei 900 MHz (europäischer GSM-Standard) vorgesehen. Der in bezug auf den Hochfrequenz-Zuführungspunkt S1 kurze Arm der Antennenfläche P1 bedient gemeinsam mit der zweiten Antennenfläche P2 die GSM-Frequenzbänder bei 1.800 MHz (europäischer GSM-Standard) und 1.900 MHz (nordamerikanischer GSM-Standard).FIG. 3 shows a tri-band PIFA antenna which has a first antenna surface P1, which is shaped substantially in accordance with a rectangular line, but has an opening O in the region of a corner of the rectangle and substantially encloses a second antenna surface P2 formed at right angles. Both the antenna surface P2 and the antenna surface P1 have associated ground contact points G1, G2. The second antenna surface P2 is electromagnetically coupled to the antenna surface P1. At the outer edge of the antenna surface P1, a high frequency feed point S1 is provided, from which the antenna surface P1 extends to one side over two corners and to the other side over a corner of the rectangle line. An arm long in relation to the high-frequency feed point S1 of the antenna surface P1 is provided for the mobile radio standard frequency range at 850 MHz (North American GSM standard) or for the mobile radio standard frequency range at 900 MHz (European GSM standard). The short arm of the antenna surface P1 with respect to the high-frequency feed point S1, together with the second antenna surface P2, serves the GSM frequency bands at 1,800 MHz (European GSM standard) and 1,900 MHz (North American GSM standard).

Wie im Beispiel der Figur 1 für eine Monoband-PIFA-Antenne ist bei der Triband-PIFA-Antenne der Figur 3 zwischen dem Hochfrequenz-Zuführungspunkt S1 und Masse eine Induktivität L_p vorgesehen, wobei grundsätzlich in den Figuren 3 und 1 ähnliche Bauelemente mit denselben Bezugszeichen bezeichnet werden.As in the example of FIG. 1 for a monoband PIFA antenna, in the triband PIFA antenna of FIG. 3 an inductance L_p is provided between the high frequency feed point S1 and ground, wherein components which are basically similar in FIGS. 3 and 1 have the same reference numerals be designated.

Wenn die zusätzliche Induktivität L_p nicht vorgesehen ist, bedient der lange Arm der Antennenfläche P1 den Mobilfunk-Standardfrequenzbereich bei 900 MHz. Wird die Induktivität L_p zugeschaltet, wird der Resonanzfrequenzbereich des langen Arms der Antennenfläche P1 um 50 MHz auf 850 MHz verschoben. Dies geht besonders deutlich aus der Figur 4 hervor. Bei diesem Beispiel kann der Wert der Induktivität L_p im Bereich zwischen 8 und 35 nH liegen, um zwischen den beiden niederfrequenten GSM-Standardfrequenzbändern bzw. -bereichen umzuschalten.If the additional inductance L_p is not provided, the long arm of the antenna surface P1 will operate the standard mobile radio frequency band at 900 MHz. If the inductance L_p is switched on, the resonance frequency range of the long arm of the antenna surface P1 is shifted by 50 MHz to 850 MHz. This is particularly clear from the figure 4. In this example, the value of the inductance L_p in the range between 8 and 35 nH to switch between the two low frequency GSM standard frequency bands or ranges.

Es ist hervorzuheben, dass eine Zuschaltung der Induktivität L_p so gewählt werden kann, dass Auswirkungen auf die Resonanzfrequenzeigenschaften des kurzen Arms der Antennefläche P1 und der Antennenfläche P2 nur in zu vernachlässigendem Maße zu erwarten sind. Aufgrund dessen kann durch Zuschaltung der Induktivität L_p die in Figur 3 dargestellte Triband-PIFA-Antenne einfach durch Zuschalten oder Fortlassen der Induktivität L_p hinsichtlich ihres niedrigsten Mobilfunk-Standardfrequenzbereiches verändert werden.It should be emphasized that a connection of the inductance L_p can be chosen so that effects on the resonance frequency characteristics of the short arm of the antenna surface P1 and the antenna surface P2 are to be expected only to a negligible extent. Due to this, by connecting the inductance L_p, the triband PIFA antenna shown in FIG. 3 can be changed simply by adding or omitting the inductance L_p with respect to its lowest mobile radio standard frequency range.

Claims (2)

  1. PIFA antenna for a mobile communication terminal having an earth point (G1; G2) and a radio-frequency supply point (S1) and an antenna surface (P1), which has a short arm and a long arm, and is designed both to support a mobile radio standard frequency range at 850 MHz and to support a mobile radio standard frequency range at 900 MHz,
    characterized in that
    an inductance (L_p) is connected between the radio-frequency supply point (S1) and the earth point (G1; G2) in order to vary the resonant frequency of the PIFA antenna, and is of such a magnitude that the lowest resonant frequency of the PIFA antenna with the inductance (L_p) is essentially at 850 MHz, and without the inductance (L_p) is essentially at 900 MHz, and an electrical connection is formed between the inductance (L_p) and the radio-frequency supply point (S1) in such a way that the inductance (L_p) can be decoupled from the PIFA antenna.
  2. PIFA antenna according to Claim 1,
    characterized in that
    the value of the inductance (L_p) is in the range from 8 to 35 nH.
EP02016026A 2002-07-18 2002-07-18 PIFA-antenna with additional inductance Expired - Lifetime EP1406345B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50206584T DE50206584D1 (en) 2002-07-18 2002-07-18 PIFA antenna with additional inductance
DK02016026T DK1406345T3 (en) 2002-07-18 2002-07-18 PIFA antenna with additional inductance
EP02016026A EP1406345B1 (en) 2002-07-18 2002-07-18 PIFA-antenna with additional inductance
AT02016026T ATE324680T1 (en) 2002-07-18 2002-07-18 PIFA ANTENNA WITH ADDITIONAL INDUCTIVITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02016026A EP1406345B1 (en) 2002-07-18 2002-07-18 PIFA-antenna with additional inductance

Publications (2)

Publication Number Publication Date
EP1406345A1 EP1406345A1 (en) 2004-04-07
EP1406345B1 true EP1406345B1 (en) 2006-04-26

Family

ID=31985017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02016026A Expired - Lifetime EP1406345B1 (en) 2002-07-18 2002-07-18 PIFA-antenna with additional inductance

Country Status (4)

Country Link
EP (1) EP1406345B1 (en)
AT (1) ATE324680T1 (en)
DE (1) DE50206584D1 (en)
DK (1) DK1406345T3 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786938B2 (en) 2004-06-28 2010-08-31 Pulse Finland Oy Antenna, component and methods
US8466756B2 (en) 2007-04-19 2013-06-18 Pulse Finland Oy Methods and apparatus for matching an antenna
US8473017B2 (en) 2005-10-14 2013-06-25 Pulse Finland Oy Adjustable antenna and methods
US8564485B2 (en) 2005-07-25 2013-10-22 Pulse Finland Oy Adjustable multiband antenna and methods
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
US8629813B2 (en) 2007-08-30 2014-01-14 Pusle Finland Oy Adjustable multi-band antenna and methods
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8786499B2 (en) 2005-10-03 2014-07-22 Pulse Finland Oy Multiband antenna system and methods
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20040584A (en) * 2004-04-26 2005-10-27 Lk Products Oy Antenna element and method for making it
US7324054B2 (en) 2005-09-29 2008-01-29 Sony Ericsson Mobile Communications Ab Multi-band PIFA
FI118872B (en) 2005-10-10 2008-04-15 Pulse Finland Oy Built-in antenna
US10211538B2 (en) 2006-12-28 2019-02-19 Pulse Finland Oy Directional antenna apparatus and methods
FI20096134A0 (en) 2009-11-03 2009-11-03 Pulse Finland Oy Adjustable antenna
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475108A (en) * 1982-08-04 1984-10-02 Allied Corporation Electronically tunable microstrip antenna
JPS61206322A (en) * 1985-03-11 1986-09-12 Fujitsu Ltd Antenna impedance matching circuit
JPH08148960A (en) * 1994-11-25 1996-06-07 Oki Electric Ind Co Ltd Antenna matching circuit
JP3482089B2 (en) * 1996-12-25 2003-12-22 シャープ株式会社 Frequency switching inverted F antenna
JP2000114856A (en) * 1998-09-30 2000-04-21 Nec Saitama Ltd Reversed f antenna and radio equipment using the same
CN1141756C (en) * 1999-09-30 2004-03-10 株式会社村田制作所 Surface-mount antenna and communication device with surface-mount antenna
WO2002043182A1 (en) * 2000-11-24 2002-05-30 Siemens Aktiengesellschaft Pifa antenna device for mobile communication terminals

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004470B2 (en) 2004-06-28 2011-08-23 Pulse Finland Oy Antenna, component and methods
US7786938B2 (en) 2004-06-28 2010-08-31 Pulse Finland Oy Antenna, component and methods
US8564485B2 (en) 2005-07-25 2013-10-22 Pulse Finland Oy Adjustable multiband antenna and methods
US8786499B2 (en) 2005-10-03 2014-07-22 Pulse Finland Oy Multiband antenna system and methods
US8473017B2 (en) 2005-10-14 2013-06-25 Pulse Finland Oy Adjustable antenna and methods
US8466756B2 (en) 2007-04-19 2013-06-18 Pulse Finland Oy Methods and apparatus for matching an antenna
US8629813B2 (en) 2007-08-30 2014-01-14 Pusle Finland Oy Adjustable multi-band antenna and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus

Also Published As

Publication number Publication date
DE50206584D1 (en) 2006-06-01
DK1406345T3 (en) 2006-08-21
EP1406345A1 (en) 2004-04-07
ATE324680T1 (en) 2006-05-15

Similar Documents

Publication Publication Date Title
EP1406345B1 (en) PIFA-antenna with additional inductance
DE60211316T2 (en) ANTENNA ARRANGEMENT
DE60026276T2 (en) Antenna structure, method for coupling a signal to the antenna structure, antenna unit and mobile station with such an antenna structure
EP1204160B1 (en) Multiband microwave antenna
DE60200508T2 (en) Internal multiband antenna
DE60010099T2 (en) SEMI-BUILT PRINTED MULTI-BAND ANTENNA
DE60210246T2 (en) Multi-band antenna
DE69924104T2 (en) Asymmetric dipole antenna arrangement
DE60126280T2 (en) TWO BAND PATCH ANTENNA
DE112008000578B4 (en) Antenna and radio communication device
DE69828113T2 (en) Double resonant antenna structure for several frequency ranges
DE10150159B4 (en) Impedance matching circuit for a multi-band power amplifier
DE69929968T2 (en) ANTENNA SWITCH
CN100391049C (en) Antenna arrangement
EP1829158B1 (en) Disc-monopole antenna structure
DE102005047418B4 (en) Multi-band antenna device, wireless data transmission device and radio frequency chip
EP1154518B1 (en) Integrated antenna for mobile telephones
EP1289053A2 (en) Circuit board and SMD-antenna thereof
DE10223497A1 (en) Dual band antenna is based around resonator plate having three regions
WO2000018026A1 (en) Multiband antenna switcher
DE112010006030T5 (en) Mobile communication device with improved antenna performance
DE19824145A1 (en) Integrated antenna arrangement for mobile telecommunications terminal
DE202020106896U1 (en) Radio frequency module and communication device
DE60310913T2 (en) IMPROVEMENTS IN OR RELATED TO WIRELESS TERMINALS
EP1086509B1 (en) Antenna arrangement and radio device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040504

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20050322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENQ CORPORATION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50206584

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060806

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060926

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060718

BERE Be: lapsed

Owner name: BENQ CORPORATION

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080829

Year of fee payment: 7

Ref country code: DK

Payment date: 20080729

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080730

Year of fee payment: 7

Ref country code: FR

Payment date: 20080729

Year of fee payment: 7

Ref country code: IT

Payment date: 20080724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080729

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090719