EP1404968B1 - Starter for a motor vehicle - Google Patents

Starter for a motor vehicle Download PDF

Info

Publication number
EP1404968B1
EP1404968B1 EP02764970A EP02764970A EP1404968B1 EP 1404968 B1 EP1404968 B1 EP 1404968B1 EP 02764970 A EP02764970 A EP 02764970A EP 02764970 A EP02764970 A EP 02764970A EP 1404968 B1 EP1404968 B1 EP 1404968B1
Authority
EP
European Patent Office
Prior art keywords
contact
starter
fork
electric motor
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02764970A
Other languages
German (de)
French (fr)
Other versions
EP1404968A1 (en
Inventor
Gérard Vilou
Chantal Bocquet
Olivier Chane-Waye
Pascal Jacquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0109433A external-priority patent/FR2827341B1/en
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP1404968A1 publication Critical patent/EP1404968A1/en
Application granted granted Critical
Publication of EP1404968B1 publication Critical patent/EP1404968B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • H01H51/065Relays having a pair of normally open contacts rigidly fixed to a magnetic core movable along the axis of a solenoid, e.g. relays for starting automobiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/023Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the overrunning type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/13Machine starters
    • Y10T74/131Automatic
    • Y10T74/132Separate power mesher

Definitions

  • the present invention relates to starters for motor vehicles.
  • Such a starter is shown in FIG. 1 and comprises an electric motor M mounted inside a first metal yoke, an electromagnetic contactor 2 extending parallel to the electric motor M and comprising a winding 2a mounted inside the first metal yoke. a second metal head.
  • the two yokes are fixed, here using tie rods, on a support 4 with the interposition here of a support plate 28 of an epicyclic gear box.
  • the support 4 is an aluminum-based casting, which is intended to be fixed to the casing of the internal combustion engine of the motor vehicle, hereinafter referred to as the heat engine.
  • the support 4 ensures the return to earth and has a front end shaped warhead open locally for the passage of the starter ring C of the engine of the vehicle.
  • This warhead is connected to a fastening and centering area respectively of the electric motor M, the switch 2 and the support 4 on the housing of the engine.
  • the warhead has at the front (left part of the figure) a support sleeve of a bearing inside which is rotatably mounted the front end of a launcher shaft 100 locally having at its outer periphery splines adapted to engage complementary splines formed at the inner periphery of a driver 12 belonging to a launcher 102 also having a pinion 1 connected by a coupling device 14, here freewheeling, to the trainer.
  • the shaft 100 is coaxial with the shaft 101 of the electric motor M belonging to the armature of this motor with the interposition here of a gear reducer epicyclic train between the two shafts.
  • the support plate 28 above carries a plastic part in the form of ring gear internally and belonging to the aforesaid gear reducer, the input gear is secured to the front end of the electric motor shaft.
  • the planet carrier of the gearbox is secured to the rear end of the shaft 100.
  • the rear end of the shaft 101 is rotatably mounted within a bearing carried by a part, said rear bearing, closing the first yoke.
  • This first yoke internally carries an inductor, here with magnets, surrounding, with the presence of an air gap, the armature of the electric motor comprising a rotor in the form of a packet of sheets fixed on the shaft of the electric motor knurled at this effect.
  • This bundle of plates is provided with axial grooves for accommodating electrically conductive elements in the form of bars arranged in networks connected to the electrically conductive blades of a collector carried by the rear end of the shaft 101.
  • Brushes, mounted inside cages carried by the rear bearing are intended to cooperate with the collector blades, here of the frontal type.
  • a series of these brushes is connected to ground via the first yoke and the support 4.
  • a second series of these brushes is connected to a connector for receiving a cable connecting the connector to a first contact terminal of the contactor 2 secured to a cover of electrically insulating material closing the open rear end of the second yoke having at its front end a perforated bottom for the passage of an internally hollow movable core 2b.
  • the cover also carries a second contact terminal and at least one connection for the power supply of the winding 2a.
  • a fixed core 2d is implanted to attach to the rear end of the second yoke and penetrates partly inside a support 2c of the winding 2a.
  • the support 2c has a U-shaped section and therefore constitutes a pad for guiding the core 2b.
  • a first stepped rod passes through the fixed core 2d and carries a contact plate intended to bear on the two aforementioned contact terminals having contact pads for this purpose.
  • the second terminal is connected to the positive terminal of the battery.
  • the winding 2a is connected to this positive terminal of the battery via a start switch operated by the ignition key or any other device.
  • This winding 2a is connected to ground via the second yoke and the support 4.
  • the first rod and the contact plate belong to a movable contact 3 which, in its rest position, is kept pressed by a cut-off spring 19 against the fixed core.
  • the cutoff spring acts between the contact pad and the cover having a receiving housing of the breaking spring.
  • Another spring, said contact spring 21, of greater stiffness than that of the breaking spring is implanted axially between the other face of the contact plate and a shoulder of the rod, passing through the fixed core 2d to present an end. .
  • the movable core 2b penetrates inside the second yoke and in the winding 2a. This movable core 2b extends in axial projection with respect to the front end, and the second cylinder head.
  • the movable core 2b is subjected to the action of a return spring 18 acting between the bottom of the second yoke and a shoulder secured to the movable core centrally provided with a blind hole for the axial sliding assembly of a second rod. shoulder at its rear end for action of a spring, said spring teeth against teeth 5, acting between said shoulder and the bottom of the movable core.
  • the spring teeth against teeth has a stiffness stronger than that of the return spring 18 and lower than that of the springs associated with the movable contact 3.
  • the front end of the second rod carries an axis for the hinge assembly of the upper end of an operating lever 13 of the pinion launcher 102.
  • This lever 13 is mounted at an intermediate point 11 pivoting carried by a integral protuberance of the support plate 28 called base plate.
  • This intermediate point 11 comprises an axial clearance called JC break set that allows to electrically disconnect the electric motor starter in the case where the pinion 1 remains entangled in the crown C starter.
  • this intermediate point 11 may be carried for example by the support 4 of the starter.
  • the lower end of the operating lever comprises two arms or branches mounted in an annular groove formed in the driver 12 so that the operating lever is fork-shaped.
  • the groove of the driver is delimited by an annular bottom of axial orientation and by two annular flanks of transverse orientation perpendicular to the shaft 100.
  • the axial distance between the two sides depends on the thickness of the arms, usually called fingers, of the fork so that they can enter at least mounting clearance in the groove to move axially the driver when the contactor is electrically powered.
  • the switch 2 As shown in Figure 1, the switch 2, the electric motor M and the launcher are in their rest position. In this position the winding 2a and the electric motor M are not electrically powered; the aforementioned starter switch being open.
  • the pinion 1 is at axial distance from the start ring C of the heat engine
  • the movable contact 3 is at a distance from the contact terminals in the form of studs
  • the core 2b is at axial distance from the rod of the movable contact.
  • the switch When the switch is closed by means of the ignition key, the winding 2a is electrically powered and a magnetic field is created so that the mobile core 2b moves axially toward the fixed core 2d and the movable contact and moves, by means of the operating fork, the launcher and the pinion 1 towards the ring gear C.
  • the pinion 1 can penetrate between the teeth of the ring gear C so that it is in the meshing position with the C.
  • the movement of the pinion 1 is limited by the cooperation of the pinion 1 with a stop 6 secured to the shaft 100.
  • the movement of the movable core continues, it abuts against the rod of the moving contact through a washer that carries in the rear the movable core 2b for this purpose.
  • the cutoff spring is then compressed until closing of the movable contact by contacting its plate with the contact terminals.
  • the electrical circuit of the electric motor M is then closed so that it rotates the shaft 100 and thus the pinion 1 via the driver and the helical splines intervening between the driver and the shaft 100.
  • the magnetic circuit closes completely after the electrical circuit, the movable core 2b coming into contact with the fixed core 2d after compression of the contact spring.
  • the freewheel is blocked when the electric motor is running, the engine has not yet started. It may happen that the pinion abuts against the crown C without meshing with it. In this case, the spring 5 teeth against teeth is compressed until closing of the movable contact and supply of the electric motor which then drives in rotation the shaft 100 with penetration of the teeth of the pinion 1 in the teeth of the crown C.
  • the freewheel allows the pinion to rotate relative to the shaft 100 and thus spare the engine M.
  • the movable core 2b and the spring against teeth 5 increase the radial size of the contactor, which must be powerful.
  • Document FR A 2,174,421 discloses a double contact solution for generating a pre-rotation of the electric motor.
  • the system is provided with a solenoid and comprises a coil electrically connected, on the one hand, to the switch actuated by the ignition key and to a fixed contact positioned on the fixed core of the solenoid and, on the other hand, via the contact plate of the movable contact to a second fixed contact disposed diametrically opposite the first contact on the fixed core and itself directly electrically connected to the electric motor.
  • the contact plate rests on the two aforementioned contacts so that when the switch is closed by actuating the ignition key, the powering of the electric motor is performed by passing a current through the contacts. contacts via the wafer and an electrical resistance.
  • the electric motor starts a pre-rotation at low speed while the movable core is moved under the action of the magnetic field created by the coil.
  • the moving core comes into contact with a spring, independent piece and distant from the movable core of a length calculated so that there is contact between the two parts only when the pinion meshes with the crown.
  • the contact pad secured to the action of the spring, starts moving, and disconnects the first two contacts, cutting the power of the electric motor.
  • the wafer comes into contact with two other contacts that allow the closing of the power circuit and power under full load the electric motor.
  • the disadvantages of this principle are of two types.
  • US Pat. No. 4,418,289 shows a double-stage contactor solution similar to the solution of document FR A 2,174,421. This solution has two contact pads coming into contact with two series of contact.
  • the electrical diagram is identical to the point that the resistive coil is in this case a pure resistor placed outside the solenoid. The two plates are not brought back simultaneously during the deactivation by the contact key of the solenoid of the contactor.
  • US Pat. No. 5,814,896 presents a solution in which the contactor is coaxial with the starter body and is placed at the rear of the apparatus.
  • the double contact system is provided by a single-contact plate placed on a movable axis integral with the movable core, which is actuated by a cable running the entire length of the electric motor and connected to the launcher.
  • the second contact is made by a movable contact connected to a spring type "clothes peg" whose other end is connected to the movable axis. This contact comes into contact with the battery terminal as well as the contact plate.
  • the disadvantage of this solution is the sequential shutdown of the two power circuits.
  • the invention proposes a starter for a motor vehicle with a heat engine and an engine start ring.
  • thermal device comprising a launcher, equipped with a trainer and a pinion, adapted to move from a retracted position of rest to an advanced meshing position with the starter ring of the engine of the motor vehicle, an electric motor equipped with a shaft adapted to drive a launcher shaft associated with the launcher, complementary helical splines intervening locally between the inner periphery of the driver and the outer periphery of the launcher shaft, an electromagnetic contactor extending parallel to the electric motor at the above it and having a movable core, a fork mounted to articulate at its upper end on the movable core and at an intermediate point on a support of the electric motor and the contactor, wherein the trainer comprises a receiving groove the lower end of the fork delimited by two flanks and in which means are provided to make turning the electric motor at a slow speed in a first phase and then at full power, characterized in that
  • the starter comprises, as in FIG. 1, a support 4 which comprises, first means for fixing and centering the electromagnetic contactor, second fixing and centering means for the electric motor M extending parallel to the contactor and below it.
  • the support 4 also comprises third means for fixing and centering the starter on the casing of the engine of the motor vehicle so that the pinion 1 of the launcher meshes reliably with the starter ring C of the heat engine; said crown here belonging to a rigidly or resiliently rotating flywheel of the crankshaft of the heat engine or internal combustion engine.
  • the support 4 is metallic and ensures the return to ground. It is economical because it is obtained here by deformation of material, for example by stamping.
  • the electric motor M has a constitution similar to that of Figure 1 except for the assembly of the brushes and the collector blade.
  • the brushes are radially oriented and are carried internally by the metal cylinder head of the electric motor and the collector is of axial orientation.
  • Four brooms are provided here.
  • Two brushes, called negative brushes, are connected to ground via the yoke 25 and the support 4.
  • Two brushes, called positive brushes, are connected to the positive terminal of the battery via the contactor 2.
  • These figures are shown schematically at 27 a broom-cage assembly.
  • the shaft 101 of the electric motor is also the shaft 100 of the launcher and therefore carries the working stopper 6.
  • the rear bearing 26 is made of plastic and, according to one characteristic, is also the rear bearing of the contactor.
  • the yokes of the contactor 2 and the electric motor M are integral with each other.
  • the two yokes belong to one and the same continuous part 25 as can be seen in FIG.
  • the connection cable between the contactor and the positive brushes is removed as described below.
  • the starter is thus less expensive because it has fewer components.
  • the fork 13 is, as in FIG. 1, hingedly mounted at an intermediate point 11 on the support 4.
  • the fork 13 is hingedly mounted at its upper end directly on the movable core 2b of the contactor 2 and penetrates at its lower end. , as in Figure 1, in a groove of the driver 12 belonging to the pinion launcher 102.
  • a starter of the type indicated above is characterized in that the driver 12 is provided with means for locking it in rotation during its passage from its rest position to its meshing position with the start crown.
  • the locking in rotation is achieved by a fork 13 made of rigid material preferably.
  • a rotational locking device therefore intervenes between the launcher and the fork.
  • the launcher is locked in rotation by means of cooperation between the fork 13 and the coach 12 for its passage of its rest position ( Figures 3 and 4) at its meshing position, via its pinion, with the starter ring.
  • These co-operating means which in FIGS. 3 and 4 are means for locking in rotation in the form of co-operation, are located at the level of the fingers situated at the base of the fork 13 and at the level of the rear face of the driver. More precisely, the branches or arms of the fork are received in a groove of the driver 12 delimited by the sidewalls 121, 122, respectively front and rear, transverse to the axis of the shaft 101. In the rest state the fingers of the fork 13 are supported on the smooth rear flank 122 of the receiving groove.
  • the branches of the fork are corrugated for finger formation as visible at 22.
  • the front flank 121 has, for receiving the fingers 22, circumferential corrugations 21 as shown in Figures 3 and 38c.
  • the front flank 121 may have other form-forming means, for example in the form of saw teeth (FIG. 38a), wolf teeth (FIG. 38b) or corrugated teeth (FIG. 38c); the branches of the fork presenting means complementary to those of the sidewall 121.
  • the fork cooperates with the sidewall 121 and has branches with corrugations of shape complementary to that of the sidewall 121.
  • the rotational locking means may consist of plane friction arranged on the one hand on the driver and on the other hand on the fork.
  • the circumferential corrugations 21 are formed of notches 320 and bumps 321.
  • the notches 320 are of complementary shapes to those of the fingers 22 of the branches 293 of the fork 13 as shown in Figure 31 The protruding fingers penetrate the notches 320.
  • Figure 33 illustrates a variant of the rotational locking device of the launcher.
  • the inner periphery of the fork comprises a ring and the fingers 22 of the fork 13 are offset on the ring 15 slidably mounted axially on the barrel-shaped tubular portion of the driver.
  • This ring 15 is hingedly mounted on the inner end of the rod-shaped body 292 the fork by means of a pivoting means 291 comprising for example a pivot carried by the rod 292 and received in a clevis of the ring 15.
  • the ring 15 is actuated by the body 292 of the fork for its axial displacement on the shaft of the trainer.
  • the pivoting means comprises a game JC (not shown) performing the previously described cutoff function.
  • the fork 13 therefore does not comprise arms but a rod 292 having at its lower end the means 291 for pivoting with the ring 15.
  • This embodiment of rotation locking device carried by a ring 15 has the advantage of having a perfect connection between the ring 15 and the coach throughout the translation of the launcher which is not the case with the fork which pivots around its axis thus favoring the teeth of the fork to leave the notches of the coach.
  • a ratchet and ratchet device can be envisaged.
  • the rotational locking of the launcher is achieved by friction, with the aid of magnets, by cooperation of shapes or by any other means.
  • the rotational locking of the launcher consists of means which cooperate with each other rigidly.
  • the locking device in rotation wolf teeth, friction, magnets ...), the fork and the shaft of the movable axis are parts derived from rigid materials that can not present a deformation of material under the effect of the force exerted by the attraction of the mobile core.
  • An advantage according to the invention is to realize a rotational locking with a reduced number of components, these components being mainly known components in the field of starters, including the fork, the movable axis and the groove of the trainer in which the fingers of the fork are lodged.
  • the relay constituted by the electromagnetic contactor must comprise a device which allows, on the one hand, to implement the pre-rotation of the electric motor under low power, then, to apply the same power to the same engine and, on the other hand, when opening the key this contact, to simultaneously turn off the full power and pre-rotation of the electric motor. It is important to be able to deactivate these two modes of operation simultaneously, especially in the case where the pinion remains locked in the starter ring. In this case, the device according to the invention must allow through the JC cutoff game, to disconnect the full power simultaneously with the pre-rotation to completely turn off the electric motor M.
  • the means for rotating slowly the electric motor and then at full power comprise two contact pads mounted on a movable axis integral with the movable core and two pairs of contacts.
  • FIG 2 is shown schematically the electric circuit of the starter. It comprises a holding winding 37, a call winding 36, a call coil and pre-rotation 39, two contact pads P1 and P2 electrically conductive intended to come respectively in contact with a first series of contacts having two contacts C1 and C2 and with a second series of contacts having two contacts C3 and C4, the electric motor M and the start switch 35 electrically connected to the positive terminal of the battery.
  • the electric motor M and the holding coil 37 are electrically connected to ground, while the contacts C2 and C4 are electrically connected, respectively by lines 33, 34, to the positive terminal of the battery.
  • the call coils 36 and hold 37 surround the mobile core 2b.
  • the pre-rotation coil 39 also surrounds the mobile core 2b.
  • This pre-rotation coil 39 is advantageously electrically connected to the contact C1 of the first series of contacts and the electric motor M, while the contact C3 is electrically connected to the electric motor.
  • the plates P1 and P2 are carried by the movable core 2b of FIG. 3.
  • the winding 2a comprises the coils 37 and 36 of FIG. 2 connected in series with the coil 39 in the form of an electrical resistance.
  • the switch 35 is closed, the motor rotates at a slow speed from the closing of the first switch constituted by the first plate P1 and the first series of contacts C1, C2.
  • the second contact pad P2 comes into contact with the second series of contacts C3, C4, one of which is electrically connected to the electric motor and the other electrically to the positive terminal of the battery so that that the electric motor runs at full power.
  • Sets J1 and J2 are calculated so that the first contact of the wafer P1 with the contacts C1, C2 takes place during the catching of the breaking clearance JC by the movable core and the second contact of the wafer P2 with the contacts C3.
  • C4 is performed when the movable core is relative to the fixed gear 2d ( Figure 3) almost zero air gap, which ensures good penetration of the pinion in the starter ring.
  • a clip is used for the first contact pad. This clip is made by performing in the movable axis 40, by means of a removal of material in this axis, a strip 23 provided with a local extra thickness.
  • the contact plate P1 comes into contact with the contacts C1 and C2. It hangs while the movable axis continues its axial stroke backward. The extra thickness of the blade 23 arrives at the platelet P1.
  • the strip 23 lowers, leaving the passage to the plate P1 which then crosses the allowance here located in the middle of the tongue, then gets up after.
  • the clip is then in position to function.
  • the extra thickness abuts against the plate P1.
  • the axial force to be provided to bend again the strip 23 being greater than the force provided by the contact spring 20 of the wafer, said wafer is forced to follow the movement of the movable axis forward and thus disconnects electrically contacts C1 and C2.
  • this clip makes it possible to electrically disconnect the electric motor, in particular at a slow pre-rotation speed, in the case where the pinion remains locked in the starting ring C of the internal combustion engine. This is possible thanks to the JC break set which allows a forward displacement of the movable axis even if the pinion remains meshed in the starter ring.
  • FIG. 3 illustrates a starter comprising a contactor provided with two contact pads P1 and P2 as previously described.
  • the movable core 2b is staggered in diameter and has a larger diameter portion protruding outside the coil 2a.
  • This core like that of FIG. 37, is simplified with respect to that of FIG. 1 and consists of a simple economic step rod with reduced radial dimensions guided by the support 2c of the coil 2a forming a solenoid.
  • a return spring 18 acts between the winding support and a shoulder of the front part of the core 2b. This spring replaces the return spring 18 of Figure 1.
  • the first portion of larger diameter penetrates inside the coil 2a and is extended by a second portion of smaller diameter around which is mounted a contact spring 20 of plate P1 bearing on the change in diameter between the first and second portions of the movable core and on the first electrically conductive contact pad P1 axially fixed on an attached stop 54, such as a circlip, mounted at the rear end of the second portion extended by a third portion, of smaller diameter than the second portion, around which is mounted a contact spring 21 bearing on the stop 54 and the second plate P2 fixed axially on an end stop 38 reported to the rear end of the mobile core.
  • the electrically conductive pads can therefore move relatively with respect to the core 2b.
  • the plate P1 axially wedged against the stop 54, is pushed back by the action of the spring 20 which is wedged axially forward against a shoulder of the movable core. So, when the movable core moves backwards, the plate P1 moves backwards, under the effect of the contact spring 20, to abut against the contacts C1 and C2.
  • a recess 60 is provided in the fixed core 2d to allow the passage of the contact spring 20 of the first plate P1.
  • the core 2b moves axially by compressing the spring 20. It is the same for the plate P2, the contact spring 21 being compressed under the action of the displacement towards the back of the staged mobile core. After opening the switch 35 associated with the ignition key, the springs 21, 20 and 18 exert a permanent action.
  • the screw 131 is connected to the positive terminal of the battery and is in electrical connection with an electrical track having a perpendicular return constituting the contact C2.
  • the contact C1 belongs to an electrical track connected to the positive brushes of the electric motor M. Note the presence (not visible) of a screw located in the same horizontal plane as the screw 131 connected firstly to the switch (ignition key) and secondly to the winding of the contactor.
  • the contact C3 also belongs to an electrical track connected to the positive brushes, the contact C2 is electrically connected, on the one hand, to an electrical resistance to turn the electric motor at low speed in the first place and, on the other hand, at contact C4 connected to the positive terminal of the battery.
  • Figure 37 illustrates more precisely a complete relay incorporating an electromagnetic contactor having two plates.
  • two contact plates P1 and P2 are fixed on a movable plastic axis 40 on which they can move in translation.
  • This movable axis 40 and for example fixed by clipping or gluing or welding on the mobile core 2b.
  • This movable core may have a cylindrical or square section. In the case of a square section, the mobile core is made economically from a stack of sheets.
  • Springs 20 and 21 hold the plates against shoulders made in the axis.
  • the pads have cylindrical central openings of a diameter equivalent to that of the shoulders to make possible the mounting. Then they are fixed by deformation of the opening which reduces along an axis the diameter making the opening oblong shape. Flats made in the axis allow this deformation.
  • the movable axis is integral with the movable core and the assembly can move in translation along the longitudinal axis of the contactor forming a relay.
  • a core return spring 18 is positioned at the front between a shoulder secured to the movable core 2b and a washer 2'd integral with the winding support 2a. It makes it possible to return the mobile core to its rest position and to keep it in this position after the relay control circuit has been cut off.
  • the fork is positioned between two flanks of the movable core. It is, at rest, resting on one of the flanks and distant from the second flank of a distance called JC break game.
  • the lever spring 17 makes it possible, on the one hand, to return the fork to its rest position after cutting off the control circuit, and on the other hand to keep the launcher in the position of rest.
  • the springs 17 and 18 are dissociated because the spring 17 has a greater stiffness because the launcher can exert a strong thrust on the fork during sudden decelerations of the vehicle. It is impossible to put a stiffness on the spring 18 equivalent to that of the spring 17 because the winding is not dimensioned, initially, to counter the axial force created by the spring 17 on the fork.
  • the springs 17, 18 allow aforementioned manner a disengagement of the plate P1.
  • the double contact is made, firstly by contacting the plate P1 with the contacts C1 and C2, and secondly by contact of the wafer P2 with the contacts C3 and C4.
  • the springs 20 and 21 serving respectively crushing springs for the wafers to ensure good contact.
  • the contact C4 is connected to the battery terminal and is connected to the contact C2 via a wired type electrical connection 29.
  • the contact C1 is electrically connected to the resistive pre-rotation coil by an electrical connection means 30.
  • the contact C1 is electrically connected to the contact C3 by an electrical connection means 32.
  • the contact C3 is also connected to the electric motor by connecting means 49.
  • the contacts C1 and C2 are electrically connected to a resistive pre-rotation coil with a resistance close to 150 mohms in order to limit the passage of current to a value between 50 and 80A to ensure sufficient pre-rotation of the motor electric.
  • This resistive pre-rotation coil is placed on top of the other two coils conventionally encountered in all the contactors, namely the call coil 36 and the hold coil 37.
  • a single plate P0 is used as well as a single pair of contacts C5 and C6 which are offset axially with respect to each other along the axis of the relay.
  • the contact C5 ensures the pre-rotation of the electric motor M and the contact C6 feeds the same motor at full power.
  • C6 contact and connected to the battery.
  • the pre-rotation resistive coil 39 is connected to C6 via an electrical connection 48, for example of the wired type.
  • the contact C5 is connected directly to the electric motor by an electrical connection means 49.
  • This embodiment has the advantage of not using external connection terminals and an external connection wire. This avoids sealing problems at the external terminals and also helps to reduce the size of the starter and its cost and weight.
  • the contact plate in a first phase is perpendicular to the movable core and moves in contact with a contact connected to the resistor until it comes to contact of the contact connected to the positive terminal of the battery via the start switch.
  • the resistive coil 39 also used as a call coil, is electrically connected to the contact pad P0 by an electrical connection means 31 which is for example welded to the wafer P0.
  • This connecting means 31 may consist of a wire coming directly from the winding 39. In a variant, this connecting means 31 may consist of a spring plated on the circumference of the wafer P0.
  • the movable core 2b continues its travel and the movable axis 40, via the contact spring 16 of the wafer, presses the wafer P0 which pivots around the contact C5.
  • the plate P0 comes into contact with the contact C6, closing the power circuit and short-circuiting the pre-rotation circuit.
  • the same clipping system that used in the previous solution with a slat (not shown) opens the two power circuits simultaneously during the return of the movable core in its rest position.
  • FIG. 4 illustrates a starter comprising a contactor provided with a pivoting contact pad P0 as described above.
  • the pre-rotation resistor is here in the form of a resistive coil 39 wound next to the winding 2a of attraction of the movable core 2b.
  • the resistive coil 39 surrounds the first large diameter portion of the movable core while the second smaller diameter section of the movable core is surrounded by the holding and calling coil 2a.
  • the reverse configuration can be realized.
  • the second portion of the movable core 2b is longer without spring, while the first portion of this core is shorter and is surrounded by a return spring 18.
  • the third portion is surrounded by a spring 16 acting on the wafer P0 which is here unique, a third spring 24 (visible in Figure 34) acts between the outer periphery of the wafer and the fixed core 2d of the coil 2a.
  • a contact pad P3 is mounted on a mobile pin 40 integral with the movable core and having at its outer periphery helical splines 50 cooperating with complementary helical splines made at the inner periphery. of the P3 wafer.
  • Axis 40 projects radially a stop 53 for wafer P3.
  • the contact plate P3 is held pressed against a shoulder 51 of the body of the solenoid 2a by an elastic washer 52 integral with the movable axis 40.
  • the plate P3 has a special shape as shown in Figure 36. It comprises two circular sectors, one of which is of greater circumferential extent, is intended to cooperate with the contact C7 and the other with the contact C8 or C9 axially of the same height. C7 and C9 contacts are diametrically opposed
  • the wafer driven by the movable axis and held by the stop 53 follows the translational movement backwards. It abuts on the first contact C7, which is connected to the battery of the vehicle, and on the contact C8, itself electrically connected to C9 by the resistive pre-rotation coil 39 thus closing the first power contact since the contact C9 is directly connected to the electric motor.
  • the movable core continues to advance, and as the plate P3 is blocked - axially, it starts to rotate on itself thanks to the aforementioned grooves and comes into contact C7 and C9 while remaining in contact with C8 via the coil 39 pre-rotation so as not to create a break in current.
  • the resistive coil 39 is short-circuited which allows to directly power the electric motor M starter at full power.
  • the contact crushing force is produced by the axial thrust force of the movable core and echoed by the grooves.
  • the movable axis pulls with it the wafer which withdraws at once from the contacts C7 and C9, thus opening the power circuit without closing the first circuit between C7 and C8.
  • the electric motor M is thus cut off from any power supply.
  • the wafer then comes into abutment against the shoulder 51 of the body of the solenoid. Being blocked in translation, the plate P3 is rotated under the pressure of the spring washer 52 which forces the plate P3 to return to its initial position by screwing on the helical teeth 50.
  • FIGs 29 and 30 a preferred embodiment of the fork 13 according to the invention.
  • This fork comprises an axis of rotation 11 carried for example by the support 4 of the starter. Under the effect of the action of the electromagnetic contactor, the fork 13 rotates in rotation about this axis 11.
  • This fork comprises a body 292 in the form of rod making a rigid connection between the axis of rotation 11 and two arms or branch These two arms are advantageously circular in shape. These two arms each carry a tooth 22, finger-shaped, facing forward. The tooth presents forwards a shape 295 preferably circular adapted to cooperate with the notches 320 shown in Figures 31 and 32.
  • the teeth or fingers 22 are in the form of a cylindrical stud.
  • the lower part of the arms 293 is advantageously provided with shoes 290.
  • pads are in the form of a protuberance oriented towards the front as for the teeth 22, that is to say facing the launcher.
  • the forward end portion of the most advanced shoe 296 may be flat as shown in Figures 29-31. In another embodiment, this end portion of the shoe may be bulged.
  • the fork may have only one shoe 290.
  • the fork 13 has two lugs 297, perpendicular to the main axis of the fork carried by the two branches 298 used for the hinge assembly with the movable axis 40 secured to the movable core of the contactor. These two ears 297 serve to support the return spring 17 of the fork 13.
  • Figure 30 shows the fork 13 associated with the movable axis 40 secured to the movable core 2b, here of generally rectangular section.
  • the mobile 40-core mobile axis assembly has at its front end an H-shape perpendicular to the axis of the mobile axis 40-moving core assembly and delimiting a 300 obviously intended to receive the two branches 298 of the fork 13 for its hinge assembly.
  • This recess 300 has an axial length greater than the thickness of the branches 298 of the fork so as to leave a clearance JC, which plays the role of cut-off game in case of blockage of the pinion in the starter ring.
  • the branches of the H of the front end of the movable 40-movable mobile axis assembly protrude to define in particular a rear shoulder 301 rear face 301.
  • the rear face 301 of the rear shoulder of the recess 300 constitutes the forward stop of the return spring 18 of the movable core and the rear face 302 of the ears 297 of the fork 13 constitutes the front stop of the spring. 17 of the fork.
  • the launcher comprises, as in Figure 1, a driver coupled by a freewheel coupling device to the pinion 1.
  • the weight of the launcher can be further reduced by the use of a coupling device with a conical clutch as described, for example, in document FR 01 08607 filed on June 29, 2001. This coupling device is more economical and lighter than that of the freewheel type, will be described hereinafter in Figures 25 to 28.
  • This device reduces the weight of the launcher, as well as the number of these components and the axial size of the launcher. In all cases the range 13 becomes a predominantly follower fork. Because of the reduction in the radial size of the launcher, the two yokes can be secured to one another advantageously in one piece ( Figure 5).
  • the support 4 can be simplified.
  • FIGS. 25 to 28 it is possible to use, in the aforementioned manner, a light launcher, which is less bulky and has fewer components.
  • a conical clutch coupling device 7 (FIG. 25) for coupling the pinion 1 to the driver 12.
  • the conical clutch 7 comprises (FIGS.
  • the coupling device comprises, on the one hand, a hollow-shaped coupling piece having a bottom extended by an annular skirt directed axially towards one of the pinion 1 - drive 12 elements and, on the other hand, elastic means 10 axially acting on a first abutment integral with the coupling piece for action on a second abutment 4 'integral with one of the pinion elements 1 - coach 12.
  • the elastic means 10 are carried by the skirt 1b ( Figure 26) or 12b ( Figure 27) of the coupling piece.
  • This skirt internally carries one of the first and second surfaces 8, 8 'and, on the other hand, is, via the bottom of the coupling piece, integral with one of the pinion elements 1 - launcher 12, which is associated with the surface 8, 8 'carried internally by the skirt, more precisely by the inner periphery thereof.
  • the contact diameter of the first surface 8 with the second surface 8 ' is greater than the diameter of the head circle of the teeth of the pinion.
  • the first or the second surface 8, 8 'carried by the skirt 1b, 12b is longer axially than the other second or first surface 8', 8.
  • the elastic means 10 are carried by the free end of the skirt 1b, 12b and extend in axial projection with respect to said other second or first surface 8 ', 8.
  • the axial end of larger diameter of said other surface 8 ', 8 is delimited by a transverse shoulder carrying the second abutment 4' for axially compressing implantation of elastic means with axial action 10 between this second abutment 4 'and a first abutment carried by the free end of the skirt of the coupling piece.
  • the transverse shoulder is extended at its inner periphery by an annular bearing surface 4 "generally of axial orientation delimiting with said shoulder a removal of material to accommodate at least part of the elastic means with axial action 10.
  • the elastic means with axial action here have a shape of circlips and are received in a groove made at the inner periphery of the free end of the skirt.
  • resilient means have alternately claws for engaging resiliently with the inner periphery of the free end of the skirt of the coupling piece as described in the document FR 01 08607 cited above for more details.
  • the resilient means axial action 10 comprise tongues 10b deformable axially and extending circumferentially.
  • the tabs 10b are axially arched and comprise a washer 10a.
  • the elastic means with axial action 10 comprise a washer 10a surrounding the elastic tongues 10b.
  • These elastic tabs connect to the inner periphery of the washer 10a in favor of rooting zones 10d.
  • the tabs 10b consist of annular sector-shaped arms extending circumferentially cantilevered on either side of a zone of rooting 10d.
  • the washer 10a has a radial slot 10g symmetrically affecting one of the two rooting zones 10d; four arms 10b being provided at the rate of two arms per zone 10b.
  • the first stop is formed by a circlip or a snap ring mounted in a groove formed at the inner periphery of the free end of the skirt.
  • the elastic means 10 may then consist of at least one Belleville washer or at least one corrugated washer see in a frustoconical coil spring bearing against the circlip or the ring for action on the coach ( Figure 26) or on the pinion (figure 27) for controlled tightening of surfaces 8,8 '.
  • the first abutment is attached to the free end of the skirt.
  • the elastic means with axial action comprise an elastic washer.
  • the free end of the skirt consists of a tubular extension.
  • the skirt of the coupling piece is frustoconical.
  • Advantageously for evacuation of dust and separation of surfaces 8,8 'one of the first and second friction surfaces 8,8' has for contact with the other surface of the grooves and at least one first and second friction surface 8.8 'is alternatively constituted by a friction lining.
  • the pinion 1 is integral with the generally bell-shaped coupling piece and the coupling piece is fixed on the pinion.
  • the initial pressure of the elastic means between the stops produces a frictional torque between the driver and the pinion, which is always, by construction, greater than the torque required for screwing and advancing the launcher on the shaft 100.
  • This condition allows the self-priming movement of the launcher between its rest position and its advanced position against the work stop, 6 at the beginning of the driving phase of the vehicle engine via the starter ring.
  • the pinion reaches the stop 6 there is compression of the surfaces 8, 8 'against each other with a blockage
  • This blockage of movement between the pinion and the driver depends in particular on the angles and diameters of the frustoconical friction surfaces. As can be seen in FIG.
  • the coil 2a After opening the switch using the ignition key, the coil 2a is de-energized which has the effect of canceling the attractive force on the mobile core 2b.
  • the movable axis 40 integral with the core, draws with it the wafer P2.
  • the excess thickness of the strip 23 abuts on one face of the plate P1.
  • the angle of the slope of this excess thickness is dimensioned (about 40 °) so that the force required for the sipe to sag is greater than the resistance force to the contact opening produced between the plate P1 and the contacts C1 and C2.
  • the plate P1 will follow the moving axis and the two power circuits will open simultaneously.
  • the plate P1 arrives at the fixed core, it is stopped while the moving axis always moves back.
  • the coverslip then collapses, the force required for this collapse is provided by the springs 18 and 21.
  • the extra thickness passes on the other side of the wafer and the coverslip resumes its initial position with respect to the wafer P1.
  • the rotational locking of the launcher and the management of the tooth against tooth position are performed by the notching system arranged on the one hand, on the rear face of the driver and on the other hand, on the front end of the the base of the fork.
  • the launcher is returned to its rest position by means of the fork and the re-screwing during the freewheel phase on the splines of the armature shaft.
  • the rest position is maintained by the return spring 17 located between the relay and the fork, just as in a traditional device.
  • the relay is no longer dimensioned to develop a thrust force. It is not very dependent on the mass of the launcher. It is sized to overcome, in the initial position, the effort exerted by the return spring 17 on the movable core. Subsequently, the solenoid 2a will have the power to overcome the springs 18 of the launcher, and crush 20, 21 of the contact pads in the variants where they are present.
  • the mass gain of copper, magnetic materials, bulk, cost and development time are the direct advantages of this undersizing.
  • the relay constituted by the electromagnetic contactor comprising the call, hold and pre-rotation coils is no longer dimensioned to develop a forward thrust force of the coach for the purposes meshing of the pinion in the crown C of the engine. Its dimensioning is little dependent on the mass of the launcher. It is dimensioned only to be able to overcome the effort exerted by the return springs on the mobile core when the solenoid is energized. It must also be dimensioned to allow the launcher to rotate when the pinion is in the tooth-to-tooth position by a rearward movement of the fork that can disengage from the wolf teeth by a slight displacement of the movable core forward. .
  • the gain in mass of copper, magnetic materials, bulk, cost and development time are the direct advantages of this under-sized contactor according to the present invention.
  • Another advantage of this invention is that the starter does not have additional parts for the implementation of a contactor and a trainer according to the invention.
  • penetration of the launcher by pre-rotation of the armature may require the establishment in the relay of a two-contact switching system, in the case where the pre-rotation intensity exceeds the limit given by the control system (ignition key), one to let a low power (current limited to 80 amperes), the other to let all the power available.
  • a starter without spring against tooth and pre-rotation device can be envisaged.
  • all the power is allocated to the armature.
  • a single contact relay would be sufficient.
  • tooth-to-tooth spring it is the strong acceleration of the armature at startup that would advance the launcher itself by inertia coming to screw on the helical grooves of the armature shaft without locking in rotation by a fork.
  • the problem of the tooth against tooth would no longer appear thanks to the permanent rotation of the pinion during its forward stroke by screwing on the armature shaft.
  • FIGS 39 and 40 illustrate another embodiment of the pre-rotation according to the invention.
  • FIG. 39 illustrates a contactor allowing efficient pre-rotation and which uses only a call coil 36 and hold 37 without using an additional resistive element such as a call and pre-rotation coil 39 as described. previously.
  • a contactor has the advantage of using only two springs, namely a return spring 18 of the core and a contact spring 20 to ensure good contact between the contact pad P0 and the power pads C1 and C2.
  • the fork can be pushed back because the coil 2a of the contactor has a lower force than the force exerted by the notches on the fork 13.
  • the pinion turning found an opening in the motor ring, it enters the pushed by the axial force of the fork generated by the attraction of the movable core by the solenoid 2a.
  • the movable core 2b has a movable axis 40 which is integral with it in translation (hitched axis) so that it is the spring of reminder 18 which acts as a breaking spring.
  • the fork 13 is identical to that described in FIGS. 3, 4, 29 and 30 and allows a rotational locking of a launcher similar to that described in FIGS. 3, 4, 31, 32, 33.
  • the fork also helps the launcher to move forward thanks to the force exerted to the rear by the mobile core 2b under the effect of the magnetic field created by the current flowing in the solenoid 2a. This promotes the movement of the launcher by reducing the risk of jamming at the flutes.
  • connection terminal of the electric motor of Figure 1 is replaced by an internal connection.
  • the rear bearing 26 is made of plastic so that the electric tracks are obtained by the overmoulding technique.
  • the rear bearing has a receiving sleeve of the rear end of the shaft 101. This sleeve internally carries a bearing in which is mounted rotatably the rear end of the shaft 101.
  • the resistance 39 for example aluminum, is wound and is connected to the contacts C1 and C2. In FIG. 3, the resistor is wound around windings 36 and 37.
  • the two yokes can belong to the same room or be integral with each other.
  • the support 4 can be obtained by deformation of material being for example stamped sheet. It then comprises a fastening and centering flange instead of the deeper fixing zone of FIG. 1.
  • the rear bearing of the electric motor advantageously constitutes the closing plate of the contactor.
  • the rear bearing is then, in one embodiment, equipped with one or more electrical tracks, for example by overmolding. This or these tracks connect at least one fixed contact to the electric motor so that the cable of FIG. 1 can be removed.
  • the rear bearing 26 is attached by clipping 29 on the yoke 25 and closes it on the side opposite the support 4.
  • the yoke 25 has holes and the bearing 26 of the elastically deformable tongues each carrying a lug with a ramp. When we put the tongues of the bearing 26 in the cylinder head, they retract downwards thanks to the ramps protruding lugs. When the lugs arrive in front of the holes, the tabs unfold and the lugs go into the holes. Several pins and holes are provided.
  • the yoke 25 has the shape shown in FIG. 6 and has two receiving recesses respectively of the electric motor M and the contactor 2.
  • the yoke 25 is formed in favor of a closed metal strip, for example of generally oval shape, which is deformed using jaws in contact with removable cores delimiting the cavities.
  • the strip can be opened at the origin and closed by buttoning as described in US-A-4 309 815 or by welding.
  • the cylinder head is made of magnetic material, for example sheet metal.
  • the two yokes are fixed to one another, for example by welding.
  • the support 4 is made of sheet metal and is obtained by deformation of material without recovery operation, only the anticorrosion surface treatment being optionally performed. For example, pre-coated sheets may be used.
  • the support 4 (FIG.
  • the nose 43 has an opening 44. for the passage of the starter ring.
  • the warhead is connected at the rear to a fastening flange 45 of transverse orientation, that is to say perpendicular to the axis of rotation XX of the shaft 100-101.
  • the simple-shaped flange replaces the more complex attachment zone of FIG. 1.
  • Rigidizing ribs 47 are present between the flange 45 and the nose 43.
  • 41 hollow studs are made for fixing and centering of the support on the housing of the engine of the vehicle and thus constitute the aforementioned third fastening and centering means.
  • FIG. 46 shows a spherical cap for creating a clearance from the front end of the movable core 2b of the contactor 2 whose number of springs is reduced compared to that of Figure 1.
  • the fixed core 2d, 2d is also simplified since it consists of a simple plate without frustoconical portion as in Figure 1. It is the same for the mobile core 2b.
  • a support washer is provided for the support of the return spring 18.
  • the first means of fixing and centering the support 4 are used for fixing the yoke 25.
  • the ogive 43 is pressed sheet metal and the flange 43 aluminum.
  • the yoke 25 can be stamped to form hollow fitting means for penetration of tabs from the cylinder head and formation of centering means.
  • the yoke 25 is fixed by crimping on the support 4 as visible for example in Figures 8 to 24.
  • These embodiments are also applicable to the fixing of the cylinder head on the rear bearing.
  • These solutions are economical because it avoids having recourse as in Figure 1 to an expensive screwdriver investment point of view if one wants to take into account precise screwing parameters.
  • this type of screw or tie assembly is cumbersome and poses additional constraints in the automation of assembly stations (distribution of long or small parts, little space for the passage of the heads of the screwdrivers).
  • the cycle time of a screwing operation is traditionally long.
  • the support 4 or the bearing 26 have cavities 70, for example in the form of recesses, in which are bent the beaks 71, 72 obtained by cutting into the cylinder head 25.
  • the beaks rest on the lateral edges of the hollows thus achieving angular indexing and a rotational stop.
  • Figures 10 to 12 there is formed such a web of material but the recess 170 extends parallel to the axis X-X of the shaft 101, instead of being perpendicular thereto.
  • the band 73 is formed with recesses 74,75 vis-à-vis. Axial and radial fixation is thus obtained without the need for casing.
  • the wall of the piece 26 (or alternatively 4) is locally deformed at 373 by pushing it inside the hollow 270 by means of a punch here of prismatic shape in a conical or cylindrical variant.
  • the structures can be reversed, the yoke being locally deformed to penetrate into the recess 70, 170, 270 forming a cavity so that the bearing 26 can be made of plastic.
  • a local deformation of material is represented by means of a cylindrical punch showing a deformation of material 273 penetrating, for example, in the recess 270.
  • FIG. 15 only one recess 470 is provided, the upper part of FIG. 10, that is to say the recess 74 being eliminated.
  • the recess 470 of FIG. 15 is open and two tabs 471, 472 are formed, the reference 473 being a solid part.
  • the axial tabs 77 instead of crossing a hole, the axial tabs 77 pass through a recess 76 in the form of a notch and the pre-cut side edges 77 'of the tabs, for example of the yoke 25, are folded to the contact lateral edges of the notches made in the support or the bearing.
  • Figure 19 is a casing.
  • the bearing 26 has for example bearing protrusions 79 for the lower face of the yoke 25.
  • the piece 26 has a flange 78 folded radially by crimping or folding in contact with the upper face of the yoke 25.
  • the flange is axially deformed at 178 in contact with the upper face of the yoke 25.
  • FIG. 21 it is formed using a punch a cut in the collar with an inclined leg 278 folded in contact with the upper face of the cylinder head.
  • an inclined lug 378 (FIGS. 22 to 24) is folded in contact with the upper face of the yoke 25. All that has just been described is applicable to the flange 45 of the support 4.
  • the coupling device between the driver 12 and the pinion comprises in an exemplary embodiment a freewheel. This free wheel uses a large number of components due in particular to the presence of rollers each subjected to the action of a spring.
  • the conical clutch coupling device allows a great simplification above.
  • the invention and the rotational locking of the driver promotes the movement of the launcher by reducing the risk of jamming at the flutes.
  • the variant support is of the type of FIG. 1 and the two yokes can be distinct.
  • a gear reducer is alternatively interposed between the two shafts and / or a cable is provided between the motor M and the contactor as in Figure 1.
  • the inductor of the electric motor M as a variant comprises a winding. Tie rods can connect the support to the rear bearing.
  • the alternative brushes are axially oriented as in FIG.
  • the embodiments described above are also suitable for starters with inductors with magnets or coils, direct drive or with internal gear and ogive support or pinion type outgoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Valve Device For Special Equipments (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The starter for a motor vehicle comprises a starter head provided with a driver (12) and a pinion (1), an electric motor (M) provided with a shaft (101) able to drive a starter-head shaft (100), an electromagnetic contactor (2) extending parallel to the electric motor (M) above it and comprising a movable core (2d), a fork (13) mounted with articulation at its top end on the movable core (2b); the driver (12) comprises a groove for receiving the bottom end of the fork (13) delimited by two flanks (121, 122) whilst the starter head is locked in rotation by means of cooperation between the fork (13) and the driver (12) for its passage from its idle position to its position of meshing with the starting ring.

Description

Domaine de l'inventionField of the invention

La présente invention concerne les démarreurs pour véhicules automobiles.The present invention relates to starters for motor vehicles.

Etat de la techniqueState of the art

Un tel démarreur est représenté à la figure 1 et comporte un moteur électrique M monté à l'intérieur d'une première culasse métallique, un contacteur électromagnétique 2 s'étendant parallèlement au moteur électrique M et comportant un bobinage 2a monté à l'intérieur d'une deuxième culasse métallique.
Les deux culasses se fixent, ici à l'aide de tirants, sur un support 4 avec interposition ici d'une plaque de support 28 d'un réducteur à train épicycloïdal. Le support 4 est une pièce moulée à base d'aluminium, qui est destinée à être fixée sur le carter du moteur à combustion interne du véhicule automobile dénommé ci-après moteur thermique. Le support 4 assure le retour à la masse et comporte une extrémité avant en forme d'ogive ouverte localement pour le passage de la couronne de démarrage C du moteur thermique du véhicule. Cette ogive se raccorde à une zone de fixation et de centrage respectivement du moteur électrique M, du contacteur 2 et du support 4 sur le carter du moteur thermique.
L'ogive présente à l'avant (partie gauche de la figure) un manchon de support d'un palier à l'intérieur duquel est montée à rotation l'extrémité avant d'un arbre de lanceur 100 comportant localement à sa périphérie externe des cannelures propres à venir en prise avec des cannelures complémentaires formées à la périphérie interne d'un entraîneur 12 appartenant à un lanceur 102 comportant également un pignon 1 relié par un dispositif d'attelage 14, ici à roue libre, à l'entraîneur.
L'arbre 100 est coaxial à l'arbre 101 du moteur électrique M appartenant à l'induit de ce moteur avec interposition ici d'un réducteur à engrenages à train épicycloïdal entre les deux arbres.
La plaque de support 28 précitée porte une partie en matière plastique en forme de couronne dentée intérieurement et appartenant au réducteur à engrenages précité, dont le pignon d'entrée est solidaire de l'extrémité avant de l'arbre du moteur électrique.
Le porte satellites du réducteur est solidaire de l'extrémité arrière de l'arbre 100.
Such a starter is shown in FIG. 1 and comprises an electric motor M mounted inside a first metal yoke, an electromagnetic contactor 2 extending parallel to the electric motor M and comprising a winding 2a mounted inside the first metal yoke. a second metal head.
The two yokes are fixed, here using tie rods, on a support 4 with the interposition here of a support plate 28 of an epicyclic gear box. The support 4 is an aluminum-based casting, which is intended to be fixed to the casing of the internal combustion engine of the motor vehicle, hereinafter referred to as the heat engine. The support 4 ensures the return to earth and has a front end shaped warhead open locally for the passage of the starter ring C of the engine of the vehicle. This warhead is connected to a fastening and centering area respectively of the electric motor M, the switch 2 and the support 4 on the housing of the engine.
The warhead has at the front (left part of the figure) a support sleeve of a bearing inside which is rotatably mounted the front end of a launcher shaft 100 locally having at its outer periphery splines adapted to engage complementary splines formed at the inner periphery of a driver 12 belonging to a launcher 102 also having a pinion 1 connected by a coupling device 14, here freewheeling, to the trainer.
The shaft 100 is coaxial with the shaft 101 of the electric motor M belonging to the armature of this motor with the interposition here of a gear reducer epicyclic train between the two shafts.
The support plate 28 above carries a plastic part in the form of ring gear internally and belonging to the aforesaid gear reducer, the input gear is secured to the front end of the electric motor shaft.
The planet carrier of the gearbox is secured to the rear end of the shaft 100.

L'extrémité arrière de l'arbre 101 est montée à rotation à l'intérieur d'un palier porté par une pièce, dite palier arrière, fermant la première culasse. Cette première culasse porte intérieurement un inducteur, ici à aimants, entourant, avec présence d'un entrefer, l'induit du moteur électrique comprenant un rotor sous la forme d'un paquet de tôles fixé sur l'arbre du moteur électrique moleté à cet effet.
Ce paquet de tôles est doté de rainures axiales pour le logement d'éléments électriquement conducteurs en forme de barres agencées en réseaux connectés aux lames électriquement conductrices d'un collecteur porté par l'extrémité arrière de l'arbre 101.
Des balais, montés à l'intérieur de cages portées par le palier arrière, sont destinés à coopérer avec les lames du collecteur, ici du type frontal.
Une série de ces balais est reliée à la masse via la première culasse et le support 4. Une deuxième série de ces balais est reliée à un connecteur de réception d'un câble reliant le connecteur à une première borne de contact du contacteur 2 solidaire d'un capot en matière électriquement isolante fermant l'extrémité arrière ouverte de la deuxième culasse présentant à son extrémité avant un fond troué pour le passage d'un noyau mobile 2b intérieurement creux. Le capot porte également une deuxième borne de contact et au moins une connexion pour l'alimentation électrique du bobinage 2a.
Un noyau fixe 2d est implanté à fixation à l'extrémité arrière de la deuxième culasse et pénètre en partie à l'intérieur d'un support 2c du bobinage 2a. Le support 2c a en section une forme de U et constitue donc un coussinet pour le guidage du noyau 2b. Une première tige épaulée traverse le noyau fixe 2d et porte une plaquette de contact destinée à venir en appui sur les deux bornes de contact précitées présentant des plots de contact à cet effet.
La deuxième borne est reliée à la borne positive de la batterie. Le bobinage 2a est relié à cette borne positive de la batterie via un interrupteur de démarrage manoeuvré par la clé de contact ou tout autre dispositif. Ce bobinage 2a est relié à la masse via la deuxième culasse et le support 4.
La première tige et la plaquette de contact appartiennent à un contact mobile 3, qui dans sa position de repos, est maintenu plaqué par un ressort de coupure 19 contre le noyau fixe. Le ressort de coupure agit entre la plaquette de contact et le capot doté d'un logement de réception du ressort de coupure.
Un autre ressort, dit ressort de contact 21, de raideur plus forte que celle du ressort de coupure, est implanté axialement entre l'autre face de la plaquette de contact et un épaulement de la tige, traversant le noyau fixe 2d pour présenter une extrémité.
The rear end of the shaft 101 is rotatably mounted within a bearing carried by a part, said rear bearing, closing the first yoke. This first yoke internally carries an inductor, here with magnets, surrounding, with the presence of an air gap, the armature of the electric motor comprising a rotor in the form of a packet of sheets fixed on the shaft of the electric motor knurled at this effect.
This bundle of plates is provided with axial grooves for accommodating electrically conductive elements in the form of bars arranged in networks connected to the electrically conductive blades of a collector carried by the rear end of the shaft 101.
Brushes, mounted inside cages carried by the rear bearing, are intended to cooperate with the collector blades, here of the frontal type.
A series of these brushes is connected to ground via the first yoke and the support 4. A second series of these brushes is connected to a connector for receiving a cable connecting the connector to a first contact terminal of the contactor 2 secured to a cover of electrically insulating material closing the open rear end of the second yoke having at its front end a perforated bottom for the passage of an internally hollow movable core 2b. The cover also carries a second contact terminal and at least one connection for the power supply of the winding 2a.
A fixed core 2d is implanted to attach to the rear end of the second yoke and penetrates partly inside a support 2c of the winding 2a. The support 2c has a U-shaped section and therefore constitutes a pad for guiding the core 2b. A first stepped rod passes through the fixed core 2d and carries a contact plate intended to bear on the two aforementioned contact terminals having contact pads for this purpose.
The second terminal is connected to the positive terminal of the battery. The winding 2a is connected to this positive terminal of the battery via a start switch operated by the ignition key or any other device. This winding 2a is connected to ground via the second yoke and the support 4.
The first rod and the contact plate belong to a movable contact 3 which, in its rest position, is kept pressed by a cut-off spring 19 against the fixed core. The cutoff spring acts between the contact pad and the cover having a receiving housing of the breaking spring.
Another spring, said contact spring 21, of greater stiffness than that of the breaking spring, is implanted axially between the other face of the contact plate and a shoulder of the rod, passing through the fixed core 2d to present an end. .

Le noyau mobile 2b pénètre à l'intérieur de la deuxième culasse et dans le bobinage 2a. Ce noyau mobile 2b s'étend en saillie axiale par rapport à l'extrémité avant, et la deuxième culasse. Le noyau mobile 2b est soumis à l'action d'un ressort de rappel 18 agissant entre le fond de la deuxième culasse et un épaulement solidaire du noyau mobile doté centralement d'un trou borgne pour le montage à coulissement axial d'une deuxième tige épaulée à son extrémité arrière pour action d'un ressort, dit ressort dents contre dents 5, agissant entre ledit épaulement et le fond du noyau mobile. Le ressort dents contre dents a une raideur plus forte que celle du ressort de rappel 18 et plus faible que celle des ressorts associés au contact mobile 3.
L'extrémité avant de la deuxième tige porte un axe pour le montage à articulation de l'extrémité supérieure d'un levier de manoeuvre 13 du lanceur à pignon 102. Ce levier 13 est monté, en un point intermédiaire 11 de pivotement porté par une protubérance solidaire de la plaque de support 28 dite plaque de base. Ce point intermédiaire 11 comporte un jeu axial appelé jeu de coupure JC qui permet de déconnecter électriquement le moteur électrique du démarreur dans le cas où le pignon 1 resterait engrené dans la couronne C de démarrage. Pour des modèles de démarreur ne comportant pas de plaque de base, ce point intermédiaire 11 pourra être porté par exemple par le support 4 du démarreur. L'extrémité inférieure du levier de manoeuvre comporte deux bras ou branches montés dans une gorge annulaire réalisée dans l'entraîneur 12 en sorte que le levier de manoeuvre est en forme de fourchette.
Plus précisément la gorge de l'entraîneur est délimitée par un fond annulaire d'orientation axiale et par deux flancs annulaires d'orientation transversale perpendiculaire à l'arbre 100.
L'écart axial entre les deux flancs dépend de l'épaisseur des bras, appelés usuellement doigts, de la fourchette afin que ceux-ci puissent pénétrer au moins à jeu de montage dans la gorge pour pouvoir déplacer axialement l'entraîneur lorsque le contacteur est alimenté électriquement.
The movable core 2b penetrates inside the second yoke and in the winding 2a. This movable core 2b extends in axial projection with respect to the front end, and the second cylinder head. The movable core 2b is subjected to the action of a return spring 18 acting between the bottom of the second yoke and a shoulder secured to the movable core centrally provided with a blind hole for the axial sliding assembly of a second rod. shoulder at its rear end for action of a spring, said spring teeth against teeth 5, acting between said shoulder and the bottom of the movable core. The spring teeth against teeth has a stiffness stronger than that of the return spring 18 and lower than that of the springs associated with the movable contact 3.
The front end of the second rod carries an axis for the hinge assembly of the upper end of an operating lever 13 of the pinion launcher 102. This lever 13 is mounted at an intermediate point 11 pivoting carried by a integral protuberance of the support plate 28 called base plate. This intermediate point 11 comprises an axial clearance called JC break set that allows to electrically disconnect the electric motor starter in the case where the pinion 1 remains entangled in the crown C starter. For starter models without a base plate, this intermediate point 11 may be carried for example by the support 4 of the starter. The lower end of the operating lever comprises two arms or branches mounted in an annular groove formed in the driver 12 so that the operating lever is fork-shaped.
More precisely, the groove of the driver is delimited by an annular bottom of axial orientation and by two annular flanks of transverse orientation perpendicular to the shaft 100.
The axial distance between the two sides depends on the thickness of the arms, usually called fingers, of the fork so that they can enter at least mounting clearance in the groove to move axially the driver when the contactor is electrically powered.

Tel que représenté à la figure 1, le contacteur 2, le moteur électrique M et le lanceur sont dans leur position de repos. Dans cette position le bobinage 2a et le moteur électrique M ne sont pas alimentés électriquement ; l'interrupteur de démarrage précité étant ouvert. Le pignon 1 est à distance axiale de la couronne de démarrage C du moteur thermique, le contact mobile 3 est à distance des bornes de contact en forme de plots, tandis que le noyau 2b est à distance axiale de la tige du contact mobile..
Lorsque l'on ferme l'interrupteur à l'aide de la clé de contact, le bobinage 2a est alimenté électriquement et un champ magnétique est créé en sorte que le noyau mobile 2b se déplace axialement en direction du noyau fixe 2d et du contact mobile et déplace, par l'intermédiaire de la fourchette de manoeuvre le lanceur et le pignon 1 en direction de la couronne C. Le pignon 1 peut pénétrer entre les dents de la couronne C en sorte qu'il est en position d'engrènement avec la couronne C. Le mouvement du pignon 1 est limité par coopération du pignon 1 avec une butée de travail 6 solidaire de l'arbre 100. Le mouvement du noyau mobile se poursuivant, celui-ci vient en butée contre la tige du contact mobile grâce à une rondelle que porte à l'arrière le noyau mobile 2b à cet effet. Le ressort de coupure est alors comprimé jusqu'à fermeture du contact mobile par contact de sa plaquette avec les bornes de contact.
Le circuit électrique du moteur électrique M est alors fermé en sorte que celui-ci entraîne à rotation l'arbre 100 et donc le pignon 1 via l'entraîneur et les cannelures hélicoïdales intervenant entre l'entraîneur et l'arbre 100. Le circuit magnétique se ferme complètement après le circuit électrique, le noyau mobile 2b venant en contact avec le noyau fixe 2d après compression du ressort de contact. La roue libre est bloquée lorsque le moteur électrique tourne, le moteur thermique n'étant pas encore démarré.
Il peut arriver que le pignon bute contre la couronne C sans engrener avec celle-ci. Dans ce cas, le ressort 5 dents contre dents est comprimé jusqu'à fermeture du contact mobile et alimentation du moteur électrique qui entraîne alors en rotation l'arbre 100 avec pénétration des dents du pignon 1 dans les dents de la couronne C. Lorsque le moteur thermique a démarré, la roue libre permet au pignon de tourner par rapport à l'arbre 100 et donc de ménager le moteur M.
Le noyau mobile 2b et le ressort dents contre dents 5 augmentent la taille radiale du contacteur, qui doit être puissant.
As shown in Figure 1, the switch 2, the electric motor M and the launcher are in their rest position. In this position the winding 2a and the electric motor M are not electrically powered; the aforementioned starter switch being open. The pinion 1 is at axial distance from the start ring C of the heat engine, the movable contact 3 is at a distance from the contact terminals in the form of studs, while the core 2b is at axial distance from the rod of the movable contact.
When the switch is closed by means of the ignition key, the winding 2a is electrically powered and a magnetic field is created so that the mobile core 2b moves axially toward the fixed core 2d and the movable contact and moves, by means of the operating fork, the launcher and the pinion 1 towards the ring gear C. The pinion 1 can penetrate between the teeth of the ring gear C so that it is in the meshing position with the C. The movement of the pinion 1 is limited by the cooperation of the pinion 1 with a stop 6 secured to the shaft 100. The movement of the movable core continues, it abuts against the rod of the moving contact through a washer that carries in the rear the movable core 2b for this purpose. The cutoff spring is then compressed until closing of the movable contact by contacting its plate with the contact terminals.
The electrical circuit of the electric motor M is then closed so that it rotates the shaft 100 and thus the pinion 1 via the driver and the helical splines intervening between the driver and the shaft 100. The magnetic circuit closes completely after the electrical circuit, the movable core 2b coming into contact with the fixed core 2d after compression of the contact spring. The freewheel is blocked when the electric motor is running, the engine has not yet started.
It may happen that the pinion abuts against the crown C without meshing with it. In this case, the spring 5 teeth against teeth is compressed until closing of the movable contact and supply of the electric motor which then drives in rotation the shaft 100 with penetration of the teeth of the pinion 1 in the teeth of the crown C. When the engine has started, the freewheel allows the pinion to rotate relative to the shaft 100 and thus spare the engine M.
The movable core 2b and the spring against teeth 5 increase the radial size of the contactor, which must be powerful.

Ce mode de pénétration du pignon 1 du lanceur 102 présente les inconvénients suivants:

  • la cinématique, qui est une caractéristique intrinsèque du démarreur, exprime l'avancée du lanceur en millimètres entre l'instant où la clé de contact est tournée jusqu'au moment où le moteur électrique est mis sous tension. Cette cinématique doit être supérieure à la distance qui existe au repos entre le lanceur et la couronne C sinon le moteur électrique pourrait être mis sous tension avant même que le pignon 1 du lanceur ait pénétré dans la couronne C du moteur thermique, provoquant ainsi le fraisage de cette même couronne par le lanceur. Cette cinématique dépend de la puissance du solénoïde, comportant le bobinage 2a, de la masse du lanceur 102, de la raideur des différents ressorts présents dans le système, de la viscosité des graisses, du frottement existant entre les différents éléments en mouvement et de la température. La cinématique est difficile à optimiser étant donné le grand nombre de paramètres qui l'influencent.
  • la raideur du ressort dent contre dent 5 doit être suffisante pour pousser d'une longueur suffisante le pignon du lanceur 102 dans la couronne C lorsque le pignon 1 ne se trouve plus dans une position dent contre dent. En contrepartie, cette raideur ne doit pas être trop élevée car elle est une composante du dimensionnement de la puissance du solénoïde 2a. Plus le ressort dent contre dent 5 a une raideur importante, plus le solénoïde doit créer un champ électromagnétique important. La taille du solénoïde 2a est d'autant plus grande que le champ magnétique qu'il doit créer est grand. La puissance du solénoïde dépend ainsi de la masse du lanceur 102 et de la raideur du ressort dent contre dent 5. Plus le solénoïde est puissant, plus la cinématique est faible. En effet, un solénoïde puissant est capable de vaincre la force du ressort dent contre dent de manière à réaliser le contact de puissance alors que le lanceur ne se sera pratiquement pas déplacé à cause de son inertie. Le dimensionnement du solénoïde n'est donc pas aisé et prend un temps de développement important. Il faut aussi adapter le solénoïde aux lanceurs qu'il doit mettre en mouvement ce qui à pour conséquence un manque de standardisation.
  • la puissance nécessaire pour mettre en mouvement le plus petit des lanceurs est telle que le volume du solénoïde 2a est important. D'une manière générale, le diamètre des solénoïdes est voisin de 50mm pour une longueur calée au maximum sur celle du démarreur.
  • en position dent contre dent, le moteur électrique est mis sous tension avant que le pignon 1 du lanceur ait pénétré dans la couronne C. Si les états de surface de la couronne C de démarrage du moteur thermique ou du pignon 1 sont dégradés, si la raideur du ressort dent contre dent est trop faible, si le moteur électrique a une trop forte accélération au départ, ce qui est souvent le cas pour les démarreurs sans réducteur, il y a un risque de ne pas voir le lanceur pénétrer suffisamment dans la couronne C et ainsi de mettre en rotation le pignon 1 devant la couronne C à grande vitesse c'est à dire provoquer un fraisage de cette couronne par le pignon 1 du lanceur provoquant ainsi une détérioration irréversible.
  • lorsque le lanceur arrive en butée contre la couronne C en étant lancé par la fourchette 13 mise en déplacement par le noyau mobile 2b , celui-ci a une vitesse non négligeable et le choc est fort. Cela engendre du bruit et provoque une détérioration des surfaces en contact. Cette détérioration, au démarrage peut être une cause de fraisage.
This mode of penetration of the pinion 1 of the launcher 102 has the following drawbacks:
  • the kinematics, which is an intrinsic characteristic of the starter, expresses the advance of the launcher in millimeters between the moment when the ignition key is turned until the moment when the electric motor is turned on. This kinematics must be greater than the distance that exists at rest between the launcher and the crown C otherwise the electric motor could be energized even before the pinion 1 of the launcher has penetrated into the crown C of the engine, causing the milling of the same crown by the launcher. This kinematics depends on the power of the solenoid, comprising the winding 2a, the mass of the launcher 102, the stiffness of the various springs present in the system, the viscosity of the greases, the friction existing between the various moving elements and the temperature. Kinematics is difficult to optimize given the large number of parameters that influence it.
  • the stiffness of the spring tooth against tooth 5 must be sufficient to push a sufficient length of the starter pinion 102 in the crown C when the pinion 1 is no longer in a tooth against tooth position. In return, this stiffness should not be too high because it is a component of the sizing of the power of the solenoid 2a. The stronger the spring against tooth 5, the greater the solenoid must create a large electromagnetic field. The size of the solenoid 2a is all the greater as the magnetic field it has to create is large. The power of the solenoid thus depends on the mass of the launcher 102 and the stiffness of the spring tooth against tooth 5. The stronger the solenoid, the lower the kinematics. Indeed, a powerful solenoid is able to overcome the force of the tooth against tooth spring so as to achieve the power contact while the launcher will not have moved substantially because of its inertia. Sizing of the solenoid is not easy and takes a significant development time. It is also necessary to adapt the solenoid to the launchers that it must set in motion which results in a lack of standardization.
  • the power required to set the smallest pitchers in motion is such that the volume of the solenoid 2a is large. In general, the diameter of solenoids is close to 50mm for a length set at most on that of the starter.
  • in the tooth against tooth position, the electric motor is energized before the pinion 1 of the launcher has penetrated into the ring gear C. If the surface states of the starting ring gear C of the heat engine or the pinion 1 are degraded, if the stiffness of the tooth against tooth spring is too weak, if the electric motor has too much initial acceleration, which is often the case for starters without reducer, there is a risk of not seeing the launcher penetrate sufficiently into the crown C and thus to rotate the pinion 1 in front of the crown C at high speed, ie cause a milling of this crown by the pinion 1 of the launcher thereby causing irreversible deterioration.
  • when the thrower comes into abutment against the crown C being thrown by the fork 13 moved by the movable core 2b, it has a significant speed and shock is strong. This generates noise and causes deterioration of the surfaces in contact. This deterioration at startup can be a cause of milling.

Le document FR A 2,174,421 divulgue une solution à double contact afin de générer une pré-rotation du moteur électrique. Le système est doté d'un solénoïde et comporte une bobine reliée électriquement, d'une part, à l'interrupteur actionné par la clé de contact et à un contact fixe positionné sur le noyau fixe du solénoïde et, d'autre part, via la plaquette de contact du contact mobile à un second contact fixe, disposé diamétralement opposé au premier contact sur le noyau fixe et lui-même relié électriquement directement au moteur électrique. En position nominale de repos, la plaquette de contact repose sur les deux contacts précités si bien que lorsque l'interrupteur est fermé en actionnant la clé de contact, la mise sous tension du moteur électrique est effectuée par passage d'un courant au travers des contacts via la plaquette et une résistance électrique. Le moteur électrique commence une pré-rotation à faible vitesse tandis que le noyau mobile est mis en mouvement sous l'action du champ magnétique créé par la bobine. Après engagement du pignon dans la couronne C, le noyau mobile, lors de son déplacement, vient en contact avec un ressort, pièce indépendante et distante du noyau mobile d'une longueur calculée pour qu'il y ait contact entre les deux pièces uniquement lorsque le pignon engrène avec la couronne. La plaquette de contact, solidaire soumise à l'action du ressort, se met en mouvement, et se déconnecte des deux premiers contacts, coupant l'alimentation du moteur électrique. En fin de translation du noyau mobile, la plaquette entre en contact avec deux autres contacts qui permettent la fermeture du circuit de puissance et alimenter sous pleine charge le moteur électrique. Les inconvénients de ce principe sont de deux types. Tout d'abord, la rupture de l'alimentation électrique du moteur électrique lorsque la plaquette de contact se déplace puis ensuite le niveau de l'intensité (environ 70A) qui passe au travers des deux premiers contacts, de la bobine et de l'interrupteur actionné par la clé de contact pour effectuer la pré-rotation du moteur électrique. Cette valeur d'intensité n'est pas acceptable au niveau de l'interrupteur, en effet, la valeur maximale autorisée est de l'ordre de 50A.Document FR A 2,174,421 discloses a double contact solution for generating a pre-rotation of the electric motor. The system is provided with a solenoid and comprises a coil electrically connected, on the one hand, to the switch actuated by the ignition key and to a fixed contact positioned on the fixed core of the solenoid and, on the other hand, via the contact plate of the movable contact to a second fixed contact disposed diametrically opposite the first contact on the fixed core and itself directly electrically connected to the electric motor. In the nominal position of rest, the contact plate rests on the two aforementioned contacts so that when the switch is closed by actuating the ignition key, the powering of the electric motor is performed by passing a current through the contacts. contacts via the wafer and an electrical resistance. The electric motor starts a pre-rotation at low speed while the movable core is moved under the action of the magnetic field created by the coil. After engagement of the pinion in the crown C, the moving core, during its displacement, comes into contact with a spring, independent piece and distant from the movable core of a length calculated so that there is contact between the two parts only when the pinion meshes with the crown. The contact pad, secured to the action of the spring, starts moving, and disconnects the first two contacts, cutting the power of the electric motor. At the end of translation of the movable core, the wafer comes into contact with two other contacts that allow the closing of the power circuit and power under full load the electric motor. The disadvantages of this principle are of two types. Firstly, the breaking of the power supply of the electric motor when the contact plate moves and then the level of the intensity (about 70A) which passes through the first two contacts, the coil and the the switch actuated by the ignition key to perform the pre-rotation of the electric motor. This intensity value is not acceptable at the switch, in fact, the maximum value allowed is of the order of 50A.

Le brevet US A 4,418,289 montre une solution de contacteur à double étage similaire à la solution du document FR A 2,174,421. Cette solution est à deux plaquettes de contact venant en contact avec deux séries de contact. Le schéma électrique est identique au point près que la bobine résistive est dans ce cas une pure résistance placée à l'extérieur du solénoïde. Les deux plaquettes ne sont pas ramenées simultanément lors de la désactivation par la clé de contact du solénoïde du contacteur.US Pat. No. 4,418,289 shows a double-stage contactor solution similar to the solution of document FR A 2,174,421. This solution has two contact pads coming into contact with two series of contact. The electrical diagram is identical to the point that the resistive coil is in this case a pure resistor placed outside the solenoid. The two plates are not brought back simultaneously during the deactivation by the contact key of the solenoid of the contactor.

Le brevet US A 5,814,896 présente une solution où le contacteur est coaxial avec le corps du démarreur et est placé à l'arrière de l'appareil. Le système de double contact est assuré par une plaquette monocontact placée sur un axe mobile solidaire du noyau mobile, lequel est actionné par un câble parcourant toute la longueur du moteur électrique et relié au lanceur. Le second contact est réalisé par un contact mobile relié à un ressort type « pince à linge » dont l'autre extrémité est reliée à l'axe mobile. Ce contact vient en contact avec la borne batterie au même titre que la plaquette de contact. L'inconvénient de cette solution consiste en la coupure séquentielle des deux circuits de puissance.US Pat. No. 5,814,896 presents a solution in which the contactor is coaxial with the starter body and is placed at the rear of the apparatus. The double contact system is provided by a single-contact plate placed on a movable axis integral with the movable core, which is actuated by a cable running the entire length of the electric motor and connected to the launcher. The second contact is made by a movable contact connected to a spring type "clothes peg" whose other end is connected to the movable axis. This contact comes into contact with the battery terminal as well as the contact plate. The disadvantage of this solution is the sequential shutdown of the two power circuits.

Le document US A 2,342,632 divulgue un démarreur dans lequel il est prévu un blocage en rotation du pignon du lanceur pour le faire avancer vers la couronne de démarrage du moteur thermique par vissage de l'entraîneur sur les dentures hélicoïdales portées par l'arbre qui porte le pignon du lanceur. Le blocage en rotation est réalisé par un pointeau manoeuvré par un solénoïde perpendiculaire à l'entraîneur. Ce mode de réalisation est encombrant radialement.Document US Pat. No. 2,342,632 discloses a starter in which there is provision for the rotational locking of the starter gear to advance it towards the starter ring of the engine by screwing the driver onto the helical teeth carried by the shaft carrying the starter gear. the sprocket of the thrower. The rotational locking is achieved by a needle operated by a solenoid perpendicular to the trainer. This embodiment is bulky radially.

Ces solutions donnent satisfaction, néanmoins la demanderesse s'est demandé s'il n'était pas encore possible de diminuer encore la puissance électromagnétique du contacteur afin de réduire plus encore son diamètre externe.These solutions are satisfactory, however the applicant wondered if it was not yet possible to further reduce the electromagnetic power of the contactor to further reduce its outer diameter.

Objet de l'inventionObject of the invention

Afin de remédier à ces inconvénients, l'invention propose un démarreur pour véhicule automobile à moteur thermique et à couronne de démarrage du moteur thermique comportant un lanceur, doté d'un entraîneur et d'un pignon, propre à passer d'une position reculée de repos à une position avancée d'engrènement avec la couronne de démarrage du moteur thermique du véhicule automobile, un moteur électrique doté d'un arbre propre à entraîner un arbre de lanceur associé au lanceur, des cannelures hélicoïdales complémentaires intervenant localement entre la périphérie interne de l'entraîneur et la périphérie externe de l'arbre du lanceur, un contacteur électromagnétique s'étendant parallèlement au moteur électrique au-dessus de celui-ci et comportant un noyau mobile, une fourchette montée à articulation à son extrémité supérieure sur le noyau mobile et en un point intermédiaire sur un support du moteur électrique et du contacteur, dans lequel l'entraîneur comporte une gorge de réception de l'extrémité inférieure de la fourchette délimitée par deux flancs et dans lequel des moyens sont prévus pour faire tourner le moteur électrique à vitesse lente dans une première phase puis à pleine puissance, caractérisé en ce que le lanceur est bloqué en rotation par des moyens de coopération entre la fourchette et l'entraîneur pour son passage de sa position de repos à sa position d'engrènement avec la couronne de démarrage.In order to remedy these drawbacks, the invention proposes a starter for a motor vehicle with a heat engine and an engine start ring. thermal device comprising a launcher, equipped with a trainer and a pinion, adapted to move from a retracted position of rest to an advanced meshing position with the starter ring of the engine of the motor vehicle, an electric motor equipped with a shaft adapted to drive a launcher shaft associated with the launcher, complementary helical splines intervening locally between the inner periphery of the driver and the outer periphery of the launcher shaft, an electromagnetic contactor extending parallel to the electric motor at the above it and having a movable core, a fork mounted to articulate at its upper end on the movable core and at an intermediate point on a support of the electric motor and the contactor, wherein the trainer comprises a receiving groove the lower end of the fork delimited by two flanks and in which means are provided to make turning the electric motor at a slow speed in a first phase and then at full power, characterized in that the launcher is locked in rotation by means of cooperation between the fork and the driver for its passage from its rest position to its position d meshing with the starter ring.

Ainsi grâce au blocage en rotation du lanceur et à ces moyens, on peut réduire encore la puissance du contacteur électromagnétique et sa taille radiale, grâce à un apport d'énergie du moteur électrique.
En outre on tire partie de la place existante entre les flancs de la gorge ce qui permet de ne pas augmenter l'encombrement axial outre mesure.
De plus la fourchette devient une fourchette principalement suiveuse.
Selon d'autres caractéristiques de l'invention :

  • lesdits moyens sont des moyens de blocage en rotation à coopération de formes.
  • lesdits moyens sont des moyens de blocage en rotation du type à frottement.
  • lors de l'alimentation électrique du contacteur, la fourchette coopère avec le flanc, dit flanc avant de la gorge de réception de la fourchette ; ledit avant étant doté d'ondulations circonférentielles.
  • la fourchette présente des branches avec des ondulations de forme complémentaire à celles du flanc avant.
  • lesdits moyens sont du type à dents de loup.
  • le flanc avant de la gorge de réception de la fourchette comporte des crans et des bosses, tandis que la fourchette présente des doigts saillants coopérant avec les crans pour le blocage en rotation du lanceur
  • le flanc avant de la gorge de réception de la fourchette coopère avec une bague de la fourchette montée coulissante axialement sur le fût de l'entraîneur.
  • la bague est montée à articulation sur le corps de la fourchette et est actionnée par le corps de la fourchette.
  • la fourchette comporte à son extrémité, qui coopère avec la gorge de l'entraîneur, au moins un patin, qui coopère avec un rebord situé à la périphérie de l'entraîneur lorsque le lanceur engrène avec la couronne de démarrage du moteur du véhicule automobile.
  • lesdits moyens sont débrayables.
  • le support comporte une partie avant en tôle globalement en forme d'ogive.
  • la partie avant se raccorde à une bride de fixation et de centrage.
  • le support en tôle est obtenu par déformation de matière, telle qu'un emboutissage, et la bride est d'un seul tenant avec la partie avant.
  • le moteur électrique et le contacteur comportent chacun une culasse solidaire de l'autre culasse.
  • les deux culasses appartiennent à une même pièce.
  • la ou les deux culasses sont fermées du côté opposé au support par une pièce commune formant le palier arrière du moteur électrique.
  • les moyens prévus pour faire tourner le moteur électrique en pré-rotation puis à pleine puissance, comportent deux plaquettes portées par le noyau mobile, la première plaquette, utilisée lors de la pré-rotation, est reliée à deux contacts, le premier contact est relié à la bobine résistive, le deuxième contact est relié à la borne positive de la batterie, puis lors de la pleine puissance, la deuxième plaquette est reliée à deux contacts, le troisième contact est relié à la bobine résistive et au moteur électrique, le quatrième contact est relié à la borne positive de la batterie.
  • une plaquette de contact est admise à basculer autour du deuxième contact fixe pour coopérer avec un autre contact fixe décalé axialement et relié à la borne positive de la batterie pour alimenter le moteur électrique.
  • l'axe mobile comporte une lamelle dotée d'une surépaisseur locale qui entraîne les plaquettes de contacts lors du retour de l'axe mobile après ouverture du circuit de commande.
  • le contacteur électromagnétique comporte, au moins une plaquette apte à évoluer en rotation autour de l'axe mobile pour la mise en pré-rotation puis à pleine puissance du moteur électrique.
  • la plaquette comporte deux plots reliés électriquement, un premier plot continuellement relié électriquement avec un contact relié à la tension de la batterie, un deuxième plot relié à un contact lors de la mise en pré-rotation du moteur, ce deuxième plot venant ensuite en contact avec un troisième contact, après rotation de ladite plaquette, pour fournir la pleine puissance au démarreur, les deuxième et troisième contacts étant reliés entre eux par la bobine résistive de pré-rotation, le contact étant relié au moteur électrique.
  • le pignon du lanceur est relié à l'entraîneur par un dispositif d'attelage à embrayage conique.
  • la ou les culasses sont rapportées par sertissage sur le support.
  • la pré-rotation est réalisée en fournissant suffisamment de courant électrique au moteur électrique par l'entremise de la bobine d'appel sans utiliser d'élément résistif tel qu'une bobine résistive de pré-rotation. Dans ce cas, la fourchette est utilisée pour le blocage en rotation du lanceur et avantageusement pour aider le lanceur à se diriger vers la couronne de démarrage du moteur thermique.
Thus, thanks to the rotational locking of the launcher and to these means, it is possible to further reduce the power of the electromagnetic contactor and its radial size, thanks to a supply of energy from the electric motor.
In addition we take advantage of the existing place between the sides of the groove which allows not to increase the axial size beyond measure.
In addition, the fork becomes a predominantly follower fork.
According to other features of the invention:
  • said means are rotational locking means cooperating forms.
  • said means are rotational locking means of the friction type.
  • during the power supply of the contactor, the fork cooperates with the sidewall, said front flank of the fork receiving groove; said front being provided with circumferential corrugations.
  • the fork has branches with corrugations of complementary shape to those of the front flank.
  • said means are of the wolf teeth type.
  • the front flank of the fork receiving groove has notches and bumps, while the fork has projecting fingers cooperating with the notches for the rotational locking of the launcher
  • the leading edge of the receiving groove of the fork cooperates with a ring of the fork slidably mounted axially on the shaft of the trainer.
  • the ring is hingedly mounted on the body of the fork and is actuated by the body of the fork.
  • the fork has at its end, which cooperates with the groove of the coach, at least one pad, which cooperates with a flange located at the periphery of the coach when the launcher meshes with the starter ring of the engine of the motor vehicle.
  • said means are disengageable.
  • the support comprises a generally sheet-shaped front part in the form of an ogive.
  • the front part is connected to a fixing and centering flange.
  • the sheet metal support is obtained by deformation of material, such as stamping, and the flange is in one piece with the front part.
  • the electric motor and the contactor each comprise a yoke integral with the other yoke.
  • the two yokes belong to the same coin.
  • the one or both yokes are closed on the side opposite the support by a common part forming the rear bearing of the electric motor.
  • the means provided for rotating the electric motor in pre-rotation and at full power, comprise two plates carried by the movable core, the first plate, used during the pre-rotation, is connected to two contacts, the first contact is connected at the resistive coil, the second contact is connected to the positive terminal of the battery, then at full power, the second plate is connected to two contacts, the third contact is connected to the resistive coil and the electric motor, the fourth contact is connected to the positive terminal of the battery.
  • a contact plate is allowed to switch around the second fixed contact to cooperate with another fixed contact offset axially and connected to the positive terminal of the battery for powering the electric motor.
  • the movable axis comprises a plate with a local extra thickness which drives the contact plates during the return of the movable axis after opening of the control circuit.
  • the electromagnetic contactor comprises at least one wafer adapted to rotate in rotation about the movable axis for pre-rotating and then at full power of the electric motor.
  • the wafer comprises two pads electrically connected, a first pad continuously electrically connected to a contact connected to the battery voltage, a second pad connected to a contact when the motor is pre-rotated, this second pad then comes into contact with a third contact, after rotation of said wafer, to provide full power to the starter, the second and third contacts being interconnected by the resistive coil of pre-rotation, the contact being connected to the electric motor.
  • the starter pinion is connected to the driver by a conical clutch coupling device.
  • the yoke (s) are crimped onto the support.
  • pre-rotation is achieved by supplying sufficient electrical power to the electric motor through the call coil without using a resistive element such as a resistive pre-rotation coil. In this case, the fork is used for locking the launcher in rotation and advantageously to help the launcher to move towards the starting ring of the engine.

Description sommaire des dessinsBrief description of the drawings

La description qui va suivre illustre l'invention en regard des dessins annexés dans lesquels :

  • la figure 1 est une vue en coupe axiale d'un démarreur de l'art antérieur ;
  • la figure 2 est un schéma du circuit d'alimentation du moteur électrique du démarreur selon l'invention ;
  • la figure 3 est une vue analogue à la figure 1 pour un premier exemple de réalisation selon l'invention ;
  • la figure 4 est une vue analogue à la figure 3 pour un deuxième exemple de réalisation selon l'invention ;
  • la figure 5 est une vue en perspective du support de démarreur des figures 3 et 4 ;
  • - la figure 6 est une vue en perspective d'une culasse unique équipant les démarreurs des figures 3 et 4 ;
  • les figures 7a, 7b sont des vues en perspective, selon des angles différents, d'un démarreur équipé d'un support et d'une culasse unique de la figure 6 ;
  • les figures 8 et 9 sont des vues partielles en coupe montrant l'assemblage du support ou du palier arrière avec la culasse unique pour deux modes de réalisation ;
  • la figure 10 est une vue locale du palier arrière assemblé avec la culasse unique pour un troisième exemple d'assemblage du palier arrière avec la culasse unique d'assemblage de la figure 6 ;
  • la figure 11 est une vue partielle en coupe axiale du mode de réalisation de la figure 10 ;
  • la figure 12 est une vue en coupe selon la ligne 12-12 de la figure 10 ;
  • la figure 13 est une vue analogue à la figure 10 pour un quatrième mode d'assemblage du palier arrière avec la culasse unique ;
  • la figure 14 est une vue partielle en coupe axiale pour un cinquième mode d'assemblage du palier arrière avec la culasse unique ;
  • les figures 15 et 16 sont des vues analogues à la figure 13 pour un sixième et septième mode d'assemblage de la culasse unique avec le palier arrière ;
  • la figure 17 est une vue en coupe pour un huitième mode d'assemblage de la culasse unique avec le palier arrière ;
  • la figure 18 est une vue de dessus de la figure 17 ;
  • la figure 19 est une vue en coupe axiale pour un neuvième mode d'assemblage du palier arrière avec la culasse unique ;
  • les figures 20,21,23 sont des vues analogues à la figure 19 pour respectivement un dixième, onzième et un douzième mode d'assemblage de la culasse unique avec le palier arrière ;
  • les figures 22 et 24 sont des vues selon les flèches 22 et 24 de la figure 23 ;
  • la figure 25 est une vue schématique d'un mode de réalisation d'un lanceur de démarreur associé avec le contacteur selon l'invention ;
  • les figures 26 et 27 sont deux vues en coupe axiale de deux variantes de réalisation de la figure 25 ;
  • la figure 28 est une vue de face de la rondelle élastique équipant les lanceurs des figures 26 et 27.
  • les figures 29 et 30 illustrent en perspective chacune un mode de réalisation de la fourchette selon l'invention.
  • les figures 31 et 32 illustrent en perspective chacune un mode de réalisation de l'entraîneur comportant des moyens de blocage en rotation.
  • La figure 33 est une vue d'un démarreur comportant un dispositif de blocage en rotation de son entraîneur associé à une bague.
  • La figure 34 est une vue partielle en coupe d'un relais comportant une plaquette basculante.
  • Les figures 35 et 36 sont deux vues , respectivement en coupe axiale et de face, présentant un relais comportant une plaquette tournante.
  • La figure 37 est une vue en coupe complète d'un contacteur électromagnétique selon un mode de réalisation de l'invention.
  • Les figures 38a à 38c représentent des exemples de réalisation des moyens de blocage en rotation.
  • Les figures 39 et 40 illustrent, respectivement en coupe axiale et de manière schématique, d'autres modes de réalisation de la pré-rotation selon l'invention.
The following description illustrates the invention with reference to the accompanying drawings in which:
  • Figure 1 is an axial sectional view of a starter of the prior art;
  • Figure 2 is a diagram of the power supply circuit of the electric motor of the starter according to the invention;
  • Figure 3 is a view similar to Figure 1 for a first embodiment of the invention;
  • Figure 4 is a view similar to Figure 3 for a second embodiment of the invention;
  • Figure 5 is a perspective view of the starter support of Figures 3 and 4;
  • - Figure 6 is a perspective view of a single yoke equipping the starters of Figures 3 and 4;
  • Figures 7a, 7b are perspective views, at different angles, of a starter equipped with a support and a single yoke of Figure 6;
  • Figures 8 and 9 are partial sectional views showing the assembly of the support or the rear bearing with the single cylinder head for two embodiments;
  • Figure 10 is a local view of the rear bearing assembled with the single yoke for a third example of assembly of the rear bearing with the single assembly yoke of Figure 6;
  • Figure 11 is a partial view in axial section of the embodiment of Figure 10;
  • Figure 12 is a sectional view along the line 12-12 of Figure 10;
  • Figure 13 is a view similar to Figure 10 for a fourth mode of assembly of the rear bearing with the single yoke;
  • Figure 14 is a partial view in axial section for a fifth mode of assembly of the rear bearing with the single yoke;
  • Figures 15 and 16 are views similar to Figure 13 for a sixth and seventh mode of assembly of the single yoke with the rear bearing;
  • Fig. 17 is a sectional view for an eighth method of assembling the single yoke with the rear bearing;
  • Figure 18 is a top view of Figure 17;
  • Figure 19 is an axial sectional view for a ninth mode of assembly of the rear bearing with the single cylinder head;
  • Figures 20,21,23 are views similar to Figure 19 for respectively a tenth, eleventh and a twelfth mode of assembly of the single yoke with the rear bearing;
  • Figures 22 and 24 are views according to the arrows 22 and 24 of Figure 23;
  • Figure 25 is a schematic view of an embodiment of a starter starter associated with the contactor according to the invention;
  • Figures 26 and 27 are two views in axial section of two embodiments of Figure 25;
  • Figure 28 is a front view of the spring washer equipping the launchers of Figures 26 and 27.
  • Figures 29 and 30 illustrate in perspective each an embodiment of the range of the invention.
  • Figures 31 and 32 illustrate in perspective each an embodiment of the trainer having rotational locking means.
  • Figure 33 is a view of a starter having a locking device in rotation of its trainer associated with a ring.
  • Figure 34 is a partial sectional view of a relay having a tilting plate.
  • Figures 35 and 36 are two views, respectively in axial section and front, having a relay having a rotating plate.
  • Figure 37 is a full sectional view of an electromagnetic contactor according to one embodiment of the invention.
  • Figures 38a to 38c show embodiments of the rotation locking means.
  • Figures 39 and 40 illustrate, respectively in axial section and schematically, other embodiments of the pre-rotation according to the invention.

Description de modes de réalisation préférentielsDescription of Preferential Embodiments

Dans les figures illustrées les éléments communs seront affectés des même signes de référence et le sens avant arrière correspond au sens allant de la partie gauche à la partie droite des figures 1, 3 et 4.In the illustrated figures the common elements will be assigned the same reference signs and the front-to-back direction corresponds to the direction going from the left part to the right part of FIGS. 1, 3 and 4.

Dans les figures 3 et 4, le démarreur comporte, comme à la figure 1, un support 4 qui comporte, des premiers moyens de fixation et de centrage du contacteur électromagnétique, des seconds moyens de fixation et de centrage du moteur électrique M s'étendant parallèlement au contacteur et en-dessous de celui-ci. Le support 4 comporte également des troisièmes moyens de fixation et de centrage du démarreur sur le carter du moteur thermique du véhicule automobile pour que le pignon 1 du lanceur engrène de manière fiable avec la couronne de démarrage C du moteur thermique ; ladite couronne appartenant ici à un volant solidaire en rotation de manière rigide ou élastique du vilebrequin du moteur thermique ou moteur à combustion interne.
Le support 4 est métallique et assure le retour à la masse. II est économique car il est ici obtenu par déformation de matière, par exemple par emboutissage.
Le moteur électrique M a une constitution analogue à celui de la figure 1 sauf en ce qui concerne le montage des balais et le collecteur à lames.
In FIGS. 3 and 4, the starter comprises, as in FIG. 1, a support 4 which comprises, first means for fixing and centering the electromagnetic contactor, second fixing and centering means for the electric motor M extending parallel to the contactor and below it. The support 4 also comprises third means for fixing and centering the starter on the casing of the engine of the motor vehicle so that the pinion 1 of the launcher meshes reliably with the starter ring C of the heat engine; said crown here belonging to a rigidly or resiliently rotating flywheel of the crankshaft of the heat engine or internal combustion engine.
The support 4 is metallic and ensures the return to ground. It is economical because it is obtained here by deformation of material, for example by stamping.
The electric motor M has a constitution similar to that of Figure 1 except for the assembly of the brushes and the collector blade.

Ici les balais sont d'orientation radiale et sont portés intérieurement par la culasse 25 métallique du moteur électrique et le collecteur est d'orientation axiale. Quatre balais sont ici prévus. Deux balais, dits balais négatifs, sont reliés à la masse via la culasse 25 et le support 4. Deux balais, dits balais positifs, sont reliés à la borne positive de la batterie via le contacteur 2.
On a représenté dans ces figures de manière schématique en 27 un ensemble balais-cage.
Ici l'arbre 101 du moteur électrique constitue également l'arbre 100 du lanceur et porte donc la butée de travail 6.
Le palier arrière 26 est en matière plastique et, selon une caractéristique, constitue également le palier arrière du contacteur. Les culasses du contacteur 2 et du moteur électrique M sont solidaires l'une de l'autre. Avantageusement les deux culasses appartiennent à une seule et même pièce continue 25 comme visible à la figure 6.
Le câble de liaison entre le contacteur et les balais positifs est supprimé de manière décrite ci-après. Le démarreur est ainsi moins coûteux car il comporte moins de composants.
La fourchette 13 est, comme à la figure 1, montée à articulation en un point intermédiaire 11 sur le support 4. La fourchette 13 est montée à articulation à son extrémité supérieure directement sur le noyau mobile 2b du contacteur 2 et pénètre à son extrémité inférieure, comme à la figure 1, dans une gorge de l'entraîneur 12 appartenant au lanceur à pignon 102.
Here the brushes are radially oriented and are carried internally by the metal cylinder head of the electric motor and the collector is of axial orientation. Four brooms are provided here. Two brushes, called negative brushes, are connected to ground via the yoke 25 and the support 4. Two brushes, called positive brushes, are connected to the positive terminal of the battery via the contactor 2.
These figures are shown schematically at 27 a broom-cage assembly.
Here the shaft 101 of the electric motor is also the shaft 100 of the launcher and therefore carries the working stopper 6.
The rear bearing 26 is made of plastic and, according to one characteristic, is also the rear bearing of the contactor. The yokes of the contactor 2 and the electric motor M are integral with each other. Advantageously, the two yokes belong to one and the same continuous part 25 as can be seen in FIG.
The connection cable between the contactor and the positive brushes is removed as described below. The starter is thus less expensive because it has fewer components.
The fork 13 is, as in FIG. 1, hingedly mounted at an intermediate point 11 on the support 4. The fork 13 is hingedly mounted at its upper end directly on the movable core 2b of the contactor 2 and penetrates at its lower end. , as in Figure 1, in a groove of the driver 12 belonging to the pinion launcher 102.

Suivant une caractéristique de l'invention un démarreur du type sus-indiqué est caractérisé en ce que le l'entraîneur 12 est doté de moyens pour son blocage en rotation lors de son passage de sa position de repos à sa position d'engrènement avec la couronne de démarrage.According to a characteristic of the invention, a starter of the type indicated above is characterized in that the driver 12 is provided with means for locking it in rotation during its passage from its rest position to its meshing position with the start crown.

Selon un premier mode de réalisation, tel que représenté aux figures 3 et 4, le blocage en rotation est réalisé par une fourchette 13 réalisée en matière rigide de préférence. Un dispositif de blocage en rotation intervient donc entre le lanceur et la fourchette.According to a first embodiment, as shown in Figures 3 and 4, the locking in rotation is achieved by a fork 13 made of rigid material preferably. A rotational locking device therefore intervenes between the launcher and the fork.

Ainsi selon l'invention le lanceur est bloqué en rotation par des moyens de coopération entre la fourchette 13 et l'entraîneur 12 pour son passage de sa position de repos (figures 3 et 4) à sa position d'engrènement, via son pignon, avec la couronne de démarrage.Thus according to the invention the launcher is locked in rotation by means of cooperation between the fork 13 and the coach 12 for its passage of its rest position (Figures 3 and 4) at its meshing position, via its pinion, with the starter ring.

Ces moyens de coopération, qui dans les figures 3 et 4 sont des moyens de blocage en rotation à coopération de formes, sont implantés au niveau des doigts situés à la base de la fourchette 13 et au niveau de la face arrière de l'entraîneur 12. Plus précisément les branches ou bras de la fourchette sont reçus dans une gorge de l'entraîneur 12 délimitée par les flancs 121, 122, respectivement avant et arrière, transversaux par rapport à l'axe de l'arbre 101.
A l'état de repos les doigts de la fourchette 13 sont en appui sur le flanc arrière 122 lisse de la gorge de réception. Les branches de la fourchette sont ondulées pour formation de doigts comme visible en 22. Le flanc avant 121 présente, pour réception des doigts 22, des ondulations circonférentielles 21 comme représenté aux figures 3 et 38c. En variante, le flanc avant 121 peut présenter d'autres moyens à coopération de formes par exemple en forme de dents de scie (figure 38a), en dents de loup (figure 38b) ou ondulée (figure 38c) ; les branches de la fourchette présentants des moyens complémentaires à ceux du flanc 121. D'une manière générale la fourchette coopère avec le flanc 121 et présente des branches avec des ondulations de forme complémentaire à celle du flanc 121.
Dans une autre forme de réalisation, les moyens de blocage en rotation peuvent consister en des frictions planes disposées, d'une part, sur l'entraîneur et, d'autre part, sur la fourchette.
En variante, comme illustré aux figures 31 et 32, les ondulations circonférentielles 21 sont formées de crans 320 et de bosses 321. Les crans 320 sont de formes complémentaires à celles des doigts 22 des branches 293 de la fourchette 13 comme représenté à la figure 31. Les doigts 22 saillants pénètrent dans les crans 320.
These co-operating means, which in FIGS. 3 and 4 are means for locking in rotation in the form of co-operation, are located at the level of the fingers situated at the base of the fork 13 and at the level of the rear face of the driver. More precisely, the branches or arms of the fork are received in a groove of the driver 12 delimited by the sidewalls 121, 122, respectively front and rear, transverse to the axis of the shaft 101.
In the rest state the fingers of the fork 13 are supported on the smooth rear flank 122 of the receiving groove. The branches of the fork are corrugated for finger formation as visible at 22. The front flank 121 has, for receiving the fingers 22, circumferential corrugations 21 as shown in Figures 3 and 38c. As a variant, the front flank 121 may have other form-forming means, for example in the form of saw teeth (FIG. 38a), wolf teeth (FIG. 38b) or corrugated teeth (FIG. 38c); the branches of the fork presenting means complementary to those of the sidewall 121. In general, the fork cooperates with the sidewall 121 and has branches with corrugations of shape complementary to that of the sidewall 121.
In another embodiment, the rotational locking means may consist of plane friction arranged on the one hand on the driver and on the other hand on the fork.
Alternatively, as illustrated in Figures 31 and 32, the circumferential corrugations 21 are formed of notches 320 and bumps 321. The notches 320 are of complementary shapes to those of the fingers 22 of the branches 293 of the fork 13 as shown in Figure 31 The protruding fingers penetrate the notches 320.

La figure 33 illustre une variante du dispositif de blocage en rotation du lanceur. Dans ce mode de réalisation la périphérie interne de la fourchette comporte une bague et les doigts 22 de la fourchette 13 sont déportés sur la bague 15 montée coulissante axialement sur la portion tubulaire en forme de fût de l'entraîneur. Cette bague 15 est montée à articulation sur l'extrémité interne du corps en forme de tige 292 la fourchette par l'intermédiaire d'un moyen 291 de pivotement comportant par exemple un pivot porté par la tige 292 et reçu dans une chape de la bague 15. La bague 15 est actionnée par le corps 292 de la fourchette pour son déplacement axial sur le fût de l'entraîneur. En variante, le moyen de pivotement comporte un jeu JC (non représenté) réalisant la fonction de jeu de coupure précédemment décrite.
Dans ce mode de réalisation, la fourchette 13 ne comporte donc pas de bras mais une tige 292 comportant à son extrémité inférieure le moyen 291 de pivotement avec la bague 15.
Ce mode de réalisation de dispositif de blocage en rotation porté par une bague 15 présente l'avantage d'avoir une liaison parfaite entre la bague 15 et l'entraîneur tout au long de la translation du lanceur ce qui n'est pas le cas avec la fourchette qui pivote autour de son axe favorisant ainsi les dents de la fourchette à sortir des crans de l'entraîneur.
Figure 33 illustrates a variant of the rotational locking device of the launcher. In this embodiment, the inner periphery of the fork comprises a ring and the fingers 22 of the fork 13 are offset on the ring 15 slidably mounted axially on the barrel-shaped tubular portion of the driver. This ring 15 is hingedly mounted on the inner end of the rod-shaped body 292 the fork by means of a pivoting means 291 comprising for example a pivot carried by the rod 292 and received in a clevis of the ring 15. The ring 15 is actuated by the body 292 of the fork for its axial displacement on the shaft of the trainer. Alternatively, the pivoting means comprises a game JC (not shown) performing the previously described cutoff function.
In this embodiment, the fork 13 therefore does not comprise arms but a rod 292 having at its lower end the means 291 for pivoting with the ring 15.
This embodiment of rotation locking device carried by a ring 15 has the advantage of having a perfect connection between the ring 15 and the coach throughout the translation of the launcher which is not the case with the fork which pivots around its axis thus favoring the teeth of the fork to leave the notches of the coach.

En variante, on peut envisager un dispositif à cliquet et roue à rochet.In a variant, a ratchet and ratchet device can be envisaged.

De manière générale, le blocage en rotation du lanceur est réalisé par friction, à l'aide d'aimants, par coopération de formes ou par tout autre moyen.In general, the rotational locking of the launcher is achieved by friction, with the aid of magnets, by cooperation of shapes or by any other means.

Bien évidemment, les formes qui coopèrent entre elles ne sont pas limitées aux exemples de réalisation décrits précédemment.Of course, the shapes that cooperate with each other are not limited to the embodiments described above.

Ainsi, selon l'invention le blocage en rotation du lanceur consiste en des moyens qui coopèrent entre eux de manière rigide. En effet, le dispositif de blocage en rotation (dents de loup, friction, aimants ...), la fourchette et la tige de l'axe mobile sont des pièces issues de matériaux rigides qui ne peuvent présenter une déformation de matière sous l'effet de la force exercée par l'attraction du noyau mobile.Thus, according to the invention the rotational locking of the launcher consists of means which cooperate with each other rigidly. Indeed, the locking device in rotation (wolf teeth, friction, magnets ...), the fork and the shaft of the movable axis are parts derived from rigid materials that can not present a deformation of material under the effect of the force exerted by the attraction of the mobile core.

Un avantage selon l'invention est de réaliser un blocage en rotation avec un nombre réduit de composants, ces composants étant principalement des composants connus dans le domaine des démarreurs, notamment la fourchette, l'axe mobile et la gorge de l'entraîneur dans laquelle vient se loger les doigts de la fourchette.An advantage according to the invention is to realize a rotational locking with a reduced number of components, these components being mainly known components in the field of starters, including the fork, the movable axis and the groove of the trainer in which the fingers of the fork are lodged.

Ainsi, de manière simple et économique, on réalise un blocage en rotation qui permet d'obtenir un contacteur électromagnétique de taille réduite, notamment en ce qui concerne le noyau mobile, car la force qui permet de faire avancer le lanceur vers l'avant est fournie par le moteur électrique dans son régime de pré-rotation.
La force exercée par la fourchette sur le lanceur est très réduite. On appréciera que le noyau mobile est simplifié.
Thus, in a simple and economical manner, a rotational locking is achieved which makes it possible to obtain an electromagnetic contactor of reduced size, in particular as regards the mobile core, because the force which makes it possible to advance the Forward thrower is provided by the electric motor in its pre-rotation regime.
The force exerted by the fork on the launcher is very small. It will be appreciated that the mobile core is simplified.

Afin de mettre le moteur électrique M en pré-rotation avant de lui appliquer la pleine puissance, le relais constitué par le contacteur électromagnétique doit comporter un dispositif qui permette, d'une part, de mettre en oeuvre la pré-rotation du moteur électrique sous faible puissance, puis, d'appliquer à ce même moteur la pleine puissance et, d'autre part, lors de l'ouverture de la clé ce contact, de désactiver simultanément la pleine puissance et la pré-rotation du moteur électrique. Il est important de pouvoir désactiver ces deux modes de fonctionnement simultanément, notamment dans le cas ou le pignon reste bloqué dans la couronne de démarrage. Dans ce cas, le dispositif selon l'invention doit permettre par l'entremise du jeu de coupure de JC, de déconnecter la pleine puissance simultanément avec la pré-rotation pour désactiver complètement le moteur électrique M.In order to put the electric motor M in pre-rotation before applying to it full power, the relay constituted by the electromagnetic contactor must comprise a device which allows, on the one hand, to implement the pre-rotation of the electric motor under low power, then, to apply the same power to the same engine and, on the other hand, when opening the key this contact, to simultaneously turn off the full power and pre-rotation of the electric motor. It is important to be able to deactivate these two modes of operation simultaneously, especially in the case where the pinion remains locked in the starter ring. In this case, the device according to the invention must allow through the JC cutoff game, to disconnect the full power simultaneously with the pre-rotation to completely turn off the electric motor M.

Dans un premier mode de réalisation, les moyens pour faire tourner à vitesse lente le moteur électrique puis à pleine puissance comportent deux plaquettes de contacts montées sur un axe mobile solidaire du noyau mobile et de deux paires de contactsIn a first embodiment, the means for rotating slowly the electric motor and then at full power comprise two contact pads mounted on a movable axis integral with the movable core and two pairs of contacts.

A la figure 2 on a représenté de manière schématique le circuit électrique du démarreur. Celui-ci comporte un bobinage de maintien 37, un bobinage d'appel 36, une bobine d'appel et de pré-rotation 39, deux plaquettes de contact P1 et P2 électriquement conductrices destinées à venir respectivement en contact avec une première série de contacts comportant deux contacts C1 et C2 et avec une deuxième série de contacts comportant deux contacts C3 et C4, le moteur électrique M et l'interrupteur de démarrage 35 relié électriquement à la borne positive de la batterie. Le moteur électrique M et le bobinage de maintien 37 sont reliés électriquement à la masse, tandis que les contacts C2 et C4 sont reliés électriquement, respectivement par des lignes 33, 34, à la borne positive de la batterie. Les bobines d'appel 36 et de maintien 37 entourent le noyau mobile 2b. Avantageusement, la bobine de pré-rotation 39 entoure également le noyau mobile 2b. Cette bobine de pré-rotation 39 est avantageusement reliée électriquement au contact C1 de la première série de contacts et au moteur électrique M, tandis que le contact C3 est relié électriquement au moteur électrique.
Les plaquettes P1 et P2 sont portées par le noyau mobile 2b de la figure 3. Dans cette figure 3 le bobinage 2a comporte les bobinages 37 et 36 de la figure 2 montés en série avec la bobine 39 en forme de résistance électrique.
In Figure 2 is shown schematically the electric circuit of the starter. It comprises a holding winding 37, a call winding 36, a call coil and pre-rotation 39, two contact pads P1 and P2 electrically conductive intended to come respectively in contact with a first series of contacts having two contacts C1 and C2 and with a second series of contacts having two contacts C3 and C4, the electric motor M and the start switch 35 electrically connected to the positive terminal of the battery. The electric motor M and the holding coil 37 are electrically connected to ground, while the contacts C2 and C4 are electrically connected, respectively by lines 33, 34, to the positive terminal of the battery. The call coils 36 and hold 37 surround the mobile core 2b. Advantageously, the pre-rotation coil 39 also surrounds the mobile core 2b. This pre-rotation coil 39 is advantageously electrically connected to the contact C1 of the first series of contacts and the electric motor M, while the contact C3 is electrically connected to the electric motor.
The plates P1 and P2 are carried by the movable core 2b of FIG. 3. In this FIG. 3 the winding 2a comprises the coils 37 and 36 of FIG. 2 connected in series with the coil 39 in the form of an electrical resistance.

Grâce à cette disposition, l'interrupteur 35 étant fermé, le moteur tourne à vitesse lente dès la fermeture du premier interrupteur constitué par la première plaquette P1 et la première série de contacts C1, C2.With this arrangement, the switch 35 is closed, the motor rotates at a slow speed from the closing of the first switch constituted by the first plate P1 and the first series of contacts C1, C2.

Le mouvement du noyau mobile se poursuivant, la deuxième plaquette de contact P2 vient en contact avec la deuxième série de contacts C3, C4 dont l'un est relié électriquement au moteur électrique et l'autre électriquement à la borne positive de la batterie en sorte que le moteur électrique tourne à pleine puissance.With the movement of the moving core continuing, the second contact pad P2 comes into contact with the second series of contacts C3, C4, one of which is electrically connected to the electric motor and the other electrically to the positive terminal of the battery so that that the electric motor runs at full power.

Des jeux J1 et J2 sont calculés en sorte que le premier contact de la plaquette P1 avec les contacts C1, C2 s'effectue lors du rattrapage du jeu de coupure JC par le noyau mobile et le second contact de la plaquette P2 avec les contacts C3, C4 s'effectue lorsque le noyau mobile se trouve par rapport au pignon fixe 2d (figure 3) presque à entrefer nul, ce qui assure une bonne pénétration du pignon dans la couronne de démarrage.Sets J1 and J2 are calculated so that the first contact of the wafer P1 with the contacts C1, C2 takes place during the catching of the breaking clearance JC by the movable core and the second contact of the wafer P2 with the contacts C3. , C4 is performed when the movable core is relative to the fixed gear 2d (Figure 3) almost zero air gap, which ensures good penetration of the pinion in the starter ring.

Le retour des plaquettes lors de l'ouverture du circuit de commande du moteur M et du relais constitué par le contacteur électromagnétique doit se faire simultanément pour ne pas laisser l'induit sous tension, même avec une intensité faible. Pour cela, comme représenté à la figure 37, un clip est utilisé pour la première plaquette de contact. Ce clip est réalisé en réalisant dans l'axe mobile 40, par l'intermédiaire d'un enlèvement de matière dans cet axe, une lamelle 23 munie d'une surépaisseur locale. Lorsque l'axe mobile avance, la plaquette de contact P1 entre en contact avec les contacts C1 et C2. Elle se bloque tandis que l'axe mobile continue sa course axiale vers l'arrière. La surépaisseur de la lamelle 23 arrive au niveau de la plaquette P1. La lamelle 23 s'abaisse, laissant le passage à la plaquette P1 qui franchie alors la surépaisseur ici localisée au milieu de la languette, puis se relève après. Le clip est alors en position pour fonctionner.
Au retour, c'est à dire lorsque l'axe mobile se dirige vers l'avant, la surépaisseur vient buter contre la plaquette P1. L'effort axial à fournir pour faire de nouveau plier la lamelle 23 étant supérieure à l'effort fourni par le ressort de contact 20 de la plaquette, ladite plaquette est contrainte à suivre le déplacement de l'axe mobile vers l'avant et se déconnecte donc électriquement des contacts C1 et C2. La plaquette vient ensuite buter contre le noyau fixe 2d du solénoïde et, l'effort exercé par le ressort de rappel 17,18 du noyau mobile étant supérieur à l'effort de désencliquetage, la lamelle s'abaisse et la surépaisseur repasse de l'autre coté de la plaquette dans sa position nominale de repos. Avantageusement ce clip permet de déconnecter électriquement le moteur électrique, notamment en vitesse lente de pré-rotation, dans le cas où le pignon resterait bloqué dans la couronne de démarrage C du moteur à combustion interne. Ceci est possible grâce au jeu de coupure JC qui permet un déplacement vers l'avant de l'axe mobile même si le pignon reste engrené dans la couronne de démarrage.
The return of the pads when opening the motor control circuit M and the relay constituted by the electromagnetic contactor must be done simultaneously to not leave the armature under tension, even with a low intensity. For this, as shown in Figure 37, a clip is used for the first contact pad. This clip is made by performing in the movable axis 40, by means of a removal of material in this axis, a strip 23 provided with a local extra thickness. When the moving axis advances, the contact plate P1 comes into contact with the contacts C1 and C2. It hangs while the movable axis continues its axial stroke backward. The extra thickness of the blade 23 arrives at the platelet P1. The strip 23 lowers, leaving the passage to the plate P1 which then crosses the allowance here located in the middle of the tongue, then gets up after. The clip is then in position to function.
When returning, that is to say when the moving axis is moving forward, the extra thickness abuts against the plate P1. The axial force to be provided to bend again the strip 23 being greater than the force provided by the contact spring 20 of the wafer, said wafer is forced to follow the movement of the movable axis forward and thus disconnects electrically contacts C1 and C2. The wafer then abuts against the fixed core 2d of the solenoid and, the force exerted by the return spring 17,18 of the movable core being greater than the disengaging force, the sipe lowers and the extra thickness returns from the other side of the plate in its nominal position of rest. Advantageously, this clip makes it possible to electrically disconnect the electric motor, in particular at a slow pre-rotation speed, in the case where the pinion remains locked in the starting ring C of the internal combustion engine. This is possible thanks to the JC break set which allows a forward displacement of the movable axis even if the pinion remains meshed in the starter ring.

La figure 3 illustre un démarreur comportant un contacteur doté de deux plaquettes de contact P1 et P2 telles que décrites précédemment. Dans ce mode de réalisation, le noyau mobile 2b est étagé en diamètre et comporte une portion de plus grand diamètre faisant saillie en dehors du bobinage 2a. Ce noyau, comme celui de la figure 37, est simplifié par rapport à celui de la figure 1 et consiste en une simple tige étagée économique d'encombrement radial réduit guidée par le support 2c de la bobine 2a formant un solénoïde.
Un ressort de rappel 18 agit entre le support du bobinage et un épaulement de la partie avant du noyau 2b. Ce ressort remplace le ressort de rappel 18 de la figure 1. La première portion de plus grand diamètre pénètre à l'intérieur du bobinage 2a et se prolonge par une deuxième portion de plus petit diamètre autour de laquelle est monté un ressort 20 de contact de plaquette P1 prenant appui sur le changement de diamètre entre les première et deuxième portions du noyau mobile et sur la première plaquette de contact électriquement conductrice P1 calée axialement sur une butée rapportée 54, telle qu'un circlips, monté à l'extrémité arrière de la deuxième portion prolongée par une troisième portion, de plus petit diamètre que la deuxième portion, autour de laquelle est monté un ressort de contact 21 en appui sur la butée 54 et sur la deuxième plaquette P2 calée axialement sur une butée d'extrémité 38 rapportée à l'extrémité arrière du noyau mobile. Les plaquettes électriquement conductrices peuvent donc se déplacer relativement par rapport au noyau 2b. Notamment, la plaquette P1, calée axialement contre la butée 54, est poussée vers l'arrière sous l'action du ressort 20 qui est calé axialement vers l'avant contre un épaulement du noyau mobile. Ainsi, lorsque le noyau mobile se déplace vers l'arrière, la plaquette P1 se déplace vers l'arrière, sous l'effet du ressort de contact 20, jusqu'à arriver en butée contre les contacts C1 et C2. Un évidemment 60 est prévu dans le noyau fixe 2d pour permettre le passage du ressort 20 de contact de la première plaquette P1.
FIG. 3 illustrates a starter comprising a contactor provided with two contact pads P1 and P2 as previously described. In this embodiment, the movable core 2b is staggered in diameter and has a larger diameter portion protruding outside the coil 2a. This core, like that of FIG. 37, is simplified with respect to that of FIG. 1 and consists of a simple economic step rod with reduced radial dimensions guided by the support 2c of the coil 2a forming a solenoid.
A return spring 18 acts between the winding support and a shoulder of the front part of the core 2b. This spring replaces the return spring 18 of Figure 1. The first portion of larger diameter penetrates inside the coil 2a and is extended by a second portion of smaller diameter around which is mounted a contact spring 20 of plate P1 bearing on the change in diameter between the first and second portions of the movable core and on the first electrically conductive contact pad P1 axially fixed on an attached stop 54, such as a circlip, mounted at the rear end of the second portion extended by a third portion, of smaller diameter than the second portion, around which is mounted a contact spring 21 bearing on the stop 54 and the second plate P2 fixed axially on an end stop 38 reported to the rear end of the mobile core. The electrically conductive pads can therefore move relatively with respect to the core 2b. In particular, the plate P1, axially wedged against the stop 54, is pushed back by the action of the spring 20 which is wedged axially forward against a shoulder of the movable core. So, when the movable core moves backwards, the plate P1 moves backwards, under the effect of the contact spring 20, to abut against the contacts C1 and C2. A recess 60 is provided in the fixed core 2d to allow the passage of the contact spring 20 of the first plate P1.

Ainsi lorsque la plaquette P1 est en contact avec les contacts C1, C2 le noyau 2b se déplace axialement en comprimant le ressort 20. Il en est de même pour la plaquette P2, le ressort de contact 21 étant comprimé sous l'action du déplacement vers l'arrière du noyau mobile étagé. Après ouverture de l'interrupteur 35 associé à la clé de contact, les ressorts 21, 20 et 18 exercent une action permanente.
La vis 131 est reliée à la borne positive de la batterie et est en liaison électrique avec une piste électrique présentant un retour perpendiculaire constituant le contact C2. De même le contact C1 appartient à une piste électrique reliée aux balais positifs du moteur électrique M.
On note la présence (non visible) d'une vis située dans le même plan horizontal que la vis 131 reliée d'une part à l'interrupteur (clé de contact) et d'autre part au bobinage du contacteur.
Le contact C3 appartient également à une piste électrique reliée aux balais positifs, le contact C2 est relié électriquement, d'une part, à une résistance électrique pour faire tourner le moteur électrique à faible vitesse dans un premier temps et, d'autre part, au contact C4 relié à la borne positive de la batterie.
Thus when the plate P1 is in contact with the contacts C1, C2 the core 2b moves axially by compressing the spring 20. It is the same for the plate P2, the contact spring 21 being compressed under the action of the displacement towards the back of the staged mobile core. After opening the switch 35 associated with the ignition key, the springs 21, 20 and 18 exert a permanent action.
The screw 131 is connected to the positive terminal of the battery and is in electrical connection with an electrical track having a perpendicular return constituting the contact C2. Similarly, the contact C1 belongs to an electrical track connected to the positive brushes of the electric motor M.
Note the presence (not visible) of a screw located in the same horizontal plane as the screw 131 connected firstly to the switch (ignition key) and secondly to the winding of the contactor.
The contact C3 also belongs to an electrical track connected to the positive brushes, the contact C2 is electrically connected, on the one hand, to an electrical resistance to turn the electric motor at low speed in the first place and, on the other hand, at contact C4 connected to the positive terminal of the battery.

La figure 37 illustre avec plus de précision un relais complet intégrant un contacteur électromagnétique comportant deux plaquettes. Dans cet exemple de réalisation, deux plaquettes de contact P1 et P2 sont fixées sur un axe mobile en matière plastique 40 sur lequel elles peuvent se mouvoir en translation. Cet axe mobile 40 et par exemple fixé par clipsage ou collage ou soudage sur le noyau mobile 2b. Ce noyau mobile peut avoir une section cylindrique ou carrée. Dans le cas d'une section carrée, le noyau mobile est réalisé de manière économique à partir d'un empilage de tôles. Des ressorts 20 et 21 maintiennent les plaquettes contre des épaulements réalisés dans l'axe. Les plaquettes ont des ouvertures centrales cylindriques d'un diamètre équivalent à celui des épaulements pour rendre possible le montage. Ensuite elles sont fixées par déformation de l'ouverture qui réduit suivant un axe le diamètre rendant l'ouverture de forme oblongue. Des méplats pratiqués dans l'axe permettent cette déformation.Figure 37 illustrates more precisely a complete relay incorporating an electromagnetic contactor having two plates. In this embodiment, two contact plates P1 and P2 are fixed on a movable plastic axis 40 on which they can move in translation. This movable axis 40 and for example fixed by clipping or gluing or welding on the mobile core 2b. This movable core may have a cylindrical or square section. In the case of a square section, the mobile core is made economically from a stack of sheets. Springs 20 and 21 hold the plates against shoulders made in the axis. The pads have cylindrical central openings of a diameter equivalent to that of the shoulders to make possible the mounting. Then they are fixed by deformation of the opening which reduces along an axis the diameter making the opening oblong shape. Flats made in the axis allow this deformation.

L'axe mobile est solidaire du noyau mobile et l'ensemble peut se déplacer en translation suivant l'axe longitudinal du contacteur formant un relais. Un ressort de rappel noyau 18 est positionné à l'avant entre un épaulement solidaire du noyau mobile 2b et une rondelle 2'd solidaire du support du bobinage 2a. Il permet de ramener le noyau mobile dans sa position de repos et de le maintenir dans cette position après coupure du circuit de commande du relais. La fourchette est positionnée entre deux flancs du noyau mobile. Elle est, au repos, en appui sur un des flancs et distante du second flanc d'une distance appelée jeu de coupure JC.The movable axis is integral with the movable core and the assembly can move in translation along the longitudinal axis of the contactor forming a relay. A core return spring 18 is positioned at the front between a shoulder secured to the movable core 2b and a washer 2'd integral with the winding support 2a. It makes it possible to return the mobile core to its rest position and to keep it in this position after the relay control circuit has been cut off. The fork is positioned between two flanks of the movable core. It is, at rest, resting on one of the flanks and distant from the second flank of a distance called JC break game.

Positionné entre la fourchette et la rondelle 2'd, le ressort de levier 17 permet, d'une part de ramener la fourchette dans sa position de repos après coupure du circuit de commande, et d'autre part de maintenir le lanceur en position de repos. Les ressorts 17 et 18 sont dissociés car le ressort 17 a une raideur plus importante du fait que le lanceur peut exercer une poussée forte sur la fourchette lors de brutales décélérations du véhicule. Il est impossible de mettre une raideur sur le ressort 18 équivalente à celle du ressort 17 car le bobinage n'est pas dimensionné, au départ, pour contrer la force axiale créée par le ressort 17 sur la fourchette. Les ressorts 17, 18 permettent de manière précitée un désencliquetage de la plaquette P1.Positioned between the fork and the washer 2'd, the lever spring 17 makes it possible, on the one hand, to return the fork to its rest position after cutting off the control circuit, and on the other hand to keep the launcher in the position of rest. The springs 17 and 18 are dissociated because the spring 17 has a greater stiffness because the launcher can exert a strong thrust on the fork during sudden decelerations of the vehicle. It is impossible to put a stiffness on the spring 18 equivalent to that of the spring 17 because the winding is not dimensioned, initially, to counter the axial force created by the spring 17 on the fork. The springs 17, 18 allow aforementioned manner a disengagement of the plate P1.

Comme visible la figure 29, la fourchette 13, ici en matière plastique rigide en variante métallique, en dessous de son axe de rotation 11, se sépare en deux branches 293 à l'image d'une fourche. Les deux extrémités de cette fourche possèdent des doigts 22 qui ont une forme particulière, ici cylindrique, et qui peuvent s'insérer dans la forme complémentaire 21 située sur la face externe de l'entraîneur. Ces formes, disposées sur l'entraîneur, sont assimilables à des crans dont le but est, lorsque la fourchette est emboîtée dans l'entraîneur, de bloquer le lanceur en rotation. D'un autre côté, si le lanceur a le couple nécessaire, l'entraîneur peut sauter les crans en faisant reculer la fourchette.As shown in Figure 29, the fork 13, here rigid plastic metal variant, below its axis of rotation 11, separates into two branches 293 in the image of a fork. Both ends of this fork have fingers 22 which have a particular shape, here cylindrical, and which can fit into the complementary shape 21 located on the outer face of the coach. These forms, arranged on the coach, are comparable to notches whose purpose is, when the fork is engaged in the coach, to block the launcher in rotation. On the other hand, if the thrower has the necessary torque, the coach can jump the notches by rolling back the fork.

Dans la figure 37, de manière précitée, une lamelle 23 munie d'une surépaisseur est créée sur l'axe mobile afin de remplir une fonction de clip avec la plaquette P1 qui permettra de ramener en même temps, lors de l'ouverture du circuit de commande, les deux plaquettes P1 et P2.In FIG. 37, in the aforementioned manner, a strip 23 provided with an extra thickness is created on the movable axis in order to fulfill a clip function with the plate P1 which will make it possible to bring back at the same time, when the circuit is opened. control, the two plates P1 and P2.

Le double contact est réalisé, en premier lieu par contact de la plaquette P1 avec les contacts C1 et C2, et d'autre part par contact de la plaquette P2 avec les contacts C3 et C4. Les ressorts 20 et 21 servant respectivement de ressorts d'écrasement pour les plaquettes afin d'assurer un bon contact.The double contact is made, firstly by contacting the plate P1 with the contacts C1 and C2, and secondly by contact of the wafer P2 with the contacts C3 and C4. The springs 20 and 21 serving respectively crushing springs for the wafers to ensure good contact.

Le contact C4 est relié à la borne batterie et est relié au contact C2 par l'intermédiaire d'une liaison électrique 29 de type filaire. Le contact C1 est relié électriquement à la bobine résistive de pré-rotation par un moyen de liaison électrique 30. Le contact C1 est relié électriquement au contact C3 par un moyen de liaison électrique 32. Le contact C3 est relié par ailleurs au moteur électrique par un moyen de liaison 49.The contact C4 is connected to the battery terminal and is connected to the contact C2 via a wired type electrical connection 29. The contact C1 is electrically connected to the resistive pre-rotation coil by an electrical connection means 30. The contact C1 is electrically connected to the contact C3 by an electrical connection means 32. The contact C3 is also connected to the electric motor by connecting means 49.

Les contacts C1 et C2 sont reliés électriquement à une la bobine résistive de pré-rotation d'une résistance proche des 150 mohms afin de limiter le passage du courant à une valeur comprise entre 50 et 80A permettant de garantir une pré-rotation suffisante du moteur électrique.The contacts C1 and C2 are electrically connected to a resistive pre-rotation coil with a resistance close to 150 mohms in order to limit the passage of current to a value between 50 and 80A to ensure sufficient pre-rotation of the motor electric.

Cette bobine résistive de pré-rotation est placée par-dessus les deux autres bobines que l'on rencontre classiquement dans tous les contacteurs à savoir les bobines d'appel 36 et de maintien 37.This resistive pre-rotation coil is placed on top of the other two coils conventionally encountered in all the contactors, namely the call coil 36 and the hold coil 37.

Dans un deuxième mode de réalisation visible à la figure 34, une seule plaquette P0 est utilisée ainsi qu'une seule paire de contacts C5 et C6 qui sont décalés axialement l'un par rapport à l'autre suivant l'axe du relais. Le contact C5 assure la pré-rotation du moteur électrique M et le contact C6 alimente ce même moteur en pleine puissance. Le contact C6 et relié à la batterie. Dans un exemple de réalisation, la bobine résistive de pré-rotation 39 est reliée à C6 par l'intermédiaire d'une liaison électrique 48 par exemple de type filaire. Avantageusement, le contact C5 est relié directement au moteur électrique par un moyen de liaison électrique 49. Ce mode de réalisation présente l'avantage de ne pas utiliser de bornes de connexions externes et un fil de liaison externe. Cela permet d'éviter des problèmes d'étanchéité au niveau des bornes externes et contribue également à réduire l'encombrement du démarreur ainsi que son coût et son poids.In a second embodiment visible in FIG. 34, a single plate P0 is used as well as a single pair of contacts C5 and C6 which are offset axially with respect to each other along the axis of the relay. The contact C5 ensures the pre-rotation of the electric motor M and the contact C6 feeds the same motor at full power. C6 contact and connected to the battery. In an exemplary embodiment, the pre-rotation resistive coil 39 is connected to C6 via an electrical connection 48, for example of the wired type. Advantageously, the contact C5 is connected directly to the electric motor by an electrical connection means 49. This embodiment has the advantage of not using external connection terminals and an external connection wire. This avoids sealing problems at the external terminals and also helps to reduce the size of the starter and its cost and weight.

La plaquette de contact dans une première phase est perpendiculaire au noyau mobile et se déplace au contact d'un contact relié à la résistance jusqu'à venir au contact du contact relié à la borne positive de la batterie via l'interrupteur de démarrage.The contact plate in a first phase is perpendicular to the movable core and moves in contact with a contact connected to the resistor until it comes to contact of the contact connected to the positive terminal of the battery via the start switch.

La bobine résistive 39, servant ici aussi de bobine d'appel, est reliée électriquement à la plaquette de contact P0 par un moyen de liaison électrique 31 qui est par exemple soudé sur la plaquette P0. Ce moyen de liaison 31 peut consister en un fil issu directement du bobinage 39. En variante ce moyen de liaison 31 peut consister en un ressort plaqué sur la circonférence de la plaquette P0.
Lorsque le bobinage 39 du solénoïde est mis sous tension, le noyau mobile 2b est attiré et l'axe mobile 40 est mis en mouvement. La plaquette de contact P0 vient toucher le contact C5, fermant ainsi le circuit d'alimentation de l'induit sous faible intensité afin de réaliser une pré-rotation du moteur électrique.
Le noyau mobile 2b continue sa course et l'axe mobile 40, par l'intermédiaire du ressort de contact 16 de la plaquette, appuie sur la plaquette P0 qui pivote autour du contact C5. Lorsque le noyau mobile 2b est presque arrivé en bout de course, la plaquette P0 entre en contact avec le contact C6, fermant le circuit de puissance et court-circuitant le circuit de pré-rotation.
Le même système de clipsage que celui utilisé dans la solution précédente grâce à une lamelle (non représentée) permet d'ouvrir les deux circuits de puissance simultanément lors du retour du noyau mobile dans sa position de repos.
The resistive coil 39, also used as a call coil, is electrically connected to the contact pad P0 by an electrical connection means 31 which is for example welded to the wafer P0. This connecting means 31 may consist of a wire coming directly from the winding 39. In a variant, this connecting means 31 may consist of a spring plated on the circumference of the wafer P0.
When the coil 39 of the solenoid is energized, the movable core 2b is attracted and the movable axis 40 is set in motion. The contact pad P0 contacts the contact C5, thus closing the supply circuit of the armature at low intensity to perform a pre-rotation of the electric motor.
The movable core 2b continues its travel and the movable axis 40, via the contact spring 16 of the wafer, presses the wafer P0 which pivots around the contact C5. When the movable core 2b has almost reached the end of travel, the plate P0 comes into contact with the contact C6, closing the power circuit and short-circuiting the pre-rotation circuit.
The same clipping system that used in the previous solution with a slat (not shown) opens the two power circuits simultaneously during the return of the movable core in its rest position.

La figure 4 illustre un démarreur comportant un contacteur doté d'une plaquette de contact P0 pivotante telle que décrite précédemment. Dans ce mode de réalisation, la résistance de pré-rotation se présente ici sous la forme d'une bobine résistive 39 bobinée à côté du bobinage 2a d'attraction du noyau mobile 2b.FIG. 4 illustrates a starter comprising a contactor provided with a pivoting contact pad P0 as described above. In this embodiment, the pre-rotation resistor is here in the form of a resistive coil 39 wound next to the winding 2a of attraction of the movable core 2b.

Dans ce mode de réalisation, la bobine résistive 39 entoure la première portion de grand diamètre du noyau mobile alors que la deuxième section de plus faible diamètre du noyau mobile est entourée par le bobinage 2a de maintien et d'appel. Dans un autre mode de réalisation on peut réaliser la configuration inverse.In this embodiment, the resistive coil 39 surrounds the first large diameter portion of the movable core while the second smaller diameter section of the movable core is surrounded by the holding and calling coil 2a. In another embodiment, the reverse configuration can be realized.

La deuxième portion du noyau mobile 2b est plus longue en étant dépourvue de ressort, tandis que la première portion de ce noyau est plus courte et est entourée par un ressort de rappel 18.The second portion of the movable core 2b is longer without spring, while the first portion of this core is shorter and is surrounded by a return spring 18.

La troisième portion est entourée par un ressort 16 agissant sur la plaquette P0 qui est ici unique, un troisième ressort 24 (visible sur la figure 34) agit entre la périphérie externe de la plaquette et le noyau fixe 2d de la bobine 2a.The third portion is surrounded by a spring 16 acting on the wafer P0 which is here unique, a third spring 24 (visible in Figure 34) acts between the outer periphery of the wafer and the fixed core 2d of the coil 2a.

Dans un troisième mode de réalisation visible aux figures 35 et 36, une plaquette de contact P3 est montée sur un axe mobile 40 solidaire du noyau mobile et comportant à sa périphérie externe des cannelures hélicoïdales 50 coopérants avec des cannelures hélicoïdales complémentaires réalisées à la périphérie interne de la plaquette P3. L'axe 40 porte en saillie radiale une butée 53 pour la plaquette P3.
Au repos, la plaquette de contact P3 est maintenue plaquée contre un épaulement 51 du corps du solénoïde 2a par une rondelle élastique 52 solidaire de l'axe mobile 40. La plaquette P3 a une forme spéciale comme visible à la figure 36. Elle comporte deux secteurs circulaires dont l'un, de plus grande étendue circonférentielle, est destiné à coopérer avec le contact C7 et l'autre avec le contact C8 ou C9 axialement de même hauteur. Les contacts C7 et C9 sont diamétralement opposés
In a third embodiment visible in FIGS. 35 and 36, a contact pad P3 is mounted on a mobile pin 40 integral with the movable core and having at its outer periphery helical splines 50 cooperating with complementary helical splines made at the inner periphery. of the P3 wafer. Axis 40 projects radially a stop 53 for wafer P3.
At rest, the contact plate P3 is held pressed against a shoulder 51 of the body of the solenoid 2a by an elastic washer 52 integral with the movable axis 40. The plate P3 has a special shape as shown in Figure 36. It comprises two circular sectors, one of which is of greater circumferential extent, is intended to cooperate with the contact C7 and the other with the contact C8 or C9 axially of the same height. C7 and C9 contacts are diametrically opposed

Lorsque le noyau mobile avance, la plaquette entraînée par l'axe mobile et maintenue par la butée 53, suit le mouvement de translation vers l'arrière. Elle vient buter sur le premier contact C7, qui est reliée à la batterie du véhicule, et sur le contact C8, lui-même relié électriquement à C9 par la bobine résistive de pré-rotation 39 fermant ainsi le premier contact de puissance puisque le contact C9 est relié directement au moteur électrique.
Le noyau mobile continue d'avancer, et comme la plaquette P3 est bloquée - axialement, elle se met à tourner sur elle-même grâce aux cannelures précitées et vient mettre en contact C7 et C9 tout en restant en contact avec C8 via la bobine 39 de pré-rotation afin de ne pas créer de rupture de courant. Dans cette position, la bobine résistive 39 est court-circuitée ce qui permet d'alimenter directement le moteur électrique M du démarreur en pleine puissance.
L'effort d'écrasement de contact est produit par l'effort de poussée axiale du noyau mobile et répercuté par les cannelures.
Lors du retour du noyau mobile, l'axe mobile tire avec lui la plaquette qui se retire d'un coup des contacts C7 et C9, ouvrant ainsi le circuit de puissance sans refermer le premier circuit entre C7 et C8. Le moteur électrique M est ainsi coupé de toute alimentation électrique.
As the movable core advances, the wafer driven by the movable axis and held by the stop 53, follows the translational movement backwards. It abuts on the first contact C7, which is connected to the battery of the vehicle, and on the contact C8, itself electrically connected to C9 by the resistive pre-rotation coil 39 thus closing the first power contact since the contact C9 is directly connected to the electric motor.
The movable core continues to advance, and as the plate P3 is blocked - axially, it starts to rotate on itself thanks to the aforementioned grooves and comes into contact C7 and C9 while remaining in contact with C8 via the coil 39 pre-rotation so as not to create a break in current. In this position, the resistive coil 39 is short-circuited which allows to directly power the electric motor M starter at full power.
The contact crushing force is produced by the axial thrust force of the movable core and echoed by the grooves.
During the return of the movable core, the movable axis pulls with it the wafer which withdraws at once from the contacts C7 and C9, thus opening the power circuit without closing the first circuit between C7 and C8. The electric motor M is thus cut off from any power supply.

La plaquette arrive ensuite en butée contre l'épaulement 51 du corps du solénoïde. Etant bloqué en translation, la plaquette P3 se met en rotation sous la pression de la rondelle élastique 52 qui oblige la plaquette P3 à revenir à sa position initiale par vissage sur les dentures hélicoïdales 50.The wafer then comes into abutment against the shoulder 51 of the body of the solenoid. Being blocked in translation, the plate P3 is rotated under the pressure of the spring washer 52 which forces the plate P3 to return to its initial position by screwing on the helical teeth 50.

Pour faciliter la rotation de la plaquette P3 et pour éviter un éventuel coincement de cette plaquette dans les cannelures de l'axe mobile vu l'épaisseur faible de la plaquette et donc de la dent, il est possible d'envisager un manchon plastique venant se reprendre sur les cannelures de l'axe mobile et comportant lui-même des cannelures.To facilitate the rotation of the plate P3 and to avoid possible jamming of this plate in the grooves of the movable axis given the small thickness of the plate and therefore the tooth, it is possible to envisage a plastic sleeve coming from take on the splines of the movable axis and itself having splines.

Aux figures 29 et 30 est représenté un mode préféré de réalisation de la fourchette 13 selon l'invention. Cette fourchette comporte un axe de rotation 11 porté par exemple par le support 4 du démarreur. Sous l'effet de l'action du contacteur électromagnétique, la fourchette 13 bascule en rotation autour de cet axe 11. Cette fourchette comporte un corps 292 en forme de tige réalisant une liaison rigide entre l'axe de rotation 11 et deux bras ou branche 293. Ces deux bras sont avantageusement de forme circulaire. Ces deux bras portent chacun une dent 22, en forme de doigt, orientée vers l'avant. La dent présente vers l'avant une forme 295 de préférence circulaire apte à coopérer avec les crans 320 représentés aux figures 31 et 32. Les dents ou doigts 22 se présentent sous la forme d'un plot cylindrique. La partie inférieure des bras 293 est dotée avantageusement de patins 290. Ces patins se présentent sous la forme d'une protubérance orientée vers l'avant comme pour les dents 22, c'est à dire orientée vers le lanceur. La partie terminale avant du patin la plus avancée 296 peut être plane comme représentée aux figures 29 à 31. Dans un autre mode de réalisation, cette partie terminale du patin peut être bombée. En variante, la fourchette peut ne comporter qu'un seul patin 290. A son extrémité supérieure, la fourchette 13 comporte deux oreilles 297, perpendiculaire à l'axe principal de la fourchette portées par les deux branches 298 utilisées pour le montage à articulation avec l'axe mobile 40 solidaire du noyau mobile du contacteur. Ces deux oreilles 297 servent d'appui au ressort de rappel 17 de la fourchette 13.In Figures 29 and 30 is shown a preferred embodiment of the fork 13 according to the invention. This fork comprises an axis of rotation 11 carried for example by the support 4 of the starter. Under the effect of the action of the electromagnetic contactor, the fork 13 rotates in rotation about this axis 11. This fork comprises a body 292 in the form of rod making a rigid connection between the axis of rotation 11 and two arms or branch These two arms are advantageously circular in shape. These two arms each carry a tooth 22, finger-shaped, facing forward. The tooth presents forwards a shape 295 preferably circular adapted to cooperate with the notches 320 shown in Figures 31 and 32. The teeth or fingers 22 are in the form of a cylindrical stud. The lower part of the arms 293 is advantageously provided with shoes 290. These pads are in the form of a protuberance oriented towards the front as for the teeth 22, that is to say facing the launcher. The forward end portion of the most advanced shoe 296 may be flat as shown in Figures 29-31. In another embodiment, this end portion of the shoe may be bulged. Alternatively, the fork may have only one shoe 290. At its upper end, the fork 13 has two lugs 297, perpendicular to the main axis of the fork carried by the two branches 298 used for the hinge assembly with the movable axis 40 secured to the movable core of the contactor. These two ears 297 serve to support the return spring 17 of the fork 13.

La figure 30 nous montre la fourchette 13 associée à l'axe mobile 40 solidaire du noyau mobile 2b, ici de section globalement rectangulaire. L'ensemble axe mobile 40-noyau mobile possède à son extrémité avant une forme en H perpendiculaire à l'axe de l'ensemble axe mobile 40-noyau mobile et délimitant un évidemment 300 destiné à recevoir les deux branches 298 de la fourchette 13 pour son montage à articulation. Cet évidement 300 présente une longueur axiale supérieure à l'épaisseur des branches 298 de la fourchette de manière à laisser un jeu JC, qui joue le rôle de jeu de coupure en cas de blocage du pignon dans la couronne du démarreur. Les branches du H de l'extrémité avant de l'ensemble axe mobile 40-noyau mobile s'étendent en saillie pour définir notamment un épaulement arrière 301 à face arrière 301.Figure 30 shows the fork 13 associated with the movable axis 40 secured to the movable core 2b, here of generally rectangular section. The mobile 40-core mobile axis assembly has at its front end an H-shape perpendicular to the axis of the mobile axis 40-moving core assembly and delimiting a 300 obviously intended to receive the two branches 298 of the fork 13 for its hinge assembly. This recess 300 has an axial length greater than the thickness of the branches 298 of the fork so as to leave a clearance JC, which plays the role of cut-off game in case of blockage of the pinion in the starter ring. The branches of the H of the front end of the movable 40-movable mobile axis assembly protrude to define in particular a rear shoulder 301 rear face 301.

Selon un mode de réalisation, la face arrière 301 de l'épaulement arrière de l'évidement 300 constitue la butée avant du ressort de rappel 18 du noyau mobile et la face arrière 302 des oreilles 297 de la fourchette 13 constitue la butée avant du ressort de rappel 17 de la fourchette.
Dans les figures précédentes le lanceur comporte, comme à la figure 1, un entraîneur attelé par un dispositif d'attelage à roue libre au pignon 1.
Avantageusement, le poids du lanceur peut encore être diminué par l'utilisation un dispositif d'attelage à embrayage conique comme décrit par exemple dans le document FR 01 08607 déposé le 29 juin 2001. Ce dispositif d'attelage, plus économique et plus léger que celui du type à roue libre, sera décrit ci-après dans les figures 25 à 28.
Ce dispositif permet de réduire le poids du lanceur, ainsi que le nombre de ces composants et l'encombrement axial du lanceur.
Dans tous les cas la fourchette 13 devient une fourchette principalement suiveuse.
Du fait de la réduction de la taille radiale du lanceur, les deux culasses peuvent être solidaires l'une de l'autre en étant avantageusement en une seule pièce 25 (figure 5).
Le support 4 peut être simplifié.
En variante (figures 25 à 28) grâce à l'invention il est possible d'utiliser de manière précitée un lanceur léger, moins encombrant et à nombre de composants réduits.
Dans ces figures il est prévu un dispositif d'attelage à embrayage conique 7 (figure 25) pour atteler le pignon 1 à l'entraîneur 12. L'embrayage conique 7 comporte (figures 26 et 27) une première surface de frottement tronconique 8, dite première surface, solidaire du pignon 1 et une deuxième surface de frottement tronconique 8', dite deuxième surface, de forme complémentaire à la première surface 8 et solidaire de l'entraîneur 12. Le dispositif d'attelage comporte, d'une part, une pièce d'attelage de forme creuse présentant un fond prolongé par une jupe annulaire dirigée axialement vers l'un des éléments pignon 1 - entraîneur 12 et, d'autre part, des moyens élastiques 10 à action axiale prenant appui sur une première butée solidaire de la pièce d'attelage pour action sur une deuxième butée 4' solidaire de l'un des éléments pignon 1 - entraîneur 12. Les moyens élastiques 10 sont portés par la jupe 1 b (figure 26) ou 12b (figure 27) de la pièce d'attelage. Cette jupe, d'une part, porte intérieurement l'une des première et deuxième surfaces 8, 8' et, d'autre part est, via le fond de la pièce d'attelage, solidaire de l'un des éléments pignon 1 - lanceur 12, qui est associé à la surface 8, 8' portée intérieurement par la jupe, plus précisément par la périphérie interne de celle-ci.
Ici le diamètre de contact de la première surface 8 avec la deuxième surface 8' est supérieur au diamètre du cercle de tête des dents du pignon.
Dans ces figures la première ou la deuxième surface 8, 8' portée par la jupe 1 b, 12b est plus longue axialement que l'autre deuxième ou première surface 8',8.
Les moyens élastiques 10 sont portés par l'extrémité libre de la jupe 1b, 12b et s'étendent en saillie axiale par rapport à ladite autre deuxième ou première surface 8',8.
L'extrémité axiale de plus grand diamètre de ladite autre surface 8',8 est délimitée par un épaulement transversal portant la deuxième butée 4' pour implantation à compression axiale de moyens élastiques à action axiale 10 entre cette deuxième butée 4' et une première butée portée par l'extrémité libre de la jupe de la pièce d'attelage.
L'épaulement transversal est prolongé à sa périphérie interne par une portée annulaire 4" globalement d'orientation axiale délimitant avec le dit épaulement un enlèvement de matière pour loger au moins en partie les moyens élastiques à action axiale 10.
Les moyens élastiques à action axiale ont ici une forme de circlips et sont reçus dans une gorge réalisée à la périphérie interne de l'extrémité libre de la jupe.
Ces moyens élastiques présentent en variante des griffes destinées à venir en prise élastiquement avec la périphérie interne de l'extrémité libre de la jupe de la pièce d'attelage comme décrit dans le document FR 01 08607 précité auquel on se reportera pour plus de précisions.
A la figure 28 les moyens élastiques à action axiale 10 comportent des languettes 10b déformables axialement et s'étendant circonférentiellement.
Les languettes 10b sont cambrées axialement et comportent une rondelle 10a. A la figure 28 les moyens élastiques à action axiale 10 comportent une rondelle 10a entourant les languettes élastiques 10b. Ces languettes élastiques se raccordent à la périphérie interne de la rondelle 10a à la faveur de zones d'enracinement 10d.Les languettes 10b consistent en des bras en forme de secteur annulaire s'étendant circonférentiellement en porte-à-faux de part et d'autre d'une zone d'enracinement 10d. La rondelle 10a présente une fente radiale 10g affectant symétriquement une des deux zones d'enracinement 10d; quatre bras 10b étant prévu à raison de deux bras par zone 10b.
En variante la première butée est formée à la faveur d'un circlips ou d'un jonc d'arrêt monté dans une gorge réalisée à la périphérie interne de l'extrémité libre de la jupe. Les moyens élastiques 10 peuvent consister alors en au moins une rondelle Belleville ou en au moins une rondelle ondulée voir en un ressort à boudin de forme tronconique prenant appui sur le circlips ou le jonc pour action sur l'entraîneur (figure 26) ou sur le pignon (figure 27) pour serrage contrôlé des surfaces 8,8'.
Dans une autre forme de réalisation la première butée est rapportée à fixation sur l'extrémité libre de la jupe.
Dans tous les cas les moyens élastiques à action axiale comportent une rondelle élastique.
Dans ces figures l'extrémité libre de la jupe consiste en un prolongement tubulaire.
According to one embodiment, the rear face 301 of the rear shoulder of the recess 300 constitutes the forward stop of the return spring 18 of the movable core and the rear face 302 of the ears 297 of the fork 13 constitutes the front stop of the spring. 17 of the fork.
In the previous figures the launcher comprises, as in Figure 1, a driver coupled by a freewheel coupling device to the pinion 1.
Advantageously, the weight of the launcher can be further reduced by the use of a coupling device with a conical clutch as described, for example, in document FR 01 08607 filed on June 29, 2001. This coupling device is more economical and lighter than that of the freewheel type, will be described hereinafter in Figures 25 to 28.
This device reduces the weight of the launcher, as well as the number of these components and the axial size of the launcher.
In all cases the range 13 becomes a predominantly follower fork.
Because of the reduction in the radial size of the launcher, the two yokes can be secured to one another advantageously in one piece (Figure 5).
The support 4 can be simplified.
As a variant (FIGS. 25 to 28), thanks to the invention, it is possible to use, in the aforementioned manner, a light launcher, which is less bulky and has fewer components.
In these figures there is provided a conical clutch coupling device 7 (FIG. 25) for coupling the pinion 1 to the driver 12. The conical clutch 7 comprises (FIGS. 26 and 27) a first frustoconical friction surface 8, said first surface, integral with the pinion 1 and a second frustoconical friction surface 8 ', said second surface, of complementary shape to the first surface 8 and integral with the driver 12. The coupling device comprises, on the one hand, a hollow-shaped coupling piece having a bottom extended by an annular skirt directed axially towards one of the pinion 1 - drive 12 elements and, on the other hand, elastic means 10 axially acting on a first abutment integral with the coupling piece for action on a second abutment 4 'integral with one of the pinion elements 1 - coach 12. The elastic means 10 are carried by the skirt 1b (Figure 26) or 12b (Figure 27) of the coupling piece. This skirt, on the one hand, internally carries one of the first and second surfaces 8, 8 'and, on the other hand, is, via the bottom of the coupling piece, integral with one of the pinion elements 1 - launcher 12, which is associated with the surface 8, 8 'carried internally by the skirt, more precisely by the inner periphery thereof.
Here the contact diameter of the first surface 8 with the second surface 8 'is greater than the diameter of the head circle of the teeth of the pinion.
In these figures the first or the second surface 8, 8 'carried by the skirt 1b, 12b is longer axially than the other second or first surface 8', 8.
The elastic means 10 are carried by the free end of the skirt 1b, 12b and extend in axial projection with respect to said other second or first surface 8 ', 8.
The axial end of larger diameter of said other surface 8 ', 8 is delimited by a transverse shoulder carrying the second abutment 4' for axially compressing implantation of elastic means with axial action 10 between this second abutment 4 'and a first abutment carried by the free end of the skirt of the coupling piece.
The transverse shoulder is extended at its inner periphery by an annular bearing surface 4 "generally of axial orientation delimiting with said shoulder a removal of material to accommodate at least part of the elastic means with axial action 10.
The elastic means with axial action here have a shape of circlips and are received in a groove made at the inner periphery of the free end of the skirt.
These resilient means have alternately claws for engaging resiliently with the inner periphery of the free end of the skirt of the coupling piece as described in the document FR 01 08607 cited above for more details.
In Figure 28 the resilient means axial action 10 comprise tongues 10b deformable axially and extending circumferentially.
The tabs 10b are axially arched and comprise a washer 10a. In FIG. 28, the elastic means with axial action 10 comprise a washer 10a surrounding the elastic tongues 10b. These elastic tabs connect to the inner periphery of the washer 10a in favor of rooting zones 10d.The tabs 10b consist of annular sector-shaped arms extending circumferentially cantilevered on either side of a zone of rooting 10d. The washer 10a has a radial slot 10g symmetrically affecting one of the two rooting zones 10d; four arms 10b being provided at the rate of two arms per zone 10b.
Alternatively the first stop is formed by a circlip or a snap ring mounted in a groove formed at the inner periphery of the free end of the skirt. The elastic means 10 may then consist of at least one Belleville washer or at least one corrugated washer see in a frustoconical coil spring bearing against the circlip or the ring for action on the coach (Figure 26) or on the pinion (figure 27) for controlled tightening of surfaces 8,8 '.
In another embodiment, the first abutment is attached to the free end of the skirt.
In all cases, the elastic means with axial action comprise an elastic washer.
In these figures the free end of the skirt consists of a tubular extension.

A la figure 26 la jupe de la pièce d'attelage est de forme tronconique.
Avantageusement pour évacuation des poussières et décollement des surfaces 8,8' l'une des premières et seconde surfaces de frottement 8,8' présente pour contact avec l'autre surface des rainures et l'une au moins une première et seconde surface de frottement 8,8' est en variante constituée par une garniture de frottement.
A la figure 26 le pignon 1 est monobloc avec la pièce d'attelage globalement en forme de cloche et cette pièce d'attelage est fixée sur le pignon.
In Figure 26 the skirt of the coupling piece is frustoconical.
Advantageously for evacuation of dust and separation of surfaces 8,8 'one of the first and second friction surfaces 8,8' has for contact with the other surface of the grooves and at least one first and second friction surface 8.8 'is alternatively constituted by a friction lining.
In Figure 26 the pinion 1 is integral with the generally bell-shaped coupling piece and the coupling piece is fixed on the pinion.

A la figure 27 on a inversé les structures en sorte que la pièce d'attelage est solidaire du lanceur 12 qui présente donc une jupe externe 12 b de forme cylindrique à sa périphérie externe.
Il en résulte que l'entraîneur est dans une forme de réalisation obtenu par moulage en étant par exemple en matière plastique. Dans ce cas les ondulations 21 sont obtenues aisément par moulage à partir du flanc avant 121. A la figure 25 on voit la décomposition des forces lorsque le pignon 1 est en contact avec la butée de travail 6.
In Figure 27 the structures were inverted so that the coupling piece is secured to the launcher 12 which therefore has an outer skirt 12 b of cylindrical shape at its outer periphery.
As a result, the trainer is in an embodiment obtained by molding being for example plastic. In this case the corrugations 21 are easily obtained by molding from the leading edge 121. In FIG. 25, the decomposition of the forces is shown when the pinion 1 is in contact with the working abutment 6.

Pus précisément la pression initiale des moyens élastiques entre les butées produit un couple de frottement entre l'entraîneur et le pignon qui est toujours, par construction, supérieur au couple nécessaire au vissage et à l'avancement du lanceur sur l'arbre 100.
Cette condition permet l'auto amorçage du mouvement du lanceur entre sa position de repos et sa position avancée contre la butée de travail, 6 au début de la phase d'entraînement du moteur du véhicule via la couronne de démarrage. Lorsque le pignon atteint la butée 6 il y a compression des surfaces 8, 8' l'une contre l'autre avec un blocage
Ce blocage de mouvement entre le pignon et l'entraîneur dépend notamment des angles et des diamètres des surfaces de frottement- tronconiques.
Comme visible à la figure 25, pendant l'entraînement du moteur à combustion interne du véhicule automobile par le moteur électrique du démarreur le couple Cd - généré par le démarreur au niveau de l'arbre de sortie 100 portant l'entraîneur 12 et transformé par le dispositif à cannelures hélicoïdales 9 intervenant entre l'entraîneur 2 et l'arbre 100 - crée une force axiale Fa.
Cette force Fa est elle-même décomposée au niveau des surfaces de frottement tronconiques pour créer une force normale de contact Fc, qui génère une force tangentielle Ft aux surfaces tronconiques 8,8' fonction du coefficient de frottement entre ces surfaces. La valeur de cette force Ft multipliée par le rayon de contact moyen des surfaces de frottement tronconiques détermine le couple Ce transmis par l'embrayage conique 7.
Pour que le pignon soit entraîner normalement sans glissement il faut que la relation Ce > Cd reste toujours vraie.
Tout cela dépend des applications car le coefficient de proportionnalité entre Cd et Fa dépend de l'angle d'inclinaison des cannelures 9, du rayon moyen de ces cannelures et du coefficient de glissement entre l'arbre de sortie 100 et l'entraîneur.
Le coefficient de proportionnalité entre Fa et Fc dépend de l'angle du cône entre les deux surfaces de frottement tronconiques.
La valeur de Ft est liée à Fc et au coefficient de frottement fc entre les deux matériaux des surfaces de frottement tronconiques de l'embrayage 7. Pour éviter tout coincement on s'assurera de la relation tangente (a)> f'c, dans laquelle a est la valeur du demi-angle au sommet du cône de contact entre les surfaces de frottement tronconiques et fc le coefficient d'adhérence.
Toutes ces valeurs sont calculées en fonction de formules de la mécanique connues en soi et dépendent des applications.
Ces formules font intervenir le coefficient de frottement entre les cannelures de l'arbre et de l'entraîneur, le rayon moyen des cannelures, l'angle du cône des surfaces 8,8' et le coefficient de frottement de celles-ci. Tout cela influe sur le choix des matériaux de l'entraîneur, de la jupe et du pignon.
Lorsque le moteur du véhicule a démarré, le pignon 1 tourne plus vite que l'arbre de sortie 100 ce qui permet le dévissage du lanceur sur l'arbre 100. L'effort axial précédemment transmis disparaît et il ne reste plus que le couple résiduel faible dû aux moyens élastiques 10 qui est transmis au moteur électrique du démarreur. Durant cette courte phase de survitesse l'embrayage se comporte comme un dispositif à roue libre avec un mouvement relatif entre les surfaces 8,8'. Le diamètre moyen de contact entre les deux surfaces 8,8' est donc également un diamètre de friction en cas de survitesse.
More precisely, the initial pressure of the elastic means between the stops produces a frictional torque between the driver and the pinion, which is always, by construction, greater than the torque required for screwing and advancing the launcher on the shaft 100.
This condition allows the self-priming movement of the launcher between its rest position and its advanced position against the work stop, 6 at the beginning of the driving phase of the vehicle engine via the starter ring. When the pinion reaches the stop 6 there is compression of the surfaces 8, 8 'against each other with a blockage
This blockage of movement between the pinion and the driver depends in particular on the angles and diameters of the frustoconical friction surfaces.
As can be seen in FIG. 25, during the driving of the internal combustion engine of the motor vehicle by the electric motor of the starter the torque Cd - generated by the starter at the output shaft 100 carrying the driver 12 and converted by the helical spline device 9 intervening between the driver 2 and the shaft 100 - creates an axial force Fa.
This force Fa is itself decomposed at the level of the frustoconical friction surfaces to create a normal contact force Fc, which generates a tangential force Ft to the frustoconical surfaces 8, 8 'as a function of the coefficient of friction between these surfaces. The value of this force Ft multiplied by the average contact radius of the frustoconical friction surfaces determines the torque Ce transmitted by the conical clutch 7.
In order for the pinion to behave normally without slipping, the relation Ce> Cd must always remain true.
All this depends on the applications because the coefficient of proportionality between Cd and Fa depends on the angle of inclination of the grooves 9, the average radius of these splines and the coefficient of sliding between the output shaft 100 and the driver.
The coefficient of proportionality between F and Fc depends on the angle of the cone between the two frustoconical friction surfaces.
The value of Ft is related to Fc and to the coefficient of friction fc between the two materials of the frustoconical friction surfaces of the clutch 7. To avoid any jamming, the tangent relation (a)>f'c, in where a is the value of the half-angle at the top of the contact cone between the frustoconical friction surfaces and the coefficient of adhesion.
All these values are calculated according to mechanics formulas known per se and depend on the applications.
These formulas involve the coefficient of friction between the splines of the shaft and the driver, the mean radius of the grooves, the cone angle of the surfaces 8,8 'and the coefficient of friction thereof. All this influences the choice of materials of the coach, the skirt and the pinion.
When the engine of the vehicle has started, the pinion 1 rotates faster than the output shaft 100 which allows the unscrewing of the launcher on the shaft 100. The previously transmitted axial force disappears and there remains only the residual torque low due to the elastic means 10 which is transmitted to the electric motor of the starter. During this short overspeed phase the clutch behaves like a freewheel device with relative movement between the surfaces 8,8 '. The average contact diameter between the two surfaces 8, 8 'is therefore also a friction diameter in the event of overspeed.

Les figures 31 et 32 illustrent un lanceur à embrayage conique comportant doté de moyens de blocage en rotation selon l'invention.
Dans tous les cas le lanceur présente un entraîneur doté d'une gorge de réception de la fourchette. Dans les figures l'entraîneur 12 comporte un flasque avant d'orientation transversale, avantageusement de forme annulaire, troué centralement pour passage de l'arbre de lanceur 100 associé au lanceur. Ce flasque est prolongé vers l'arrière par une portion tubulaire en forme de fût entourant l'arbre 100 et présentant localement à sa périphérie interne les cannelures hélicoïdales, mieux visibles à la figure 25, pour coopération avec les cannelures hélicoïdales complémentaires ménagées localement à la périphérie externe de l'arbre 100. La portion tubulaire porte, par exemple à solidarisation axiale, une rondelle, non référencée dans les figures 3 et 4, dont la face avant constitue le flanc 122 de la gorge de réception de l'extrémité inférieure de la fourchette 13. L'autre flanc 121 de cette gorge de forme annulaire est constitué par la face arrière du flasque avant de l'entraîneur. En variante le flanc 122 et sa rondelle associée sont venues de moulage avec l'entraîneur (figure 27). Le fond de la gorge est d'orientation axiale et est de forme annulaire. Ce fond appartient à la portion tubulaire sur laquelle sont montés à chevauchement les bras de la fourchette ou à coulissement la bague 15 de la fourchette.
Dans la figure 27 le flasque avant est prolongé vers l'avant à sa périphérie externe par la jupe 12b. Dans la figure 26 le flasque est massif et est prolongé vers l'avant par la portée 4". Dans les variantes à roue libre figures le flasque est prolongé à sa périphérie externe vers l'avant par une jupe cylindrique constituant intérieurement une piste pour les galets de la roue libre.
Le démarreur des figures 2, 3 et 37 comportant un contacteur doté de deux plaquettes de contact P1 et P2 fonctionne de la manière suivante.

  • lorsque l'on actionne la clé de contact, constituant l'interrupteur 35 de la figure 2, le bobinage 2a, composé du bobinage d'appel 36 et du bobinage de maintien 37 monté en série avec le moteur électrique M, est alimenté créant un champ magnétique faible suffisant pour vaincre l'effort exercé par le ressort de rappel 18. Il en résulte que le noyau mobile 2b se déplace en direction du noyau fixe 2d tout en comprimant, en premier lieu le ressort de rappel 18 du noyau et le ressort de rappel 17 de la fourchette 13.
  • le noyau mobile rattrape le jeu de coupure JC en comprimant le ressort de rappel 18. Pendant la phase de rattrapage du jeu de coupure, la fourchette 13 demeure immobile car elle est maintenue en place par le ressort 17 de rappel de fourchette, la raideur de ce ressort 17 de rappel de fourchette étant supérieure à celle du ressort 18 de rappel du noyau. La fourchette 13, montée à articulation sur l'extrémité avant saillante du noyau 2b, se déplace et bascule autour de son point d'articulation 11 porté par exemple par le support 4.
    En se déplaçant vers l'arrière, le noyau mobile déplace la première plaquette de contact P1 contre la première série de contact C1, C2 ce qui a pour effet de mettre sous tension la bobine 39 d'appel et de pré-rotation du relais créant des efforts d'attraction du noyau mobile supplémentaires.
Figures 31 and 32 illustrate a conical clutch launcher having rotational locking means according to the invention.
In all cases the pitcher has a trainer with a groove for receiving the fork. In the figures, the driver 12 comprises a front flange of transverse orientation, advantageously of annular shape, pierced centrally for passage of the launcher shaft 100 associated with the launcher. This flange is extended rearward by a barrel-shaped tubular portion surrounding the shaft 100 and having locally at its inner periphery the helical grooves, better visible in Figure 25, for cooperation with complementary helical grooves arranged locally at the external periphery of the shaft 100. The tubular portion carries, for example axial solidarity, a washer, not referenced in Figures 3 and 4, the front face constitutes the flank 122 of the receiving groove of the lower end of the fork 13. The other side 121 of this annular groove is constituted by the rear face of the front flange of the driver. In a variant, the flank 122 and its associated washer have been molded with the driver (FIG. 27). The bottom of the groove is axially oriented and is annular in shape. This bottom belongs to the tubular portion on which are mounted to overlap the arms of the fork or sliding the ring 15 of the fork.
In Figure 27 the front flange is extended forward at its outer periphery by the skirt 12b. In Figure 26 the flange is massive and is extended forward by the span 4 "In the freewheel variants the flange is extended at its outer periphery forwards by a cylindrical skirt internally constituting a track for the rollers of the freewheel.
The starter of FIGS. 2, 3 and 37 comprising a contactor provided with two contact pads P1 and P2 operates in the following manner.
  • when the ignition key, constituting the switch 35 of FIG. 2, is actuated, the winding 2a, consisting of the call winding 36 and the holding winding 37 connected in series with the electric motor M, is energized creating a weak magnetic field sufficient to overcome the force exerted by the return spring 18. As a result, the movable core 2b moves towards the fixed core 2d while compressing, in the first place the return spring 18 of the core and the spring 17 of the range 13.
  • the movable core catches the breaking clearance JC by compressing the return spring 18. During the catching up phase of the cutting clearance, the fork 13 remains stationary because it is held in place by the fork return spring 17, the stiffness of this fork return spring 17 being greater than that of the return spring 18 of the core. The fork 13, hingedly mounted on the projecting front end of the core 2b, moves and tilts around its hinge point 11 carried for example by the support 4.
    By moving backwards, the movable core moves the first contact pad P1 against the first contact series C1, C2 which has the effect of energizing the coil of call and pre-rotation of the relay creating additional mobile core attraction efforts.

Cette bobine 39 d'appel et de pré-rotation présente une résistance électrique qui limite le courant passant dans le moteur électrique à une valeur comprise préférentiellement entre 40 et 80 ampères. Cette bobine supplémentaire de pré-rotation 39 est bobinée par exemple autour des deux autres bobines d'appel 36 et de maintien 37 dans le contacteur. Ainsi, des moyens sont prévus pour, suite à un ordre de démarrage par fermeture de l'interrupteur de démarrage, faire tourner le moteur électrique à vitesse lente avant de le faire tourner à pleine puissance.

  • lors de la mise en rotation de l'induit pendant la pré-rotation, le noyau mobile vient tirer la fourchette 13 qui pivote autour de son axe pour venir en contact avec la face externe de l'entraîneur munie de crans.
  • sous l'effet de la rotation de l'arbre d'induit 100, le lanceur 102, bloqué en rotation par les dents ou doigts 22 de la fourchette insérés dans les crans 320 de l'entraîneur, se met en mouvement de translation. Cette translation est opérée grâce aux cannelures hélicoïdales portées par l'arbre d'induit 102 qui agissent comme une vis sans fin. De préférence l'angle des cannelures hélicoïdales, référencées en 9 à la figure 25, est compris entre 18° et 25°. Bien entendu on peut augmenter cet angle pour avoir des inclinaisons de l'ordre de 45°.
This coil 39 call and pre-rotation has an electrical resistance which limits the current flowing in the electric motor to a value preferably between 40 and 80 amperes. This additional pre-rotation coil 39 is wound for example around the other two call coils 36 and 37 in the contactor. Thus, means are provided for, following a start command by closing the start switch, rotate the electric motor at low speed before turning it to full power.
  • during the rotation of the armature during pre-rotation, the movable core pulls the fork 13 which pivots about its axis to come into contact with the outer face of the trainer provided with notches.
  • under the effect of the rotation of the armature shaft 100, the launcher 102, locked in rotation by the teeth or fingers 22 of the fork inserted into the notches 320 of the trainer, starts translational movement. This translation is operated by the helical grooves carried by the armature shaft 102 which act as a worm. Preferably the angle of the helical grooves, referenced at 9 in Figure 25, is between 18 ° and 25 °. Of course we can increase this angle to have inclinations of the order of 45 °.

Grâce au blocage en rotation du lanceur et à ces moyens, on peut réduire la puissance électromagnétique et la taille radiale du contacteur, grâce à un apport d'énergie du moteur électrique.Thanks to the rotational locking of the launcher and these means, one can reduce the electromagnetic power and the radial size of the contactor, thanks to an energy supply of the electric motor.

La taille et le poids du lanceur ont un impact plus faible sur le dimensionnement du contacteur, comparativement à un contacteur classique, en sorte que l'on peut choisir avec moins de contraintes le lanceur, qui peut être plus léger ou lourd.

  • la fourchette, toujours attirée par le noyau mobile, suit la progression du lanceur et reste donc en contact avec l'entraîneur, le bloquant toujours en rotation. La fourchette est suiveuse et ne contribue pas au déplacement du lanceur vers l'avant.
    En variante, la fourchette en plus de son rôle de blocage en rotation du lanceur peut également participer au déplacement vers l'avant du lanceur par un apport d'une force au niveau des ses doigts résultant du déplacement du noyau mobile vers l'arrière.
  • le pignon arrive alors au niveau de la couronne C du moteur thermique.
  • si le pignon via ses dents peut pénétrer directement dans la couronne C, plus précisément dans les dents de celle-ci, pour engrener avec la couronne C, alors le lanceur continue sa progression jusqu'à ce que le noyau mobile arrive en butée contre le noyau fixe.
  • le pignon peut également se trouver en position dent contre dent contre la couronne. Dans ce cas, le pignon est bloqué en translation et en rotation. Dans cette position, l'induit fournit un couple proportionnel au courant d'intensité faible car le démarreur est toujours dans la phase de pré6rotation. Ainsi, le moteur électrique exerce un couple de rotation sur le pignon et le lanceur par l'intermédiaire des cannelures portées par l'arbre d'induit 100. Etant bloqué en translation, l'entraîneur va tourner de manière à repousser la fourchette 13 vers l'arrière qui n'est plus apte à bloquer en rotation l'entraîneur. La fourchette peut être repoussée en arrière car le bobinage 2a du contacteur présente une force inférieure à la force exercée par les crans sur la fourchette. Lorsque le pignon en tournant, trouve une ouverture dans la couronne du moteur, il y pénètre poussé par l'effort axial de la fourchette généré par l'attraction du noyau mobile par le solénoïde 2a.
    La valeur de l'intensité à faire passer dans le premier circuit de puissance est dimensionnée pour que le pignon entre en rotation en phase dent/dent, c'est-à-dire que l'induit ait le couple nécessaire pour que le pignon fasse sauter les crans et repousser la fourchette en arrière. La valeur de cette intensité est fonction de l'angle des cannelures hélicoïdales, de la forme des crans et du dimensionnement du solénoïde 2a.
    Ainsi, si avant d'engrener avec la couronne C, le pignon bute contre la couronne C, le pignon se met à exercer un couple sur les crans tel que les dents 22 vont sauter des crans en faisant reculer la fourchette 13. Le pignon peut alors tourner et pénétrer dans la couronne. Le mouvement se fait à faible vitesse du fait de la rotation à vitesse lente du moteur électrique. Les usures sont ainsi réduites du fait du faible choc que réalise le pignon lorsqu'il entre en contact avec la couronne grâce à sa faible vitesse axiale.
    Les moyens de coopération entre le lanceur et la fourchette, qui forment dans les figures illustrées des moyens de blocage en rotation, sont donc du type débrayable ; le lanceur étant mobile en translation et fixe en rotation durant le mouvement précité, tandis que l'arbre de lanceur 100 est mobile en rotation et fixe en translation ce qui permet au lanceur d'avancer axialement via les cannelures hélicoïdales précitées.
    Le contacteur 2 devient ainsi une pièce de dimension réduite et sa spécification devient indépendante du dimensionnement du lanceur.
  • une fois que le pignon 1 a réussi à s'introduire dans la couronne C sous l'effet de la rotation d'induit, il poursuit sa course vers l'avant sous l'effet de la rotation de l'induit.
  • au niveau du relais, le noyau mobile arrive en butée contre le noyau fixe ce qui a pour effet, d'une part de fermer le contact de puissance entre C3 et C4 par l'intermédiaire de la deuxième plaquette et d'autre part, de désengager la fourchette des crans du lanceur. Le pignon peut arriver en fin de course contre la butée de l'arbre tout en étant libérer de la fourchette. Le blocage en rotation est ainsi débrayable lorsque le pignon 1 vient en butée contre la couronne de démarrage.
  • le contact de puissance C3 et C4 étant fermé par l'intermédiaire de la deuxième plaquette, l'induit du moteur électrique est alors alimenté sous pleine puissance. Il peut dès lors entraîner la couronne C pour assurer le démarrage du moteur thermique.
  • lors d'une décompression du moteur thermique durant la phase de démarrage, la couronne C devient menante par rapport au pignon lanceur. Cette phase est appelée phase de roue libre durant laquelle le pignon a tendance à se revisser sur les dentures hélicoïdales ce qui a pour effet de le reculer.
  • les deux patins 290 prévus à la base de la fourchette ont pour fonction d'éviter un recul trop important du lanceur lors de la phase de roue libre pendant laquelle le pignon à tendance à se revisser comme décrit précédemment. En l'absence de ces patins 290, ce recul aurait pour conséquence de mettre en contact les crans de l'entraîneur avec les doigts de la fourchette ce qui provoquerait une usure ainsi qu'un bruit. Ces patins viennent (figure31) en appui sur un rebord 310 situé à la périphérie de l'entraîneur. La forme des bras de la fourchette qui supporte ces doigts et ces patins est telle que les patins ne peuvent être en contact avec l'entraîneur que lorsque la fourchette se trouve être en position de pivotement ou de rotation maximale.
The size and weight of the launcher have a smaller impact on the sizing of the contactor, compared to a conventional contactor, so that one can choose with fewer constraints the launcher, which can be lighter or heavier.
  • the fork, always attracted by the movable core, follows the progress of the thrower and therefore remains in contact with the coach, always blocking it in rotation. The fork is follower and does not contribute to the forward movement of the launcher.
    As a variant, the fork in addition to its role of locking the launcher in rotation may also participate in the forward movement of the launcher by a force input at its fingers resulting from the displacement of the movable core towards the rear.
  • the pinion then arrives at the crown C of the engine.
  • if the pinion via its teeth can penetrate directly into the crown C, more precisely in the teeth thereof, to mesh with the crown C, then the launcher continues its progression until the movable core abuts against the fixed core.
  • the pinion may also be in the tooth against tooth position against the crown. In this case, the pinion is locked in translation and in rotation. In this position, the armature provides a torque proportional to the low intensity current because the starter is still in the pre-rotation phase. Thus, the electric motor exerts a rotational torque on the pinion and the launcher via the splines carried by the armature shaft 100. Being locked in translation, the driver will turn so as to push the fork 13 towards the rear which is no longer able to lock in rotation the coach. The fork can be pushed back because the coil 2a of the contactor has a lower force than the force exerted by the notches on the fork. When the pinion turning, finds an opening in the motor ring, it enters pushed by the axial force of the fork generated by the attraction of the movable core by the solenoid 2a.
    The value of the intensity to be passed in the first power circuit is dimensioned so that the pinion rotates in phase tooth / tooth, that is to say that the armature has the necessary torque for the pinion to make skip the notches and push the fork back. The value of this intensity is a function of the angle of the helical grooves, the shape of the notches and the dimensioning of the solenoid 2a.
    Thus, if before meshing with the crown C, the pinion abuts against the crown C, the pinion begins to exert a torque on the notches such that the teeth 22 will jump notches by rolling back the fork 13. The pinion can then turn and enter the crown. The movement is at low speed due to the slow speed rotation of the electric motor. The wear is thus reduced because of the low impact that the pinion makes when it comes into contact with the crown due to its low axial speed.
    The means of cooperation between the launcher and the fork, which form in the figures illustrated means for locking in rotation, are therefore of the disengageable type; the launcher being movable in translation and fixed in rotation during the aforementioned movement, while the launcher shaft 100 is rotatable and fixed in translation which allows the launcher to advance axially via the aforementioned helical grooves.
    The contactor 2 thus becomes a part of reduced size and its specification becomes independent of the design of the launcher.
  • once the pinion 1 has managed to get into the crown C under the effect of armature rotation, it continues its course forward under the effect of the rotation of the armature.
  • at the relay, the movable core abuts against the fixed core, which has the effect, on the one hand, of closing the power contact between C3 and C4 via the second wafer and on the other hand, disengage the fork from the launcher notches. The pinion can reach the end of the race against the stop of the shaft while being released from the fork. The locking in rotation is thus disengageable when the pinion 1 abuts against the starter ring.
  • the power contact C3 and C4 being closed via the second wafer, the armature of the electric motor is then powered under full power. It can therefore drive the crown C to start the engine.
  • during a decompression of the engine during the start-up phase, the crown C becomes driving relative to the starter pinion. This phase is called freewheeling phase during which the pinion tends to screw on the helical teeth which has the effect of backward.
  • the two shoes 290 provided at the base of the fork have the function of avoiding too great a recoil of the launcher during the freewheeling phase during which the pinion tends to screw as previously described. In the absence of these shoes 290, this recoil would have the effect of bringing the notches of the coach into contact with the fingers of the fork which would cause wear and noise. These pads come (Figure31) bearing on a flange 310 located on the periphery of the coach. The shape of the arms of the fork that supports these fingers and pads is such that the pads can be in contact with the coach when the fork is in the pivoting position or maximum rotation.

Après ouverture de l'interrupteur à l'aide de la clé de contact, le bobinage 2a est mis hors tension ce qui a pour effet d'annuler la force d'attraction sur le noyau mobile 2b. Le ressort 17 de rappel de fourchette aidé des ressorts 18, 20 et 21 appuyant respectivement sur la fourchette et le noyau mobile 2b oblige le noyau mobile à se dégager et reprendre sa position de repos. L'axe mobile 40, solidaire du noyau, tire avec lui la plaquette P2. La surépaisseur de la lamelle 23 vient en butée sur une face de la plaquette P1. L'angle de la pente de cette surépaisseur est dimensionné (environ 40°) pour que la force nécessaire pour que la lamelle s'affaisse soit supérieure à la force de résistance à l'ouverture de contact produit entre la plaquette P1 et les contacts C1 et C2. Ainsi, la plaquette P1 va suivre l'axe mobile et les deux circuits de puissance vont s'ouvrir simultanément. Lorsque la plaquette P1 arrive au niveau du noyau fixe, elle est stoppée tandis que l'axe mobile recule toujours. La lamelle s'affaisse alors, l'effort nécessaire pour cet affaissement est procuré par les ressorts 18 et 21. La surépaisseur passe de l'autre côté de la plaquette et la lamelle reprend sa position initiale par rapport à la plaquette P1.After opening the switch using the ignition key, the coil 2a is de-energized which has the effect of canceling the attractive force on the mobile core 2b. Fork return spring 17 assisted springs 18, 20 and 21 respectively pressing the fork and the movable core 2b forces the movable core to disengage and resume its rest position. The movable axis 40, integral with the core, draws with it the wafer P2. The excess thickness of the strip 23 abuts on one face of the plate P1. The angle of the slope of this excess thickness is dimensioned (about 40 °) so that the force required for the sipe to sag is greater than the resistance force to the contact opening produced between the plate P1 and the contacts C1 and C2. Thus, the plate P1 will follow the moving axis and the two power circuits will open simultaneously. When the plate P1 arrives at the fixed core, it is stopped while the moving axis always moves back. The coverslip then collapses, the force required for this collapse is provided by the springs 18 and 21. The extra thickness passes on the other side of the wafer and the coverslip resumes its initial position with respect to the wafer P1.

Ainsi, le blocage en rotation du lanceur et la gestion de la position dent contre dent sont effectués par le système de crantage disposé d'une part, sur la face arrière de l'entraîneur et d'autre part, sur l'extrémité avant de la base de la fourchette. Le lanceur est ramené dans sa position de repos grâce à la fourchette et au revissage lors de la phase de roue libre sur les cannelures de l'arbre d'induit. Le maintient en position de repos est réalisé grâce au ressort de rappel 17 situé entre le relais et la fourchette, tout comme dans un dispositif traditionnel.Thus, the rotational locking of the launcher and the management of the tooth against tooth position are performed by the notching system arranged on the one hand, on the rear face of the driver and on the other hand, on the front end of the the base of the fork. The launcher is returned to its rest position by means of the fork and the re-screwing during the freewheel phase on the splines of the armature shaft. The rest position is maintained by the return spring 17 located between the relay and the fork, just as in a traditional device.

Le relais n'est plus dimensionné pour développer un effort de poussée. II est peu dépendant de la masse du lanceur. Il est dimensionné pour vaincre, en position initiale, l'effort qu'exerce le ressort de rappel 17 sur le noyau mobile. Par la suite, le solénoïde 2a devra avoir la puissance nécessaire pour vaincre les ressorts de rappel 18 du lanceur, et d'écrasement 20, 21 des plaquettes de contact dans les variantes où ils sont présents. Le gain en masse de cuivre, en matières magnétiques, en encombrement, en coût et temps de développement sont les avantages directs de ce sous-dimensionnement.The relay is no longer dimensioned to develop a thrust force. It is not very dependent on the mass of the launcher. It is sized to overcome, in the initial position, the effort exerted by the return spring 17 on the movable core. Subsequently, the solenoid 2a will have the power to overcome the springs 18 of the launcher, and crush 20, 21 of the contact pads in the variants where they are present. The mass gain of copper, magnetic materials, bulk, cost and development time are the direct advantages of this undersizing.

Il est bon de noter également que le fait de faire tourner l'induit permet de rattraper tous les jeux fonctionnels et lorsque le pignon transmet pour la 1ère fois son couple à la couronne - phase d'accostage -, il n'y a pas de choc comme sur un démarreur classique ce qui sollicite moins la mécanique du démarreur.It is good to note that the act of turning the armature allows to catch all functional games and when the pinion passes for the 1st time her marriage to the crown - approach phase - there are no shock as a conventional starter which requires less the mechanics of the starter.

Ainsi, conformément à la présente invention, le relais constitué par le contacteur électromagnétique comportant les bobines d'appel, de maintien et de pré-rotation n'est plus dimensionné pour développer un effort de poussée de l'entraîneur vers l'avant aux fins de l'engrènement du pignon dans la couronne C du moteur thermique. Son dimensionnement est peu dépendant de la masse du lanceur. Il est dimensionné uniquement pour pouvoir vaincre l'effort qu'exerce les ressorts de rappel sur le noyau mobile lors de la mise sous tension du solénoïde. Il doit être également dimensionné pour autoriser la rotation du lanceur lorsque le pignon est en position dent contre dent par un déplacement vers l'arrière de la fourchette qui peut se désengager des dents de loup grâce à un léger déplacement du noyau mobile vers l'avant.Thus, in accordance with the present invention, the relay constituted by the electromagnetic contactor comprising the call, hold and pre-rotation coils is no longer dimensioned to develop a forward thrust force of the coach for the purposes meshing of the pinion in the crown C of the engine. Its dimensioning is little dependent on the mass of the launcher. It is dimensioned only to be able to overcome the effort exerted by the return springs on the mobile core when the solenoid is energized. It must also be dimensioned to allow the launcher to rotate when the pinion is in the tooth-to-tooth position by a rearward movement of the fork that can disengage from the wolf teeth by a slight displacement of the movable core forward. .

Le gain en masse de cuivre, en matières magnétiques, en encombrement, en coût et temps de développement sont les avantages directs de ce contacteur sous-dimensionné selon la présente invention. Un autre avantage de cette invention consiste en ce que le démarreur ne comporte pas de pièces supléméntaires pour la mise en oeuvre d'un contacteur et d'un entraîneur selon l'invention.
Toutefois, la pénétration du lanceur par pré-rotation de l'induit peut nécessiter la mise en place dans le relais d'un système de commutation à deux contacts, dans le cas où l'intensité de pré-rotation dépasse la limite donnée par le système de commande (clé de contact), l'un pour laisser passer une faible puissance (courant limité à 80 ampères), l'autre pour laisser passer toute la puissance disponible.
The gain in mass of copper, magnetic materials, bulk, cost and development time are the direct advantages of this under-sized contactor according to the present invention. Another advantage of this invention is that the starter does not have additional parts for the implementation of a contactor and a trainer according to the invention.
However, penetration of the launcher by pre-rotation of the armature may require the establishment in the relay of a two-contact switching system, in the case where the pre-rotation intensity exceeds the limit given by the control system (ignition key), one to let a low power (current limited to 80 amperes), the other to let all the power available.

Selon un autre mode de réalisation, un démarreur dépourvu de ressort dent contre dent et de dispositif de pré-rotation peut être envisagé. Ainsi, dès l'activation de la clé de contact, toute la puissance est allouée à l'induit. Un relais à contact unique serait suffisant. Dans cette variante de réalisation dépourvue de ressort dent contre dent, c'est la forte accélération de l'induit au démarrage qui ferait avancer le lanceur de lui-même par inertie en venant se visser sur les cannelures hélicoïdales de l'arbre d'induit sans blocage en rotation par une fourchette. Le problème du dent contre dent n'apparaîtrait plus grâce à la rotation permanente du pignon lors de sa course vers l'avant par vissage sur l'arbre d'induit. On retrouve dans cette variante le principe de démarrage des démarreurs à inertie.According to another embodiment, a starter without spring against tooth and pre-rotation device can be envisaged. Thus, upon activation of the ignition key, all the power is allocated to the armature. A single contact relay would be sufficient. In this embodiment without tooth-to-tooth spring, it is the strong acceleration of the armature at startup that would advance the launcher itself by inertia coming to screw on the helical grooves of the armature shaft without locking in rotation by a fork. The problem of the tooth against tooth would no longer appear thanks to the permanent rotation of the pinion during its forward stroke by screwing on the armature shaft. We find in this variant the principle of starting the inertia starters.

Les figures 39 et 40 illustrent un autre mode de réalisation de la pré-rotation selon l'invention.Figures 39 and 40 illustrate another embodiment of the pre-rotation according to the invention.

Dans ce mode de réalisation, comme représenté à la figure 40, lors de la fermeture de l'interrupteur 35, on fait passer un courant dans la bobine de maintien 37 et la bobine d'appel 36. Ce courant, notamment celui passant dans la bobine d'appel 36, doit être suffisant pour activer le moteur électrique M dans un mouvement de pré-rotation c'est à dire qu'il doit être suffisant pour permettre au moteur électrique M de vaincre les forces de frottement qui apparaissent lors de la mise en marche du démarreur. Ces forces de frottement apparaissent par exemple au niveau des cannelures coopérant avec le lanceur, au niveau de la fourchette en appui contre la gorge de l'entraîneur et notamment dépend des formes des moyens de coopération entre les dents de la fourchette et la face interne de la gorge de l'entraîneur pour son blocage en rotation comme décrit précédemment.
Dès que la plaquette de contact P0 entre en contact avec les plots de puissance C1 et C2, le moteur électrique est activé en pleine puissance et la bobine de maintien reste active alors que la bobine d'appel 36 est court-circuitée.
In this embodiment, as shown in FIG. 40, during the closing of the switch 35, a current is passed through the holding coil 37 and the calling coil 36. This current, in particular that passing through the call coil 36, must be sufficient to activate the electric motor M in a pre-rotation movement that is to say that it must be sufficient to allow the electric motor M to overcome the friction forces that appear during the starting the starter. These friction forces appear for example at the splines cooperating with the launcher, at the fork bearing against the throat of the coach and in particular depends on the forms of the means of cooperation between the teeth of the fork and the inner face of the throat of the trainer for its locking in rotation as described above.
As soon as the contact pad P0 comes into contact with the power pads C1 and C2, the electric motor is activated at full power and the holding coil remains active while the call coil 36 is short-circuited.

La figure 39 illustre un contacteur autorisant une pré-rotation efficace et qui utilise uniquement une bobine d'appel 36 et de maintien 37 sans utiliser d'élément résistif supplémentaire tel qu'une bobine d'appel et de pré-rotation 39 telle que décrite précédemment. Un tel contacteur présente l'avantage de n'utiliser que deux ressort à savoir un ressort de rappel 18 du noyau et un ressort de contact 20 pour garantir un bon contact entre la plaquette de contact P0 et les plots de puissance C1 et C2.FIG. 39 illustrates a contactor allowing efficient pre-rotation and which uses only a call coil 36 and hold 37 without using an additional resistive element such as a call and pre-rotation coil 39 as described. previously. Such a contactor has the advantage of using only two springs, namely a return spring 18 of the core and a contact spring 20 to ensure good contact between the contact pad P0 and the power pads C1 and C2.

Dans un tel contacteur, il n'est plus nécessaire d'avoir un ressort dent contre dent contre la couronne car cette configuration est maintenant gérée par la fourchette et la pré-rotation. Dans ce cas, comme décrit précédemment, le pignon est bloqué en translation et en rotation. Dans cette position, l'induit fournit un couple proportionnel au courant d'intensité faible car le démarreur est toujours dans la phase de pré-rotation. Ainsi, le moteur électrique exerce un couple de rotation sur le pignon et le lanceur par l'intermédiaire des cannelures portées par l'arbre d'induit 100. Etant bloqué en translation, l'entraîneur va tourner de manière à repousser la fourchette 13 vers l'arrière qui n'est plus apte à bloquer en rotation l'entraîneur. La fourchette peut être repoussée en arrière car le bobinage 2a du contacteur présente une force inférieure à la force exercée par les crans sur la fourchette 13. Lorsque le pignon en tournant, trouve une ouverture dans la couronne du moteur, il y pénètre poussé par l'effort axial de la fourchette généré par l'attraction du noyau mobile par le solénoïde 2a.In such a contactor, it is no longer necessary to have a spring tooth against tooth against the crown because this configuration is now managed by the fork and the pre-rotation. In this case, as described above, the pinion is locked in translation and in rotation. In this position, the armature provides a torque proportional to the low intensity current because the starter is still in the pre-rotation phase. Thus, the electric motor exerts a rotational torque on the pinion and the launcher via the splines carried by the armature shaft 100. Being locked in translation, the driver will turn so as to push the fork 13 towards the rear which is no longer able to lock in rotation the coach. The fork can be pushed back because the coil 2a of the contactor has a lower force than the force exerted by the notches on the fork 13. When the pinion turning, found an opening in the motor ring, it enters the pushed by the axial force of the fork generated by the attraction of the movable core by the solenoid 2a.

De même, dans un tel contacteur, il n'est plus nécessaire d'utiliser un ressort de coupure car le noyau mobile 2b comporte un axe mobile 40 qui lui est solidaire en translation (axe attelé) si bien que c'est le ressort de rappel 18 qui fait office de ressort de coupure.Similarly, in such a contactor, it is no longer necessary to use a breaking spring because the movable core 2b has a movable axis 40 which is integral with it in translation (hitched axis) so that it is the spring of reminder 18 which acts as a breaking spring.

La fourchette 13 est identique a celle décrite aux figures 3, 4, 29 et 30 et permet un blocage en rotation d'un lanceur similaire à celui décrit aux figures 3, 4, 31, 32, 33.The fork 13 is identical to that described in FIGS. 3, 4, 29 and 30 and allows a rotational locking of a launcher similar to that described in FIGS. 3, 4, 31, 32, 33.

Avantageusement, lors de la pré-rotation, en plus de la fonction de blocage en rotation du lanceur, la fourchette aide aussi le lanceur à se déplacer vers l'avant grâce à la force exercée vers l'arrière par le noyau mobile 2b sous l'effet du champ magnétique crée par le courant passant dans le solénoïde 2a. On favorise ainsi le déplacement du lanceur en diminuant les risques de coincement au niveau des cannelures.Advantageously, during the pre-rotation, in addition to the rotation locking function of the launcher, the fork also helps the launcher to move forward thanks to the force exerted to the rear by the mobile core 2b under the effect of the magnetic field created by the current flowing in the solenoid 2a. This promotes the movement of the launcher by reducing the risk of jamming at the flutes.

La borne de liaison du moteur électrique de la figure 1 est remplacée par une liaison interne.
Cela est rendu possible du fait que le palier arrière 26 est en matière plastique en sorte que les pistes électriques sont obtenues par la technique du surmoulage.
Le palier arrière présente un manchon de réception de l'extrémité arrière de l'arbre 101. Ce manchon porte intérieurement un palier dans lequel est montée à rotation l'extrémité arrière de l'arbre 101. La résistance 39, par exemple en aluminium, est bobinée et est reliée aux contacts C1 et C2.
A la figure 3 la résistance est bobinée autour des bobinages 36 et 37.
The connection terminal of the electric motor of Figure 1 is replaced by an internal connection.
This is made possible by the fact that the rear bearing 26 is made of plastic so that the electric tracks are obtained by the overmoulding technique.
The rear bearing has a receiving sleeve of the rear end of the shaft 101. This sleeve internally carries a bearing in which is mounted rotatably the rear end of the shaft 101. The resistance 39, for example aluminum, is wound and is connected to the contacts C1 and C2.
In FIG. 3, the resistor is wound around windings 36 and 37.

Il en résulte que les deux culasses peuvent appartenir à une même pièce ou être solidaires l'une de l'autre. Le support 4 peut être obtenu par déformation de matière en étant par exemple en tôle emboutie. Il comporte alors une bride de fixation et de centrage au lieu de la zone de fixation plus profonde de la figure 1. Le palier arrière du moteur électrique constitue avantageusement la plaque de fermeture du contacteur. Le palier arrière est alors, dans une forme de réalisation, équipé d'une ou plusieurs pistes électriques, par exemple par surmoulage. Cette ou ces pistes relient au moins un contact fixe au moteur électrique en sorte que l'on peut supprimer le câble de la figure 1.As a result, the two yokes can belong to the same room or be integral with each other. The support 4 can be obtained by deformation of material being for example stamped sheet. It then comprises a fastening and centering flange instead of the deeper fixing zone of FIG. 1. The rear bearing of the electric motor advantageously constitutes the closing plate of the contactor. The rear bearing is then, in one embodiment, equipped with one or more electrical tracks, for example by overmolding. This or these tracks connect at least one fixed contact to the electric motor so that the cable of FIG. 1 can be removed.

Le palier arrière 26 est rapporté par clipsage 29 sur la culasse 25 et ferme celle-ci du côté opposé au support 4. Par exemple la culasse 25 présente des trous et le palier 26 des languettes élastiquement déformables portant chacune un ergot avec une rampe.
Lorsque l'on enfile les languettes du palier 26 dans la culasse, celles-ci s'escamotent vers le bas grâce aux rampes des ergots saillants. Lorsque les ergots arrivent en face des trous, les languettes se déploient et les ergots rentrent dans les trous. Plusieurs ergots et trous sont prévus.
La culasse 25 a la forme représentée à la figure 6 et présente deux cavités de réception respectivement du moteur électrique M et du contacteur 2.
Ici la culasse 25 est formée à la faveur d'une bande de métal fermée, par exemple de forme globalement ovale, que l'on déforme à l'aide de mâchoires au contact de noyaux amovibles délimitant les cavités.
La bande peut être ouverte à l'origine et être refermée par boutonnage comme décrit dans le document US-A-4 309 815 ou par soudage. La culasse est en matériau magnétique, par exemple en tôle.
En variante les deux culasses sont fixées l'une sur l'autre par exemple par soudage.
Le support 4 est en tôle et est obtenu par déformation de matière sans opération de reprise, seul le traitement de surface anticorrosion étant éventuellement réalisé.
On peut utiliser par exemple des tôles pré-revêtues. Le support 4 (figure 5) est réalisé par emboutissage et comporte une partie avant 43 en forme d'ogive dotée d'un manchon 42 portant intérieurement un palier de support de l'extrémité avant du lanceur, L'ogive 43 présente une ouverture 44 pour le passage de la couronne de démarrage.
L'ogive se raccorde à l'arrière à une bride de fixation 45 d'orientation transversale, c'est-à-dire perpendiculaire à l'axe de rotation X-X de l'arbre 100-101.
La bride de forme simple remplace la zone de fixation plus complexe de la figure 1. Des nervures de rigidification 47 sont présentes entre la bride 45 et l'ogive 43.
Des plots 41 creux sont réalisés pour la fixation et le centrage du support sur le carter du moteur thermique du véhicule et constituent ainsi les troisièmes moyens de fixation et de centrage précités.
On voit en 46 une calotte sphérique pour création d'un dégagement par l'extrémité avant du noyau mobile 2b du contacteur 2 dont le nombre de ressorts est réduit par rapport à celui de la figure 1. Le noyau fixe 2d, 2d est également simplifié puisqu'il consiste en une simple plaque sans portion tronconique comme à la figure 1. Il en est de même pour le noyau mobile 2b.
Une rondelle d'appui est prévue pour l'appui du ressort de rappel 18.
Les premiers moyens de fixation et de centrage du support 4 servent à la fixation de la culasse 25.
En variante l'ogive 43 est en tôle emboutie et la bride 43 en aluminium.
La culasse 25 peut être emboutie pour formation de moyens d'emboîtage creux pour pénétration de pattes issues de la culasse et formation de moyens de centrage.
Ici la culasse 25 est fixée par sertissage sur le support 4 comme visible par exemple dans les figures 8 à 24.
Ces modes de réalisation sont applicables également à la fixation de la culasse sur le palier arrière.
Ces solutions sont économiques car cela évite d'avoir recours comme à la figure 1 à une visseuse coûteuse point de vue investissement si l'on veut prendre en compte des paramètres de vissage précis.
En outre, ce type d'assemblage à vis ou tirants est encombrant et pose des contraintes supplémentaires dans l'automatisation des postes d'assemblage (distribution de pièces longues ou petites, peu de place pour le passage des têtes des visseuses). De plus le temps de cycle d'une opération de vissage est traditionnellement long.
The rear bearing 26 is attached by clipping 29 on the yoke 25 and closes it on the side opposite the support 4. For example the yoke 25 has holes and the bearing 26 of the elastically deformable tongues each carrying a lug with a ramp.
When we put the tongues of the bearing 26 in the cylinder head, they retract downwards thanks to the ramps protruding lugs. When the lugs arrive in front of the holes, the tabs unfold and the lugs go into the holes. Several pins and holes are provided.
The yoke 25 has the shape shown in FIG. 6 and has two receiving recesses respectively of the electric motor M and the contactor 2.
Here the yoke 25 is formed in favor of a closed metal strip, for example of generally oval shape, which is deformed using jaws in contact with removable cores delimiting the cavities.
The strip can be opened at the origin and closed by buttoning as described in US-A-4 309 815 or by welding. The cylinder head is made of magnetic material, for example sheet metal.
In a variant, the two yokes are fixed to one another, for example by welding.
The support 4 is made of sheet metal and is obtained by deformation of material without recovery operation, only the anticorrosion surface treatment being optionally performed.
For example, pre-coated sheets may be used. The support 4 (FIG. 5) is made by stamping and comprises a nose-shaped front portion 43 with a sleeve 42 internally bearing a support bearing of the front end of the launcher. The nose 43 has an opening 44. for the passage of the starter ring.
The warhead is connected at the rear to a fastening flange 45 of transverse orientation, that is to say perpendicular to the axis of rotation XX of the shaft 100-101.
The simple-shaped flange replaces the more complex attachment zone of FIG. 1. Rigidizing ribs 47 are present between the flange 45 and the nose 43.
41 hollow studs are made for fixing and centering of the support on the housing of the engine of the vehicle and thus constitute the aforementioned third fastening and centering means.
46 shows a spherical cap for creating a clearance from the front end of the movable core 2b of the contactor 2 whose number of springs is reduced compared to that of Figure 1. The fixed core 2d, 2d is also simplified since it consists of a simple plate without frustoconical portion as in Figure 1. It is the same for the mobile core 2b.
A support washer is provided for the support of the return spring 18.
The first means of fixing and centering the support 4 are used for fixing the yoke 25.
Alternatively the ogive 43 is pressed sheet metal and the flange 43 aluminum.
The yoke 25 can be stamped to form hollow fitting means for penetration of tabs from the cylinder head and formation of centering means.
Here the yoke 25 is fixed by crimping on the support 4 as visible for example in Figures 8 to 24.
These embodiments are also applicable to the fixing of the cylinder head on the rear bearing.
These solutions are economical because it avoids having recourse as in Figure 1 to an expensive screwdriver investment point of view if one wants to take into account precise screwing parameters.
In addition, this type of screw or tie assembly is cumbersome and poses additional constraints in the automation of assembly stations (distribution of long or small parts, little space for the passage of the heads of the screwdrivers). Moreover, the cycle time of a screwing operation is traditionally long.

Dans les figures 8 à 24 on ne retrouve pas ces inconvénients. Dans ces figures on déforme une partie de la culasse 25 pour immobiliser les autres composants en sorte que l'encombrement du démarreur est réduit. Ainsi le support 4 ou le palier 26 peuvent présenter des trous traversés axialement par des pattes de la culasse dont les extrémités libres sont rabattues au contact du support ou du palier.
La référence 28 de la figure 3 symbolise un tel assemblage.
In Figures 8 to 24 we do not find these disadvantages. In these figures is deformed a portion of the cylinder head 25 to immobilize the other components so that the size of the starter is reduced. Thus the support 4 or the bearing 26 may have holes traversed axially by tabs of the cylinder head whose free ends are folded in contact with the support or the bearing.
Reference 28 in Figure 3 symbolizes such an assembly.

En variante (figure 8) le support 4 ou le palier 26 présentent des cavités 70 par exemple en forme de creusures dans lesquelles sont rabattus des becs 71,72 obtenus par découpe dans la culasse 25. Les becs sont en appui sur les bords latéraux des creusures réalisant ainsi une indexation angulaire ainsi qu'un arrêt en rotation.As a variant (FIG. 8), the support 4 or the bearing 26 have cavities 70, for example in the form of recesses, in which are bent the beaks 71, 72 obtained by cutting into the cylinder head 25. The beaks rest on the lateral edges of the hollows thus achieving angular indexing and a rotational stop.

A la figure 9 les deux becs se rejoignent pour former une bande de matière 73 déformée dans la cavité 70.In FIG. 9 the two beaks meet to form a band of material 73 which is deformed in the cavity 70.

Dans les figures 10 à 12 il est formé une telle bande de matière mais la creusure 170 s'étend parallèlement à l'axe X-X de l'arbre 101, au lieu d'être perpendiculaire à celui-ci. La bande 73 est formée à la faveur d'évidements 74,75 en vis-à-vis. On obtient ainsi une fixation axiale et radiale sans nécessité d'emboîtage.In Figures 10 to 12 there is formed such a web of material but the recess 170 extends parallel to the axis X-X of the shaft 101, instead of being perpendicular thereto. The band 73 is formed with recesses 74,75 vis-à-vis. Axial and radial fixation is thus obtained without the need for casing.

A la figure 14, on déforme localement en 373 la paroi de la pièce 26 (ou en variante 4) en la repoussant à l'intérieur de la creusure 270 à l'aide d'un poinçon ici de forme prismatique en variante conique ou cylindrique on peut inverser les structures, la culasse 25 étant déformée localement pour pénétrer dans la creusure 70, 170, 270 formant une cavité en sorte que le palier 26 peut être en matière plastique.In FIG. 14, the wall of the piece 26 (or alternatively 4) is locally deformed at 373 by pushing it inside the hollow 270 by means of a punch here of prismatic shape in a conical or cylindrical variant. the structures can be reversed, the yoke being locally deformed to penetrate into the recess 70, 170, 270 forming a cavity so that the bearing 26 can be made of plastic.

A la figure 13, on a représenté une déformation locale de matière à l'aide d'un poinçon cylindrique faisant apparaître une déformation de matière 273 pénétrant par exemple dans la creusure 270.In FIG. 13, a local deformation of material is represented by means of a cylindrical punch showing a deformation of material 273 penetrating, for example, in the recess 270.

En variante à la figure 15 un seul évidemment 470 est prévu, la partie haute de la figure 10 c'est-à-dire l'évidement 74 étant supprimé. En variante figure 16, l'évidement 470 de la figure 15 est ouvert et deux languettes 471,472 sont formées, la référence 473 étant une partie pleine.
En variante dans les figures à la figure 17 au lieu de traverser un trou, les pattes axiales 77 traversent un évidement 76 en forme d'encoche et les bords latéraux prédécoupés 77' des pattes, par exemple de la culasse 25, sont rabattus au contact des bords latéraux des encoches réalisées dans le support ou le palier.
En variante les bords latéraux 77' consistent en des protubérances reliées l'une à l'autre par un enlèvement de matière et les protubérances sont écrasées.
En variante figure 19 on réalise un emboîtage. Le palier 26 présente par exemple des protubérances 79 d'appui pour la face inférieure de la culasse 25.
La pièce 26 présente une collerette 78 rabattue radialement par sertissage ou pliage au contact de la face supérieure de la culasse 25.
As an alternative to FIG. 15, only one recess 470 is provided, the upper part of FIG. 10, that is to say the recess 74 being eliminated. In a variant of FIG. 16, the recess 470 of FIG. 15 is open and two tabs 471, 472 are formed, the reference 473 being a solid part.
Alternatively in the figures in Figure 17 instead of crossing a hole, the axial tabs 77 pass through a recess 76 in the form of a notch and the pre-cut side edges 77 'of the tabs, for example of the yoke 25, are folded to the contact lateral edges of the notches made in the support or the bearing.
As a variant, the lateral edges 77 'consist of protuberances connected to one another by a removal of material and the protuberances are crushed.
Alternatively Figure 19 is a casing. The bearing 26 has for example bearing protrusions 79 for the lower face of the yoke 25.
The piece 26 has a flange 78 folded radially by crimping or folding in contact with the upper face of the yoke 25.

En variante (figure20), la collerette est déformée axialement en 178 au contact de la face supérieure de la culasse 25. En variante figure 21, il est formé à l'aide d'un poinçon une découpe dans la collerette avec une patte inclinée 278 rabattue au contact de la face supérieure de la culasse.
En variante une patte inclinée 378 (figures 22 à 24) est rabattue au contact de la face supérieure de la culasse 25.
Tout ce qui vient d'être décrit est applicable à la bride 45 du support 4.
Le dispositif d'attelage entre l'entraîneur 12 et le pignon comporte dans un exemple de réalisation une roue libre. Cette roue libre fait appel à un grand nombre de composants du fait notamment de la présence de galets soumis chacun à l'action d'un ressort. Le dispositif d'attelage à embrayage conique permet de manière précitée une grande simplification.
In a variant (FIG. 20), the flange is axially deformed at 178 in contact with the upper face of the yoke 25. As a variant FIG. 21, it is formed using a punch a cut in the collar with an inclined leg 278 folded in contact with the upper face of the cylinder head.
As a variant, an inclined lug 378 (FIGS. 22 to 24) is folded in contact with the upper face of the yoke 25.
All that has just been described is applicable to the flange 45 of the support 4.
The coupling device between the driver 12 and the pinion comprises in an exemplary embodiment a freewheel. This free wheel uses a large number of components due in particular to the presence of rollers each subjected to the action of a spring. The conical clutch coupling device allows a great simplification above.

Grâce à l'invention et au blocage en rotation de l'entraîneur on favorise le déplacement du lanceur en diminuant les risques de coincement au niveau des cannelures. En liaison avec les figures précédentes on arrive à la solution la plus compacte possible avec une réduction notable du nombre des composants et du poids. La solution est simple et économique.
Bien entendu la présente invention n'est pas limitée aux exemples de réalisation décrits. En particulier le support en variante est du type de la figure 1 et les deux culasses peuvent être distinctes. Un réducteur à engrenage est en variante interposé entre les deux arbres et/ou un câble est prévu entre le moteur M et le contacteur comme à la figure 1.
L'inducteur du moteur électrique M en variante comporte un bobinage. Des tirants peuvent relier entre eux le support au palier arrière. Les balais en variante sont d'orientation axiale comme à la figure 1.
Bien évidemment, les modes de réalisations présentés ci-dessus sont également adaptés pour des démarreurs à inducteurs à aimants ou bobinés, à prise directe ou avec réducteur interne et à support à ogive ou de type pignon sortant.
Thanks to the invention and the rotational locking of the driver promotes the movement of the launcher by reducing the risk of jamming at the flutes. In connection with the previous figures we arrive at the most compact solution possible with a significant reduction in the number of components and weight. The solution is simple and economical.
Of course, the present invention is not limited to the described embodiments. In particular, the variant support is of the type of FIG. 1 and the two yokes can be distinct. A gear reducer is alternatively interposed between the two shafts and / or a cable is provided between the motor M and the contactor as in Figure 1.
The inductor of the electric motor M as a variant comprises a winding. Tie rods can connect the support to the rear bearing. The alternative brushes are axially oriented as in FIG.
Of course, the embodiments described above are also suitable for starters with inductors with magnets or coils, direct drive or with internal gear and ogive support or pinion type outgoing.

Claims (23)

  1. Starter for a motor vehicle with a thermal engine and a starting ring of the thermal engine, comprising a starter head, provided with a driver (12) and a pinion (1), able to pass from a retracted idle position to an advanced position of meshing with the starting ring (C) of the motor vehicle thermal engine, an electric motor (M) provided with a shaft (101) able to drive a starter-head shaft (100) associated with the starter head (12), complementary helical flutes (9) acting locally between the internal periphery of the driver (12) and the external periphery of the starter-head shaft (100), an electromagnetic contactor (2) extending parallel to the electric motor (M) above it and comprising a movable core (2d), a fork (13) mounted for articulation at its top end on the movable core (2b) and at an intermediate point (11) on a support (4) of the electric motor (M) and electromagnetic contactor (2), in which the driver (12) comprises a groove for receiving the bottom end of the fork (13) delimited by two flanks (121, 122) and in which means are provided for making the electric motor turn at a slow speed in a first so-called pre-rotation phase and then at full power, characterised in that the starter head is rotationally locked by means of cooperation between the fork (13) and the driver (12) for its passage from its idle position to its position of meshing with the starting ring.
  2. Starter according to Claim 1, characterised in that the cooperation means d are means of locking in rotation with cooperation of shapes.
  3. Starter according to Claim 1, characterised in that the cooperation means are of the friction type.
  4. Starter according to Claim 2, characterised in that, when the electromagnetic contactor (2) is supplied electrically, the fork (13) cooperates with the flank (121), referred to as the front flank of the fork reception groove (13), and in that the said front flank (121) is provided with circumferential corrugations (21).
  5. Starter according to Claim 4, characterised in that the fork (13) has arms (293) with corrugations of complementary shape to those on the front flank (121).
  6. Starter according to Claim 2, characterised in that the means of locking in rotation are of the ratchet tooth type.
  7. Starter according to Claim 2, characterised in that the front flank (121) of the reception groove of the fork (13) comprises notches (320) and protrusions (321), whilst the fork (13) has projecting fingers (22) cooperating with the notches (320) for the rotational locking of the starter head.
  8. Starter according to Claim 1, characterised in that the front flank (121) of the fork (13) reception groove cooperates with a ring (15) mounted so as to slide axially on the barrel of the driver.
  9. Starter according to the preceding claim, characterised in that the ring (15) is mounted for articulation on the body (292) of the fork (13).
  10. Starter according to Claim 1, characterised in that the fork (13) has at its end which cooperates with the groove of the driver at least one shoe (290) which cooperates with a rim (310) situated at the periphery of the driver when the starter head is meshed in the starting ring of the motor vehicle engine.
  11. Starter according to Claim 1, characterised in that the cooperation means are disengageable.
  12. Starter according to Claim 1, characterised in that the support (4) has a front part (43) made from sheet metal roughly in the shape of an ogive.
  13. Starter according to Claim 12, characterised in that the front part is connected to a fixing and centring flange (45).
  14. Starter according to Claim 13, characterised in that the sheet-metal support (4) is obtained by deformation of material, such as pressing, and in that the flange (45) is made in a single piece with the front part (43).
  15. Starter according to Claim 1, characterised in that the electric motor (M) and contactor (2) each have a casing fixed to the other casing.
  16. Starter according to Claim 15, characterised in that the two casings belong to one and the same piece (25).
  17. Starter according to Claim 16, characterised in that the casing or two casings are closed on the opposite side to the support by a common piece (26) forming the rear bearing of the electric motor (M).
  18. Starter according to Claim 1, characterised in that the means provided for making the electric motor (M) turn in pre-rotation and then at full power comprise two plates (P1, P2) carried by the movable core (2b), the first plate (P1), used during pre-rotation, is connected to two contacts (C1, C2), the first contact (C1) is connected to the resistive coil (39), the second contact (C2) is connected to the positive terminal of the battery, and then, during full power, the second plate (P2) is connected to two contacts (C3, C4), the third contact (C3) is connected to the resistive coil (39) and to the electric motor (M), and the fourth contact (C4) is connected to the positive terminal of the battery.
  19. Starter according to Claim 1, characterised in that a contact plate (P0) is allowed to rock about the second fixed contact (C5) in order to cooperate with another fixed contact (C6) offset axially and connected to the positive terminal of the battery in order to supply the electric motor.
  20. Starter according to Claim 18 or 19, characterised in that the movable shaft (23) comprises a blade (23) provided with a local protrusion which drives the contact plates (P0, P1) when the movable shaft (40) returns after opening of the control circuit of the contactor (2).
  21. Starter according to Claim 1, characterised in that the electromagnetic contactor (2) comprises at least one plate (P3) able to rotate about the movable shaft (40) for putting the electric motor (M) in pre-rotation and then at full power.
  22. Starter according to Claim 21, characterised in that the plate (P3) has two electrically connected studs, a first stud continuously electrically connected with a contact (C7) connected to the battery voltage, a second stud connected to a contact (C8) when the motor is pre-rotated, this second stud then coming into contact with a third contact (C9), after rotation of the said plate (P3), in order to provide full power to the starter, the second and third contacts (C8, C9) being connected together by the pre-rotation resistive coil (39), the contact (C9) being connected to the electric motor (M).
  23. Starter according to Claim 1, characterised in that the pinion (1) of the starter head is connected to the driver by a device for coupling to the conical clutch.
EP02764970A 2001-07-10 2002-07-10 Starter for a motor vehicle Expired - Lifetime EP1404968B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0109433 2001-07-10
FR0109433A FR2827341B1 (en) 2001-07-10 2001-07-10 STARTER FOR MOTOR VEHICLE
FR0115245 2001-11-21
FR0115245A FR2827342B1 (en) 2001-07-10 2001-11-21 STARTER FOR MOTOR VEHICLE
PCT/FR2002/002426 WO2003006824A1 (en) 2001-07-10 2002-07-10 Starter for a motor vehicle

Publications (2)

Publication Number Publication Date
EP1404968A1 EP1404968A1 (en) 2004-04-07
EP1404968B1 true EP1404968B1 (en) 2007-05-09

Family

ID=26213097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02764970A Expired - Lifetime EP1404968B1 (en) 2001-07-10 2002-07-10 Starter for a motor vehicle

Country Status (12)

Country Link
US (1) US20040020315A1 (en)
EP (1) EP1404968B1 (en)
JP (1) JP2005509104A (en)
KR (1) KR20030029164A (en)
CN (1) CN1277051C (en)
AT (1) ATE362048T1 (en)
BR (1) BR0205724A (en)
DE (1) DE60220052T2 (en)
FR (1) FR2827342B1 (en)
MX (1) MXPA03002051A (en)
PL (1) PL359762A1 (en)
WO (1) WO2003006824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002114A1 (en) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Single track relay and starter

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243047A1 (en) * 2002-09-10 2004-03-18 Hydraulik-Ring Gmbh Actuating device, in particular hydraulic or pneumatic actuator, for manual transmissions of vehicles, in particular motor vehicles
WO2006003879A1 (en) * 2004-07-01 2006-01-12 Yamaha Hatsudoki Kabushiki Kaisha Operation force transmission mechanism and saddle-riding-type vehicle
WO2007131080A2 (en) * 2006-05-04 2007-11-15 Conntechnical Industries, Inc. Starter motor having a permanently engaged gear
US7810403B2 (en) * 2006-05-04 2010-10-12 Conntechnical Industries, Inc. Starter motor having a permanently engaged gear
JP4661721B2 (en) 2006-07-26 2011-03-30 株式会社デンソー Starter
DE102006051578A1 (en) * 2006-11-02 2008-05-08 Robert Bosch Gmbh Starter for cranking an internal combustion engine with pinion shaft support
KR100844355B1 (en) * 2007-01-31 2008-07-07 현대자동차주식회사 Reclining device for folding seat
JP4867834B2 (en) * 2007-07-24 2012-02-01 株式会社デンソー Starter and starter manufacturing method
EP2080898B1 (en) 2008-01-18 2020-03-11 Denso Corporation Starter with compact structure
FR2930001B1 (en) * 2008-04-15 2012-08-03 Valeo Equip Electr Moteur STARTING DEVICE FOR AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR A MOTOR VEHICLE.
DE102008002098A1 (en) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Engagement relay for starters of internal combustion engines
EP2239453B8 (en) * 2008-08-07 2017-08-02 Denso Corporation A starting device for engines
FR2938882B1 (en) * 2008-11-24 2014-08-22 Valeo Equip Electr Moteur METHOD FOR MOUNTING A LAUNCHER ASSEMBLY ON A ROTARY DRIVE SHAFT OF A STARTING DEVICE
FR2952975B1 (en) * 2009-11-24 2012-07-20 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR CONTROLLING AN ELECTRIC STARTER
FR2959891B1 (en) * 2010-05-07 2016-06-03 Valeo Equip Electr Moteur ELECTRONIC CONTROL DEVICE FOR ELECTROMAGNETIC CONTACTOR WITH DOUBLE CONTACT AND STARTER FOR THERMAL MOTOR INCORPORATING THE SAME
CN101964278B (en) * 2010-10-29 2014-12-31 无锡市闽仙汽车电器有限公司 Electromagnetic switch for starter
DE102011003179B4 (en) * 2011-01-26 2021-03-18 Seg Automotive Germany Gmbh Starting device for internal combustion engines
JP2012167551A (en) * 2011-02-10 2012-09-06 Denso Corp Electromagnetic switch device
DE102011076534A1 (en) * 2011-05-26 2012-11-29 Robert Bosch Gmbh Toe-in actuator for electric machine e.g. starting device for internal combustion engine, has secondary contact surface that is spaced apart from primary contact surface in crank rod of armature
DE102011076743B4 (en) * 2011-05-30 2023-09-21 Seg Automotive Germany Gmbh Starter relay for starting devices of internal combustion engines
DE102011078259A1 (en) * 2011-06-29 2013-01-03 Robert Bosch Gmbh Switch for closing contact in circuit device utilized for operating starter of internal combustion engine of motor car, has contactors moved such that contact is closed with contactors at different points of time, upon actuation of switch
FR2978500B1 (en) * 2011-07-26 2015-03-13 Valeo Equip Electr Moteur LAUNCHER MOBILE ASSEMBLY - GEAR CONTROL LEVER WITH A STARTING CROWN OF A THERMAL MOTOR AND STARTER OF A THERMAL MOTOR COMPRISING SUCH AN ASSEMBLY
DE102011088722A1 (en) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Starter relay for starter of internal combustion engine, has shift drum that is movable with respect to contact pin
US20130168974A1 (en) * 2011-12-30 2013-07-04 Remy Technologies, Llc Starter Motor Assembly With Soft Start Solenoid
US9188097B2 (en) * 2013-03-15 2015-11-17 Remy Technologies, Llc Starter with speed sensor assembly
JP5959556B2 (en) * 2014-03-12 2016-08-02 三菱電機株式会社 Engine starter
DE102014217350B4 (en) * 2014-08-29 2022-03-24 Seg Automotive Germany Gmbh Electrical machine with a housing designed as a drive bearing and a ring gear mounted therein
DE102014217349A1 (en) * 2014-08-29 2016-03-03 Robert Bosch Gmbh Electric machine with a designed as a drive bearing housing and stored therein ring gear
JP6372390B2 (en) * 2015-02-23 2018-08-15 株式会社デンソー Starter
CN107152365B (en) * 2016-03-03 2021-04-30 德昌电机(深圳)有限公司 Engine, engine starter and shell assembly thereof
DE102017223106A1 (en) * 2017-12-18 2019-06-19 Robert Bosch Gmbh Starting device for internal combustion engines and method for operating such
CN110410255B (en) * 2019-07-30 2021-03-16 重庆双奥机械制造有限公司 Spring motor with inspection function and inspection method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2174421A (en) * 1936-08-15 1939-09-26 Min A Max Co Grease gun
US2342632A (en) 1942-05-22 1944-02-29 Bendix Aviat Corp Engine starter gearing
US3319755A (en) * 1965-02-08 1967-05-16 Bendix Corp Starter clutch device with centrifugal clutch separating means
NL173300C (en) 1972-03-03 Ducellier & Cie DEVICE FOR OPERATING THE ELECTRIC STARTER OF A COMBUSTION ENGINE.
JPS5921484Y2 (en) * 1977-07-21 1984-06-25 アルプス電気株式会社 switch
US4418289A (en) * 1978-11-20 1983-11-29 Facet Enterprises, Incorporated Two stage starter drive system
FR2449796A1 (en) * 1979-02-21 1980-09-19 Paris & Du Rhone SIMPLIFIED LAUNCHER FOR ELECTRIC STARTER
GB2120461B (en) * 1982-05-18 1986-01-29 Paris & Du Rhone Electric starter for an internal combustion engine
JPS61116071A (en) * 1984-11-08 1986-06-03 Nippon Denso Co Ltd Starter
IT206820Z2 (en) * 1985-09-20 1987-10-01 Magneti Marelli Spa STARTER DEVICE FOR INTERNAL COMBUSTION ENGINES FOR MOTOR VEHICLES
JPS63277860A (en) * 1987-03-04 1988-11-15 Mitsubishi Electric Corp Starter device with planetary gear reducer
US5167162A (en) * 1990-05-22 1992-12-01 Mitsuba Electric Manufacturing Co., Ltd. Starter system for an internal combustion engine
JP2585897B2 (en) * 1991-08-21 1997-02-26 株式会社日立製作所 Starter pinion transfer device
IT1257229B (en) * 1992-06-10 1996-01-10 Magneti Marelli Spa ELECTROMAGNETIC DEVICE FOR THE CONTROL OF THE CURRENT SUPPLY TO THE ELECTRIC STARTING MOTOR OF AN INTERNAL COMBUSTION ENGINE.
US5307700A (en) * 1992-12-04 1994-05-03 General Motors Corporation Electric engine starter
US5505169A (en) * 1993-07-19 1996-04-09 Delco Remy America, Inc. Electric engine starter
US5731638A (en) * 1994-11-22 1998-03-24 Nippondenso Co., Ltd. Starter motor having a two stage magnetic switch and current limiting member
US5924288A (en) * 1994-12-22 1999-07-20 General Electric Company One-piece combustor cowl
JP3011091B2 (en) 1995-05-26 2000-02-21 株式会社デンソー Starter
JPH09236070A (en) * 1996-02-29 1997-09-09 Denso Corp Starter
JPH10169533A (en) * 1996-10-09 1998-06-23 Denso Corp Starter
FR2772433B1 (en) * 1997-12-17 2000-02-04 Valeo Equip Electr Moteur MOTOR VEHICLE STARTER COMPRISING AN IMPROVED LAUNCHER
US6148600A (en) * 1999-02-26 2000-11-21 General Electric Company One-piece sheet metal cowl for combustor of a gas turbine engine and method of configuring same
JP2000329042A (en) * 1999-05-20 2000-11-28 Mitsubishi Electric Corp Starter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002114A1 (en) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Single track relay and starter

Also Published As

Publication number Publication date
EP1404968A1 (en) 2004-04-07
US20040020315A1 (en) 2004-02-05
DE60220052T2 (en) 2007-08-30
KR20030029164A (en) 2003-04-11
PL359762A1 (en) 2004-09-06
CN1277051C (en) 2006-09-27
BR0205724A (en) 2003-07-29
ATE362048T1 (en) 2007-06-15
FR2827342A1 (en) 2003-01-17
WO2003006824A1 (en) 2003-01-23
DE60220052D1 (en) 2007-06-21
MXPA03002051A (en) 2003-07-24
JP2005509104A (en) 2005-04-07
FR2827342B1 (en) 2004-08-13
CN1464943A (en) 2003-12-31

Similar Documents

Publication Publication Date Title
EP1404968B1 (en) Starter for a motor vehicle
EP1961030B1 (en) Moving element for an electromagnetic contactor, and contactor comprising such an element
EP1769154B1 (en) Starter motor, particularly for a motor vehicle, provided with a friction free-wheel starter
EP1399670B1 (en) Motor vehicle starter with improved drive assembly
FR2978500A1 (en) LAUNCHER MOBILE ASSEMBLY - GEAR CONTROL LEVER WITH A STARTING CROWN OF A THERMAL MOTOR AND STARTER OF A THERMAL MOTOR COMPRISING SUCH AN ASSEMBLY
WO2015075400A1 (en) Starter and starter drive assembly for a combustion engine
EP2655863B1 (en) Electric motor and internal combustion engine starter speed reducer
EP2859218A1 (en) Starter motor provided with a translatably fixed free wheel
FR2799800A1 (en) Starter clutch for motor vehicle has drive pinion return spring mounted between stops to limit diametrical deformation
EP2917557A1 (en) Friction starter drive unit for meshing with a starter ring gear of a heat engine, and corresponding heat engine starter
WO2011117514A1 (en) Moving element for electromagnetic relay switch and associated electromagnetic power relay switch
FR2827341A1 (en) Automobile starter motor, spigot once meshed with engine crown wheel is stopped from rotating, by a friction, cooperating shape or toothed blocking system
WO2006000667A1 (en) Starter provided with a friction freewheel drive
EP2984330A1 (en) Improved pignon cage assembly, corresponding starter drive assembly and starter for a motor vehicle
EP2575150B1 (en) Motorization disengagement device of the reset device of the contact closing device in an electric protection apparatus and apparatus comprising same.
EP1478844B1 (en) Starter, particularly for a motor vehicle, provided with a torque-accumulating bendix gear
WO2006010852A1 (en) Starter, in particular for motor vehicle, equipped with a friction-driven free-wheel drive assembly
FR2813348A1 (en) STARTER FOR INTERNAL COMBUSTION ENGINE
WO2014167254A2 (en) Starter having a drive mechanism provided with an intermediate element for reducing friction between a control lever and a driver
EP2865882A1 (en) Starter drive assembly with improved friction clutch and corresponding starter for the heat engine of a motor vehicle
EP2875236A2 (en) Starter with disc coupling system provided with a stop facilitating the activation of the coupling system
FR2969221A1 (en) PERMANENT GEAR STARTER EQUIPPED WITH A DRIVE WHEEL COUPLING SYSTEM TO THE ROTOR OF THE STARTER ENGINE
EP2239456B1 (en) Starter device for an internal combustion engine, in particular of an automobile
FR3062176A1 (en) THERMAL MOTOR STARTER PROVIDED WITH INDUCTION SHAFT MADE IN TRANSLATION
WO2016066704A1 (en) Starter for a heat engine of a motor vehicle, provided with a stop

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60220052

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070820

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070509

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: VALEO EQUIPEMENTS ELECTRIQUES MOTEUR

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070809

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070810

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190731

Year of fee payment: 18

Ref country code: DE

Payment date: 20190711

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60220052

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202