EP1403510B1 - High pressure fuel injection system with means for pressure wave damping - Google Patents

High pressure fuel injection system with means for pressure wave damping Download PDF

Info

Publication number
EP1403510B1
EP1403510B1 EP03292276A EP03292276A EP1403510B1 EP 1403510 B1 EP1403510 B1 EP 1403510B1 EP 03292276 A EP03292276 A EP 03292276A EP 03292276 A EP03292276 A EP 03292276A EP 1403510 B1 EP1403510 B1 EP 1403510B1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection
fuel
fact
resistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03292276A
Other languages
German (de)
French (fr)
Other versions
EP1403510A1 (en
Inventor
Guillaume Meissonnier
Eric Charleux
Stéphane Van den Hende
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Operations Luxembourg SARL
Original Assignee
Delphi Technologies Holding SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Holding SARL filed Critical Delphi Technologies Holding SARL
Publication of EP1403510A1 publication Critical patent/EP1403510A1/en
Application granted granted Critical
Publication of EP1403510B1 publication Critical patent/EP1403510B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/028Returnless common rail system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the present invention relates to a method of constructing a high pressure fuel injection system. More specifically, the invention relates to the management of pressure waves in such an injection system, to control the amount of fuel introduced into each cylinder during injection.
  • FIG. 1 The figure 1 drawings in the appendix present, schematically, a fuel supply device known to the engine of a vehicle.
  • a tank 1 contains fuel.
  • the fuel is diesel.
  • a low-pressure low-pressure pipe 3 makes it possible to route the fuel to a pump 5.
  • the fuel is filtered through a filter 4 placed along the low-pressure forward pipeline 3.
  • a low-pressure return pipe 6 makes it possible to return one too much. full of fuel from pump 5 to tank 1.
  • the feed device comprises a high pressure part or injection system, which will now be described.
  • This injection system has different mechanical elements.
  • the pump 5 compresses the fuel and injects it into a high-pressure inlet pipe 7.
  • the fuel is conveyed to a common rail 8 via the high pressure inlet pipe 7 which is connected to an inlet E of the common rail 8.
  • the common rail 8 constitutes a high pressure fuel accumulation chamber.
  • the fuel contained in the common rail 8 is then conveyed to different injectors 10a-10d. This is achieved by means of the injection pipes 9a-9d respectively connected to outputs Sa-Sd of the common rail 8.
  • An electro-hydraulic valve (not shown), which equips each injector 10a-10d, is then actuated in order to injecting a quantity of fuel into the corresponding cylinder (not shown).
  • a return line 11 makes it possible to recycle the fuel used for the operation of the valve which does not have injected, by circulating injectors 10a-10d to the pump 5.
  • the different pipelines are taken in a broad sense. That is to say that under the generic term of pipe we join the tubular conduits, the fastening elements of these pipes to other elements of the injection system and possibly the holes drilled through these elements in the extension of tubing.
  • the injection line extends to the seat of the injection valve and is generally pierced in the injector door
  • the injection system also comprises a programmed computer, the motor controller 20.
  • the opening and closing of the electro-hydraulic valves fitted to the injectors 10a-10d are controlled by the motor controller, via at least one actuator connection of the injectors 21a.
  • the operation of the pump 5 is controlled by the motor controller 20 via an actuating connection of the pump 21b and an actuator 22.
  • the pressure in the common rail is measured by a sensor 24 and the signal corresponding to this measurement is routed to the motor controller 20 via the pressure acquisition connection 23a.
  • the motor controller 20 is connected to other sensors (not shown) via at least one data acquisition connection 23b. These other sensors are, for example, a sensor measuring the acceleration required by the driver of the vehicle or a sensor indicating the instant of the engine cycle in which the engine is located.
  • the engine controller 20 determines the amount of fuel to be injected into each of the engine cylinders. Consequently, the motor controller 20 determines, on the one hand, the operating pressure that must be reached in the common rail 8 and, on the other hand, the opening and closing times of the electro-hydraulic valves of each of the injectors. 10a-10d. According to these parameters, signals are respectively emitted by the motor controller 20 on the actuating connections of the pump 23a to actuate the pump 5 and actuating the valves 23b to actuate the opening and closing of the corresponding electro-hydraulic valves.
  • hydraulic waves can be either pressure waves or velocity waves, knowing that these two types of waves are correlated.
  • Pressure waves are generated by the rapid opening and closing of the electro-hydraulic valves that equip the injectors of the injection system: the opening creating a significant depression, closing a high overpressure. Pressure waves are also generated by the pulsed flow rate of the pump.
  • the waves generated by the operation of the injectors propagate along the injection lines against the current, that is to say upstream of the main flow. They then propagate in the common rail, then either in the inlet pipe to the pump, or in the other injection lines to the other injectors.
  • the waves generated by the operation of the pump propagate along the inlet pipe in the direction of flow. They then propagate in the common rail, then in the various injection lines towards the injectors.
  • the fuel pressure undergoes fluctuations over time.
  • the fluctuations of greater amplitude are therefore due either to the pulsed flow rate of the pump 5 or to the opening and closing of the electro-hydraulic valves of the other injectors, or to the opening and closing of the electro-hydraulic valve of the injector considered, at an earlier time of the engine cycle.
  • a first consequence is that the flow is not known precisely. During the opening period of the electro-hydraulic valve, the amount of fuel injected into the cylinder is thus not controlled.
  • a second consequence is that when the electro-hydraulic valve is expected to open or close, it undergoes an additional mechanical force due to a change in pressure. This additional force facilitates or opposes the opening or closing operation of the electro-hydraulic valve.
  • the opening or closing time of the valve is changed.
  • the pressure fluctuations imply that the moment and the opening period of the valve equipping the injector vary.
  • the amount of fuel injected into the cylinder is not controlled.
  • the exact moment of injection is not controlled either.
  • the document US 5845621 proposes to add a dissipative element 18 ( figure 1 ) at one end of the main bore of the common rail.
  • the document US 6314942 proposes to add inside the common rail 20 a attenuation element 110 of the pressure waves.
  • This element is in the form of a rod coaxial with the common rail and extending over the entire length of the latter.
  • the section cross section of this element has several lobes able to reflect the pressure waves ( figure 1 ).
  • the document US 4161161 proposes the addition of a capacitive element 30 constituted by a volume in branch of the pipe 2 connecting the pump 1 to the injector 3 ( figure 1 ).
  • this capacitive element is placed near the electro-hydraulic valve of the injector.
  • the document FR 2783284 proposes to place a capacitive element 10 in series on each of the injectors.
  • Each capacitive element is, moreover, in fluid communication with the others.
  • the document FR 2786225 gives a list of different embodiments of capacitive elements intended to be placed on the injection lines, close to the outputs of the common rail 1 ( figure 1 ).
  • the document JP-802 13 33 discloses an injection system according to the preamble of claim 1.
  • the hydraulic waves are attenuated by resistive and capacitive elements having characteristic frequencies corresponding to characteristic frequencies of the pipes of the injection system.
  • the means implemented to attenuate the pressure waves constitute a series of local processes that are more or less effective and that are more of a know-how. No overall response is provided to the problem of pressure wave propagation across the entire injection system.
  • the pressure waves whose frequency agrees with one of the eigenfrequencies of the injection system lead to the establishment of standing waves through the entire injection system.
  • the main object of the present invention is to provide a general solution for attenuating the pressure waves and in particular the pressure waves whose frequency corresponds to the lowest eigenfrequencies.
  • Another object of the present invention is to control, with the aid of a programmed device, the quantity of fuel injected at each injection into the various cylinders of the engine, by evaluating the residual variations of the pressure at the level of the injectors.
  • the present invention relates to a method of constructing an injection system as described in the preamble of claim 1.
  • the resistive elements may be asymmetrical resistive elements.
  • the attenuation means serve to attenuate the hydraulic waves whose frequency corresponds to a first resonance frequency of said injection system which is the lowest natural frequency.
  • the attenuation means also make it possible to attenuate the hydraulic waves whose frequency corresponds to a second resonant frequency of said injection system which is the natural frequency just above the lowest natural frequency.
  • some of said resistive and capacitive elements are placed at the ends of said inlet pipe.
  • the upstream end of the inlet pipe comprises a resistive element in series with a capacitive element, and the downstream end of the inlet pipe comprises a resistive element.
  • some of said resistive and capacitive elements are placed at the ends of each of said injection lines.
  • each of the injection pipes comprises a resistive element
  • the downstream end of each of the injection pipes comprises a capacitive element
  • each of the injection pipes further comprises a resistive element placed in the second third of said injection pipes, these being oriented in the direction of the fuel flow, from upstream to downstream. .
  • the preferred embodiment combines both the relative layout of the inlet pipe and the injection pipe arrangement, which have been described above.
  • the programmed computer calculates a corrected pressure at the injector and actuates each of said injectors according to said corrected pressure in order to inject a desired quantity of fuel Q 2 .
  • the corrected pressure P th inj is a function of a rail pressure P in the common rail, a fuel temperature, a quantity of fuel Q 1 injected by the same injector during a previous injection, the quantity of fuel. fuel Q 2 desired during a current injection and a temporal separation s between the previous injection and the current injection.
  • FIG. 1 schematically shows a device for supplying fuel to a heat engine.
  • the description of this device, and in particular of the injection system, has already been made earlier in this document.
  • the operating pressure prevailing in the common rail 8 varies between 200 and 2000 bar during the operation of the engine and the requested power. Around this operating pressure, the pressure undergoes variations over time which can reach an amplitude of 300 bars.
  • the injection system as any mechanical system is characterized by a series of eigen modes each characterized by a natural frequency of resonance.
  • the first eigenmode corresponding to the lowest resonant frequency.
  • the second eigenmode corresponds to the eigenfrequency just above said lowest resonant frequency.
  • Pressure waves, or velocity, whose frequency is adapted to one of these eigenfrequencies, are not attenuated during their propagation in the injection system. There is, ultimately, establishment of a standing wave.
  • the figure 2 illustrates the case of a standing wave whose frequency corresponds to the first natural frequency of the injection system.
  • the curve 2Pa represents the amplitude of the standing pressure wave along the inlet pipe 7.
  • the amplitude of the standing pressure wave is maximum at the level of the pump 5. This point corresponds to a belly of pressure.
  • the amplitude of the standing pressure wave gradually decreases in the direction of the main flow indicated by the arrow.
  • the amplitude of the stationary pressure wave is canceled a first time at the input E of the common rail 8. This point corresponds to a pressure node.
  • the curve 2Pb represents the amplitude of the standing pressure wave along the various injection lines 9a-9d.
  • the amplitude of the stationary pressure wave is zero at the outputs Sa-Sd of the common rail 8. The amplitude increases progressively in the direction of the main flow, to reach a first maximum at the various injectors 10a. 10d.
  • the curves 2Va and 2Vb represent the amplitude of the stationary speed wave respectively along the inlet pipe 7 and the various injection pipes 9a-9d.
  • This stationary speed wave is associated with the pressure wave previously described.
  • the amplitude of the stationary speed wave is maximum.
  • the amplitude of the stationary speed wave remains constant throughout the input channel 7.
  • the amplitude of the stationary speed wave is therefore maximum at the input E of the common rail 8.
  • the amplitude of the stationary speed wave is maximum at the different outputs Sa-Sd of the common rail 8. It is a belly of the stationary speed wave.
  • the amplitude of the stationary speed wave gradually decreases along the injection lines 9a-9d to cancel a first time at the injectors 10a-10d. It is then a node of the stationary speed wave.
  • the figure 3 represents a standing wave whose frequency corresponds to the second natural frequency of the injection system.
  • the curves 3Pa and 3Pb represent the amplitude of the standing pressure wave along the injection system shown schematically in the abscissa.
  • the amplitude of the standing pressure wave is maximum at the pump 5, then decreases rapidly to cancel itself a first time at a point A located in the first third of the inlet pipe 7.
  • the amplitude passes through a maximum at a point C located in the second third of the inlet pipe 7.
  • the amplitude decreases to cancel again at the input E of the common rail 8.
  • the amplitude of the stationary pressure wave is zero at the outputs Sa-Sd of the common rail 8, then increases along the injection lines 9a-9d, to reach a first maximum at a point F located at the first third of said injection lines 9a-9d. Then, in the direction of the main flow, marked by the arrow, the amplitude of the standing pressure wave gradually decreases to cancel again at a point G, located in the second third of said pipes. injection 9a-9d. Finally, the amplitude increases again and is maximum at the injectors 10a-10d.
  • Correlated curves 3Va and 3Vb represent the amplitude of the stationary velocity wave along the injection system.
  • the amplitude of the stationary speed wave begins to be maximum at the pump 5, then decreases rapidly to cancel at a point B in the middle of the inlet pipe 7. The amplitude then increases and returns by a maximum at the input E of the common rail 8.
  • the amplitude of the stationary wave velocity is maximum at the output of the common rail 8, decreases along the injection lines 9a-9b, to cancel a first time at a point F, located in the first third of said injection pipes 9a-9d.
  • the amplitude of the stationary speed wave gradually increases to pass again by a maximum at a point G located in the second third of said injection lines 9a-9d.
  • the amplitude of the stationary speed wave decreases to cancel again at the different injectors 10a-10d.
  • velocity and pressure curves are approximately sinusoidal curves.
  • a resistive element is, for example, constituted by a reduced diameter pipe section.
  • a capacitive element is, for example, constituted by a volume of defined dimension connected by a resistive element to a point of the main pipe.
  • the method of constructing an injection system according to the invention comprises resistive elements placed in series at locations which correspond to bellies of the stationary speed wave and capacitive elements placed in series at locations corresponding to bellies of the standing pressure wave.
  • the present invention uses asymmetrical resistive elements, also called fluidic diodes.
  • asymmetrical resistive elements also called fluidic diodes.
  • Such a fluidic diode placed on an insert is represented on the figure 4 .
  • the figure 4 represents an insert 50.
  • This insert 50 is of generally cylindrical shape around a central axis X.
  • the insert 50 has at each of its axial ends a radial front face 51 and a rear radial face 52.
  • the rear radial face 52 is pierced with a bore 53 of diameter D '.
  • the edge defined by the inner surface 56 of the bore 53 and the rear radial face 52 is chamfered and produces the surface 54.
  • the insert 50 has a U-shaped cross section X whose wall the bottom 55 is provided with an orifice 27.
  • the orifice 27 has a downstream cylindrical portion 29 of reduced diameter d much smaller than the diameter D '.
  • the orifice 27 has an upstream portion 28 in the form of a funnel, whose opening of larger diameter is oriented towards the upstream of the fuel flow.
  • the upstream portion 28 has no sharp edges on which the boundary layer of the flow could come off as shown on the Figure 4A .
  • the upstream portion 28 makes it possible to vary the section of the flow slowly and continuously with respect to the characteristics of the flow itself.
  • the characteristic dimensions of the upstream portion 28 of the orifice 27, such as the radius of the rounding 30, are greater than or equal to a characteristic dimension of the orifice 27, namely d.
  • Such inserts may be added at the level of the inlet pipe 7 or at the various injection pipes 9a-9d as a resistive element in order to attenuate the pressure waves, and in particular the stationary pressure waves, without as much hindering the main flow of fuel.
  • Another way of avoiding the problem of the pressure drop along the injection system consists, firstly, in not overloading the injection system with resistive elements and accepting residual pressure variations. at the level of the injector. It is in fact to find an acceptable compromise between a drop in operating pressure along the injection system and the attenuation of low frequency standing waves.
  • the residual pressure variations at the injector are taken into account by means of a programmed device in order to inject into the engine cylinder only the desired amount of fuel. It is this second approach which will now be described in detail in connection with the preferred embodiment of the present invention.
  • the injection system In order to attenuate the hydraulic waves whose frequency corresponds to the first and the second natural frequency of said injection system ( Figure 2 and Figure 3 ), without generating a fall in unacceptable operating pressure along the injection system, the injection system is equipped with a succession of symmetrical and capacitive resistive elements. This succession will now be described in relation to the figure 5 .
  • the main direction of fuel flow is indicated by an arrow, to give meaning to upstream and downstream.
  • the inlet pipe 7 is equipped at its upstream end with a capacitive element 73 in series with a resistive element 71, and at its downstream end with a resistive element 72.
  • the injection lines 9a-9d are respectively equipped, at their upstream end, with a resistive element 91a-91d, at a point F located at the second third of their length of a resistive element 92a-92d , and at their downstream end of a capacitive element 93a-93d.
  • the resistive element 72 and the resistive elements 91a-91d may be located in the common rail respectively at the input E and outputs Sa-Sd.
  • the capacitive elements 93a-93d may be located in the injectors themselves, as close as possible to the electro-hydraulic valves.
  • this prior actuation of the injector may correspond to a first injection, or pilot injection, during which the amount of fuel introduced into the cylinder is low.
  • the current trend is to increase the number of injections per cylinder during a motor cycle. For example, five successive injections can be performed.
  • Q 1 be the quantity of fuel introduced into the cylinder at a previous instant, or let Q 2 be the quantity of fuel that it is necessary to introduce into the cylinder at the moment considered; and let s be the temporal separation between these two successive injections.
  • the engine controller evaluates the quantity of fuel Q 2 desired depending, among other things, the time of the engine cycle where the second injection must take place and the power that the engine must provide.
  • the engine controller calculates the duration of opening of the electro-hydraulic valve equipping the injector for introducing the amount of fuel Q 2 taking into account, not the pressure P rail measured by the pressure sensor 24 at the common rail 8, but by evaluating a corrected pressure P th inj at the injector. The calculation of this corrected or theoretical pressure will make it possible to evaluate the residual pressure variations at the level of the injector.
  • the corrected pressure P th inj is obtained by adding to the pressure P rail the sum, over the set of eigenfrequencies f i considered, of an estimate of the residual pressure variations due to a given pressure wave of eigenfrequency.
  • the estimation of the residual pressure variations due to a given pressure wave of eigenfrequency is obtained by multiplying a periodic function g by a damping function h.
  • Said periodic function g depends, for example, on the quantities of fuel Q 1 and Q 2 , the time separation s between each of the two injections, and thermodynamic parameters such as the rail pressure P and the fuel temperature T.
  • the periodic function g is typically a sinusoidal function of the time separation s.
  • Said damping function h is, for example, a function of the quantities of fuel Q 1 and Q 2 , of the time separation s between each of the two injections, and of the operating pressure measured by the pressure sensor in the common rail and of the fuel temperature T.
  • the motor controller 20 ( figure 1 ) does not necessarily recalculate the value of the periodic function g or the damping function h according to the values taken by the different parameters of the model.
  • the motor controller uses rather maps or an abacus, which, according to the value of the various input parameters, gives the value of the periodic function g or of the damping function h at the output.
  • Such mapping is obtained from a test vehicle of a vehicle range. This test vehicle undergoes various tests, and the curves corresponding to the periodic functions g and damping h are recorded. Subsequently, during the manufacture of a particular vehicle of said vehicle range, these curves are recorded in memory means forming part of the motor controller 20 to constitute said mapping.
  • the curve 6b represents the quantity of fuel actually injected into the cylinder in the case where the injection system represented on the figure 5 is not equipped with a software system to account for residual pressure fluctuations.
  • the engine controller then taking into account only the pressure P rail raised at the common rail 8 by the pressure sensor 24.
  • the measurement of the pressure P rail raised is substantially constant depending on the separation s, the opening time the electro-hydraulic valve controlled by the engine controller to inject a quantity of fuel Q 2 is also. But since the actual pressure at the injector fluctuates with time, the flow at the injector also fluctuates. The amount actually introduced varies directly following the pressure variations at the injector.
  • the curve 6c represents the quantity of fuel actually injected into the cylinder in the case where the injection system represented on the figure 5 is equipped with a software system to account for residual pressure fluctuations.
  • the motor controller calculates a corrected pressure P th inj at the injector. Curve 6a represents this corrected pressure.
  • the motor controller accordingly changes the opening time of the electro-hydraulic valve to compensate for the pressure variation. If the pressure is supposed to increase at the moment of the second injection, the opening time of the valve will be lower. On the contrary, if the pressure is supposed to decrease at the moment of the injection, the duration of opening will be slightly increased. Finally, the amount of fuel actually injected into the cylinder fluctuates less and approaches the desired amount of fuel Q 2 , which is clearly indicated by curve 6c.
  • the software system therefore makes it possible to compensate for residual pressure fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The fuel injection system has symmetric or asymmetric resistive attenuators (71-72, 91-92) and capacitive attenuators (73,93) to attenuate hydraulic waves, particularly waves at a frequency corresponding to the resonant frequency of the injection system. The electronic controller (20) takes account of residual pressure fluctuations at different injectors (10a-10d).

Description

La présente invention concerne un procédé de construction d'un système d'injection de carburant haute pression. Plus précisément, l'invention est relative à la gestion des ondes de pression dans un tel système d'injection, afin de contrôler la quantité de carburant introduite dans chaque cylindre lors de l'injection.The present invention relates to a method of constructing a high pressure fuel injection system. More specifically, the invention relates to the management of pressure waves in such an injection system, to control the amount of fuel introduced into each cylinder during injection.

La figure 1 des dessins placés en annexe présente, de manière schématique, un dispositif d'alimentation en carburant connu du moteur d'un véhicule.The figure 1 drawings in the appendix present, schematically, a fuel supply device known to the engine of a vehicle.

Ce dispositif d'alimentation comporte une partie basse pression dont les différents éléments vont maintenant être décrits. Un réservoir 1 contient du carburant. Par exemple, dans le cas d'un moteur thermique diesel, le carburant est du gazole. Une canalisation aller basse pression 3 permet d'acheminer le carburant vers une pompe 5. Le carburant est filtré au travers d'un filtre 4 placé le long de la canalisation aller basse pression 3. Une canalisation retour basse pression 6 permet de retourner un trop plein de carburant de la pompe 5 vers le réservoir 1.This feed device comprises a low pressure part, the various elements of which will now be described. A tank 1 contains fuel. For example, in the case of a diesel engine, the fuel is diesel. A low-pressure low-pressure pipe 3 makes it possible to route the fuel to a pump 5. The fuel is filtered through a filter 4 placed along the low-pressure forward pipeline 3. A low-pressure return pipe 6 makes it possible to return one too much. full of fuel from pump 5 to tank 1.

Le dispositif d'alimentation comporte une partie haute pression ou système d'injection, qui va maintenant être décrite. Ce système d'injection comporte différents éléments mécaniques. La pompe 5 comprime le carburant et l'injecte dans une canalisation d'entrée 7 haute pression. Le carburant est acheminé jusqu'à un rail commun 8 via la canalisation d'entrée 7 haute pression qui est connectée à une entrée E du rail commun 8. Le rail commun 8 constitue une chambre d'accumulation de carburant haute pression. Le carburant contenu dans le rail commun 8 est ensuite acheminé vers différents injecteurs 10a-10d. Ceci est réalisé au moyen des canalisations d'injection 9a-9d connectées respectivement à des sorties Sa-Sd du rail commun 8. Une vanne électro-hydraulique (non représentée), qui équipe chaque injecteur 10a-10d, est alors actionnée afin d'injecter une quantité de carburant dans le cylindre (non représenté) correspondant. Une canalisation de retour 11 permet de recycler le carburant servant au fonctionnement de la vanne n'ayant pas été injecté, en le faisant circuler des injecteurs 10a-10d vers la pompe 5.The feed device comprises a high pressure part or injection system, which will now be described. This injection system has different mechanical elements. The pump 5 compresses the fuel and injects it into a high-pressure inlet pipe 7. The fuel is conveyed to a common rail 8 via the high pressure inlet pipe 7 which is connected to an inlet E of the common rail 8. The common rail 8 constitutes a high pressure fuel accumulation chamber. The fuel contained in the common rail 8 is then conveyed to different injectors 10a-10d. This is achieved by means of the injection pipes 9a-9d respectively connected to outputs Sa-Sd of the common rail 8. An electro-hydraulic valve (not shown), which equips each injector 10a-10d, is then actuated in order to injecting a quantity of fuel into the corresponding cylinder (not shown). A return line 11 makes it possible to recycle the fuel used for the operation of the valve which does not have injected, by circulating injectors 10a-10d to the pump 5.

D'un point de vue hydraulique et dans la suite de ce document, les différentes canalisations sont prises au sens large. C'est-à-dire que sous le terme générique de canalisation nous réunissons les conduites tubulaires, les éléments de fixations de ces tubulures à d'autres éléments du système d'injection et éventuellement les orifices percés à travers ces éléments dans le prolongement d'une tubulure. Par exemple, les canalisation d'injection s'étendent jusqu'au siège de la vanne d'injection et sont en générales percées dans le porte injecteurFrom a hydraulic point of view and in the rest of this document, the different pipelines are taken in a broad sense. That is to say that under the generic term of pipe we join the tubular conduits, the fastening elements of these pipes to other elements of the injection system and possibly the holes drilled through these elements in the extension of tubing. For example, the injection line extends to the seat of the injection valve and is generally pierced in the injector door

Le système d'injection comporte également un calculateur programmé, le contrôleur moteur 20. L'ouverture et la fermeture des vannes électro-hydrauliques équipant les injecteurs 10a-10d sont commandées par le contrôleur moteur, via au moins une connexion d'actionnement des injecteurs 21a. De même, le fonctionnement de la pompe 5 est commandé par le contrôleur moteur 20 via une connexion d'actionnement de la pompe 21b et un actionneur 22. La pression dans le rail commun est mesurée par un capteur 24 et le signal correspondant à cette mesure est acheminé vers le contrôleur moteur 20 via la connexion d'acquisition de la pression 23a. Le contrôleur moteur 20 est relié à d'autres capteurs (non représentés) via au moins une connexion d'acquisition de données 23b. Ces autres capteurs sont par exemple, un capteur mesurant l'accélération que demande le conducteur du véhicule ou un capteur indiquant l'instant du cycle moteur auquel se situe le moteur. Ainsi, en fonction du régime moteur qui doit être atteint et en fonction des paramètres actuels du moteur, le contrôleur moteur 20 détermine la quantité de carburant qui doit être injecter dans chacun des cylindres du moteur. En conséquence le contrôleur moteur 20 détermine, d'une part, la pression de fonctionnement qui doit être atteinte dans le rail commun 8 et, d'autre part, les instants d'ouverture et de fermeture des vannes électro-hydrauliques de chacun des injecteurs 10a-10d. En fonction de ces paramètres, des signaux sont respectivement émis par le contrôleur moteur 20 sur les connexions d'actionnement de la pompe 23a pour actionner la pompe 5 et d'actionnement des vannes 23b pour actionner l'ouverture et la fermeture des vannes électro-hydrauliques correspondantes.The injection system also comprises a programmed computer, the motor controller 20. The opening and closing of the electro-hydraulic valves fitted to the injectors 10a-10d are controlled by the motor controller, via at least one actuator connection of the injectors 21a. Similarly, the operation of the pump 5 is controlled by the motor controller 20 via an actuating connection of the pump 21b and an actuator 22. The pressure in the common rail is measured by a sensor 24 and the signal corresponding to this measurement is routed to the motor controller 20 via the pressure acquisition connection 23a. The motor controller 20 is connected to other sensors (not shown) via at least one data acquisition connection 23b. These other sensors are, for example, a sensor measuring the acceleration required by the driver of the vehicle or a sensor indicating the instant of the engine cycle in which the engine is located. Thus, depending on the engine speed to be attained and according to the current engine parameters, the engine controller 20 determines the amount of fuel to be injected into each of the engine cylinders. Consequently, the motor controller 20 determines, on the one hand, the operating pressure that must be reached in the common rail 8 and, on the other hand, the opening and closing times of the electro-hydraulic valves of each of the injectors. 10a-10d. According to these parameters, signals are respectively emitted by the motor controller 20 on the actuating connections of the pump 23a to actuate the pump 5 and actuating the valves 23b to actuate the opening and closing of the corresponding electro-hydraulic valves.

De manière générale, de tels systèmes d'injection en carburant haute pression sont perturbés par des ondes hydrauliques. Ces ondes hydrauliques peuvent être soit des ondes de pression, soit des ondes de vitesse, sachant que ces deux types d'ondes sont corrélés.In general, such high-pressure fuel injection systems are disturbed by hydraulic waves. These hydraulic waves can be either pressure waves or velocity waves, knowing that these two types of waves are correlated.

Des ondes de pression sont générées par l'ouverture et la fermeture rapide des vannes électro-hydrauliques qui équipent les injecteurs du système d'injection : l'ouverture créant une dépression importante, la fermeture une surpression importante. Des ondes de pression sont également générées par le débit pulsé de la pompe.Pressure waves are generated by the rapid opening and closing of the electro-hydraulic valves that equip the injectors of the injection system: the opening creating a significant depression, closing a high overpressure. Pressure waves are also generated by the pulsed flow rate of the pump.

Les ondes générées par le fonctionnement des injecteurs se propagent le long des canalisations d'injection à contre-courant, c'est-à-dire vers l'amont de l'écoulement principal. Elles se propagent ensuite dans le rail commun, puis soit dans la canalisation d'entrée vers la pompe, soit dans les autres canalisations d'injection vers les autres injecteurs.The waves generated by the operation of the injectors propagate along the injection lines against the current, that is to say upstream of the main flow. They then propagate in the common rail, then either in the inlet pipe to the pump, or in the other injection lines to the other injectors.

Les ondes générées par le fonctionnement de la pompe se propagent le long de la canalisation d'entrée dans le sens de l'écoulement. Elles se propagent ensuite dans le rail commun, puis dans les différentes canalisations d'injection en direction des injecteurs.The waves generated by the operation of the pump propagate along the inlet pipe in the direction of flow. They then propagate in the common rail, then in the various injection lines towards the injectors.

Tout au long du système d'injection, ces différentes ondes principales subissent de multiples réflexions et de multiples transmissions. Ceci donne naissance à des ondes secondaires.Throughout the injection system, these different main waves undergo multiple reflections and multiple transmissions. This gives rise to secondary waves.

Finalement, un grand nombre d'ondes de pression, corrélées à des ondes de vitesse, traversent le système d'injection et créent, en un point donné, des fluctuations de pression autour d'une pression de fonctionnement du système d'injection.Finally, a large number of pressure waves, correlated to velocity waves, pass through the injection system and create, at a given point, pressure fluctuations around an operating pressure of the injection system.

En particulier, au niveau de chacune des vannes électro-hydrauliques équipant les injecteurs, la pression du carburant subit des fluctuations au cours du temps. Pour un injecteur donné, les fluctuations de plus grande amplitude sont donc dues soit au débit pulsé de la pompe 5, soit à l'ouverture et à la fermeture des vannes électro-hydrauliques des autres injecteurs, soit à l'ouverture et à la fermeture de la vanne électro-hydraulique de l'injecteur considéré, à un instant antérieur du cycle moteur.In particular, at each of the electro-hydraulic valves fitted to the injectors, the fuel pressure undergoes fluctuations over time. For a given injector, the fluctuations of greater amplitude are therefore due either to the pulsed flow rate of the pump 5 or to the opening and closing of the electro-hydraulic valves of the other injectors, or to the opening and closing of the electro-hydraulic valve of the injector considered, at an earlier time of the engine cycle.

En particulier, au moment de l'ouverture de la vanne électro-hydraulique dudit injecteur considéré, la pression du carburant n'est pas connue avec précision.In particular, at the moment of opening of the electro-hydraulic valve of said injector in question, the fuel pressure is not precisely known.

Une première conséquence est que le débit n'est pas connu avec précision. Durant la période d'ouverture de la vanne électro-hydraulique, la quantité de carburant injectée dans le cylindre n'est ainsi pas maîtrisée.A first consequence is that the flow is not known precisely. During the opening period of the electro-hydraulic valve, the amount of fuel injected into the cylinder is thus not controlled.

Une deuxième conséquence est qu'au moment où la vanne électro-hydraulique est sensée s'ouvrir ou se fermer, elle subit une force mécanique supplémentaire due à une variation de pression. Cette force supplémentaire facilite ou s'oppose à l'opération d'ouverture ou de fermeture de la vanne électro-hydraulique. L'instant d'ouverture ou de fermeture de la vanne est modifié. Ainsi, les fluctuations de pression impliquent que le moment et la période d'ouverture de la vanne équipant l'injecteur varient. Une nouvelle fois, la quantité de carburant injectée dans le cylindre n'est pas maîtrisée. De plus, le moment exact de l'injection n'est pas maîtrisé non plus.A second consequence is that when the electro-hydraulic valve is expected to open or close, it undergoes an additional mechanical force due to a change in pressure. This additional force facilitates or opposes the opening or closing operation of the electro-hydraulic valve. The opening or closing time of the valve is changed. Thus, the pressure fluctuations imply that the moment and the opening period of the valve equipping the injector vary. Once again, the amount of fuel injected into the cylinder is not controlled. Moreover, the exact moment of injection is not controlled either.

Ces fluctuations de pression au niveau de l'injecteur, et leurs conséquences sur la quantité de carburant injecté dans le cylindre du moteur, sont particulièrement préjudiciables lorsqu'il s'agit d'un moteur à injections multiples. Dans ce cas, au cours d'un cycle moteur, plusieurs courtes injections sont réalisées successivement, afin, entre autre, d'améliorer le rendement du moteur. L'utilisation d'un moteur à injections multiples nécessite donc la maîtrise de la quantité de carburant injectée dans le cylindre à chaque injection.These pressure fluctuations at the injector, and their consequences on the amount of fuel injected into the engine cylinder, are particularly detrimental when it comes to a multiple injection engine. In this case, during an engine cycle, several short injections are made successively, in order, among other things, to improve the efficiency of the engine. The use of a multiple injection engine therefore requires control of the amount of fuel injected into the cylinder at each injection.

De nombreux documents, connus de l'homme de l'art, décrivent des moyens mécaniques permettant d'atténuer les fluctuations de pression :Many documents, known to those skilled in the art, describe mechanical means for mitigating pressure fluctuations:

Le document US 5845621 propose d'ajouter un élément dissipatif 18 (figure 1) à l'une des extrémités de l'alésage principal du rail commun.The document US 5845621 proposes to add a dissipative element 18 ( figure 1 ) at one end of the main bore of the common rail.

Le document US 6314942 propose d'ajouter à l'intérieur du rail commun 20 un élément d'atténuation 110 des ondes de pression. Cet élément se présente sous la forme d'une tige coaxiale au rail commun et s'étendant sur toute la longueur de ce dernier. En outre, la section transversale de cet élément présente plusieurs lobes aptes à réfléchir les ondes de pression (figure 1).The document US 6314942 proposes to add inside the common rail 20 a attenuation element 110 of the pressure waves. This element is in the form of a rod coaxial with the common rail and extending over the entire length of the latter. In addition, the section cross section of this element has several lobes able to reflect the pressure waves ( figure 1 ).

Le document US 4161161 propose l'adjonction d'un élément capacitif 30 constitué par un volume en dérivation de la canalisation 2 reliant la pompe 1 à l'injecteur 3 (figure 1). Dans le mode de réalisation préféré, cet élément capacitif est placé à proximité de la vanne électro-hydraulique de l'injecteur.The document US 4161161 proposes the addition of a capacitive element 30 constituted by a volume in branch of the pipe 2 connecting the pump 1 to the injector 3 ( figure 1 ). In the preferred embodiment, this capacitive element is placed near the electro-hydraulic valve of the injector.

De la même manière, le document FR 2783284 propose de placer un élément capacitif 10 en série sur chacun des injecteurs. Chaque élément capacitif est, par ailleurs, en communication fluidique avec les autres.In the same way, the document FR 2783284 proposes to place a capacitive element 10 in series on each of the injectors. Each capacitive element is, moreover, in fluid communication with the others.

Le document FR 2786225 donne une liste de différents modes de réalisation d'éléments capacitifs destinés à être placés sur les canalisations d'injection, à proximité des sorties du rail commun 1 (figure 1).The document FR 2786225 gives a list of different embodiments of capacitive elements intended to be placed on the injection lines, close to the outputs of the common rail 1 ( figure 1 ).

Le document JP-802 13 33 décrit un système d'injection selon le préambule de la revendication 1. Selon ce document, les ondes hydrauliques sont atténuées par des éléments résistifs et capacitifs présentant des fréquences caractéristiques correspondant à des fréquences caractéristiques des canalisations du système d'injection.The document JP-802 13 33 discloses an injection system according to the preamble of claim 1. According to this document, the hydraulic waves are attenuated by resistive and capacitive elements having characteristic frequencies corresponding to characteristic frequencies of the pipes of the injection system.

De manière générale, les moyens mis en oeuvre afin d'atténuer les ondes de pression constituent une série de procédés locaux qui sont plus ou mois efficaces et qui relèvent plus d'un savoir-faire. Aucune réponse globale n'est apportée au problème de la propagation d'onde de pression à travers l'ensemble du système d'injection. En particulier, les ondes de pression dont la fréquence s'accorde à l'une des fréquences propres du système d'injection, conduisent à l'établissement d'ondes stationnaires à travers l'ensemble du système d'injection.In general, the means implemented to attenuate the pressure waves constitute a series of local processes that are more or less effective and that are more of a know-how. No overall response is provided to the problem of pressure wave propagation across the entire injection system. In particular, the pressure waves whose frequency agrees with one of the eigenfrequencies of the injection system, lead to the establishment of standing waves through the entire injection system.

Le but principal de la présente invention est de proposer une solution générale permettant d'atténuer les ondes de pression et en particulier les ondes de pression dont la fréquence correspond aux fréquences propres les plus basses.The main object of the present invention is to provide a general solution for attenuating the pressure waves and in particular the pressure waves whose frequency corresponds to the lowest eigenfrequencies.

Un autre but de la présente invention est de contrôler, à l'aide d'un dispositif programmé, la quantité de carburant injectée à chaque injection dans les différents cylindres du moteur, en évaluant les variations résiduelles de la pression au niveau des injecteurs.Another object of the present invention is to control, with the aid of a programmed device, the quantity of fuel injected at each injection into the various cylinders of the engine, by evaluating the residual variations of the pressure at the level of the injectors.

La présente invention a pour objet un procédé de construction d'un système d'injection comme décrit dans le preamble de la revendication 1.The present invention relates to a method of constructing an injection system as described in the preamble of claim 1.

Les éléments résistifs peuvent être des éléments résistifs asymétriques.The resistive elements may be asymmetrical resistive elements.

Les moyens d'atténuation permettent d'atténuer les ondes hydrauliques dont la fréquence correspond à une première fréquence de résonance dudit système d'injection qui est la fréquence propre la plus basse.The attenuation means serve to attenuate the hydraulic waves whose frequency corresponds to a first resonance frequency of said injection system which is the lowest natural frequency.

De préférence, les moyens d'atténuation permettent également d'atténuer les ondes hydrauliques dont la fréquence correspond à une deuxième fréquence de résonance dudit système d'injection qui est la fréquence propre juste supérieure à la fréquence propre la plus basse.Preferably, the attenuation means also make it possible to attenuate the hydraulic waves whose frequency corresponds to a second resonant frequency of said injection system which is the natural frequency just above the lowest natural frequency.

Dans un premier mode de réalisation préféré, certains desdits éléments résistifs et capacitifs sont placés aux extrémités de ladite canalisation d'entrée.In a first preferred embodiment, some of said resistive and capacitive elements are placed at the ends of said inlet pipe.

De préférence, l'extrémité amont de la canalisation d'entrée comporte un élément résistif en série avec un élément capacitif, et l'extrémité aval de la canalisation d'entrée comporte un élément résistif.Preferably, the upstream end of the inlet pipe comprises a resistive element in series with a capacitive element, and the downstream end of the inlet pipe comprises a resistive element.

Dans un deuxième mode de réalisation préféré, certains desdits éléments résistifs et capacitifs sont placés aux extrémités de chacune desdites canalisations d'injection.In a second preferred embodiment, some of said resistive and capacitive elements are placed at the ends of each of said injection lines.

De préférence, l'extrémité amont de chacune des canalisations d'injection comporte un élément résistif, et l'extrémité aval de chacune des canalisations d'injection comporte un élément capacitif.Preferably, the upstream end of each of the injection pipes comprises a resistive element, and the downstream end of each of the injection pipes comprises a capacitive element.

De préférence, chacune des canalisations d'injection comporte, en outre, un élément résistif placé au deuxième tiers desdites canalisations d'injection, celles-ci étant orientées dans le sens de l'écoulement du carburant, de l'amont vers l'aval.Preferably, each of the injection pipes further comprises a resistive element placed in the second third of said injection pipes, these being oriented in the direction of the fuel flow, from upstream to downstream. .

Le mode de réalisation préféré combine à la fois la disposition relative de la canalisation d'entrée et la disposition relative aux canalisations d'injection, et qui ont été décrites ci-dessus.The preferred embodiment combines both the relative layout of the inlet pipe and the injection pipe arrangement, which have been described above.

De préférence, le calculateur programmé calcule une pression corrigée au niveau de l'injecteur et actionne chacun desdits injecteurs en fonction de ladite pression corrigée afin d'injecter une quantité de carburant Q2 souhaitée.Preferably, the programmed computer calculates a corrected pressure at the injector and actuates each of said injectors according to said corrected pressure in order to inject a desired quantity of fuel Q 2 .

La pression corrigée Pth inj est fonction d'une pression Prail dans le rail commun, d'une température du carburant, d'une quantité de carburant Q1 injectée par le même injecteur lors d'une injection précédente, de la quantité de carburant Q2 souhaitée lors d'une injection actuelle et d'une séparation temporelle s entre l'injection précédente et l'injection actuelle.The corrected pressure P th inj is a function of a rail pressure P in the common rail, a fuel temperature, a quantity of fuel Q 1 injected by the same injector during a previous injection, the quantity of fuel. fuel Q 2 desired during a current injection and a temporal separation s between the previous injection and the current injection.

Dans le mode de réalisation préféré, la pression corrigée Pth inj est obtenue par la relation suivante : P th inj = P rail + Σ i g fi Q 1 Q 2 s P rail T x h fi Q 1 Q 2 s P rail T

Figure imgb0001

où l'on somme sur différentes fréquences propres fi, où g est une fonction périodique selon la séparation s et où h est une fonction d'atténuation selon la séparation temporelle s.In the preferred embodiment, the corrected pressure P th inj is obtained by the following relation: P th inj = P rail + Σ i boy Wut fi Q 1 Q 2 s P rail T x h fi Q 1 Q 2 s P rail T
Figure imgb0001

where we sum on different natural frequencies f i , where g is a periodic function according to the separation s and where h is an attenuation function according to the temporal separation s.

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante d'un mode de réalisation particulier de l'invention, donné uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. Sur ces dessins :

  • la figure 1 est une vue générale schématique d'un dispositif d'alimentation en carburant d'un moteur diesel ;
  • la figure 2 montre, superposées à un schéma du système d'injection selon l'art antérieur, une courbe de pression et une courbe de vitesse qui correspondent à une onde hydraulique stationnaire dont la fréquence est égale à la fréquence du premier mode propre de résonance du système d'injection ;
  • la figure 3 montre, superposées à un schéma du système d'injection selon l'art antérieur, une courbe de pression et une courbe de vitesse qui correspondent à une onde hydraulique stationnaire dont la fréquence est égale à la fréquence du deuxième mode propre de résonance du système d'injection;
  • la figure 4 est une section transversale d'un insert comportant un élément résistif asymétrique;
  • La figure 4A est une vue agrandie de la zone entourée de la figure 4;
  • la figure 5 est un schéma illustrant le mode de réalisation préféré du système d'injection selon l'invention; et,
  • la figure 6 montre une courbe représentant en fonction du temps la pression corrigée estimé par le contrôleur moteur, une courbe représentant en fonction du temps la quantité de carburant injectée sans correction logicielle, et une courbe représentant en fonction du temps la quantité de carburant injectée avec une correction logicielle tenant compte de la pression corrigée.
The invention will be better understood, and other objects, details, features and advantages thereof will appear more clearly in the following description of a particular embodiment of the invention, given solely for illustrative purposes and not limiting, with reference to the accompanying drawings. On these drawings:
  • the figure 1 is a schematic overview of a fuel supply device of a diesel engine;
  • the figure 2 shows, superimposed on a diagram of the injection system according to the prior art, a pressure curve and a velocity curve which correspond to a stationary hydraulic wave whose frequency is equal to the frequency of the first eigenmode of the resonance system. injection;
  • the figure 3 shows, superimposed on a diagram of the injection system according to the prior art, a pressure curve and a velocity curve which correspond to a stationary hydraulic wave whose frequency is equal to the frequency of the second eigenmode of the resonance system. 'injection;
  • the figure 4 is a cross section of an insert having an asymmetrical resistive element;
  • The Figure 4A is an enlarged view of the area surrounded by the figure 4 ;
  • the figure 5 is a diagram illustrating the preferred embodiment of the injection system according to the invention; and,
  • the figure 6 shows a curve representing as a function of time the corrected pressure estimated by the motor controller, a curve representing as a function of time the quantity of fuel injected without software correction, and a curve representing as a function of time the quantity of fuel injected with a software correction taking into account the corrected pressure.

La figure 1 des dessins placés en annexe présente de manière schématique un dispositif d'alimentation en carburant d'un moteur thermique. La description de ce dispositif, et en particulier du système d'injection, a déjà été réalisée plus haut dans ce document.The figure 1 drawings in the appendix schematically shows a device for supplying fuel to a heat engine. The description of this device, and in particular of the injection system, has already been made earlier in this document.

La pression de fonctionnement régnant dans le rail commun 8 évolue entre 200 et 2000 bars au cours du fonctionnement du moteur et de la puissance demandée. Autour de cette pression de fonctionnement, la pression subit des variations au cours du temps qui peuvent atteindre une amplitude de 300 bars.The operating pressure prevailing in the common rail 8 varies between 200 and 2000 bar during the operation of the engine and the requested power. Around this operating pressure, the pressure undergoes variations over time which can reach an amplitude of 300 bars.

Le système d'injection comme tout système mécanique se caractérise par une série de modes propres caractérisés chacun par une fréquence propre de résonance. Le premier mode propre correspondant à la fréquence de résonance la plus basse. Le deuxième mode propre correspond à la fréquence propre située juste au-dessus de ladite fréquence de résonance la plus basse. Les ondes de pression, ou de vitesse, dont la fréquence est adaptée à l'une de ces fréquences propres, ne sont pas atténuées au cours de leur propagation dans le système d'injection. Il y a, au final, établissement d'une onde stationnaire.The injection system as any mechanical system is characterized by a series of eigen modes each characterized by a natural frequency of resonance. The first eigenmode corresponding to the lowest resonant frequency. The second eigenmode corresponds to the eigenfrequency just above said lowest resonant frequency. Pressure waves, or velocity, whose frequency is adapted to one of these eigenfrequencies, are not attenuated during their propagation in the injection system. There is, ultimately, establishment of a standing wave.

La figure 2 illustre le cas d'une onde stationnaire dont la fréquence correspond à la première fréquence propre du système d'injection.The figure 2 illustrates the case of a standing wave whose frequency corresponds to the first natural frequency of the injection system.

La courbe 2Pa représente l'amplitude de l'onde stationnaire de pression le long de la canalisation d'entrée 7. L'amplitude de l'onde stationnaire de pression est maximum au niveau de la pompe 5. Ce point correspond à un ventre de pression. L'amplitude de l'onde stationnaire de pression diminue progressivement dans le sens de l'écoulement principal indiqué par la flèche. Finalement, l'amplitude de l'onde stationnaire de pression s'annule une première fois au niveau de l'entrée E du rail commun 8. Ce point correspond à un noeud de pression. De la même manière la courbe 2Pb représente l'amplitude de l'onde stationnaire de pression le long des différentes canalisations d'injection 9a-9d. L'amplitude de l'onde stationnaire de pression est nulle au niveau des sorties Sa-Sd du rail commun 8. L'amplitude augmente progressivement dans le sens de l'écoulement principal, pour atteindre un premier maximum au niveau des différents injecteurs 10a-10d.The curve 2Pa represents the amplitude of the standing pressure wave along the inlet pipe 7. The amplitude of the standing pressure wave is maximum at the level of the pump 5. This point corresponds to a belly of pressure. The amplitude of the standing pressure wave gradually decreases in the direction of the main flow indicated by the arrow. Finally, the amplitude of the stationary pressure wave is canceled a first time at the input E of the common rail 8. This point corresponds to a pressure node. In the same way the curve 2Pb represents the amplitude of the standing pressure wave along the various injection lines 9a-9d. The amplitude of the stationary pressure wave is zero at the outputs Sa-Sd of the common rail 8. The amplitude increases progressively in the direction of the main flow, to reach a first maximum at the various injectors 10a. 10d.

Les courbes 2Va et 2Vb représentent l'amplitude de l'onde stationnaire de vitesse respectivement le long de la canalisation d'entrée 7 et des différentes canalisations d'injection 9a-9d. Cette onde stationnaire de vitesse est associée à l'onde stationnaire de pression précédemment décrite. Au niveau de la pompe 5, l'amplitude de l'onde stationnaire de vitesse est maximale. L'amplitude de l'onde stationnaire de vitesse reste constante tout au long de la canalisation d'entrée 7. L'amplitude de l'onde stationnaire de vitesse est donc maximale au niveau de l'entrée E du rail commun 8. De la même manière, sur la courbe 2Vb, l'amplitude de l'onde stationnaire de vitesse est maximale au niveau des différentes sorties Sa-Sd du rail commun 8. Il s'agit d'un ventre de l'onde stationnaire de vitesse. L'amplitude de l'onde stationnaire de vitesse diminue progressivement le long des canalisations d'injection 9a-9d pour s'annuler une première fois au niveau des injecteurs 10a-10d. Il s'agit alors d'un noeud de l'onde stationnaire de vitesse.The curves 2Va and 2Vb represent the amplitude of the stationary speed wave respectively along the inlet pipe 7 and the various injection pipes 9a-9d. This stationary speed wave is associated with the pressure wave previously described. At the level of the pump 5, the amplitude of the stationary speed wave is maximum. The amplitude of the stationary speed wave remains constant throughout the input channel 7. The amplitude of the stationary speed wave is therefore maximum at the input E of the common rail 8. From the similarly, on the curve 2Vb, the amplitude of the stationary speed wave is maximum at the different outputs Sa-Sd of the common rail 8. It is a belly of the stationary speed wave. The amplitude of the stationary speed wave gradually decreases along the injection lines 9a-9d to cancel a first time at the injectors 10a-10d. It is then a node of the stationary speed wave.

La figure 3 représente une onde stationnaire dont la fréquence correspond à la deuxième fréquence propre du système d'injection.The figure 3 represents a standing wave whose frequency corresponds to the second natural frequency of the injection system.

Les courbes 3Pa et 3Pb représentent l'amplitude de l'onde stationnaire de pression le long du système d'injection représenté schématiquement en abscisse. L'amplitude de l'onde stationnaire de pression est maximale au niveau de la pompe 5, puis diminue rapidement pour s'annuler une première fois en un point A situé au premier tiers de la canalisation d'entrée 7. L'amplitude repasse par un maximum en un point C situé au deuxième tiers de la canalisation d'entrée 7. Enfin, l'amplitude diminue pour s'annuler à nouveau au niveau de l'entrée E du rail commun 8. Sur la seconde courbe, 3Pb, l'amplitude de l'onde stationnaire de pression est nulle au niveau des sorties Sa-Sd du rail commun 8, puis augmente le long des canalisations d'injection 9a-9d, pour atteindre un premier maximum au niveau d'un point F situé au premier tiers desdites canalisations d'injection 9a-9d. Puis, dans les sens de l'écoulement principal, repéré par la flèche, l'amplitude de l'onde stationnaire de pression diminue progressivement pour s'annuler à nouveau au niveau d'un point G, situé au deuxième tiers desdites canalisations d'injection 9a-9d. Enfin, l'amplitude augmente de nouveau et est maximum au niveau des injecteurs 10a-10d.The curves 3Pa and 3Pb represent the amplitude of the standing pressure wave along the injection system shown schematically in the abscissa. The amplitude of the standing pressure wave is maximum at the pump 5, then decreases rapidly to cancel itself a first time at a point A located in the first third of the inlet pipe 7. The amplitude passes through a maximum at a point C located in the second third of the inlet pipe 7. Finally, the amplitude decreases to cancel again at the input E of the common rail 8. On the second curve, 3Pb, l the amplitude of the stationary pressure wave is zero at the outputs Sa-Sd of the common rail 8, then increases along the injection lines 9a-9d, to reach a first maximum at a point F located at the first third of said injection lines 9a-9d. Then, in the direction of the main flow, marked by the arrow, the amplitude of the standing pressure wave gradually decreases to cancel again at a point G, located in the second third of said pipes. injection 9a-9d. Finally, the amplitude increases again and is maximum at the injectors 10a-10d.

De manière corrélée, les courbes 3Va et 3Vb représentent l'amplitude de l'onde stationnaire de vitesse le long du système d'injection. Sur la courbe 3Va, l'amplitude de l'onde stationnaire de vitesse commence par être maximale au niveau de la pompe 5, puis diminue rapidement pour s'annuler en un point B situé au milieu de la canalisation d'entrée 7. L'amplitude augment ensuite et repasse par un maximum au niveau de l'entrée E du rail commun 8. Sur la seconde courbe 3Vb, l'amplitude de l'onde stationnaire de vitesse est maximale à la sortie du rail commun 8, diminue le long des canalisations d'injection 9a-9b, pour s'annuler une première fois au niveau d'un point F, situé au premier tiers desdites canalisations d'injection 9a-9d. Puis, l'amplitude de l'onde stationnaire de vitesse augmente progressivement pour passer à nouveau par un maximum en un point G situé au deuxième tiers desdites canalisations d'injection 9a-9d. Enfin, dans une dernière section, l'amplitude de l'onde stationnaire de vitesse diminue pour s'annuler à nouveau au niveau des différents injecteurs 10a-10d.Correlated curves 3Va and 3Vb represent the amplitude of the stationary velocity wave along the injection system. On the curve 3Va, the amplitude of the stationary speed wave begins to be maximum at the pump 5, then decreases rapidly to cancel at a point B in the middle of the inlet pipe 7. The amplitude then increases and returns by a maximum at the input E of the common rail 8. On the second curve 3Vb, the amplitude of the stationary wave velocity is maximum at the output of the common rail 8, decreases along the injection lines 9a-9b, to cancel a first time at a point F, located in the first third of said injection pipes 9a-9d. Then, the amplitude of the stationary speed wave gradually increases to pass again by a maximum at a point G located in the second third of said injection lines 9a-9d. Finally, in a last section, the amplitude of the stationary speed wave decreases to cancel again at the different injectors 10a-10d.

Il est à noter que cette description est faite avec des conditions aux limites particulières. Par exemple, il est manifeste que, sur les courbes précédentes, les vannes électro-hydrauliques des différents injecteurs 10a-10d sont fermées.It should be noted that this description is made with particular boundary conditions. For example, it is clear that, on the previous curves, the electro-hydraulic valves of the various injectors 10a-10d are closed.

Il est également à noter que les courbes de vitesse et de pression sont des courbes approximativement sinusoïdales.It should also be noted that the velocity and pressure curves are approximately sinusoidal curves.

Enfin, les valeurs maximales des amplitudes, si elles sont identiques sur une même courbe, ne le sont pas d'une courbe à l'autre.Finally, the maximum values of the amplitudes, if they are identical on the same curve, are not identical from one curve to another.

Nous allons maintenant décrire la manière d'atténuer les ondes hydrauliques perturbant le système d'injection et en particulier les ondes hydrauliques stationnaires.We will now describe how to attenuate the hydraulic waves disturbing the injection system and in particular the stationary hydraulic waves.

Dans le cadre d'une modélisation linéaire du phénomène et d'un parallèle avec les circuits électriques en régime sinusoïdal, il est possible d'atténuer ces ondes stationnaires en plaçant des éléments passifs en des points particuliers du système d'injection. Ces éléments passifs permettent de dissiper l'énergie de l'onde hydraulique. Comme cela sera décrit plus bas, le mode de réalisation préféré de la présente invention n'utilise que des éléments résistifs, placés en série, et des éléments capacitifs, placés eux aussi en série. D'autres éléments passifs, tels que des inductances pourraient être utilisées. En variante, les éléments utilisés pourraient être placés soit en série soit en parallèle. La notion d'impédance complexe regroupe ces différentes variantes dans un concept commun.In the context of linear modeling of the phenomenon and of a parallel with the sinusoidal electric circuits, it is possible to attenuate these standing waves by placing passive elements at particular points of the injection system. These passive elements make it possible to dissipate the energy of the hydraulic wave. As will be described below, the preferred embodiment of the present invention uses only resistive elements, placed in series, and capacitive elements, also placed in series. Other passive elements, such as inductances could be used. Alternatively, the elements used could be placed either in series or in parallel. The notion of complex impedance groups these different variants into a common concept.

Un élément résistif est, par exemple, constitué par une section de canalisation de diamètre réduit. Un élément capacitif est, par exemple, constitué par un volume de dimension définie connecté par un élément résistif à un point de la canalisation principale.A resistive element is, for example, constituted by a reduced diameter pipe section. A capacitive element is, for example, constituted by a volume of defined dimension connected by a resistive element to a point of the main pipe.

Le procédé de construction d'un système d'injection selon l'invention comporte des éléments résistifs placés en série à des endroits qui correspondent à des ventres de l'onde stationnaire de vitesse et des éléments capacitifs placés en série à des endroits qui correspondent à des ventres de l'onde stationnaire de pression. En suivant cette règle, il est possible de construire un système d'injection dans lequel les ondes hydrauliques de fréquence basse sont presque entièrement atténuées.The method of constructing an injection system according to the invention comprises resistive elements placed in series at locations which correspond to bellies of the stationary speed wave and capacitive elements placed in series at locations corresponding to bellies of the standing pressure wave. By following this rule, it is possible to construct an injection system in which the low frequency hydraulic waves are almost fully attenuated.

Mais, en contre partie, la pression de fonctionnement chute le long du système d'injection. Il est alors nécessaire de faire travailler la pompe de manière importante, afin que la pression de fonctionnement soit élevée au niveau des injecteurs. De plus, l'alimentation en carburant de l'injecteur peut être momentanément insuffisante.But, in counterpart, the operating pressure drops along the injection system. It is then necessary to work the pump significantly, so that the operating pressure is high at the injectors. In addition, the fuel supply of the injector may be momentarily insufficient.

Selon une première manière d'éviter ce problème de chute de pression le long du système d'injection, la présente invention utilise des éléments résistifs asymétriques, aussi dénommés diodes fluidiques. Une telle diode fluidique placée sur un insert est représentée sur la figure 4.According to a first way of avoiding this problem of pressure drop along the injection system, the present invention uses asymmetrical resistive elements, also called fluidic diodes. Such a fluidic diode placed on an insert is represented on the figure 4 .

La figure 4 représente un insert 50. Cet insert 50 est de forme globalement cylindrique autour d'un axe central X. L'insert 50 présente à chacune de ses extrémités axiales une face radiale avant 51 et une face radiale arrière 52. La face radiale arrière 52 est percée d'un alésage 53 de diamètre D'. L'arête définie par la surface intérieure 56 de l'alésage 53 et la face radiale arrière 52 est chanfreinée et produit la surface 54. Ainsi, l'insert 50 présente une section transversale selon l'axe X en forme de U dont la paroi du fond 55 est munie d'un orifice 27. L'orifice 27 comporte une partie aval 29 cylindrique de diamètre réduit d bien inférieur au diamètre D'. L'orifice 27 comporte une partie amont 28 en forme d'entonnoir, dont l'ouverture de plus grand diamètre est orientée en direction de l'amont de l'écoulement de carburant.The figure 4 represents an insert 50. This insert 50 is of generally cylindrical shape around a central axis X. The insert 50 has at each of its axial ends a radial front face 51 and a rear radial face 52. The rear radial face 52 is pierced with a bore 53 of diameter D '. The edge defined by the inner surface 56 of the bore 53 and the rear radial face 52 is chamfered and produces the surface 54. Thus, the insert 50 has a U-shaped cross section X whose wall the bottom 55 is provided with an orifice 27. The orifice 27 has a downstream cylindrical portion 29 of reduced diameter d much smaller than the diameter D '. The orifice 27 has an upstream portion 28 in the form of a funnel, whose opening of larger diameter is oriented towards the upstream of the fuel flow.

La partie amont 28 ne comporte aucune arête vive sur lesquelles la couche limite de l'écoulement pourrait se décoller comme cela est montré sur la figure 4A. La partie amont 28 permet de faire varier la section de l'écoulement lentement et continûment par rapport aux caractéristiques de l'écoulement lui-même. Ainsi les dimensions caractéristiques de la partie amont 28 de l'orifice 27, comme par exemple le rayon de l'arrondi 30, sont supérieurs ou égales à une dimension caractéristique de l'orifice 27, à savoir d.The upstream portion 28 has no sharp edges on which the boundary layer of the flow could come off as shown on the Figure 4A . The upstream portion 28 makes it possible to vary the section of the flow slowly and continuously with respect to the characteristics of the flow itself. Thus, the characteristic dimensions of the upstream portion 28 of the orifice 27, such as the radius of the rounding 30, are greater than or equal to a characteristic dimension of the orifice 27, namely d.

Ainsi, la section de l'écoulement se resserrant progressivement, l'atténuation de la pression dans le sens de l'écoulement est faible. En revanche, la section de l'écoulement se resserrant brusquement, l'atténuation de la pression à contre-courant est importante. Un tel orifice dissymétrique présente une perte de charge jusqu'à 1, 5 fois plus élevée dans le sens "aval vers amont" que dans le sens "amont vers aval" .Thus, the section of the flow gradually narrowing, the attenuation of the pressure in the direction of the flow is weak. On the other hand, the section of the flow tightening suddenly, the attenuation of the countercurrent pressure is important. Such an asymmetrical orifice has a pressure drop up to 1.5 times higher in the "downstream to upstream" direction than in the "upstream to downstream" direction.

De tels inserts peuvent être ajoutés au niveau de la canalisation d'entrée 7 ou au niveau des différentes canalisations d'injection 9a-9d comme élément résistif afin d'atténuer les ondes de pression, et en particulier les ondes stationnaires de pression, sans pour autant gêner l'écoulement principal de carburant.Such inserts may be added at the level of the inlet pipe 7 or at the various injection pipes 9a-9d as a resistive element in order to attenuate the pressure waves, and in particular the stationary pressure waves, without as much hindering the main flow of fuel.

Une autre manière d'éviter le problème de la chute de pression le long du système d'injection, consiste, dans un premier temps, à ne pas surcharger le système d'injection d'éléments résistifs et d'accepter des variations de pression résiduelles au niveau de l'injecteur. Il s'agit en fait de trouver un compromis acceptable entre une chute de la pression de fonctionnement le long du système d'injection et l'atténuation des ondes stationnaires de fréquence basse. Dans un second temps, les variations de pression résiduelles au niveau de l'injecteur sont prises en compte au moyen d'un dispositif programmé afin de n'injecter dans le cylindre du moteur que la quantité de carburant souhaitée. C'est cette seconde approche qui va maintenant être décrite en détails en rapport avec le mode de réalisation préféré de la présente invention.Another way of avoiding the problem of the pressure drop along the injection system consists, firstly, in not overloading the injection system with resistive elements and accepting residual pressure variations. at the level of the injector. It is in fact to find an acceptable compromise between a drop in operating pressure along the injection system and the attenuation of low frequency standing waves. In a second step, the residual pressure variations at the injector are taken into account by means of a programmed device in order to inject into the engine cylinder only the desired amount of fuel. It is this second approach which will now be described in detail in connection with the preferred embodiment of the present invention.

Dans le but d'atténuer les ondes hydrauliques dont la fréquence correspond à la première et à la deuxième fréquence propre dudit système d'injection (figure 2 et figure 3), sans pour autant engendrer une chute de la pression de fonctionnement inacceptable le long du système d'injection, le système d'injection est équipé d'une succession d'éléments résistifs symétriques et capacitifs. Cette succession va maintenant être décrite en rapport avec la figure 5.In order to attenuate the hydraulic waves whose frequency corresponds to the first and the second natural frequency of said injection system ( Figure 2 and Figure 3 ), without generating a fall in unacceptable operating pressure along the injection system, the injection system is equipped with a succession of symmetrical and capacitive resistive elements. This succession will now be described in relation to the figure 5 .

La direction principale de l'écoulement du carburant est indiquée par une flèche, afin de donner un sens aux notions d'amont et d'aval.The main direction of fuel flow is indicated by an arrow, to give meaning to upstream and downstream.

La canalisation d'entrée 7 est équipé au niveau de son extrémité amont d'un élément capacitif 73 en série avec un élément résistif 71, et au niveau de son extrémité aval d'un élément résistif 72. Les canalisations d'injection 9a-9d sont respectivement équipées, au niveau de leur extrémité amont, d'un élément résistif 91a-91d, au niveau d'un point F situé au deuxième tiers de leur longueur d'un élément résistif 92a-92d, et au niveau de leur extrémité aval d'un élément capacitif 93a-93d. De manière équivalente, l'élément résistif 72 et les éléments résistifs 91a-91d peuvent être situés dans le rail commun respectivement au niveau de l'entrée E et des sorties Sa-Sd. De même, les éléments capacitifs 93a-93d peuvent être situés dans les injecteurs eux-mêmes, au plus proche des vannes électro-hydrauliques.The inlet pipe 7 is equipped at its upstream end with a capacitive element 73 in series with a resistive element 71, and at its downstream end with a resistive element 72. The injection lines 9a-9d are respectively equipped, at their upstream end, with a resistive element 91a-91d, at a point F located at the second third of their length of a resistive element 92a-92d , and at their downstream end of a capacitive element 93a-93d. Equivalently, the resistive element 72 and the resistive elements 91a-91d may be located in the common rail respectively at the input E and outputs Sa-Sd. Likewise, the capacitive elements 93a-93d may be located in the injectors themselves, as close as possible to the electro-hydraulic valves.

Cette disposition particulière est le résultat de nombreuses simulations numériques. Ces dernières ont permis de trouver le meilleur compromis entre chute de pression de fonctionnement et atténuation des ondes de pression. La disposition de la figure 5 permet une atténuation importante des ondes de pression générées par la pompe 5 et des ondes de pression générées par les autres injecteurs au niveau d'un injecteur donné. Il ne subsiste alors que des variations temporelles atténuées de pression qui correspondent à l'actionnement du même injecteur à un instant antérieur du cycle moteur, lors d'une injection précédente.This particular layout is the result of many numerical simulations. These have made it possible to find the best compromise between operating pressure drop and attenuation of pressure waves. The provision of the figure 5 allows a significant attenuation of the pressure waves generated by the pump 5 and pressure waves generated by the other injectors at a given injector. There then remain only attenuated temporal variations of pressure which correspond to the actuation of the same injector at an earlier time of the engine cycle, during a previous injection.

Dans le cadre d'un moteur multi-injections, cet actionnement antérieur de l'injecteur peut correspond à une première injection, ou injection pilote, au cours de laquelle la quantité de carburant introduite dans le cylindre est faible. La tendance actuelle est d'augmenter le nombre d'injections par cylindre au cours d'un cycle moteur. Par exemple, cinq injections successives peuvent être réalisées.In the context of a multi-injection engine, this prior actuation of the injector may correspond to a first injection, or pilot injection, during which the amount of fuel introduced into the cylinder is low. The current trend is to increase the number of injections per cylinder during a motor cycle. For example, five successive injections can be performed.

Soit Q1 la quantité de carburant introduite dans le cylindre à un instant antérieur, soit Q2 la quantité de carburant qu'il est nécessaire d'introduire dans le cylindre à l'instant considéré; et soit s la séparation temporelle entre ces deux injections successives.Let Q 1 be the quantity of fuel introduced into the cylinder at a previous instant, or let Q 2 be the quantity of fuel that it is necessary to introduce into the cylinder at the moment considered; and let s be the temporal separation between these two successive injections.

A chaque nouvelle injection, le contrôleur moteur évalue la quantité de carburant Q2 désirée en fonction, entre autre, de l'instant du cycle moteur où doit avoir lieu la deuxième injection et de la puissance que le moteur doit fournir.With each new injection, the engine controller evaluates the quantity of fuel Q 2 desired depending, among other things, the time of the engine cycle where the second injection must take place and the power that the engine must provide.

Puis, le contrôleur moteur calcule la durée d'ouverture de la vanne électro-hydraulique équipant l'injecteur permettant d'introduire la quantité de carburant Q2 en tenant compte, non pas de la pression Prail mesurée par le capteur de pression 24 au niveau du rail commun 8, mais en évaluant une pression corrigée Pth inj au niveau de l'injecteur. Le calcul de cette pression corrigée ou théorique va permettre d'évaluer les variations résiduelles de pression au niveau de l'injecteur.Then, the engine controller calculates the duration of opening of the electro-hydraulic valve equipping the injector for introducing the amount of fuel Q 2 taking into account, not the pressure P rail measured by the pressure sensor 24 at the common rail 8, but by evaluating a corrected pressure P th inj at the injector. The calculation of this corrected or theoretical pressure will make it possible to evaluate the residual pressure variations at the level of the injector.

La pression corrigée Pth inj est obtenue en ajoutant à la pression Prail la somme, sur l'ensemble des fréquences propres fi considérées, d'une estimation des variations résiduelles de pression dues à une onde de pression de fréquence propre donnée.The corrected pressure P th inj is obtained by adding to the pressure P rail the sum, over the set of eigenfrequencies f i considered, of an estimate of the residual pressure variations due to a given pressure wave of eigenfrequency.

L'estimation des variations résiduelles de pression dues à une onde de pression de fréquence propre donnée est obtenue en multipliant une fonction périodique g par une fonction d'amortissement h. Ladite fonction périodique g dépend, par exemple, des quantités de carburant Q1 et Q2, de la séparation temporelle s entre chacune des deux injections, et de paramètres thermodynamiques tels que la pression Prail et la température du carburant T. La fonction périodique g est typiquement une fonction sinusoïdale de la séparation temporelle s.The estimation of the residual pressure variations due to a given pressure wave of eigenfrequency is obtained by multiplying a periodic function g by a damping function h. Said periodic function g depends, for example, on the quantities of fuel Q 1 and Q 2 , the time separation s between each of the two injections, and thermodynamic parameters such as the rail pressure P and the fuel temperature T. The periodic function g is typically a sinusoidal function of the time separation s.

Ladite fonction d'amortissement h est par exemple fonction des quantités de carburant Q1 et Q2, de la séparation temporelle s entre chacune des deux injections, et de la pression de fonctionnement mesurée par le capteur de pression dans le rail commun et de la température du carburant T.Said damping function h is, for example, a function of the quantities of fuel Q 1 and Q 2 , of the time separation s between each of the two injections, and of the operating pressure measured by the pressure sensor in the common rail and of the fuel temperature T.

Sous forme mathématique cela donne la relation suivante : P th inj = P rail + Σ i g fi Q 1 Q 2 s P rail T x h fi Q 1 Q 2 s P rail T

Figure imgb0002
In mathematical form this gives the following relation: P th inj = P rail + Σ i boy Wut fi Q 1 Q 2 s P rail T x h fi Q 1 Q 2 s P rail T
Figure imgb0002

Au cours du fonctionnement, le contrôleur moteur 20 (figure 1) ne recalcule pas obligatoirement la valeur de la fonction périodique g ou de la fonction d'amortissement h en fonction des valeurs que prennent les différents paramètres du modèle. Le contrôleur moteur utilise plutôt des cartographies ou un abaque, qui, en fonction de la valeur des différents paramètres en entrée, donne la valeur de la fonction périodique g ou de la fonction d'amortissement h en sortie.During operation, the motor controller 20 ( figure 1 ) does not necessarily recalculate the value of the periodic function g or the damping function h according to the values taken by the different parameters of the model. The motor controller uses rather maps or an abacus, which, according to the value of the various input parameters, gives the value of the periodic function g or of the damping function h at the output.

Une telle cartographie est obtenue à partir d'un véhicule test d'une gamme de véhicule. Ce véhicule test subit différents essais, et les courbes correspondant aux fonctions périodiques g et d'amortissement h sont relevées. Par la suite, au cours de la fabrication d'un véhicule particulier de ladite gamme de véhicule, ces courbes sont enregistrées dans des moyens de mémorisation faisant partie du contrôleur moteur 20 pour constituer ladite cartographie.Such mapping is obtained from a test vehicle of a vehicle range. This test vehicle undergoes various tests, and the curves corresponding to the periodic functions g and damping h are recorded. Subsequently, during the manufacture of a particular vehicle of said vehicle range, these curves are recorded in memory means forming part of the motor controller 20 to constitute said mapping.

En se référant à la figure 6, la courbe 6b représente la quantité de carburant réellement injecté dans le cylindre dans le cas où le système d'injection représenté sur la figure 5 n'est pas équipé d'un système logiciel permettant de tenir compte des fluctuations résiduelles de pression. Le contrôleur moteur ne tenant alors compte que de la pression Prail relevée au niveau du rail commun 8 par le capteur de pression 24. La mesure de la pression Prail relevée étant sensiblement constante en fonction de la séparation s, la durée d'ouverture de la vanne électro-hydraulique commandée par le contrôleur moteur afin d'injecter une quantité de carburant Q2 l'est également. Mais, puisque la pression réelle au niveau de l'injecteur fluctue en fonction du temps, le débit au niveau de l'injecteur fluctue également. La quantité réellement introduite varie en suivant directement les variations de pression au niveau de l'injecteur.Referring to the figure 6 , the curve 6b represents the quantity of fuel actually injected into the cylinder in the case where the injection system represented on the figure 5 is not equipped with a software system to account for residual pressure fluctuations. The engine controller then taking into account only the pressure P rail raised at the common rail 8 by the pressure sensor 24. The measurement of the pressure P rail raised is substantially constant depending on the separation s, the opening time the electro-hydraulic valve controlled by the engine controller to inject a quantity of fuel Q 2 is also. But since the actual pressure at the injector fluctuates with time, the flow at the injector also fluctuates. The amount actually introduced varies directly following the pressure variations at the injector.

En revanche, la courbe 6c représente la quantité de carburant réellement injecté dans le cylindre dans le cas où le système d'injection représenté sur la figure 5 est équipé d'un système logiciel permettant de tenir compte des fluctuations résiduelles de pression. Dans ce cas, le contrôleur moteur calcule une pression corrigée Pth inj au niveau de l'injecteur. La courbe 6a représente cette pression corrigée. Le contrôleur moteur modifie en conséquence la durée d'ouverture de la vanne électro-hydraulique pour compenser la variation de pression. Si la pression est sensée augmenter à l'instant de la seconde injection, la durée d'ouverture de la vanne sera plus faible. Au contraire, si la pression est sensée diminuer à l'instant de l'injection, la durée d'ouverture sera légèrement augmentée. Finalement, la quantité de carburant réellement injectée dans le cylindre fluctue moins et se rapproche de la quantité de carburant Q2 désirée, ce qu'indique clairement la courbe 6c.On the other hand, the curve 6c represents the quantity of fuel actually injected into the cylinder in the case where the injection system represented on the figure 5 is equipped with a software system to account for residual pressure fluctuations. In this case, the motor controller calculates a corrected pressure P th inj at the injector. Curve 6a represents this corrected pressure. The motor controller accordingly changes the opening time of the electro-hydraulic valve to compensate for the pressure variation. If the pressure is supposed to increase at the moment of the second injection, the opening time of the valve will be lower. On the contrary, if the pressure is supposed to decrease at the moment of the injection, the duration of opening will be slightly increased. Finally, the amount of fuel actually injected into the cylinder fluctuates less and approaches the desired amount of fuel Q 2 , which is clearly indicated by curve 6c.

Le système logiciel permet donc de compenser les fluctuations résiduelles de pression.The software system therefore makes it possible to compensate for residual pressure fluctuations.

Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with a particular embodiment, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims (11)

  1. Process for construction of a system for injection of high pressure fuel, including a pump (5), a common rail (8) and a plurality of injectors (10a-10d), and an input pipe (7) connecting the pump to the said common rail and a plurality of injection pipes (9a-9d) respectively connecting the said common rail to each of the injectors of the said plurality of injectors, the said injection system including a programmed computer (20) able to measure a pressure in the common rail by means of a pressure sensor (24) placed in the common rail and able to separately actuate each of the said injectors and including attenuation means which are able to attenuate stationary hydraulic waves of pressure or velocity, and which are formed of resistive elements (71-72, 91-92) and/or capacitive elements (73, 93), characterised by the fact that it includes the steps consisting of:
    - determining places which correspond to a trough of one of the stationary velocity waves and placing the said resistive elements (71-72, 91-92) there, and/or
    - determining places which correspond to a trough of one of the stationary pressure waves and placing the said capacitive elements (73, 93) there,
    The said stationary velocity wave and/or the said stationary pressure wave being hydraulic waves the frequency of which corresponds to a first resonance frequency of the said injection system which is the lowest natural frequency.
  2. Process as described in claim 1, characterised by the fact that certain of the said resistive elements (71-72, 91-92) are asymmetric resistive elements (50) providing attenuation of pressure in the direction of flow different from the counterflow attenuation.
  3. Process as described in one of claims 1 to 2, characterised by the fact that it includes the step consisting of placing certain of the said resistive (71-72) and capacitive (73) elements at the ends of the said input pipe (7).
  4. Process as described in claim 3, characterised by the fact that it includes the step consisting of placing a resistive element (71) in series with a capacitive element (73) at the upstream end of the input pipe (7), and a resistive element (72) at the downstream end of the input pipe.
  5. Process as described in one of claims 1 to 2, characterised by the fact that it includes the step consisting of placing certain of the said resistive (91a-d) and capacitive (93a-d) elements at the ends of each of the said injection pipes (9a-d).
  6. Process as described in claim 5, characterised by the fact that it includes the step consisting of placing a resistive element (91a-d) at the upstream end of each of the injection pipes (9a-d), and a resistive element in series with a capacitive element (93a-d) at the downstream end of each of the injection pipes.
  7. Process as described in claim 6, characterised by the fact that it includes the step consisting of placing a resistive element (92a-d) [in the] second third of each of the injection pipes (9a-d) orientated in the flow direction of the fuel from upstream to downstream.
  8. Process as described in claim 7, characterised by the fact that it includes the step consisting of placing certain of the said resistive (71-72) and capacitive (73) elements at the ends of the said input pipe (7), of placing a resistive element (71) in series with a capacitive element (73) at the upstream end of the input pipe (7), and placing a resistive element (72) at the downstream end of the input pipe.
  9. Process as described in one of claims 1 to 8, characterised by the fact that the said programmed computer (20) calculates a corrected pressure Pth inj (6a) at the injector and actuates each of the said injectors (10a-10d) as a function of the said corrected pressure in order to inject a quantity of fuel (6c) close to a desired quantity Q2.
  10. Process as described in claim 9, characterised by the fact that the said corrected pressure Pth inj is a function of a pressure Prail in the common rail (8), of a temperature T of the fuel, of a quantity of fuel Q1 injected by the same injector at a preceding injection, of the said quantity of fuel Q2 desired at a current injection, and of a temporal separation s between the said preceding injection and the said current injection.
  11. Process as described in claim 10, characterised by the fact that the said corrected pressure Pth inj is obtained from the following relationship: P th inj = P rail + Σ i g fi Q 1 Q 2 S P rail T x h fi Q 1 Q 2 S P rail T
    Figure imgb0004

    in which summation is performed at different natural frequencies fi, in which g is a periodic function of the separation s, and in which h is an attenuation function of the temporal separation s.
EP03292276A 2002-09-30 2003-09-16 High pressure fuel injection system with means for pressure wave damping Expired - Lifetime EP1403510B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0212048A FR2845130B1 (en) 2002-09-30 2002-09-30 HIGH PRESSURE FUEL INJECTION SYSTEM EQUIPPED WITH EQUIPMENT AND PRESSURE WAVE ATTENUATION SOFTWARE
FR0212048 2002-09-30

Publications (2)

Publication Number Publication Date
EP1403510A1 EP1403510A1 (en) 2004-03-31
EP1403510B1 true EP1403510B1 (en) 2010-04-28

Family

ID=31971031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03292276A Expired - Lifetime EP1403510B1 (en) 2002-09-30 2003-09-16 High pressure fuel injection system with means for pressure wave damping

Country Status (4)

Country Link
EP (1) EP1403510B1 (en)
AT (1) ATE466189T1 (en)
DE (1) DE60332307D1 (en)
FR (1) FR2845130B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844747B1 (en) 2010-01-25 2018-04-03 로베르트 보쉬 게엠베하 Injection device having reduced pressure oscillations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886350B1 (en) * 2005-05-26 2007-08-03 Renault Sas PRESSURE WAVE DAMPING METHOD AND INJECTION DEVICE
DE102012202897A1 (en) * 2012-02-27 2013-08-29 Continental Automotive Gmbh Fuel supply system for an internal combustion engine
DE102014213182A1 (en) * 2013-09-13 2015-03-19 Ford Global Technologies, Llc Method for controlling fuel injection and fuel injection system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2344722A1 (en) 1976-03-15 1977-10-14 Semt PRESSURE WAVE DAMPING DEVICE IN A FUEL INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
JP3395371B2 (en) * 1994-07-06 2003-04-14 株式会社デンソー Fuel injection device
EP0780569B1 (en) * 1995-12-19 2002-03-20 Nippon Soken, Inc. Accumulator fuel injection device
US5845621A (en) 1997-06-19 1998-12-08 Siemens Automotive Corporation Bellows pressure pulsation damper
DE19842067A1 (en) 1998-09-15 2000-03-16 Daimler Chrysler Ag Fuel injection system for diesel internal combustion engine has accumulator associated directly with each injector to eliminate fuel pressure fluctuations
JP3763698B2 (en) * 1998-10-22 2006-04-05 株式会社日本自動車部品総合研究所 Design method of fuel supply system that can relieve pressure pulsation
FR2786225B1 (en) 1998-11-24 2000-12-22 Inst Francais Du Petrole HIGH PRESSURE FUEL INJECTION SYSTEM IN A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
US6314942B1 (en) 2000-04-25 2001-11-13 Siemens Automotive Corporation Fuel pressure dampening element
JP2002013453A (en) * 2000-06-29 2002-01-18 Bosch Automotive Systems Corp Accumulation type fuel system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844747B1 (en) 2010-01-25 2018-04-03 로베르트 보쉬 게엠베하 Injection device having reduced pressure oscillations

Also Published As

Publication number Publication date
DE60332307D1 (en) 2010-06-10
FR2845130A1 (en) 2004-04-02
EP1403510A1 (en) 2004-03-31
FR2845130B1 (en) 2006-04-28
ATE466189T1 (en) 2010-05-15

Similar Documents

Publication Publication Date Title
EP1705355B1 (en) Method for determining operating parameters of an injection system
EP1496237B1 (en) System to control combustion noise of a diesel engine
FR2811016A1 (en) METHOD FOR DETERMINING THE CONTROL VOLTAGE OF AN INJECTOR WITH A PIEZOELECTRIC ACTUATOR
FR2878576A1 (en) Pressure variation producing method for fuel supply system, involves utilizing magnitude characterizing pressure due to fuel oscillation in fuel manifold or ducts, and determining sound velocity in fuel of manifold or ducts
FR2900753A1 (en) AUTOMATIC OPTIMIZATION METHOD OF A NATURAL GAS TRANSPORT NETWORK
FR2878292A1 (en) Pressure fluctuations determining device for fuel supply system of motor vehicle, has two filters receiving characteristic signal of pressure from pressure sensor in zone of one of injectors, and having different filter characteristics
FR2824874A1 (en) Fuel injector, for a common rail fuel injection system at an IC motor, has a single flow throttle with a greater throttle action towards the control valve
EP3201460B1 (en) Method for avoiding the pogo effect
EP1403510B1 (en) High pressure fuel injection system with means for pressure wave damping
EP3580050B1 (en) Resin injection circuit and associated methods
EP3055596B1 (en) Method for designing a valve and method for producing a valve
FR2845129A1 (en) An insert of type flow valve for attenuating the pressure waves, and common rail equipped with such insert for use in an injection system of diesel type engine
EP2318689B1 (en) Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
FR3022606A1 (en) METHOD FOR DETERMINING THE POINT OF OPENING A VALVE
CH693338A5 (en) Recovery process devapeurs issued during a deliquide distribution.
FR2889259A3 (en) Common fuel supply rail for motor vehicle, has piston housed in pressurized fuel receiving chamber and moved towards front or rear for varying volume of chamber in continuous and progressive manner to vary pressure in chamber
EP3155204B1 (en) Bend stiffener for an elongate element to be placed in a body of water
FR2850710A1 (en) Internal combustion/thermal engine control process for vehicle, involves combining preliminary control set point with charge regulation of quantity of charge supplied to peizo-electric actuator
EP1457664A1 (en) Method and Apparatus to process Pressure Interactions between Succesive Injections in a Common Rail Fuel Injection System
EP1998175A1 (en) Ultrasound forecast of the deformation of a part
FR2929344A3 (en) Fuel return circuit for fuel injecting device in internal combustion engine, has attenuation pipe made of deformable material i.e. rubber, and closed towards one of its ends such that pressure waves introduced in circuit are attenuated
FR2851013A1 (en) Pressure wave correcting process for motor vehicle, involves recording operational parameter value of internal combustion engine with time interval, between two control signals, if parameter and its wave have changed
EP1377734B1 (en) Method for calculating the mass of air admitted into the cylinder of an internal combustion engine in a motor vehicle and injection calculator carrying out said method
WO2007066029A1 (en) Method for injecting fuel into an engine, which is designed to control the amount of fuel injected
FR3140163A1 (en) Method for determining a fluid flow rate in a vehicle engine system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040907

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050204

17Q First examination report despatched

Effective date: 20050204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI TECHNOLOGIES HOLDING S.A.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60332307

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100808

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100729

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100830

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: DELPHI TECHNOLOGIES HOLDING S.A.R.L.

Effective date: 20100930

26N No opposition filed

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100916

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Effective date: 20140516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60332307

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60332307

Country of ref document: DE

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES HOLDING S.A.R.L., BASCHARAGE, LU

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 60332307

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 60332307

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60332307

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60332307

Country of ref document: DE

Owner name: DELPHI TECHNOLOGIES IP LIMITED, BB

Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220615

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220810

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220929

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60332307

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60332307

Country of ref document: DE

Owner name: PHINIA DELPHI LUXEMBOURG SARL, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES IP LIMITED, ST. MICHAEL, BB