EP1401895A2 - Polymerisation method and device for carrying out a polymerisation method - Google Patents

Polymerisation method and device for carrying out a polymerisation method

Info

Publication number
EP1401895A2
EP1401895A2 EP02743127A EP02743127A EP1401895A2 EP 1401895 A2 EP1401895 A2 EP 1401895A2 EP 02743127 A EP02743127 A EP 02743127A EP 02743127 A EP02743127 A EP 02743127A EP 1401895 A2 EP1401895 A2 EP 1401895A2
Authority
EP
European Patent Office
Prior art keywords
polymerization
electromagnetic radiation
catalyst
coordination
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02743127A
Other languages
German (de)
French (fr)
Inventor
Karl-Heinz Reichert
Annette Wittebrock
Kalle Kallio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borealis Technology Oy
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10126829A external-priority patent/DE10126829A1/en
Priority claimed from DE10136683A external-priority patent/DE10136683A1/en
Priority claimed from DE10136684A external-priority patent/DE10136684A1/en
Priority claimed from DE10200740A external-priority patent/DE10200740A1/en
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Publication of EP1401895A2 publication Critical patent/EP1401895A2/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/128Infra-red light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4084Regeneration or reactivation of catalysts containing metals involving electromagnetic wave energy, e.g. UV or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/911Specified treatment involving megarad or less
    • Y10S522/912Polymer derived from ethylenic monomers only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/915Synthetic resins or natural rubbers -- part of the class 520 series involving inert gas, steam, nitrogen gas, or carbon dioxide

Definitions

  • the invention relates to a polymerization process, in particular to a process for increasing the productivity of the polymerization process, and to the polymers produced by the process and to devices for carrying out the polymerization process.
  • coordination catalysts e.g. Metallocene catalysts are usually used together with a cocatalyst, such as alumoxane, since the catalytic activity of the coordination catalysts is often inadequate. New coordination catalysts are being developed which have higher activity, as a result of which the addition of cocatalysts can be avoided or at least reduced.
  • coordination polymerization Another disadvantage of coordination polymerization is that the coordination catalysts are very sensitive to impurities, which can lead to a considerable reduction or even inactivation of the catalytic activity.
  • the invention has for its object to provide a coordination polymerization process which is characterized by particularly high activity of the coordination catalyst and thereby high productivity.
  • the invention is based on the knowledge that this object can be achieved by supplying electromagnetic radiation during the coordination polymerization.
  • the invention relates to a polymerization process using a coordination catalyst, the coordination catalyst and / or the monomer being exposed to electromagnetic radiation during the coordination polymerization process.
  • the invention further relates to a method for increasing the productivity of a coordination catalyst in a polymerization process, the coordination catalyst and the monomer being exposed to electromagnetic radiation during the polymerization process.
  • the invention further relates to a polymer which is produced by a coordination polymerization process using a coordination catalyst, the coordination catalyst and the monomer being exposed to electromagnetic radiation during the polymerization reaction.
  • the invention relates to a device for a polymerization process, which comprises devices for emitting electromagnetic radiation, the radiation being directed onto the coordination catalyst and the monomer.
  • Coordination polymerization is a polymerization in which the polymerization is initiated by catalysts such as Ziegler-Natta catalysts or metallocene catalysts, the newly emerging monomers being embedded between growing polymer chains and transition metal of the catalyst complex.
  • catalysts such as Ziegler-Natta catalysts or metallocene catalysts
  • Ionic polymerization is also subsumed under the term coordination polymerization.
  • the polymerization reaction of the present invention takes place without the formation of free radicals. Furthermore, it is possible that impurities are present in the polymerization process, which can usually be contained in the raw materials.
  • Coordination catalysts are understood to mean all catalysts that can be used in a coordination polymerization, in particular transition metal compounds, such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts, and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
  • transition metal compounds such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts, and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
  • Suitable Ziegler-Natta catalysts are, for example, those which combine a transition element from groups 4 to 6 of the Periodic Table (IUPAC Nomenclature of Inorganic Chemistry, 1989) as a procatalyst and a compound of a metal from Groups 1 to 3 of the periodic table contain the elements as a cocatalyst. They are preferably applied to a carrier, such as silicon dioxide. They can also contain other additives, such as electron donors. Ziegler-Natta catalysts are described, for example, in EP-A-0 261 130, the disclosure of which is expressly incorporated by reference.
  • the organic transition metal compounds of the formula I represent a subgroup of the transition metal compounds:
  • M is a transition metal from group 3 to 10, for example 3 to 7, such as 4 to 6, and each X is independently a monovalent anionic ligand, such as a ⁇ ligand, each L is independently an organic ligand that coordinated to M, R a bridging group which two Ligand L connects, m is 1, 2 or 3, n is 0 or 1, q is 1, 2 or 3, and m + q is equal to the valence of the metal.
  • ⁇ ligand is understood to mean a group which is bonded to the metal at one or more points via a sigma bond.
  • said organic transition metal compounds I are a group of compounds known as metallocenes.
  • Said metallocenes carry at least one organic ligand, generally 1, 2 or 3, for example 1 or 2, which is ⁇ -bound to the metal, for example an ⁇ " ligand, such as an ⁇ 5 ligand.
  • the metallocene preferably contains a transition metal from groups 4 to 6, and is suitably a titanocene, zirconocene or hafnocene which contains at least one ⁇ 5 ligand, which is, for example, an optionally substituted cyclopentadienyl, an optionally substituted indenyl, an optionally substituted tetrahydroindenyl or an optionally substituted fluorenyl ,
  • the metallocene compound can have the following formula II:
  • each Cp is independently an unsubstituted or substituted and / or fused homo- or heterocyclopentadienyl ligand, for example a substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluoreneyl ligand; the optional one or more.
  • Substituent / substituents are preferably from halogen, hydrocarbon residue (e.g.
  • each R" independently represents a hydrogen or hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl or C7-C20-aryl-alkyl), C3- C12-Cycloalkyl which contains 1, 2, 3 or 4 heteroatoms in the ring component, C6-C20-heteroaryl, C1-C20-haloalkyl, -SiR " 3 , -OSiR” 3 , -SR ", -PR" 2 or -NR " 2 , where each R" independently represents a hydrogen or hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl; or, for example, in the case of -NR " 2 , the two
  • M is a Group 4 to 6 transition metal, such as Group 4, e.g. Ti, Zr or Hf,
  • each X is independently a sigma ligand such as H, halogen, C1-C20-alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl , C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR ", -PR" 2 , -SiR " 3 , -OSiR” 3 , or -NR " 2 , each R" as above X is defined, and is preferably independently hydrogen or a hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl or C6-C20-aryl; or, for example in the case of - NR " 2 , the two substituents
  • each of the above rings alone or as part of a radical as a substituent for Cp, X, R "or R 1 can further be substituted, for example, with C1-C20-alkyl which contains Si and / or O atoms;
  • n 0, 1 or 2, preferably 0 or 1
  • n 1, 2 or 3, e.g. 1 or 2,
  • q is 1, 2 or 3, e.g. 2 or 3,
  • the metal in a further subgroup of the metallocene compounds, carries a Cp group as defined above and additionally an ⁇ 1 or ⁇ 2 ligand, in which said ligands may or may not be bridged to one another.
  • This subgroup includes so-called "scorpionate compounds" (with forced geometry) in which the metal is complexed by an ⁇ ligand, which is bridged by an ⁇ or ⁇ ligand, preferably by an ⁇ !
  • Ligand eg a ⁇ -bonded
  • a metal complex of a Cp group as defined above for example a cyclopentadienyl group which, via a bridge member, bears an acyclic or cyclic group which contains at least one heteroatom, for example —NR " 2 as defined above.
  • a metal complex of a Cp group as defined above for example a cyclopentadienyl group which, via a bridge member, bears an acyclic or cyclic group which contains at least one heteroatom, for example —NR " 2 as defined above.
  • non-metallocenes Another subgroup of the organic transition metal compounds of formula I that can be used in the present invention is known as "non-metallocenes" in which the transition metal (preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf) has a coordination ligand other than the ⁇ 5 ligand (ie a different one than a cyclopentadienyl ligand.)
  • the transition metal preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf
  • a coordination ligand other than the ⁇ 5 ligand ie a different one than a cyclopentadienyl ligand.
  • ie transition metal complexes with nitrogen-based, cyclic or acyclic aliphatic or aromatic ligands for example like those described in the earlier application WO-A-9910353 or in the review article by VC Gibson et al., Angew. Chem. Int.
  • oxygen based ligands such as Group 4 metal complexes, which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic Li ganden (see the above-mentioned review by Gibson et al.).
  • oxygen based ligands such as Group 4 metal complexes, which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic Li ganden (see the above-mentioned review by Gibson et al.).
  • Other specific examples of non- ⁇ 5 ligands are amido, amide diphosphine, amidinate, aminopyridine, benzamidinate, triazacyclononane, allyl, hydrocarbon, beta-diketimate and alkoxide.
  • chromium catalysts such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is incorporated by reference; as well as nickel catalysts, especially those described in W099 / 62968, W098 / 47933, WO98 / 40420, W098 / 47933, WO00 / 06620 and WO96 / 23010, the disclosure of which is expressly incorporated by reference, and vanadium catalysts.
  • chromium catalysts such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is incorporated by reference
  • the coordination catalysts comprise one or more cocatalysts, e.g. an organic aluminum compound, such as trialkyl aluminum and / or alumoxane compounds.
  • cocatalysts e.g. an organic aluminum compound, such as trialkyl aluminum and / or alumoxane compounds.
  • Boron coactivators are also particularly suitable.
  • the coordination catalyst component is preferably applied to an inert support, such as, for example, silicon dioxide.
  • an inert support such as, for example, silicon dioxide.
  • the porous, particulate support is usually impregnated with the catalyst system.
  • Suitable monomers for the process according to the invention are, in particular, olefins. Any olefin that can be polymerized by coordination polymerization is suitable.
  • Preferred olefins are ethylene and propylene and mixtures of ethylene and propylene with one or more ⁇ -olefins.
  • Suitable co-monomers are C 2-12 olefins, preferably C 4 . 10 olefins, such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonen, 1-decene, and dienes such as butadiene, 1.7 -Octadiene and 1,4-hexadiene or cyclic olefins such as norbornene, and mixtures thereof.
  • the amount of comonomer is generally from 0.01 to 50% by weight, preferably from 0.1 to 10% by weight and in particular from 0.3 to 3% by weight.
  • the process according to the invention is also suitable for the polymerization of long-chain ⁇ -olefins having 4 to 40 carbon atoms, which can be polymerized either alone or in combination, and also with short-chain ⁇ -olefins.
  • Suitable examples are: 1-butenes, 1-pentene, 1-hexenes, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1- Pentadecene, 1-hexadecene, 1-heptodecene, 1-octodecene, 1-nonadecene, 1-eicosen, etc. to tetradecene.
  • Alpha-olefins having 4 to 16 carbon atoms are preferred.
  • Further suitable monomers are isomers of ⁇ -olefins with branched alkyl groups, such as 4-methyl-1-
  • Suitable monomers are vinyl monomers such as alkyl and aryl vinyl monomers, e.g. Styrene, vinyl ether, vinyl ester, acrylic acid and its esters, methacrylic acid and its esters, acrylamides, acrylonitriles, vinyl amines, and the like.
  • vinyl monomers such as alkyl and aryl vinyl monomers, e.g. Styrene, vinyl ether, vinyl ester, acrylic acid and its esters, methacrylic acid and its esters, acrylamides, acrylonitriles, vinyl amines, and the like.
  • the coordination polymerization according to the invention can be carried out in one or more polymerization reactors.
  • Conventional polymerization techniques can be used, such as gas phase polymerization, solution polymerization, slurry polymerization, bulk polymerization, emulsion polymerization and precipitation polymerization.
  • Different polymerization processes can be combined.
  • Particularly suitable net is the combination of a slurry polymerization followed by a gas phase polymerization.
  • the polymerization processes can be carried out continuously or batchwise.
  • the process according to the invention is also particularly suitable for prepolymerization, i.e. a prepolymerization followed by the actual polymerization.
  • the process according to the invention is also suitable for oligomerization. This means that the oligomerization is subsumed under the term "polymerization”.
  • Electromagnetic radiation is an additional radiation to natural radiation or artificial room lighting.
  • the increase in the activity of the catalyst system or the increase in the productivity of the polymerization process depends on the intensity of the radiation. The higher the intensity, the higher the activity.
  • Irradiation can take place continuously, but also at intervals or pulsating or only for a short period at the start of the polymerization.
  • the wavelength can be in any wavelength range of the electromagnetic spectrum, which ranges from gamma radiation to radio waves. Waves in the area between X-rays and microwaves are particularly suitable, the area between UV and infrared being preferred and short-wave visible light and UV light being particularly suitable.
  • the radiation can be in the range between 10 "12 and 10 4 m. However, radiation between 10 " 8 and 10 “2 m, in particular 10 " 8 and 10 "6 m and especially radiation in the range is preferred. range between 100 and 800 nm.
  • the radiation can have a uniform wavelength or consist of radiation with different wavelengths.
  • blue light has a particularly favorable effect on effective polymerization for the catalysts used there, i.e. for the example in question, a wavelength range from 300 to 480 nm.
  • the electromagnetic radiation of a wavelength that lies in the range of the absorption spectrum of the coordination catalyst is used. Radiation of a wavelength in the range of the maximum of the absorption spectrum of the coordination catalyst is preferred.
  • the radiation source is arranged in the interior of the polymerization reactor, optionally also in the feed line to the reactor.
  • the radiation source can be arranged outside the reactor. This is then provided with a window that is transparent to the respective radiation.
  • the window is preferably made of glass or quartz. A window can be omitted if the radiation can penetrate through the wall of the reactor.
  • a device for emitting electromagnetic radiation to be arranged outside the polymerization reactor or the feed line to the polymerization reactor and for the electromagnetic radiation to be able to reach the reactor via an optical conductor.
  • the amount of radiation depends on the size of the reactor system.
  • the radiation can be introduced at one or more points in the loop system. Radiation can also be applied to the gas phase reactor. Alternatively, you can the feed lines to the reactors, optionally in addition to the reactors, are irradiated.
  • a suitable polymerization system is, for example, the following.
  • the first reactor is a slurry reactor. This works at a temperature in the range of 60 to 110 ° C.
  • the reactor pressure is in the range from 0.1 to 100 bar, preferably 5 to 80 bar and in particular 50 to 65 bar.
  • the residence time is 0.1 to 5 hours, preferably 0.3 to 5 hours and in particular 0.5 to 2 hours.
  • An aliphatic hydrocarbon is generally used as the diluent.
  • the polymerization can be carried out under supercritical conditions.
  • One or more gas phase reactors are subsequently connected.
  • the reaction temperature is generally 60 to 115 ° C, preferably 70 to 110 ° C.
  • the reactor pressure is 10 to 25 bar and the residence time is 1 to 8 hours.
  • the gas used is generally a non-reactive gas such as nitrogen.
  • the reactor system described for example is particularly suitable for the polymerization of ethylene and propylene, or the copolymerization of ethylene and propylene with ⁇ -olefins.
  • Suitable devices for emitting the electromagnetic radiation are, for example, fluorescent lamps, incandescent lamps and halogen lamps.
  • the amount of radiation in the UV or visible range should be at least one watt per 100 ml reaction volume.
  • Example 1 Catalyst preparation
  • the catalyst was prepared by dissolving 11 mg of n-Bu-Cp 2 ZrCl 2 (Witco GmbH, Germany) with MAO / toluene containing 1.15 ml of 30% by weight of MAO (30% by weight of MAO in toluene, from Albemarle) and 0.35 ml of moisture and oxygen-free toluene.
  • the metallocene / MAO / toluene solution was placed on a silicon dioxide carrier (SYLOPOL 55 SJ; Grace-Davison, calcined at 600 ° C.
  • the catalyst was prepared as described in Example 1, but 14 mg of n-Bu-Cp 2 ZrCl 2 (Witco GmbH, Germany) were used as the metal locene compound.
  • the catalyst was prepared as described in Example 1, but 17.5 mg of rac-ethylene-bis (2-butyldimethylsiloxyindenyl) zirconium dichloride (prepared according to WO 97 28170) were used as the metallocene compound.
  • the polymerization was carried out in a 20 ml mini-reactor, 7.08 mg of catalyst, prepared according to Example 1, being introduced into the reactor.
  • the reactor was closed and connected to the ethylene source.
  • the ethylene partial pressure was set at 5 bar.
  • the polymerization temperature was 80 ° C and the polymerization time was 60 minute
  • the ethylene consumption was followed by the pressure drop, namely in the range between 4980 and 5010 mbar.
  • the reactor provided with a glass window, was irradiated with a cold light source FLEXILUX 600 longlife with Phillips 14501 DDL, 20V / 150W halogen lamps. The highest light intensity was used.
  • the yield of the polymer was 0.888488 g and the activity of the catalyst was 125.5 gHDPE / g catalyst per hour.
  • the polymerization was carried out as described in Example 4, but no light was irradiated.
  • the amount of catalyst was 6.95 mg. After 60 minutes of polymerization, the yield of polymer was 0.13806 g.
  • the activity of the catalyst was 19.9 gHDPE / g Kat h.
  • the polymerization was carried out as described in Example 4, but using only half the light intensity.
  • the amount of catalyst was 6.96 mg. After 60 minutes of polymerization, the yield of polymer was 0.7831 g.
  • the activity of the catalyst was 112.5 gHDPE / g cat h.
  • Example 8 Polymerization without light
  • the polymerization was carried out as in Example 7, but no light was used.
  • the amount of catalyst was 7.31 mg. After 60 minutes of polymerization, the yield of polymer is 0.10527 g.
  • the activity of the catalyst was 14.4 gHDPE / g Kat h.
  • the polymerization was carried out as described in Example 4, but the catalyst from Example 3 was used.
  • the amount of catalyst was 6.85 mg.
  • After 60 minutes of polymerization, the yield of polymer was 0.74192 g.
  • the activity of the catalyst was 108.3 gHDPE / g Kat h.
  • the polymerization was carried out as described in Example 9, but no light was used.
  • the amount of catalyst was 7.24 mg. After 60 minutes of polymerization, the yield of polymer is 0.18847 g.
  • the activity of the catalyst is 26.0 gHDPE / g cat h.
  • Example 12 Polymerization with green / yellow light
  • the polymerization was carried out as described in Example 4, but with a green / yellow filter which transmits at wavelengths above 400 nm.
  • the amount of catalyst was 7.1 mg. After 60 minutes of polymerization, the yield of polymer was 0.7225 g.
  • the activity of the catalyst was 101.8 gHDPE / g Kat h.
  • the polymerization was carried out as described in Example 4, but a red filter was used which transmits at wavelengths above 600 nm.
  • the amount of catalyst was 6.93 mg. After 60 minutes of polymerization, the yield of polymer was 0.43305 g.
  • the activity of the catalyst was 62.5 gHDPE / g Kat h.
  • the examples show that the activity of the catalyst increases dramatically when irradiated with light and that the activity depends on the intensity of the radiation.
  • the examples further show that the wavelength of the light influences the increase in activity.
  • Example 14 Polymerization with a Ziegler-Natta catalyst
  • the polymerization was carried out in a 51 reactor, which was heated, evacuated and flushed with nitrogen before it was put into use.
  • 213 ⁇ l TEA triethylaluminum, from Witco, used without further purification / treatment
  • 36 ⁇ l donor D dicyclopentyldimetoxysilane from Wacker, dried over molecular sieve
  • 30 ml pentane dried over molecular sieve and gassed with nitrogen
  • Half of the mi Schung was added to the reactor and the other half was mixed with 14.2 mg of highly active and stereospecific Ziegler-Natta catalyst (ZN catalyst).
  • ZN catalyst highly active and stereospecific Ziegler-Natta catalyst
  • the ZN catalyst was produced according to test example 3 in EP 591224 (Borealis) and had a Ti content of 2.1 percent by weight. After approximately 10 minutes, the ZN catalyst / TEA / donor D / pentane mixture was fed to the reactor. The Al / Ti molar ratio was 250 and the Al / Do molar ratio was 10. 100 mmol of hydrogen and 1400 g of propylene were added to the reactor. The lamp was turned on. The lamp was a halogen lamp, 50 watts, 12 volts. The temperature was raised from room temperature to 80 ° C over 19 minutes. After 30 minutes at 80 ° C, the reaction was stopped by letting out unreacted propylene.
  • the polymer was analyzed and the results are shown in Table 1.
  • the activity was 22.6 kg of propylene per gram of catalyst.
  • Example 14 This example was carried out according to Example 14, but no light treatment was carried out during the polymerization. Details and results are shown in Table 1. The activity was 19.9 kg propylene per gram of catalyst.
  • the example of this patent thus gives about 15% higher activity than the comparative example.
  • the table also shows that the light treatment has no significant effect on the polymer properties.
  • Example 16 Comparison of the polymerization with light from a halogen lamp and with light from a mercury lamp
  • the polymerization was carried out in a 20 ml mini reactor, with catalyst prepared according to Example 1 in the amounts given in Table 2 being introduced into the reactor.
  • the reactor was closed and connected to the ethylene source.
  • the ethylene partial pressure was set at 4.5 bar.
  • the polymerization temperature was 80 ° C and the polymerization time was 60 min.
  • the ethylene consumption was followed by the pressure drop, namely in the range between 4980 and 5010 mbar.
  • the reactor provided with a glass window, was irradiated with a cold light source FLEXILUX 600 longlife with Phillips 14501 DDL, 20V / 150W halogen lamps. The highest light intensity was used. After a reaction time of 60 minutes, the polymerization was stopped by closing the ethylene feed and the ethylene pressure was released.
  • the halogen lamp had a very broad spectrum of the emitted visible light with wavelengths from 350 to 750 nm.
  • Three light filters were used which transmit light of three different wavelengths. Ren. The blue filter transmitted wavelengths between 300 and 480 nm, the green / yellow filter transmitted wavelengths above 400 nm and the red filter transmitted wavelengths above 600 nm. The filtered light has only a fraction of the total intensity of the light source. This must be taken into account when comparing the results.
  • Table 2 below shows the influence of the longitudinal wave of light on the polymerization activity.
  • the activity of the catalyst was highest when the filter transmitted light with a wavelength of 300 to 450 nm.
  • the activity decreased when the irradiation was carried out at a higher wavelength.
  • FIG. 1 shows the comparison of the absorption spectrum of the metallocene complex (gray area) in comparison with the emission ranges of the three filters.

Abstract

A polymerisation method with improved productivity, using a co-ordination catalyst, whereby electromagnetic radiation is applied during the polymerisation. The activity of the co-ordination catalyst is greatly enhanced by the irradiation with light.

Description

Polymerisationsverfahren und Vorrichtung zur Durchführung eines Polymerisationsverfahrens Polymerization process and device for carrying out a polymerization process
Die Erfindung bezieht sich auf ein Polymerisationsverfahren, insbesondere auf ein Verfahren zur Erhöhung der Produktivität des Polymerisationsverfahrens, sowie die mit dem Verfahren hergestellten Polymere und auf Vorrichtungen zur Durchführung des Polymerisationsverfahrens.The invention relates to a polymerization process, in particular to a process for increasing the productivity of the polymerization process, and to the polymers produced by the process and to devices for carrying out the polymerization process.
Bei der Polymerisation unterscheidet man zwischen radikalischer Polymerisation und Koordinationspolymerisation unter Einsatz von Koordinationskatalysatoren. Die Koordinationskatalysatoren, z.B. Metallocen-Katalysa- toren werden üblicherweise zusammen mit einem Cokatalysator, wie Alu- moxan, eingesetzt, da oftmals die katalytische Aktivität der Koordinationskatalysatoren unzureichend ist. Neue Koordinationskatalysatoren werden entwickelt, die höhere Aktivität aufweisen, wodurch der Zusatz von Co- katalysatoren vermieden oder zumindest verringert werden kann.In polymerization, a distinction is made between radical polymerization and coordination polymerization using coordination catalysts. The coordination catalysts, e.g. Metallocene catalysts are usually used together with a cocatalyst, such as alumoxane, since the catalytic activity of the coordination catalysts is often inadequate. New coordination catalysts are being developed which have higher activity, as a result of which the addition of cocatalysts can be avoided or at least reduced.
Ein weiterer Nachteil der Koordinationspolymerisation liegt darin, dass die Koordinationskatalysatoren sehr empfindlich bezüglich Verunreinigungen sind, was zu einer erheblichen Verringerung oder gar Inaktivierung der katalytischen Aktivität führen kann.Another disadvantage of coordination polymerization is that the coordination catalysts are very sensitive to impurities, which can lead to a considerable reduction or even inactivation of the catalytic activity.
Es besteht daher ein Bedarf zur Verbesserung der katalytischen Aktivität von Koordinationskatalysatoren in der Koordinationspolymerisation.There is therefore a need to improve the catalytic activity of coordination catalysts in coordination polymerization.
Der Erfindung liegt die Aufgabe zugrunde, ein Koordinationspolymerisati- onsverfahren zu schaffen, das sich durch besonders hohe Aktivität des Koordinationskatalysators und dadurch hohe Produktivität auszeichnet.The invention has for its object to provide a coordination polymerization process which is characterized by particularly high activity of the coordination catalyst and thereby high productivity.
Der Erfindung liegt die Erkenntnis zugrunde, dass diese Aufgabe dadurch gelöst werden kann, dass bei der Koordinationspolymerisation elektromagnetische Strahlung zugeführt wird.The invention is based on the knowledge that this object can be achieved by supplying electromagnetic radiation during the coordination polymerization.
Es hat sich überraschenderweise gezeigt, dass bei einer Koordinationspolymerisation, also einer Polymerisation, die nicht nach einem Radikalprozeß abläuft, durch Einsatz von elektromagnetischer Strahlung eine Er- höhung der Aktivität des Katalysators bzw. eine Erhöhung der Produktivität des Verfahrens erreicht werden kann. Weitere Vorteile liegen darin, dass die Menge an Cokatalysator, der zur Erhöhung der Katalysatoraktivität zugegeben wird, verringert werden kann, bzw. kein Cokatalysator zugesetzt werden muß. Ein weiterer Vorteil liegt darin, dass "schwache" Koordinationskatalysatoren eingesetzt werden können, die durch Strahlung zu einem brauchbaren Aktivitätslevel aktiviert werden können.Surprisingly, it has been shown that in the case of coordination polymerization, that is to say a polymerization which does not take place according to a radical process, the use of electromagnetic radiation results in Increase in the activity of the catalyst or an increase in the productivity of the process can be achieved. Further advantages are that the amount of cocatalyst that is added to increase the catalyst activity can be reduced, or that no cocatalyst has to be added. Another advantage is that "weak" coordination catalysts can be used, which can be activated by radiation to a useful activity level.
Gegenstand der Erfindung ist ein Polymerisationsverfahren unter Verwendung eines Koordinationskatalysators, wobei während dem Koordinations- polymerisationsverfahren der Koordinationskatalysator und/oder das Monomer einer elektromagnetischen Strahlung ausgesetzt werden.The invention relates to a polymerization process using a coordination catalyst, the coordination catalyst and / or the monomer being exposed to electromagnetic radiation during the coordination polymerization process.
Gegenstand der Erfindung ist ferner ein Verfahren zur Erhöhung der Produktivität eines Koordinationskatalysators in einem Polymerisationsverfahren, wobei der Koordinationskatalysator und das Monomer während dem Polymerisationsverfahren einer elektromagnetischen Strahlung ausgesetzt werden.The invention further relates to a method for increasing the productivity of a coordination catalyst in a polymerization process, the coordination catalyst and the monomer being exposed to electromagnetic radiation during the polymerization process.
Gegenstand der Erfindung ist ferner ein Polymer, das durch ein Koordinati- onspolymerisationsverfahren unter Verwendung eines Koordinationskatalysators hergestellt wird, wobei während der Polymerisationsreaktion der Koordinationskatalysator und das Monomer einer elektromagnetischen Strahlung ausgesetzt werden.The invention further relates to a polymer which is produced by a coordination polymerization process using a coordination catalyst, the coordination catalyst and the monomer being exposed to electromagnetic radiation during the polymerization reaction.
Gegenstand der Erfindung ist schließlich eine Vorrichtung für ein Polymerisationsverfahren, die Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf den Koordinationskatalysator und das Monomer gerichtet ist.Finally, the invention relates to a device for a polymerization process, which comprises devices for emitting electromagnetic radiation, the radiation being directed onto the coordination catalyst and the monomer.
Die Koordinationspolymerisation ist eine Polymerisation, bei der durch Katalysatoren, wie Ziegler-Natta Katalysatoren oder Metallocen- Katalysatoren, die Polymerisation initiiert wird, wobei die neu eintretenden Monomere zwischen wachsenden Polymerketten und Übergangsmetall des Katalysatorkomplexes eingelagert werden. Bezüglich der Definition von Koordinationspolymerisation wird ausdrücklich bezug genommen auf Römpp, Lexikon der Chemie, 10. Auflage, Seite 2246 und George Odian, "Principles of Polymerisation", 2nd Edition, John Wiley & Sons, U.S.A., 1981. Die ionische Polymerisation wird ebenfalls unter dem Begriff Koordinationspolymerisation subsumiert.Coordination polymerization is a polymerization in which the polymerization is initiated by catalysts such as Ziegler-Natta catalysts or metallocene catalysts, the newly emerging monomers being embedded between growing polymer chains and transition metal of the catalyst complex. Regarding the definition of coordination polymerization, express reference is made to Römpp, Lexikon der Chemie, 10th edition, page 2246 and George Odian, "Principles of Polymerization", 2nd Edition, John Wiley & Sons, USA, 1981. Ionic polymerization is also subsumed under the term coordination polymerization.
Die Polymerisationsreaktion der vorliegenden Erfindung erfolg ohne die Bildung von freien Radikalen. Weiterhin ist es möglich, dass bei dem Polymerisationsverfahren Verunreinigungen anwesend sind, die gewöhnlich in den Rohmaterialen enthalten sein können.The polymerization reaction of the present invention takes place without the formation of free radicals. Furthermore, it is possible that impurities are present in the polymerization process, which can usually be contained in the raw materials.
Als Koordinationskatalysatoren werden alle Katalysatoren verstanden, die in einer Koordinationspolymerisation eingesetzt werden können, insbesondere Übergangsmetallverbindungen bzw. transition metal compounds, wie Ziegler-Natta Katalysatoren, Metallocene, sogenannte late transition metal Katalysatoren sowie Chromkatalysatoren, Nickelkatalysatoren, Vanadiumkatalysatoren und Phillipskatalysatoren.Coordination catalysts are understood to mean all catalysts that can be used in a coordination polymerization, in particular transition metal compounds, such as Ziegler-Natta catalysts, metallocenes, so-called late transition metal catalysts, and also chromium catalysts, nickel catalysts, vanadium catalysts and Phillips catalysts.
Geeignete Ziegler-Natta Katalysatoren sind beispielsweise solche, die eine Verbindung eines Übergangselementes der Gruppen 4 bis 6 des Periodischen Systems der Elemente (IUPAC Nomenclature of Inorganic Che- mistry, 1989) als Prokatalysator und eine Verbindung eines Metalls der Gruppen 1 bis 3 des Periodischen Systems der Elemente als Cokatalysator enthalten. Vorzugsweise sind sie auf einem Träger, wie Siliziumdioxid, aufgebracht. Sie können noch andere Zusätze, wie beispielsweise Elektronendonatoren enthalten. Ziegler-Natta Katalysatoren sind beispielsweise in EP-A-0 261 130 beschrieben, auf dessen Offenbarung ausdrücklich bezug genommen wird. Weitere Beispiele von Ziegler-Natta Katalysatoren sind beschrieben in EP-A-0 688 794, FI-A-974622, FI-A-86866, FI-A-96615, FI-A-88047 und FI-A-88048.Suitable Ziegler-Natta catalysts are, for example, those which combine a transition element from groups 4 to 6 of the Periodic Table (IUPAC Nomenclature of Inorganic Chemistry, 1989) as a procatalyst and a compound of a metal from Groups 1 to 3 of the periodic table contain the elements as a cocatalyst. They are preferably applied to a carrier, such as silicon dioxide. They can also contain other additives, such as electron donors. Ziegler-Natta catalysts are described, for example, in EP-A-0 261 130, the disclosure of which is expressly incorporated by reference. Further examples of Ziegler-Natta catalysts are described in EP-A-0 688 794, FI-A-974622, FI-A-86866, FI-A-96615, FI-A-88047 and FI-A-88048.
Eine Untergruppe der Übergangsmetallverbindungen stellen die Organo- übergangsmetallverbindungen der Formel I dar:The organic transition metal compounds of the formula I represent a subgroup of the transition metal compounds:
(L)mRnMXq (I)(L) m R n MX q (I)
worin M ein Übergangsmetall der Gruppe 3 bis 10 ist, beispielsweise 3 bis 7, wie etwa 4 bis 6, und jedes X unabhängig ein monovalenter anionischer Ligand ist, wie etwa ein σ-Ligand, jedes L unabhängig ein organischer Li- gand ist, der an M koordiniert, R eine verbrückende Gruppe welche zwei Liganden L verbindet, m ist 1, 2 oder 3, n ist 0 oder 1, q ist 1, 2 oder 3, und m+q ist gleich der Valenz des Metalls.wherein M is a transition metal from group 3 to 10, for example 3 to 7, such as 4 to 6, and each X is independently a monovalent anionic ligand, such as a σ ligand, each L is independently an organic ligand that coordinated to M, R a bridging group which two Ligand L connects, m is 1, 2 or 3, n is 0 or 1, q is 1, 2 or 3, and m + q is equal to the valence of the metal.
Unter „σ-Ligand" versteht man eine Gruppe, die an einer oder mehreren Stellen via einer sigma-Bindung an das Metall gebunden ist.“Σ ligand” is understood to mean a group which is bonded to the metal at one or more points via a sigma bond.
Gemäß einer bevorzugten Ausführungsform sind besagte Organo- übergangsmetallverbindungen I eine Gruppe von Verbindungen, die als Metallocene bekannt sind. Besagte Metallocene tragen mindestens einen organischen Liganden, im allgemeinen 1, 2 oder 3, beispielsweise 1 oder 2, welcher zum Metall η -gebunden ist, beispielsweise ein η " -Ligand, wie etwa ein η5-Ligand. Vorzugsweise enthält das Metallocen ein Übergangsmetall aus den Gruppen 4 bis 6, und ist geeigneter Weise ein Titanocen, Zirkonocen oder Hafnocen, welches mindestens einen η5-Liganden enthält, welcher zum Beispiel ein optional substituiertes Cyclopentadienyl, ein optional substituiertes Indenyl, ein optional substituiertes Tetrahydroindenyl oder ein optional substituiertes Fluorenyl ist.According to a preferred embodiment, said organic transition metal compounds I are a group of compounds known as metallocenes. Said metallocenes carry at least one organic ligand, generally 1, 2 or 3, for example 1 or 2, which is η -bound to the metal, for example an η " ligand, such as an η 5 ligand. The metallocene preferably contains a transition metal from groups 4 to 6, and is suitably a titanocene, zirconocene or hafnocene which contains at least one η 5 ligand, which is, for example, an optionally substituted cyclopentadienyl, an optionally substituted indenyl, an optionally substituted tetrahydroindenyl or an optionally substituted fluorenyl ,
Die Metallocenverbindung kann die folgende Formel II haben:The metallocene compound can have the following formula II:
(Cp)mRnMXq (II)(Cp) m R n MX q (II)
jedes Cp ist unabhängig ein unsubstituierter oder substituierter und/oder kondensierter Homo- oder Heterocyclopentadienyl-Ligand, beispielsweise ein substituierter oder unsubstituierter Cyclopentadienyl-, substituierter oder unsubstituierter Indenyl- oder substituierter oder unsubstituierter Fluo- renyl-Ligand; der optionale eine oder mehrere. Substituent/Substituenten werden vorzugsweise aus Halogen, Kohlenwasserstoffrest (z.B. C1-C20- Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C3-C12-Cycloalkyl, C6-C20- Aryl oder C7-C20-Arylakyl), C3-C12-Cycloalkyl welches 1, 2, 3 oder 4 Heteroatom(e) im Ringbestandteil enthält, C6-C20-Heteroaryl, C1-C20- Haloalkyl, -SiR"3, -OSiR"3, -SR", -PR"2 oder -NR"2, wobei jeder R" unabhängig ein Wasserstoff oder Kohlenwasserstoffrest, z.B. C1-C20- Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, C3-C12-Cycloalkyl, C6-C20- Aryl; oder z.B. im Falle von -NR"2, können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit dem Stickstoffatom, an welches sie gebunden sind; R ist eine Brücke von 1 bis 7 Atomen, z.B. eine Brücke von 1-4 C-Atomen und 0-4 Hetero- atomen, worin das/die Heteroatom(e) beispielsweise Si-, Ge- und/oder 0- Atome sein kann/können, wobei jedes der Brückenatome unabhängig Substituenten tragen kann, wie etwa Cl-C20-Alkyl, tri(Cl-C20alkyl)silyl-, tri(Cl-C20alkyl)siloxy- oder C6-C20-Aryl-Substituenten; oder eine Brücke von 1-3, z.B. eines oder zwei, Heteroatom(e), wie etwa- Silizium, Germanium- und/oder Sauerstoffatom(e), z.B. -SiR! 2, worin jeder R1 unabhängig ein Cl-C20-Alkyl-, C6~C20-Aryl- oder tri(Cl-C20-alkyl)silyl-Rest, wie etwa Trimethylsilyl sein kann;each Cp is independently an unsubstituted or substituted and / or fused homo- or heterocyclopentadienyl ligand, for example a substituted or unsubstituted cyclopentadienyl, substituted or unsubstituted indenyl or substituted or unsubstituted fluoreneyl ligand; the optional one or more. Substituent / substituents are preferably from halogen, hydrocarbon residue (e.g. C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl or C7-C20-aryl-alkyl), C3- C12-Cycloalkyl which contains 1, 2, 3 or 4 heteroatoms in the ring component, C6-C20-heteroaryl, C1-C20-haloalkyl, -SiR " 3 , -OSiR" 3 , -SR ", -PR" 2 or -NR " 2 , where each R" independently represents a hydrogen or hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl; or, for example, in the case of -NR " 2 , the two substituents R" can form a ring, for example a five- or six-membered ring, together with the nitrogen atom to which they are attached; R is a bridge of 1 to 7 atoms, for example a bridge of 1-4 C atoms and 0-4 hetero- atoms in which the heteroatom (s) can be, for example, Si, Ge and / or 0 atoms, where each of the bridging atoms can independently carry substituents, such as Cl-C20-alkyl, tri (Cl-C20alkyl) silyl, tri (Cl-C20alkyl) siloxy or C6-C20 aryl substituents; or a bridge of 1-3, for example one or two, heteroatom (s), such as silicon, germanium and / or oxygen atom (s), for example -SiR ! 2 , wherein each R 1 can independently be a Cl-C20-alkyl, C6-C20-aryl or tri (Cl-C20-alkyl) silyl radical such as trimethylsilyl;
M ist ein Übergangsmetall der Gruppe 4 bis 6, wie etwa Gruppe 4, z.B. Ti, Zr oder Hf,M is a Group 4 to 6 transition metal, such as Group 4, e.g. Ti, Zr or Hf,
jedes X ist unabhängig ein sigma-Ligand, wie etwa H, Halogen, C1-C20- alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkinyl, C3-C12- cycloalkyl, C6-C20-aryl, C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20- arylalkenyl, -SR", -PR"2, -SiR"3, -OSiR"3, oder -NR"2, wobei jeder R" wie obiges X definiert ist, und vorzugsweise unabhängig Wasserstoff oder ein Kohlenwasserstoffrest ist, z.B. Cl-C20-alkyl, C2-C20-alkenyl, C2-C20- alkinyl, C3-C12-cycloalkyl oder C6-C20-aryl; oder z.B. im Falle von - NR"2 können die zwei Substituenten R" einen Ring bilden, z.B. einen fünf- oder sechsgliedrigen Ring, zusammen mit den Stickstoffatom an welches sie gebunden sind;each X is independently a sigma ligand such as H, halogen, C1-C20-alkyl, Cl-C20-alkoxy, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl, C6-C20-aryl , C6-C20-aryloxy, C7-C20-arylalkyl, C7-C20-arylalkenyl, -SR ", -PR" 2 , -SiR " 3 , -OSiR" 3 , or -NR " 2 , each R" as above X is defined, and is preferably independently hydrogen or a hydrocarbon radical, for example C1-C20-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-C12-cycloalkyl or C6-C20-aryl; or, for example in the case of - NR " 2 , the two substituents R" can form a ring, for example a five- or six-membered ring, together with the nitrogen atom to which they are attached;
und jeder der oben genannten Ringe alleine oder als ein Teil eines Restes als Substituent für Cp, X, R" oder R1 kann weiterhin z.B. mit C1-C20- alkyl substituiert sein, welches Si- und/oder O-Atome enthält;and each of the above rings alone or as part of a radical as a substituent for Cp, X, R "or R 1 can further be substituted, for example, with C1-C20-alkyl which contains Si and / or O atoms;
n ist 0, 1 oder 2, vorzugsweise 0 oder 1,n is 0, 1 or 2, preferably 0 or 1,
m ist 1, 2 oder 3, z.B. 1 oder 2,m is 1, 2 or 3, e.g. 1 or 2,
q ist 1, 2 oder 3, z.B. 2 oder 3,q is 1, 2 or 3, e.g. 2 or 3,
m+q ist gleich der Valenz von M.m + q is equal to the valence of M.
Besagte Metallocene II and ihre Darstellung sind aus dem im Stand der Technik bekannt. Metallocene sind ausführlich in EP 0 260 130 beschrieben, auf deren Offenbarung ausdrücklich Bezug genommen wird. Weitere Literatur, auf die bezüglich der Metallocene Bezug genommen wird, ist folgende: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 und EP-A-0 537 130 sowie "Me- tallocenes", vol. 1, Togni and Halterman (Eds.), Wiley-VCH 1998, und V.C. Gibson et al., in Angew. Chem. Int. Ed., engl, vol. 38, 1999, Seiten 428 - 447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.Said metallocenes II and their representation are known from the prior art. Metallocenes are described in detail in EP 0 260 130, the disclosure of which is expressly incorporated by reference. Further literature which is referred to with regard to the metallocenes is as follows: WO 97/28170, WO 98/46616, WO 98/49208, WO 99/12981, WO 99/19335, WO 98/56831, WO 00/34341, EP-A-0 423 101 and EP-A-0 537 130 and "Metallocenes", vol. 1, Togni and Halterman (Eds.), Wiley-VCH 1998, and VC Gibson et al., In Angew. Chem. Int. Ed., Engl, vol. 38, 1999, pages 428-447, EP 576 970, EP 485 823, EP 785 821, EP 702 303.
Alternativ trägt in einer weiteren Untergruppe der Metallocenverbindungen das Metall eine Cp-Gruppe wie oben definiert und zusätzlich einen η1- oder η2-Liganden, worin besagte Liganden miteinander verbrückt sein können oder nicht. Diese Untergruppe schließt sogenannte „scorpionate Verbindungen" (mit erzwungener Geometrie) in welcher das Metall durch einen η -Liganden komplexiert ist, welcher mit einem η - oder η -Liganden verbrückt ist, vorzugsweise mit einem η!-Liganden (z.B. ein σ- gebundener), z.B. ein Metallkomplex einer Cp-Gruppe wie oben definiert, z.B. eine Cyclopentadienylgruppe, die via eines Brückengliedes eine acyc- lische oder cyclische Gruppe trägt, die mindestens ein Heteroatom enthält, z.B. -NR"2 wie oben definiert. Solche Verbindungen sind beispielsweise in WO-A-9613529 beschrieben, auf dessen Inhalt hier Bezug genommen wird.Alternatively, in a further subgroup of the metallocene compounds, the metal carries a Cp group as defined above and additionally an η 1 or η 2 ligand, in which said ligands may or may not be bridged to one another. This subgroup includes so-called "scorpionate compounds" (with forced geometry) in which the metal is complexed by an η ligand, which is bridged by an η or η ligand, preferably by an η ! Ligand (eg a σ-bonded ), for example a metal complex of a Cp group as defined above, for example a cyclopentadienyl group which, via a bridge member, bears an acyclic or cyclic group which contains at least one heteroatom, for example —NR " 2 as defined above. Such compounds are described, for example, in WO-A-9613529, the content of which is incorporated herein by reference.
Eine weitere Untergruppe der Organoübergansmetallverbindungen der Formel I, die in der vorliegenden Erfindung verwendet werden können, ist als „Nicht-Metallocene" (Non-Metallocenes) bekannt, worin das Übergangsmetall (vorzugsweise ein Übergangsmetall der Gruppen 4 bis 6, geeigneter Weise Ti, Zr oder Hf) einen anderen Koordinationsliganden als den η5-Liganden hat (d.h. einen anderen als einen Cyclopentadienyl- Liganden). . Als Beispiele für solche Verbindungen, d.h. Übergansmetall- komplexe mit Stickstoff-basierten, cyclischen oder acyclischen aliphati- schen oder aromatischen Liganden, z.B. wie diejenigen, die in der früheren Anmeldung WO-A-9910353 oder im Übersichtsartikel von V.C. Gibson et al., Angew. Chem. Int. Ed., engl., Band 38, 1999, 428-447 oder mit Sauer- stoff-basierenden Liganden, wie etwa Gruppe 4 Metallkomplexe, die bidentale cyclische oder acyclische aliphatische oder aromatische Alkoxid- Liganden tragen, z.B. optional substituierte, verbrückte Bisphenolische Li- ganden (vgl. oben genannter Übersichtsartikel von Gibson et al.). Weitere spezifische Beispiele von nicht-η5-Liganden sind Amido, Amid- Diphosphan, Amidinat, Aminopyridin, Benzamidinat, Triazacyclononan, Allyl, Kohlenwasserstoff, beta-Diketimat und Alkoxid.Another subgroup of the organic transition metal compounds of formula I that can be used in the present invention is known as "non-metallocenes" in which the transition metal (preferably a transition metal of groups 4 to 6, suitably Ti, Zr or Hf) has a coordination ligand other than the η 5 ligand (ie a different one than a cyclopentadienyl ligand.) As examples of such compounds, ie transition metal complexes with nitrogen-based, cyclic or acyclic aliphatic or aromatic ligands, for example like those described in the earlier application WO-A-9910353 or in the review article by VC Gibson et al., Angew. Chem. Int. Ed., engl., volume 38, 1999, 428-447 or with oxygen based ligands, such as Group 4 metal complexes, which carry bidental cyclic or acyclic aliphatic or aromatic alkoxide ligands, for example optionally substituted, bridged bisphenolic Li ganden (see the above-mentioned review by Gibson et al.). Other specific examples of non-η 5 ligands are amido, amide diphosphine, amidinate, aminopyridine, benzamidinate, triazacyclononane, allyl, hydrocarbon, beta-diketimate and alkoxide.
Weitere geeignete Katalysatoren sind Chromkatalysatoren, wie Chromoxid auf Siliziumdioxid, Chromocene und insbesondere die Katalysatoren, die in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 und US 4,011,382 beschrieben sind, auf deren Offenbarung ausdrücklich Bezug genommen wird; sowie Nickelkatalysatoren, insbesondere jene, die in W099/62968, W098/47933, WO98/40420, W098/47933, WO00/06620 und WO96/23010 beschrieben sind, auf deren Offenbarung ausdrücklich Bezug genommen wird, und Vanadiumkatalysatoren.Other suitable catalysts are chromium catalysts, such as chromium oxide on silicon dioxide, chromocenes and in particular the catalysts described in EP-A-0 480 276, EP-A-0 533 156, EP-A-0 533 160, EP-A-0 100 879 and US 4,011,382, the disclosure of which is incorporated by reference; as well as nickel catalysts, especially those described in W099 / 62968, W098 / 47933, WO98 / 40420, W098 / 47933, WO00 / 06620 and WO96 / 23010, the disclosure of which is expressly incorporated by reference, and vanadium catalysts.
Ferner eignen sich Phillips-Katalysatoren sehr gut.Phillips catalysts are also very suitable.
Es kommt auch in Betracht, verschiedene Koordinationskatalysatoren zusammen zu verwenden, sogenannte dual- oder multikatalytische Systeme. Diese können aus einer Kombination verschiedener der vorgenannten Katalysatoren bestehen, z.B. einer Kombination aus zwei oder mehr Metal- locenen, einem Metallocen und einem Non-Metallocen, einem Ziegler- Natta Katalysator und einem Metallocen oder einem Ziegler-Natta Katalysator und einem Non-Metallocen.It is also possible to use different coordination catalysts together, so-called dual or multi-catalytic systems. These can consist of a combination of various of the aforementioned catalysts, e.g. a combination of two or more metal locenes, a metallocene and a non-metallocene, a Ziegler-Natta catalyst and a metallocene or a Ziegler-Natta catalyst and a non-metallocene.
Vorzugsweise umfassen die Koordinationskatalysatoren einen oder mehrere Cokatalysatoren, z.B. eine organische Aluminiumverbindung, wie Trialkyl- aluminium und/oder Alumoxanverbindungen. Bor-Coaktivatoren sind auch besonders geeignet.Preferably the coordination catalysts comprise one or more cocatalysts, e.g. an organic aluminum compound, such as trialkyl aluminum and / or alumoxane compounds. Boron coactivators are also particularly suitable.
Es können sowohl homogene als auch heterogene Katalysatorsysteme verwendet werden. Bei einem heterogenen Katalysatorsystem ist die Koordinationskatalysatorkomponente, gegebenenfalls zusammen mit dem Cokatalysator, vorzugsweise auf einem inerten Träger aufgebracht, wie beispielsweise Siliciumdioxid. Üblicherweise ist der poröse, teilchenförmige Träger mit dem Katalysatorsystem imprägniert. Diesbezüglich wird auf EP 678103 und PCT/GB01/01280 hingewiesen. Die eingesetzten Koordinationskatalysatoren zersetzen sich durch die Aktivierung mit elektromagnetischer Strahlung nicht.Both homogeneous and heterogeneous catalyst systems can be used. In the case of a heterogeneous catalyst system, the coordination catalyst component, optionally together with the cocatalyst, is preferably applied to an inert support, such as, for example, silicon dioxide. The porous, particulate support is usually impregnated with the catalyst system. In this regard, reference is made to EP 678103 and PCT / GB01 / 01280. The coordination catalysts used do not decompose due to activation with electromagnetic radiation.
Als Monomere kommen für das erfindungsgemäße Verfahren insbesondere Olefine in Betracht. Jedes Olefin, das mit Koordinationspolymerisation polymerisiert werden kann, ist geeignet.Suitable monomers for the process according to the invention are, in particular, olefins. Any olefin that can be polymerized by coordination polymerization is suitable.
Bevorzugte Olefine sind Ethylen und Propylen sowie Mischungen von Ethylen und Propylen mit einem oder mehreren α-Olefinen. Geeignete Co- monomer sind C2-12 Olefine, vorzugsweise C4.10 Olefine, wie 1-Buten, Isobuten, 1-Penten, 1 -Hexen, 4-Methyl-l-penten, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, sowie Diene wie Butadien, 1,7-Octadien und 1,4-Hexadien oder cyklische Olefine wie Norbornen, sowie Mischungen derselben. Die Menge an Comonomer liegt im allgemeinen bei 0,01 bis 50 Gew.%, vorzugsweise bei 0,1 bis 10 Gew.% und insbesondere bei 0,3 bis 3 Gew.%.Preferred olefins are ethylene and propylene and mixtures of ethylene and propylene with one or more α-olefins. Suitable co-monomers are C 2-12 olefins, preferably C 4 . 10 olefins, such as 1-butene, isobutene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonen, 1-decene, and dienes such as butadiene, 1.7 -Octadiene and 1,4-hexadiene or cyclic olefins such as norbornene, and mixtures thereof. The amount of comonomer is generally from 0.01 to 50% by weight, preferably from 0.1 to 10% by weight and in particular from 0.3 to 3% by weight.
Das erfindungsgemäße Verfahren eignet sich auch zur Polymerisation von langkettigen α-Olefinen mit 4 bis 40 Kohlenstoffatomen, die entweder allein oder in Kombination, auch mit kurzkettigen α-Olefinen, polymerisiert werden können. Geeignete Beispiele sind: 1-Butene, 1-Penten, 1- Hexene, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, 1- Tridecen, 1-Tetradecen, 1-Pentadecen, 1-Hexadecen, 1-Heptodecen, 1- Octodecen, 1-Nonadecen, 1-Eicosen, etc. bis Tetradecen. Bevorzugt sind α- Olefine mit 4 bis 16 Kohlenstoffatomen. Weitere geeignete Monomere sind Isomere von α-Olefinen mit verzweigten Alkylgruppen, wie 4-Methyl-l- penten.The process according to the invention is also suitable for the polymerization of long-chain α-olefins having 4 to 40 carbon atoms, which can be polymerized either alone or in combination, and also with short-chain α-olefins. Suitable examples are: 1-butenes, 1-pentene, 1-hexenes, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1- Pentadecene, 1-hexadecene, 1-heptodecene, 1-octodecene, 1-nonadecene, 1-eicosen, etc. to tetradecene. Alpha-olefins having 4 to 16 carbon atoms are preferred. Further suitable monomers are isomers of α-olefins with branched alkyl groups, such as 4-methyl-1-pentene.
Weitere geeignete Monomere sind Vinylmonomere wie Alkyl- und Aryl- vinylmonomere, z.B. Styrol, Vinylether, Vinylester, Acrylsäure und deren Ester, Methacrylsäure und deren Ester, Acrylamide, Acrylnitrile, Vinyl- amine, und dergleichen.Other suitable monomers are vinyl monomers such as alkyl and aryl vinyl monomers, e.g. Styrene, vinyl ether, vinyl ester, acrylic acid and its esters, methacrylic acid and its esters, acrylamides, acrylonitriles, vinyl amines, and the like.
Die Koordinationspolymerisation gemäß der Erfindung kann in einem oder mehreren Polymerisationsreaktoren durchgeführt werden. Konventionelle Polymerisationstechniken sind anwendbar, wie die Gasphasenpolymerisation, Lösungspolymerisation, Slurry-Polymerisation, Bulk-Polymeri- sation, Emulsionspolymerisation und Fällungspolymerisation. Verschiedene Polymerisationsverfahren können kombiniert werden. Besonders geeig- net ist die Kombination einer Slurry-Polymerisation gefolgt von einer Gasphasenpolymerisation.The coordination polymerization according to the invention can be carried out in one or more polymerization reactors. Conventional polymerization techniques can be used, such as gas phase polymerization, solution polymerization, slurry polymerization, bulk polymerization, emulsion polymerization and precipitation polymerization. Different polymerization processes can be combined. Particularly suitable net is the combination of a slurry polymerization followed by a gas phase polymerization.
Die Polymerisationsverfahren können kontinuierlich oder batchweise durchgeführt werden.The polymerization processes can be carried out continuously or batchwise.
Das erfindungsgemäße Verfahren eignet sich auch besonders für die Pre- polymerisation, d.h. eine Vorpolymerisation, auf die die eigentliche Polymerisation folgt.The process according to the invention is also particularly suitable for prepolymerization, i.e. a prepolymerization followed by the actual polymerization.
Auch geeignet ist das erfindungsgemäße Verfahren für die Oligomerisation. Das heißt, die Oligomerisation wird hier unter dem Begriff "Polymerisation" subsumiert.The process according to the invention is also suitable for oligomerization. This means that the oligomerization is subsumed under the term "polymerization".
Das Polymerisationsverfahren wird bei Anwesenheit elektromagnetischer Strahlung durchgeführt. Bei der elektromagnetischen Strahlung handelt es sich um eine zusätzliche Strahlung zur natürlichen Strahlung oder zur künstlichen Raumbeleuchtung.The polymerization process is carried out in the presence of electromagnetic radiation. Electromagnetic radiation is an additional radiation to natural radiation or artificial room lighting.
Die Erhöhung der Aktivität des Katalysatorsystems bzw. die Erhöhung der Produktivität des Polymerisationsverfahrens ist abhängig von der Intensität der Strahlung. Je höher die Intensität, desto höher die Aktivität.The increase in the activity of the catalyst system or the increase in the productivity of the polymerization process depends on the intensity of the radiation. The higher the intensity, the higher the activity.
Die Bestrahlung kann kontinuierlich erfolgen, aber auch in Intervallen oder pulsierend oder nur für einen kurzen Zeitraum am Beginn der Polymerisation.Irradiation can take place continuously, but also at intervals or pulsating or only for a short period at the start of the polymerization.
Bei dem erfindungsgemäßen Verfahren können Strahlungen verschiedener Wellenlängen eingesetzt werden. Die Wellenlänge kann in jedem Wellenlängenbereich des elektromagnetischen Spektrums liegen, das von der Gammastrahlung bis Radiowellen reicht. Geeignet sind insbesondere Wellen im Bereich zwischen Röntgenstrahlen und Mikrowellen, wobei der Bereich zwischen UV und Infrarot bevorzugt wird und sich insbesondere kurzwelliges sichtbares Licht als auch UV Licht besonders eignen.Radiations of different wavelengths can be used in the method according to the invention. The wavelength can be in any wavelength range of the electromagnetic spectrum, which ranges from gamma radiation to radio waves. Waves in the area between X-rays and microwaves are particularly suitable, the area between UV and infrared being preferred and short-wave visible light and UV light being particularly suitable.
In Wellenlängen ausgedrückt kann die Strahlung im Bereich zwischen 10"12 und 104 m liegen. Bevorzugt wird jedoch eine Strahlung zwischen 10"8 und 10"2 m, insbesondere 10"8 und 10"6 m und besonders eine Strahlung im Be- reich zwischen 100 und 800 nm. Die Strahlung kann eine einheitliche Wellenlänge haben oder aus einer Strahlung mit verschiedenen Wellenlängen bestehen.In terms of wavelengths, the radiation can be in the range between 10 "12 and 10 4 m. However, radiation between 10 " 8 and 10 "2 m, in particular 10 " 8 and 10 "6 m and especially radiation in the range is preferred. range between 100 and 800 nm. The radiation can have a uniform wavelength or consist of radiation with different wavelengths.
So hat sich in den beigefügten Beispielen gezeigt, dass sich für die dort verwendeten Katalysatoren blaues Licht besonders günstig auf eine effektive Polymerisation auswirkt, d.h. für den besagten Beispiel ein Wellenlängenbereich von 300 bis 480 nm.It has been shown in the attached examples that blue light has a particularly favorable effect on effective polymerization for the catalysts used there, i.e. for the example in question, a wavelength range from 300 to 480 nm.
Gemäß einer besonders bevorzugten Ausführungsform wird die elektromagnetische Strahlung einer Wellenlänge eingesetzt, die im Bereich des Absorptionsspektrums des Koordinationskatalysators liegt. Bevorzugt wird Strahlung einer Wellenlänge im Bereich des Maximums des Absorptionsspektrums des Koordinationskatalysators.According to a particularly preferred embodiment, the electromagnetic radiation of a wavelength that lies in the range of the absorption spectrum of the coordination catalyst is used. Radiation of a wavelength in the range of the maximum of the absorption spectrum of the coordination catalyst is preferred.
Für die Anordnung der Strahlungsquelle im Polymerisationssystem bestehen im Prinzip zwei Möglichkeiten. Entweder, und diese wird bevorzugt, wird die Strahlenquelle im Inneren des Polymerisationsreaktors, gegebenenfalls auch in der Zuleitung zum Reaktor, angeordnet. Alternativ kann die Strahlungsquelle außerhalb des Reaktors angeordnet werden. Dieser ist dann mit einem Fenster versehen, das für die jeweilige Strahlung durchlässig ist. Bevorzugt besteht das Fenster dabei aus Glas oder Quarz. Ein Fenster kann entfallen, wenn die Strahlung durch die Wand des Reaktors dringen kann.In principle, there are two options for arranging the radiation source in the polymerization system. Either, and this is preferred, the radiation source is arranged in the interior of the polymerization reactor, optionally also in the feed line to the reactor. Alternatively, the radiation source can be arranged outside the reactor. This is then provided with a window that is transparent to the respective radiation. The window is preferably made of glass or quartz. A window can be omitted if the radiation can penetrate through the wall of the reactor.
Weiterhin ist es auch möglich, dass eine Vorrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors oder der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.Furthermore, it is also possible for a device for emitting electromagnetic radiation to be arranged outside the polymerization reactor or the feed line to the polymerization reactor and for the electromagnetic radiation to be able to reach the reactor via an optical conductor.
Die Strahlenmenge ist abhängig von der Größe des Reaktorsystems.The amount of radiation depends on the size of the reactor system.
Bei einem kombinierten Polymerisationsverfahren, wie einer Slurry- Polymerisation, die vorzugsweise in einem Loop-Reaktor ausgeführt wird, und einem darauffolgenden Gasphasenreaktor kann die Strahlung an einer oder mehreren Stellen des Loop-Systems einbracht werden. Auch der Gasphasenreaktor kann mit Strahlung beaufschlagt werden. Alternativ können die Zufuhrleitungen zu den Reaktoren, gegebenenfalls zusätzlich zu den Reaktoren, bestrahlt werden.In a combined polymerization process, such as a slurry polymerization, which is preferably carried out in a loop reactor, and a subsequent gas phase reactor, the radiation can be introduced at one or more points in the loop system. Radiation can also be applied to the gas phase reactor. Alternatively, you can the feed lines to the reactors, optionally in addition to the reactors, are irradiated.
Ein geeignetes Polymerisationssysstem ist beispielsweise folgendes. Der erste Reaktor ist ein Slurry-Reaktor. Dieser arbeitet bei einer Temperatur im Bereich von 60 bis 110°C. Der Reaktordruck ist im Bereich von 0,1 bis 100 bar, vorzugsweise 5 bis 80 bar und insbesondere 50 bis 65 bar. Die Verweilzeit liegt bei 0,1 bis 5 Stunden, vorzugsweise 0,3 bis 5 Stunden und insbesondere 0,5 bis 2 Stunden. Als Verdünnungsmittel wird im allgemeinen ein aliphatischer Kohlenwasserstoff eingesetzt. Die Polymerisation kann unter superkritischen Bedingungen durchgeführt werden. Nachfolgend sind ein oder mehrere Gasphasenreaktoren geschalten. Die Reaktionstemperatur beträgt im allgemeinen 60 bis 115°C, vorzugsweise 70 bis 110°C. Der Reaktordruck liegt bei 10 bis 25 bar und die Verweilzeit bei 1 bis 8 Stunden. Das eingesetzte Gas ist im allgemeinen ein nichtreaktives Gas wie Stickstoff.A suitable polymerization system is, for example, the following. The first reactor is a slurry reactor. This works at a temperature in the range of 60 to 110 ° C. The reactor pressure is in the range from 0.1 to 100 bar, preferably 5 to 80 bar and in particular 50 to 65 bar. The residence time is 0.1 to 5 hours, preferably 0.3 to 5 hours and in particular 0.5 to 2 hours. An aliphatic hydrocarbon is generally used as the diluent. The polymerization can be carried out under supercritical conditions. One or more gas phase reactors are subsequently connected. The reaction temperature is generally 60 to 115 ° C, preferably 70 to 110 ° C. The reactor pressure is 10 to 25 bar and the residence time is 1 to 8 hours. The gas used is generally a non-reactive gas such as nitrogen.
Das beispielsweise beschriebene Reaktorsystem ist besonders für die Polymerisation von Ethylen und Propylen, bzw. die Copolymerisation von Ethylen und Propylen mit α-Olefinen geeignet.The reactor system described for example is particularly suitable for the polymerization of ethylene and propylene, or the copolymerization of ethylene and propylene with α-olefins.
Geeignete Einrichtungen zur Emittierung der elektromagnetischen Strahlung sind beispielsweise Floureszenzlampen, Incandeszentlampen und Halogenlampen. Die Strahlungsmenge im UV oder sichtbaren Bereich sollte wenigstens ein Watt pro 100 ml Reaktionsvolumen betragen.Suitable devices for emitting the electromagnetic radiation are, for example, fluorescent lamps, incandescent lamps and halogen lamps. The amount of radiation in the UV or visible range should be at least one watt per 100 ml reaction volume.
Die Erfindung wird nachstehend anhand von Beispielen, die bevorzugte Ausführungsformen zeigen, näher beschrieben. Beispiel 1: KatalysatorherstellungThe invention is described in more detail below with the aid of examples which show preferred embodiments. Example 1: Catalyst preparation
Der Katalysator wurde hergestellt durch Lösen von 11 mg n-Bu-Cp2ZrCl2 (Witco GmbH, Deutschland) mit MAO/Toluol enthaltend 1,15 ml 30 Gew.% MAO (30 Gew.% MAO in Toluol, von Albemarle) und 0,35 ml feuchtigkeits- und sauerstofffreiem Toluol. Die Metallo- cen/MAO/Toluollösung wurde auf einen Siliziumdioxidträger (SYLOPOL 55 SJ; Grace-Davison, calziniert bei 600°C mit einem Porenvolumen von 1,5 bis 1,7 ml/g, Oberfläche 350 m2/g) in solcher Weise aufgegeben, dass das Volumen der Komplexlösung das Porenvolumen des Siliziumdioxids (1,5 ml/g) nicht überstieg. Anschließend wurde getrocknet und die Trocknung abgeschlossen mittels Durchleiten von feuchtigkeit- und sauerstofffreiem Stickstoff durch den Katalysator bei Raumtemperatur.The catalyst was prepared by dissolving 11 mg of n-Bu-Cp 2 ZrCl 2 (Witco GmbH, Germany) with MAO / toluene containing 1.15 ml of 30% by weight of MAO (30% by weight of MAO in toluene, from Albemarle) and 0.35 ml of moisture and oxygen-free toluene. The metallocene / MAO / toluene solution was placed on a silicon dioxide carrier (SYLOPOL 55 SJ; Grace-Davison, calcined at 600 ° C. with a pore volume of 1.5 to 1.7 ml / g, surface 350 m 2 / g) Given in such a way that the volume of the complex solution did not exceed the pore volume of the silicon dioxide (1.5 ml / g). The mixture was then dried and the drying was completed by passing moisture-free and oxygen-free nitrogen through the catalyst at room temperature.
Beispiel 2: KataϊysatorherstellungExample 2: Catalyst production
Der Katalysator wurde wie in Beispiel 1 beschrieben hergestellt, als Metal- locenverbindung wurden jedoch 14 mg n-Bu-Cp2ZrCl2 (Witco GmbH, Deutschland) verwendet.The catalyst was prepared as described in Example 1, but 14 mg of n-Bu-Cp 2 ZrCl 2 (Witco GmbH, Germany) were used as the metal locene compound.
Beispiel 3: KatalysatorherstellungExample 3: Catalyst preparation
Der Katalysator wurde wie in Beispiel 1 beschrieben hergestellt, jedoch wurden als Metallocenverbindung 17,5 mg rac-Ethylen-bis(2- butyldimethylsiloxyindenyl) Zirconium Dichlorid (gemäß WO 97 28170 hergestellt) verwendet.The catalyst was prepared as described in Example 1, but 17.5 mg of rac-ethylene-bis (2-butyldimethylsiloxyindenyl) zirconium dichloride (prepared according to WO 97 28170) were used as the metallocene compound.
Beispiel 4: Polymerisation mit vollem LichtExample 4: Polymerization with full light
Die Polymerisation wurde in einem 20 ml Minireaktor durchgeführt, wobei 7,08 mg Katalysator, hergestellt nach Beispiel 1, in den Reaktor eingebracht wurden. Der Reaktor wurde geschlossen und an die Ethylenquelle angeschlossen. Der Ethylenpartialdruck wurde auf 5 bar eingestellt. Die Polymerisationstemperatur betrug 80°C und die Polymerisationszeit war 60 min. Der Ethylenverbrauch wurde durch den Druckabfall verfolgt, nämlich im Bereich zwischen 4980 und 5010 mbar. Der Reaktor, versehen mit einem Glasfenster, wurde mit einer kalten Lichtquelle FLEXILUX 600 longlife mit Phillips 14501 DDL, 20V/150W Halogenlampen bestrahlt. Die höchste Lichtintensität wurde verwendet. Nach 60 min Reaktionszeit wurde die Polymerisation durch Schließen der Ethylenzufuhr gestoppt und der E- thylendruck aufgehoben. Die Ausbeute des Polymers war 0,888488 g und die Aktivität des Katalysators betrug 125,5 gHDPE/g Katalysator pro Stunde.The polymerization was carried out in a 20 ml mini-reactor, 7.08 mg of catalyst, prepared according to Example 1, being introduced into the reactor. The reactor was closed and connected to the ethylene source. The ethylene partial pressure was set at 5 bar. The polymerization temperature was 80 ° C and the polymerization time was 60 minute The ethylene consumption was followed by the pressure drop, namely in the range between 4980 and 5010 mbar. The reactor, provided with a glass window, was irradiated with a cold light source FLEXILUX 600 longlife with Phillips 14501 DDL, 20V / 150W halogen lamps. The highest light intensity was used. After a reaction time of 60 minutes, the polymerization was stopped by closing the ethylene feed and the ethylene pressure was released. The yield of the polymer was 0.888488 g and the activity of the catalyst was 125.5 gHDPE / g catalyst per hour.
Beispiel 5: Polymerisation ohne LichtExample 5: Polymerization without light
Die Polymerisation wurde wie im Beispiel 4 beschrieben durchgeführt, wobei jedoch kein Licht eingestrahlt wurde. Die Katalysatormenge war 6,95 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,13806 g. Die Aktivität des Katalysators betrug 19,9 gHDPE/g Kat h.The polymerization was carried out as described in Example 4, but no light was irradiated. The amount of catalyst was 6.95 mg. After 60 minutes of polymerization, the yield of polymer was 0.13806 g. The activity of the catalyst was 19.9 gHDPE / g Kat h.
Beispiel 6: Polymerisation mit halbem LichtExample 6: Half light polymerization
Die Polymerisation wurde wie im Beispiel 4 beschrieben durchgeführt, wobei jedoch nur die halbe Lichtintensität verwendet wurde. Die Menge an Katalysator betrug 6,96 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,7831 g. Die Aktivität des Katalysators war 112,5 gHDPE/g Kat h.The polymerization was carried out as described in Example 4, but using only half the light intensity. The amount of catalyst was 6.96 mg. After 60 minutes of polymerization, the yield of polymer was 0.7831 g. The activity of the catalyst was 112.5 gHDPE / g cat h.
Beispiel 7: Polymerisation mit LichtExample 7: Polymerization with light
Die Polymerisation wurde wie im Beispiel 4 beschrieben durchgeführt, wobei jedoch der Katalysator gemäß Beispiel 2 verwendet wurde. Die Menge an Katalysator betrug 7,32 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,56008 g. Die Aktivität des Katalysators betrug 76,5 gHDPE/g Kat h. Beispiel 8: Polymerisation ohne LichtThe polymerization was carried out as described in Example 4, but using the catalyst according to Example 2. The amount of catalyst was 7.32 mg. After 60 minutes of polymerization, the yield of polymer was 0.56008 g. The activity of the catalyst was 76.5 gHDPE / g Kat h. Example 8: Polymerization without light
Die Polymerisation wurde wie in Beispiel 7 durchgeführt, jedoch wurde kein Licht verwendet. Die Katalysatormenge betrag 7,31 mg. Nach 60 min Polymerisation betrag die Ausbeute an Polymer 0,10527 g. Die Aktivität des Katalysators betrug 14,4 gHDPE/g Kat h.The polymerization was carried out as in Example 7, but no light was used. The amount of catalyst was 7.31 mg. After 60 minutes of polymerization, the yield of polymer is 0.10527 g. The activity of the catalyst was 14.4 gHDPE / g Kat h.
Beispiel 9: Polymerisation mit LichtExample 9: Polymerization with light
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch wurde der Katalysator von Beispiel 3 eingesetzt. Die Katalysatormenge betrug 6,85 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,74192 g. Die Aktivität des Katalysators betrug 108.3 gHDPE/g Kat h.The polymerization was carried out as described in Example 4, but the catalyst from Example 3 was used. The amount of catalyst was 6.85 mg. After 60 minutes of polymerization, the yield of polymer was 0.74192 g. The activity of the catalyst was 108.3 gHDPE / g Kat h.
Beispiel 10: Polymerisation ohne LichtExample 10: Polymerization without light
Die Polymerisation wurde wie in Beispiel 9 beschrieben durchgeführt, wobei jedoch kein Licht verwendet wurde. Die Katalysatormenge betrag 7,24 mg. Nach 60 min Polymerisation betrag die Ausbeute an Polymer 0,18847 g. Die Aktivität des Katalysators betrag 26.0 gHDPE/g Kat h.The polymerization was carried out as described in Example 9, but no light was used. The amount of catalyst was 7.24 mg. After 60 minutes of polymerization, the yield of polymer is 0.18847 g. The activity of the catalyst is 26.0 gHDPE / g cat h.
Beispiel 11: Polymerisation mit blauem LichtExample 11: Blue light polymerization
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, wobei jedoch ein blauer Filter verwendet wurde, der bei Wellenlängen im Bereich von 300 bis 480 nm transmittiert. Die Katalysatormenge betrag 7,24 g. Nach 60 min Polymerisation betrag die Ausbeute an Polymer 1,06657 g. Die Aktivität des Katalysators betrug 149,6 gHDPE/g Kat h. Beispiel 12: Polymerisation mit grünem/gelbem LichtThe polymerization was carried out as described in Example 4, but using a blue filter which transmits at wavelengths in the range from 300 to 480 nm. The amount of catalyst was 7.24 g. After 60 minutes of polymerization, the yield of polymer is 1.06657 g. The activity of the catalyst was 149.6 gHDPE / g Kat h. Example 12: Polymerization with green / yellow light
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch mit einem Grün/Gelbfilter, der bei Wellenlängen über 400 nm transmittiert. Die Katalysatormenge betrug 7,1 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,7225 g. Die Aktivität des Katalysators betrug 101,8 gHDPE/g Kat h.The polymerization was carried out as described in Example 4, but with a green / yellow filter which transmits at wavelengths above 400 nm. The amount of catalyst was 7.1 mg. After 60 minutes of polymerization, the yield of polymer was 0.7225 g. The activity of the catalyst was 101.8 gHDPE / g Kat h.
Beispiel 13: Polymerisation mit rotem LichtExample 13: Red light polymerization
Die Polymerisation wurde wie in Beispiel 4 beschrieben durchgeführt, jedoch wurde ein Rotfilter verwendet, der bei Wellenlängen über 600 nm transmittiert. Die Katalysatormenge betrag 6,93 mg. Nach 60 min Polymerisation betrug die Ausbeute an Polymer 0,43305 g. Die Aktivität des Katalysators betrug 62,5 gHDPE/g Kat h.The polymerization was carried out as described in Example 4, but a red filter was used which transmits at wavelengths above 600 nm. The amount of catalyst was 6.93 mg. After 60 minutes of polymerization, the yield of polymer was 0.43305 g. The activity of the catalyst was 62.5 gHDPE / g Kat h.
Die Beispiele zeigen, dass die Aktivität des Katalysators bei Bestrahlung mit Licht dramatisch zunimmt und dass die Aktivität von der Intensität der Strahlung abhängt. Die Beispiele zeigen weiter, dass die Wellenlänge des Lichtes von Einfluß auf die Aktivitätserhöhung ist.The examples show that the activity of the catalyst increases dramatically when irradiated with light and that the activity depends on the intensity of the radiation. The examples further show that the wavelength of the light influences the increase in activity.
Beispiel 14: Polymerisation mit einem Ziegler-Natta-KatalysatorExample 14: Polymerization with a Ziegler-Natta catalyst
Alle Ausgangsmaterialien waren im Wesentlichen frei von Wasser und Luft und alle Materialzugaben zum Reaktor und bei den unterschiedlichen Schritten wurden unter inerten Bedingungen in Stickstoffatmosphäre durchgeführt. Der Wassergehalt im Propylen war niedriger als 5 ppm.All starting materials were essentially free of water and air and all material additions to the reactor and at the different steps were carried out under inert conditions in a nitrogen atmosphere. The water content in the propylene was less than 5 ppm.
Die Polymerisation wurde in einem 51-Reaktor durchgeführt, welcher erhitzt wurde, evakuiert und mit Stickstoff durchflutet, bevor er in Gebrauch genommen wurde. 213 μl TEA (Triethylaluminium, von Witco, ohne weitere Reinigung/Behandlung verwendet), 36μl Donor D (Dicyclopentyldime- toxysilan von Wacker, über Molekularsieb getrocknet) und 30 ml Pentan (über Molekularsieb getrocknet und mit Stickstoff begast) wurden gemischt, und für 5 Minuten zur Reaktion überlassen. Die Hälfte der Mi- schung wurde zum Reaktor gegeben und die andere Hälfte wurde mit 14,2 mg hochaktivem und stereospezifischem Ziegler-Natta-Katalysator (ZN Katalysator) gemischt. Der ZN Katalysator wurde gemäß des Test- Beispiels 3 in EP 591224 (Borealis) hergestellt, und hatte einen Ti-Gehalt von 2,1 Gewichtsprozent. Nach ungefähr 10 Minuten wurde die ZN Katalysator/TEA/Donor D/Pentan-Mischung dem Reaktor zugeführt. Das molare Verhältnis Al/Ti betrag 250 und das molare Verhältnis AI/Do betrug 10. 100 mmol Wasserstoff und 1400 g Propylen wurden zum Reaktor gegeben. Die Lampe wurde eingeschaltet. Bei der Lampe handelte es sich um eine Halogenlampe, 50 Watt, 12 Volt. Die Temperatur wurde während 19 Minuten von Raumtemperatur auf 80°C erhöht. Nach 30 Minuten bei 80°C wurde die Reaktion gestoppt, indem nicht-reagiertes Propylen herausgelassen wurde.The polymerization was carried out in a 51 reactor, which was heated, evacuated and flushed with nitrogen before it was put into use. 213 μl TEA (triethylaluminum, from Witco, used without further purification / treatment), 36 μl donor D (dicyclopentyldimetoxysilane from Wacker, dried over molecular sieve) and 30 ml pentane (dried over molecular sieve and gassed with nitrogen) were mixed, and for 5 Leave minutes to react. Half of the mi Schung was added to the reactor and the other half was mixed with 14.2 mg of highly active and stereospecific Ziegler-Natta catalyst (ZN catalyst). The ZN catalyst was produced according to test example 3 in EP 591224 (Borealis) and had a Ti content of 2.1 percent by weight. After approximately 10 minutes, the ZN catalyst / TEA / donor D / pentane mixture was fed to the reactor. The Al / Ti molar ratio was 250 and the Al / Do molar ratio was 10. 100 mmol of hydrogen and 1400 g of propylene were added to the reactor. The lamp was turned on. The lamp was a halogen lamp, 50 watts, 12 volts. The temperature was raised from room temperature to 80 ° C over 19 minutes. After 30 minutes at 80 ° C, the reaction was stopped by letting out unreacted propylene.
Das Polymer wurde analysiert und die Ergebnisse werden in Tabelle 1 gezeigt. Die Aktivität betrag 22,6 kg Propylen pro Gramm Katalysator.The polymer was analyzed and the results are shown in Table 1. The activity was 22.6 kg of propylene per gram of catalyst.
Vergleichsbeispiel 15:Comparative Example 15:
Dieses Beispiel wurde gemäß dem Beispiel 14 durchgeführt, wobei allerdings keine Lichtbehandlung während der Polymerisation durchgeführt wurde. Details und Ergebnisse werden in Tabelle 1 gezeigt. Die Aktivität betrag 19,9 kg Propylen pro Gramm Katalysator.This example was carried out according to Example 14, but no light treatment was carried out during the polymerization. Details and results are shown in Table 1. The activity was 19.9 kg propylene per gram of catalyst.
Das Beispiel dieses Patentes ergibt damit eine ungefähr 15 % höhere Aktivität als das Vergleichsbeispiel. Aus der Tabelle ist ebenso ersichtlich, dass die Lichtbehandlung auf die Polymereigenschaften keinen signifikanten Effekt zeigt. The example of this patent thus gives about 15% higher activity than the comparative example. The table also shows that the light treatment has no significant effect on the polymer properties.
Beispiel 16: Vergleich der Polymerisation mit Licht einer Halogenlampe und mit Licht einer QuecksilberlampeExample 16: Comparison of the polymerization with light from a halogen lamp and with light from a mercury lamp
Die Polymerisation wurde in einem 20 ml Minireaktor durchgeführt, wobei Katalysator, hergestellt nach Beispiel 1 in den in Tabelle 2 angegebenen Mengen, in den Reaktor eingebracht wurden. Der Reaktor wurde geschlossen und an die Ethylenquelle angeschlossen. Der Ethylenpartialdruck wurde auf 4,5 bar eingestellt. Die Polymerisationstemperatur betrug 80°C und die Polymerisationszeit war 60 min. Der Ethylenverbrauch wurde durch den Druckabfall verfolgt, nämlich im Bereich zwischen 4980 und 5010 mbar. Der Reaktor, versehen mit einem Glasfenster, wurde mit einer kalten Lichtquelle FLEXILUX 600 longlife mit Phillips 14501 DDL, 20V/150W Halogenlampen bestrahlt. Die höchste Lichtintensität wurde verwendet. Nach 60 min Reaktionszeit wurde die Polymerisation durch Schließen der Ethylenzufuhr gestoppt und der Ethylendruck aufgehoben.The polymerization was carried out in a 20 ml mini reactor, with catalyst prepared according to Example 1 in the amounts given in Table 2 being introduced into the reactor. The reactor was closed and connected to the ethylene source. The ethylene partial pressure was set at 4.5 bar. The polymerization temperature was 80 ° C and the polymerization time was 60 min. The ethylene consumption was followed by the pressure drop, namely in the range between 4980 and 5010 mbar. The reactor, provided with a glass window, was irradiated with a cold light source FLEXILUX 600 longlife with Phillips 14501 DDL, 20V / 150W halogen lamps. The highest light intensity was used. After a reaction time of 60 minutes, the polymerization was stopped by closing the ethylene feed and the ethylene pressure was released.
Die Halogenlampe hatte ein sehr breites Spektrum des emittierten sichtbaren Lichtes mit Wellenlängen von 350 bis 750 nm. Es wurden drei Lichtfilter verwendet, die Licht von drei verschiedenen Wellenlängen transmittie- ren. Der blaue Filter transmittierte Wellenlängen zwischen 300 und 480 nm, der Grün/Gelbfilter transmittierte Wellenlängen oberhalb von 400 nm und der Rotfilter transmittierte Wellenlängen oberhalb 600 nm. Das gefilterte Licht weist nur einen Bruchteil der Gesamtintensität der Lichtquelle auf. Dies muß beim Vergleich der Ergebnisse berücksichtigt werden.The halogen lamp had a very broad spectrum of the emitted visible light with wavelengths from 350 to 750 nm. Three light filters were used which transmit light of three different wavelengths. Ren. The blue filter transmitted wavelengths between 300 and 480 nm, the green / yellow filter transmitted wavelengths above 400 nm and the red filter transmitted wavelengths above 600 nm. The filtered light has only a fraction of the total intensity of the light source. This must be taken into account when comparing the results.
In der nachstehenden Tabelle 2 ist der Einfluß der Längenwelle des Lichtes auf die Polymerisationsaktivität wiedergegeben.Table 2 below shows the influence of the longitudinal wave of light on the polymerization activity.
Tabelle 2: Wirkung des Lichtes auf die Polymerisationsaktivität mit einer Halogenlampe:Table 2: Effect of light on the polymerization activity with a halogen lamp:
Die Aktivität des Katalysators war am höchsten, wenn der Filter Licht einer Wellenlänge von 300 bis 450 nm transmittierte. Die Aktivität fiel ab, wenn die Bestrahlung mit höherer Wellenlänge durchgeführt wurde.The activity of the catalyst was highest when the filter transmitted light with a wavelength of 300 to 450 nm. The activity decreased when the irradiation was carried out at a higher wavelength.
Wurde das Absorptionsspektrum des Katalysators n-Bu-Cp2ZrCl2/MAO; Al/Zr = 200 mol/mol mit dem transmittierten Licht verglichen, zeigte sich eine deutliche Überlappung des absorbierten Lichtes und des transmittierten Lichtes. Es zeigt sich, daß die höchste Aktivität bei einer Strahlungsfrequenz erreicht wird, die jener der Absorption des aktiven Metallo- cen/MAO-Komplexes entspricht. Je mehr die Strahlenfrequenz vom Absorptionsspektrum des Katalysators entfernt ist, desto geringer ist der Akti- vierungseffekt. Figur 1 zeigt den Vergleich des Absorptionsspektrums des Metallocen- Komplexes (graue Fläche) im Vergleich mit den Emissionsbereichen der drei Filter.Was the absorption spectrum of the catalyst n-Bu-Cp 2 ZrCl 2 / MAO; Al / Zr = 200 mol / mol compared with the transmitted light, there was a clear overlap of the absorbed light and the transmitted light. It can be seen that the highest activity is achieved at a radiation frequency which corresponds to that of the absorption of the active metallocene / MAO complex. The more the radiation frequency is removed from the absorption spectrum of the catalytic converter, the less the activation effect. FIG. 1 shows the comparison of the absorption spectrum of the metallocene complex (gray area) in comparison with the emission ranges of the three filters.
Zusätzliche Polymerisationen wurden wie oben in diesem Beispiel 16 beschreiben durchgeführt, jedoch wurde anstelle einer Halogenlampe eine Quecksilberlampe verwendet, die im Bereich von 300 bis 550 nm emittierte. Im Vergleich zur Halogenlampe, die ein breites Emissionsspektrum besitzt, weist die Quecksilberlampe ein paar einzelne, sehr starke Emissionen auf. Das Ergebnis dieser Polymerisationen ist in Tabelle 3 aufgeführt:Additional polymerizations were carried out as described above in this example 16, but instead of a halogen lamp, a mercury lamp was used which emitted in the range from 300 to 550 nm. Compared to the halogen lamp, which has a wide emission spectrum, the mercury lamp has a few individual, very strong emissions. The result of these polymerizations is shown in Table 3:
Tabelle 3: Wirkung des Lichtes auf die Polymerisationsaktivität mit einer Quescksilberlampe:Table 3: Effect of light on the polymerization activity with a mercury lamp:

Claims

Patentansprüche claims
1. Polymerisationsverfahren unter Verwendung eines Koordinationskatalysators, wobei während dem Koordinationspolymerisationsverfahren der Koordinationskatalysator und das Monomer einer elektromagnetischen Strahlung ausgesetzt werden.1. A polymerization method using a coordination catalyst, wherein the coordination catalyst and the monomer are exposed to electromagnetic radiation during the coordination polymerization method.
2. Verfahren zur Erhöhung der Produktivität eines Koordinationskatalysators in einem Polymerisationsverfahren, wobei der Koordinationskatalysator und das Monomer während dem Polymerisationsverfahren einer elektromagnetischen Strahlung ausgesetzt werden.2. A method for increasing the productivity of a coordination catalyst in a polymerization process, wherein the coordination catalyst and the monomer are exposed to electromagnetic radiation during the polymerization process.
3. Verfahren nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich zwischen infrarot und ultraviolett aufweist.3. The method according spoke 1 or 2, characterized in that the electromagnetic radiation has a wavelength in the range between infrared and ultraviolet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich zwischen 800 und 100 nm aufweist.4. The method according to any one of claims 1 to 3, characterized in that the electromagnetic radiation has a wavelength in the range between 800 and 100 nm.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge des Absorptionsbereichs des Koordinationskatalysators aufweist.5. The method according to any one of claims 1 to 4, characterized in that the electromagnetic radiation has a wavelength of the absorption region of the coordination catalyst.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die elektromagnetische Strahlung eine Wellenlänge im Bereich des Maximums des Absorptionsspektrums des Koordinationskatalysators aufweist.6. The method according to any one of claims 1 to 5, characterized in that the electromagnetic radiation has a wavelength in the range of the maximum of the absorption spectrum of the coordination catalyst.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die elektromagnetische Strahlung kontinuierlich während des Polymerisationsverfahrens angewandt wird.7. The method according to any one of claims 1 to 6, characterized in that the electromagnetic radiation is applied continuously during the polymerization process.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die elektromagnetische Strahlung während des Polymerisationsverfahrens in Intervallen angewandt wird. 8. The method according to any one of claims 1 to 7, characterized in that the electromagnetic radiation is applied at intervals during the polymerization process.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich der Koordinationskatalysator durch die Aktivierang mit elektromagnetischer Strahlung nicht zersetzt.9. The method according to any one of claims 1 to 8, characterized in that the coordination catalyst is not decomposed by the activating with electromagnetic radiation.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Polymerisation ohne Bildung von freien Radikalen verläuft.10. The method according to any one of claims 1 to 9, characterized in that the polymerization proceeds without the formation of free radicals.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass bei dem Polymerisationsverfahren Verunreinigungen anwesend sind.11. The method according to any one of claims 1 to 10, characterized in that impurities are present in the polymerization process.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass bei dem Polymerisationsverfahren Olefine polymerisiert werden.12. The method according to any one of claims 1 to 11, characterized in that olefins are polymerized in the polymerization process.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass bei dem Polymerisations verfahren Ethylen oder Ethylen und Co- monomere polymerisiert werden.13. The method according to any one of claims 1 to 12, characterized in that in the polymerization process ethylene or ethylene and comonomers are polymerized.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass bei dem Polymerisationsverfahren Propylen oder Propylen und Comonomere polymerisiert werden.14. The method according to any one of claims 1 to 13, characterized in that in the polymerization process, propylene or propylene and comonomers are polymerized.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als Koordinationskatalysator ein Ziegler-Natta Katalysator eingesetzt wird.15. The method according to any one of claims 1 to 14, characterized in that a Ziegler-Natta catalyst is used as the coordination catalyst.
16. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als Koordinationskatalysator ein Metallocen-Katalysator eingesetzt wird.16. The method according to any one of claims 1 to 14, characterized in that a metallocene catalyst is used as the coordination catalyst.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass nur Koordinationskatalysatoren mit oder ohne Cokatalysatoren eingesetzt werden.17. The method according to any one of claims 1 to 16, characterized in that only coordination catalysts with or without cocatalysts are used.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass eine Mischung von Koordinationskatalysatoren verwendet wird. 18. The method according to any one of claims 1 to 17, characterized in that a mixture of coordination catalysts is used.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass ein Koordinationskatalysator zusammen mit einem Cokatalysator verwendet wird.19. The method according to any one of claims 1 to 18, characterized in that a coordination catalyst is used together with a cocatalyst.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass Alumoxane als Cokatalysator eingesetzt werden.20. The method according to claim 19, characterized in that alumoxanes are used as cocatalyst.
21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass Borkatalysatoren als Cokatalysator eingesetzt werden.21. The method according to claim 19, characterized in that boron catalysts are used as cocatalyst.
22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerisation eine Lösungspolymerisation ist.22. The method according to any one of claims 1 to 21, characterized in that the polymerization is a solution polymerization.
23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Polymerisation eine Slurry-Polymerisation ist.23. The method according to any one of claims 1 to 22, characterized in that the polymerization is a slurry polymerization.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Polymerisation eine Gasphasenpolymerisation ist.24. The method according to any one of claims 1 to 23, characterized in that the polymerization is a gas phase polymerization.
25. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerisation eine Slurry-Polymerisation gefolgt von einer Gasphasenpolymerisation ist.25. The method according to any one of claims 1 to 21, characterized in that the polymerization is a slurry polymerization followed by a gas phase polymerization.
26. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerisation eine superkritische Ethylen-Pplymerisation ist.26. The method according to any one of claims 1 to 21, characterized in that the polymerization is a supercritical ethylene polymerization.
27. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerisation eine Pre-Polymerisation ist.27. The method according to any one of claims 1 to 21, characterized in that the polymerization is a pre-polymerization.
28. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerisation eine Oligomerisation ist.28. The method according to any one of claims 1 to 21, characterized in that the polymerization is an oligomerization.
29. Polymer, hergestellt durch ein Koordinationspolymerisationsverfah- ren nach einem der Ansprüche 1 bis 28 unter Verwendung eines Koordinationskatalysators, wobei während der Polymerisationsreaktion der Koordinationskatalysator und das Monomer einer elektromagnetischen Strahlung ausgesetzt werden. 29. A polymer produced by a coordination polymerization process according to any one of claims 1 to 28 using a coordination catalyst, wherein the coordination catalyst and the monomer are exposed to electromagnetic radiation during the polymerization reaction.
30. Vorrichtung für ein Polymerisationsverfahren, die Einrichtungen zur Emittierung elektromagnetischer Strahlung umfaßt, wobei die Strahlung auf den Koordinationskatalysator und das Monomer gerichtet ist.30. Apparatus for a polymerization process, which comprises means for emitting electromagnetic radiation, the radiation being directed onto the coordination catalyst and the monomer.
31. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierang elektromagnetischer Strahlung innerhalb des Polymerisationsreaktors angeordnet ist.31. The device according to claim 30, characterized in that the device for emitting electromagnetic radiation is arranged within the polymerization reactor.
32. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung innerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist.32. Apparatus according to claim 30, characterized in that the device for emitting electromagnetic radiation is arranged within the feed line to the polymerization reactor.
33. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors angeordnet ist und in der Wand des Polymerisationsreaktors ein Fenster vorgesehen ist, durch das die elektromagnetische Strahlung in den Reaktor gelangen kann.33. Device according to claim 30, characterized in that the device for emitting electromagnetic radiation is arranged outside the polymerization reactor and a window is provided in the wall of the polymerization reactor through which the electromagnetic radiation can get into the reactor.
34. Vorrichtung nach Anspruch 33, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.34. Device according to claim 33, characterized in that the window is made of glass or quartz.
35. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und in der Zufuhrleitung ein Fenster vorgesehen ist, durch das die Strahlüng-in die Leitung gelangt.35. Apparatus according to claim 30, characterized in that the device for emitting electromagnetic radiation is arranged outside the feed line to the polymerization reactor and a window is provided in the feed line through which the radiation passes into the line.
36. Vorrichtung nach Anspruch 35, dadurch gekennzeichnet, dass das Fenster aus Glas oder Quarz ist.36. Device according to claim 35, characterized in that the window is made of glass or quartz.
37. Vorrichtung nach Ansprach 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierang elektromagnetischer Strahlung außerhalb des Polymerisationsreaktors angeordnet ist und die elektromagnetische Strahlung über einen optischen Leiter in den Reaktor gelangen kann.37. Device according spoke 30, characterized in that the device for emitting electromagnetic radiation is arranged outside the polymerization reactor and the electromagnetic radiation can reach the reactor via an optical conductor.
38. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Einrichtung zur Emittierang elektromagnetischer Strahlung außerhalb der Zufuhrleitung zum Polymerisationsreaktor angeordnet ist und elektromag- netische Strahlung über einen optischen Leiter in die Leitung gelangen kann.38. Device according to claim 30, characterized in that the device for emitting electromagnetic radiation is arranged outside the feed line to the polymerization reactor and is electromag- netic radiation can reach the line via an optical conductor.
39. Vorrichtung nach einem der Ansprüche 30 bis 38, dadurch gekennzeichnet, dass die Einrichtung zur Emittierung von elektromagnetischer Strahlung Strahlung im Bereich zwischen infrarot und ultraviolett emittiert. 39. Device according to one of claims 30 to 38, characterized in that the device for emitting electromagnetic radiation emits radiation in the range between infrared and ultraviolet.
EP02743127A 2001-06-01 2002-05-29 Polymerisation method and device for carrying out a polymerisation method Ceased EP1401895A2 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
DE10126829A DE10126829A1 (en) 2001-06-01 2001-06-01 Polymerization using coordination catalysts of olefinically unsaturated monomers comprises application of electromagnetic radiation
DE10126829 2001-06-01
DE10136687 2001-07-27
DE10136683 2001-07-27
DE10136684 2001-07-27
DE10136687 2001-07-27
DE10136683A DE10136683A1 (en) 2001-07-27 2001-07-27 Polymerization process using a coordination catalyst irradiated with infrared or ultraviolet radiation useful for the catalytic polymerization of olefins
DE10136684A DE10136684A1 (en) 2001-07-27 2001-07-27 Hindering the deactivation of coordination catalysts by poisoning and quick reactivation using electromagnetic irradiation is useful for the catalytic polymerization of olefins e.g. ethylene and propylene
DE10200740 2002-01-11
DE10200740A DE10200740A1 (en) 2002-01-11 2002-01-11 Copolymer obtainable from alpha-olefins and functional monomers, using a coordination catalyst by IR or UV radiation useful as compatibilizer for polymer mixtures, in painting, printing, polymer crosslinking, and adhesive bonding
PCT/EP2002/005932 WO2003011919A2 (en) 2001-06-01 2002-05-29 Polymerisation method and device for carrying out a polymerisation method

Publications (1)

Publication Number Publication Date
EP1401895A2 true EP1401895A2 (en) 2004-03-31

Family

ID=27512419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02743127A Ceased EP1401895A2 (en) 2001-06-01 2002-05-29 Polymerisation method and device for carrying out a polymerisation method

Country Status (4)

Country Link
US (1) US7291655B2 (en)
EP (1) EP1401895A2 (en)
AU (1) AU2002344994A1 (en)
WO (3) WO2002098935A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028192B2 (en) 2017-03-27 2021-06-08 Exxonmobil Chemical Patents Inc. Solution process to make ethylene copolymers
CN112585173B (en) * 2018-09-17 2023-05-16 切弗朗菲利浦化学公司 Modified supported chromium catalysts and ethylene-based polymers produced therefrom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264275A (en) * 1961-06-27 1966-08-02 Du Pont Elastomeric interpolymers comprising ethylene and acrylonitrile
US4069124A (en) * 1971-07-29 1978-01-17 Ceskoslovenska Akademie Ved Method for controlled radiation polymerization of olefinic monomers
DE3901902A1 (en) * 1989-01-24 1990-07-26 Bayer Ag METHOD FOR THE POLYMERIZATION OF ETHYLENE AND ACRYLONITRILE WITH THE AID OF LASER BEAMS
US4968901A (en) * 1989-05-16 1990-11-06 Burr-Brown Corporation Integrated circuit high frequency input attenuator circuit
US5652280A (en) * 1991-11-12 1997-07-29 University Of Georgia Research Foundation, Inc. Anionic photoinitiation
JPH06306112A (en) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp Production of ethylene/polar monomer block copolymer
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US5922783A (en) * 1997-02-27 1999-07-13 Loctite Corporation Radiation-curable, cyanoacrylate-containing compositions
US6043294A (en) * 1998-01-29 2000-03-28 Gate Technologies International, Inc. Method of and apparatus for optically enhancing chemical reactions
DE19940921A1 (en) * 1999-08-27 2001-03-01 Agfa Gevaert Ag Photopolymerizable mixture and recording material produced therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03011919A2 *

Also Published As

Publication number Publication date
WO2002098934A1 (en) 2002-12-12
WO2003011919A3 (en) 2003-04-17
AU2002344994A1 (en) 2003-02-17
WO2003011919A2 (en) 2003-02-13
US20040192866A1 (en) 2004-09-30
WO2002098935A1 (en) 2002-12-12
US7291655B2 (en) 2007-11-06

Similar Documents

Publication Publication Date Title
EP1290039B1 (en) Catalyst system for carrying out olefin polymerization comprising a calcined hydrotalcite serving as a supporting material
DE69033368T3 (en) Ionized metallocene catalysts supported on olefin polymerization
DE69829644T2 (en) CATALYST COMPOSITION FOR OLEFIN POLYMERIZATION WITH INCREASED ACTIVITY
DE69814554T2 (en) Solid activation carrier for the metallocene catalysts in olefin polymerization, production process, catalyst system and corresponding polymerization process
DE3856424T3 (en) Catalysts, processes for their preparation and methods for their use
EP0824113B2 (en) Supported catalyst, process for its preparation and its use in olefin polymerization
DE69333114T2 (en) INDENYL COMPOUNDS AND CATALYST COMPONENTS FOR OLEFIN POLYMERIZATION
DE69931425T2 (en) Transition metal compound, catalyst component and catalyst for olefin polymerization and process for producing an alpha-olefin polymer
DE69722152T2 (en) Improved polymer yield through supported metallocene catalysts
EP0615981A2 (en) Supported catalyst system, its preparation and its use in olefin polymerisation
DE60205368T2 (en) ACTIVATION OF "SINGLE SITE" POLYMERIZATION CATALYSTS BY (DIALKYL ALUMINO) BROROIC ACID ESTERS
DE69829423T2 (en) Modified particles, carrier prepared therefrom, polymerization catalyst component prepared therefrom, and polymerization catalyst and process for producing olefin polymers
DE60208003T2 (en) CATALYST FOR OLEFIN POLYMERIZATION
DE102005035477A1 (en) Preparation of olefin polymers, e.g. polyethylene, for producing pressure pipes for transport of gas and wastewater, by polymerization of alpha-olefin(s) with hybrid catalyst to produce higher and lower molecular weight polymer components
DE69820504T2 (en) Selective effect of metallocene catalysts for the production of isotactic polyolefins
DE69913932T2 (en) METALLOCEN CARRIER CATALYST, ITS PRODUCTION AND OLEFIN POLYMERIZATION CARRIED THEREFORE
DE69719763T2 (en) METHOD FOR PRODUCING OLEFINIC POLYMERS USING A SUPPORTED METALLOCENE CATALYST
DE69826130T2 (en) METHOD FOR THE PRODUCTION OF OLEFIN POLYMERS WITH A DESIRED DISTRIBUTION OF MOLECULAR WEIGHT
DE69920521T2 (en) METHOD FOR PRODUCING A POLYMERIZATION CATALYST ON BEAMS USING REDUCED QUANTITIES OF SOLVENTS AND POLYMERIZATION PROCESSES
EP1401895A2 (en) Polymerisation method and device for carrying out a polymerisation method
DE60015880T2 (en) PROCESS FOR OLEFIN POLYMERIZATION USING RE-USE OF THE CO CATALYST
DE102004020525A1 (en) Production of catalyst system for the polymerization or copolymerization of olefins, by impregnating a dry porous support component with a mixture of organic transition metal compounds, hydrolyzed organo-aluminum compound(s), and solvent
DE602004006223T2 (en) A catalyst composition for the polymerization of olefins and polymerization processes using the same
DE10136683A1 (en) Polymerization process using a coordination catalyst irradiated with infrared or ultraviolet radiation useful for the catalytic polymerization of olefins
DE60220714T2 (en) SUPPORTED POLYMERIZATION CATALYST CONTAINING AGGLOMERATED PYROGENIC SILICON DIOXYD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031124

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090212