EP1388217A2 - Transmission power level estimation - Google Patents
Transmission power level estimationInfo
- Publication number
- EP1388217A2 EP1388217A2 EP02725944A EP02725944A EP1388217A2 EP 1388217 A2 EP1388217 A2 EP 1388217A2 EP 02725944 A EP02725944 A EP 02725944A EP 02725944 A EP02725944 A EP 02725944A EP 1388217 A2 EP1388217 A2 EP 1388217A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- selected user
- pathloss
- user
- interference
- power level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
- H04B17/327—Received signal code power [RSCP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/373—Predicting channel quality or other radio frequency [RF] parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2603—Arrangements for wireless physical layer control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/226—TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/228—TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/241—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/245—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/246—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/50—TPC being performed in particular situations at the moment of starting communication in a multiple access environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/34—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
Definitions
- the invention generally relates to wireless communication systems.
- the invention relates to estimating transmission power levels in such
- Figure 1 depicts a physical layout of a wireless communication system.
- the system has a plurality of base stations 20. Each base station 20 communicates
- uplink communications are referred to as uplink communications.
- Each node-B 24 within the system communicates with associated UEs 22
- Each node-B 24 has a single site controller (SC) 34 associated with either
- a group of node-B s 24 is connected to a radio
- RNC network controller
- Each RNC 28 is connected to a
- MSC mobile switching center
- CDMA code division multiple access
- multiple communications can be sent over the same spectrum simultaneously.
- the multiple communications are distinguished by their codes.
- time division duplex In time division duplex
- channel is defined as one code in one time slot.
- time slot with a spreading factor of sixteen is referred to as a resource unit.
- UE 22 the type of service being provided to a user (UE 22) in the system, one or multiple
- Physical channels may be assigned to support the users uplink and downlink
- one user's communications may interfere with another user's.
- transmission power control is used. In transmission power
- a transmission is sent at a power level so that only a desired reception quality
- SIR signal to interference ratio
- BER bit error rate
- One transmission power control technique is open loop power control.
- a transmitter's power level is determined using a pathloss
- the receiver site transmits a signal and an indicator of the transmission power
- the pathloss is estimated. Using the pathloss estimate and
- a target signal to interference ratio (SIR)
- the value of the target SIR is based on the service type.
- closed loop power control sends
- a pathloss and a desired signal to interference ratio is provided. For a selected user,
- a pathloss, an interference measure and a desired signal to interference ratio is determined.
- a noise rise for the selected user is determined using the determined
- the selected user transmission power level is estimated using the determined
- Figure 1 is an illustration of a physical layout of a wireless
- Figure 2 is an illustration of a network layout of a wireless
- Figure 3 is a simplified radio network controller for transmission power
- Figure 4 is a simplified node-B for transmission power level estimation.
- Figure 5 is a simplified user equipment for transmission power level
- Figure 6 is a flow chart for determining transmission power levels after
- Figure 7 is a flowchart of determining transmission power levels using
- Figure 8 is a plot of a simulation of noise rise versus pathloss.
- Figure 9 is a graph of a simulation of noise rise versus mean pathloss.
- Figure 10 is a flowchart of compensating for missing pathloss
- FIG. 3 is a simplified RNC 28 for use in transmission power level
- the RNC 28 has a RRM device 36 and a measurement collection device
- the measurement collection device 38 collects various measurements from other
- components of the network such as the node-Bs 24 and the UEs 22.
- measurements include transmission power levels (both uplink and downlink), pathloss
- the RRM device 36 uses the measurements in
- the RRM device has a transmission power level estimation block 37 for use in
- Figure 4 is a simplified node-B 24 for use in transmission power level
- An antenna 40 receives radio frequency signals over a radio channel from
- the received signals are passed through an isolator or switch 42 to a
- a channel assignment device 44 which
- the receiver 46 may
- the MIMO detector may be a multiuser detection device (MUD), a RAKE or a different type of receiver.
- receiver 46 also recovers signaled information from the UE 22, such as measurement
- a measurement device 48 takes various measurements at the node-B 24,
- a transmitter 50 sends data and signaled information, such
- the channel assignment device 44 determines a transmission power
- the channel assignment device 44 controls the
- Figure 5 is a simplified UE 22 for use in RRM.
- An antenna 56 receives
- radio frequency signals over a radio channel from the node-B 24 The received
- a channel assignment detection device 44 recovers the signaled
- the receiver 66 may be a multiuser detection device (MUD), a RAKE or a different
- a measurement device 68 takes various measurements at the UE 22,
- a transmitter 70 sends
- TPC power controller
- the TPC 60 controls the gain of an amplifier 62 to control the transmission power level.
- the transmitted signals pass through the isolator or switch
- transmission power control such as open loop power control, to reduce interference
- uplink and downlink transmissions are assigned separate time slots.
- TDMA multiple access
- CDMA multiple access
- downlink communications are assigned separate time slots or frequency spectrum, by
- M UEs 22 are served by N base stations 20.
- Each base station 20 is assigned an index, such as a RAKE receiver.
- Each base station j has a set ⁇ (j) UEs 22 connected to it.
- i 1, 2, . . ., M.
- UE session UE M + 1
- UE M + 1 is proposed to be
- T ,o ⁇ ( M +1) PL M+ - ISCP M + ⁇ - SIR UL ( M + 1) Equation 5
- PL M + n is the pathloss between the M + 1 user and the base station. This value is
- the pathloss is
- ISCP interference signal code power
- This value is either measured at the UE 22 or estimated by ISCP
- the ISCP can be replaced in the
- SIRT JL (M + 1) is the desired
- the other users initial transmit powers are typically known or are
- An initial power vector is constructed (72), such as by
- Each users power level is iteratively adjusted to generate an estimate of
- This ISCP estimate is, preferably, used in an open loop type analysis to
- the pathloss is estimated based on a typical expected pathloss
- user i's base station i may calculate that user's pathloss.
- each iteration can be implemented using any iteration.
- Equation 8 Equation 8.
- A is an (M + 1) x (M + 1) matrix.
- matrix A an element A M , where k is the row and
- a limit may be set to the number of iterations.
- each UE's estimated transmission power is
- the new user or service can be added (78). If some of the users exceed their requirements
- the initial downlink transmission power For the downlink time slots, the initial downlink transmission power
- T° (72) downlink transmission power vector
- the M + 1 user is proposed to be admitted to the N* base station.
- T°(i), . . . T°(M) are known or measured at their respective base stations 20.
- PL M + , n is the measured pathloss between base station n and user M +
- ISCP M+1 is the
- Each user's downlink power level is iteratively estimated (74), after
- T K (i) PL i ISCP K - l (i)-SIR DL (i)
- L represents all other base stations 20 besides base station j of the i ⁇ user.
- determining each iteration, K can be viewed as a vector
- T ⁇ is the determined transmission power levels.
- T ⁇ _1 is the determined power level of
- ⁇ is a convergence parameter, which is a small number, such as 1 x 10 "4 .
- convergence parameter for the downlink may be the same or different than the uplink
- the new user can be admitted (78).
- I interference
- ISCP ISCP
- the noise rise can be estimated.
- noise rise model is developed (80). The data can be collected and updated during the
- the modeled noise rise may be stored as a table or a
- Equation 17 One equation for estimating noise rise is per Equation 17.
- the noise rise is modeled as a change in the measure interference (I), ⁇
- ⁇ I is a function of the measured interference, the pathloss and the target SIR.
- Figures 8 and 9 illustrate obtaining a curve fitting the noise rise using simulation
- the interference level is recorded. After allocation, allowing the power control loops
- the interference is measured again and compared to the before allocation
- the difference is tabulated as a function of the pathloss to the user, the before
- Figure 8 illustrates the simulated results of noise rise versus the pathloss.
- Figure 9 illustrates a curve representing the noise rise versus the mean pathloss.
- the noise rise for a transmitter can be estimated from that transmitter's
- the transmitter power level for a transmitter is determined using the
- Transmit Power Interference Measure + Pathloss + SIR TARGET
- Equation 18 The Measurement Error Margin is a design parameter used to compensate for
- the Measurement Error Margin is typically set at a
- pathloss may not be available, as shown in Figure 10. Missing pathloss information
- pathloss pathloss
- the stipulated value for the pathloss maybe a set value or a cell dependent parameter
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Transmitters (AREA)
- Small-Scale Networks (AREA)
- Noise Elimination (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06124069A EP1750378A2 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
EP04104911A EP1494367B1 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/855,268 US6850500B2 (en) | 2001-05-15 | 2001-05-15 | Transmission power level estimation |
US855268 | 2001-05-15 | ||
PCT/US2002/014338 WO2002093777A2 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04104911A Division EP1494367B1 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1388217A2 true EP1388217A2 (en) | 2004-02-11 |
EP1388217B1 EP1388217B1 (en) | 2004-11-10 |
Family
ID=25320802
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04104911A Expired - Lifetime EP1494367B1 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
EP06124069A Withdrawn EP1750378A2 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
EP02725944A Expired - Lifetime EP1388217B1 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04104911A Expired - Lifetime EP1494367B1 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
EP06124069A Withdrawn EP1750378A2 (en) | 2001-05-15 | 2002-05-07 | Transmission power level estimation |
Country Status (15)
Country | Link |
---|---|
US (2) | US6850500B2 (en) |
EP (3) | EP1494367B1 (en) |
JP (3) | JP4198471B2 (en) |
KR (7) | KR20090042844A (en) |
CN (2) | CN1526207A (en) |
AT (2) | ATE282266T1 (en) |
AU (1) | AU2002256475A1 (en) |
CA (2) | CA2638957A1 (en) |
DE (2) | DE60201902T2 (en) |
DK (1) | DK1494367T3 (en) |
ES (2) | ES2227463T3 (en) |
MX (1) | MXPA03010486A (en) |
NO (1) | NO20035050L (en) |
TW (4) | TW200729770A (en) |
WO (1) | WO2002093777A2 (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101325382B1 (en) | 2000-07-26 | 2013-11-08 | 인터디지탈 테크날러지 코포레이션 | Fast adaptive power control for a variable multirate communications system |
US6850500B2 (en) * | 2001-05-15 | 2005-02-01 | Interdigital Technology Corporation | Transmission power level estimation |
US6961582B2 (en) * | 2002-02-13 | 2005-11-01 | Accton Technology Corporation | Transmission power control method and system for CDMA communication system |
US7209517B2 (en) * | 2002-03-04 | 2007-04-24 | Qualcomm Incorporated | Method and apparatus for estimating a maximum rate of data and for estimating power required for transmission of data at a rate of data in a communication system |
US7079848B2 (en) * | 2002-04-05 | 2006-07-18 | Lucent Technologies Inc. | Network controlled fast cell switching |
US7853260B2 (en) * | 2002-04-29 | 2010-12-14 | Nokia Corporation | Method and apparatus for cell identification for uplink interference avoidance using inter-frequency measurements |
US20040047312A1 (en) * | 2002-04-29 | 2004-03-11 | Peter Muszynski | Method and apparatus for UL interference avoidance by DL measurements and IFHO |
US7313091B2 (en) * | 2002-05-24 | 2007-12-25 | Interdigital Technology Corporation | Method and system for control of congestion in CDMA systems |
US6826411B2 (en) * | 2002-06-27 | 2004-11-30 | Interdigital Technology Corporation | Low power interference signal code power (ISCP) measurement |
US7106708B2 (en) * | 2003-02-19 | 2006-09-12 | Interdigital Technology Corp. | Method for implementing fast dynamic channel allocation (F-DCA) call admission control in radio resource management |
US7136656B2 (en) * | 2003-03-20 | 2006-11-14 | Interdigital Technology Corporation | Method of fast dynamic channel allocation call admission control for radio link addition in radio resource management |
US7110771B2 (en) * | 2003-04-17 | 2006-09-19 | Interdigital Technology Corporation | Method for implementing fast-dynamic channel allocation call admission control for radio link reconfiguration in radio resource management |
KR100752561B1 (en) * | 2003-02-27 | 2007-08-29 | 인터디지탈 테크날러지 코포레이션 | Method for implementing fast-dynamic channel allocation radio resource management procedures |
US7130637B2 (en) * | 2003-02-27 | 2006-10-31 | Interdigital Technology Corporation | Method for implementing fast dynamic channel allocation background interference reduction procedure in radio resource management |
US7433310B2 (en) * | 2003-03-12 | 2008-10-07 | Interdigital Technology Corporation | Estimation of interference variation caused by the addition or deletion of a connection |
US7403503B2 (en) * | 2003-07-09 | 2008-07-22 | Interdigital Technology Corporation | Resource allocation in wireless communication systems |
US8000284B2 (en) * | 2003-07-15 | 2011-08-16 | Qualcomm Incorporated | Cooperative autonomous and scheduled resource allocation for a distributed communication system |
WO2005018114A1 (en) * | 2003-08-19 | 2005-02-24 | Lg Electronics Inc. | Node b scheduling method for mobile communication system |
GB2407454B (en) | 2003-10-20 | 2005-12-28 | Motorola Inc | An apparatus and method of radio access management for a radio communication system |
US7239885B2 (en) * | 2003-11-05 | 2007-07-03 | Interdigital Technology Corporation | Initial downlink transmit power adjustment for non-real-time services using dedicated or shared channel |
US7079494B2 (en) | 2004-01-08 | 2006-07-18 | Interdigital Technology Corporation | Wireless communication method and apparatus for determining the minimum power level of access point transmissions |
WO2005069519A1 (en) * | 2004-01-08 | 2005-07-28 | Interdigital Technology Corporation | Wireless communication method and apparatus for optimizing the performance of access points |
JP4588031B2 (en) * | 2004-09-17 | 2010-11-24 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication method, base station and radio network controller |
US7773681B2 (en) | 2005-08-05 | 2010-08-10 | Interdigital Technology Corporation | Method and apparatus for estimating signal-to-noise ratio, noise power, and signal power |
US8098644B2 (en) * | 2006-01-18 | 2012-01-17 | Motorola Mobility, Inc. | Method and apparatus for uplink resource allocation in a frequency division multiple access communication system |
US8179855B2 (en) | 2006-02-07 | 2012-05-15 | Research In Motion Limited | Method, and associated apparatus, for communicating data at reduced transmission latency in radio communication system having slotted interface |
US8369859B2 (en) * | 2006-05-22 | 2013-02-05 | Alcatel Lucent | Controlling transmit power of picocell base units |
TWI511593B (en) | 2006-10-03 | 2015-12-01 | Interdigital Tech Corp | Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra |
KR100801289B1 (en) | 2006-11-16 | 2008-02-04 | 한국전자통신연구원 | Scheduling method and apparatus for uplink resource allocation in ofdma system |
US9629096B2 (en) | 2006-12-15 | 2017-04-18 | Alcatel-Lucent Usa Inc. | Controlling uplink power for picocell communications within a macrocell |
US20080165741A1 (en) * | 2007-01-05 | 2008-07-10 | Industrial Technology Research Institute | Methods for interference measurement and prediction |
EP3621364B1 (en) | 2007-03-07 | 2022-10-05 | InterDigital Technology Corporation | Combined open loop/closed loop for controlling uplink power of a mobile station |
WO2009005420A1 (en) * | 2007-06-29 | 2009-01-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for noise floor and interference estimation |
US8107895B2 (en) * | 2007-09-26 | 2012-01-31 | Broadcom Corporation | Independent power consumption management in a MIMO transceiver and method for use therewith |
US8331975B2 (en) * | 2008-12-03 | 2012-12-11 | Interdigital Patent Holdings, Inc. | Uplink power control for distributed wireless communication |
KR101636382B1 (en) * | 2009-09-28 | 2016-07-20 | 삼성전자주식회사 | Method and device for user schedulling and managing transmit power in hierarchical-cell or multi-cell communication system |
US8908551B2 (en) * | 2012-09-25 | 2014-12-09 | Futurewei Technologies, Inc. | Self adaptive multi-level downlink power control for noise-limited wireless cellular networks |
KR102389290B1 (en) | 2021-09-28 | 2022-04-20 | 최해용 | Golf swing exercise device |
KR20230160521A (en) | 2022-05-17 | 2023-11-24 | 최해용 | Golf ball hitting device |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5551057A (en) * | 1994-06-08 | 1996-08-27 | Lucent Technologies Inc. | Cellular mobile radio system power control |
ZA965340B (en) * | 1995-06-30 | 1997-01-27 | Interdigital Tech Corp | Code division multiple access (cdma) communication system |
FI98674C (en) | 1995-08-18 | 1997-07-25 | Nokia Mobile Phones Ltd | A method for adjusting the transmission power during connection establishment and a cellular radio system |
US6067446A (en) * | 1996-07-11 | 2000-05-23 | Telefonaktiebolaget Lm Ericsson | Power presetting in a radio communication system |
US6463295B1 (en) | 1996-10-11 | 2002-10-08 | Arraycomm, Inc. | Power control with signal quality estimation for smart antenna communication systems |
US5987333A (en) | 1997-09-30 | 1999-11-16 | Nortel Networks Corporation/Corporation Nortel Networks | Communications power control |
US6175745B1 (en) * | 1997-12-24 | 2001-01-16 | Telefonaktiebolaget Lm Ericsson | Initial transmit power determination in a radiocommunication system |
FI108181B (en) | 1998-02-13 | 2001-11-30 | Nokia Mobile Phones Ltd | A power control method |
JP3572933B2 (en) * | 1998-03-31 | 2004-10-06 | Kddi株式会社 | Mobile communication system |
JPH11298954A (en) | 1998-04-08 | 1999-10-29 | Hitachi Ltd | Method and system for radio communication |
JP3028802B2 (en) * | 1998-05-28 | 2000-04-04 | 日本電気株式会社 | Power control method during call capture in CDMA mobile communication system |
US6278701B1 (en) * | 1998-07-10 | 2001-08-21 | Verizon Laboratories Inc. | Capacity enhancement for multi-code CDMA with integrated services through quality of services and admission control |
US6192249B1 (en) | 1998-12-03 | 2001-02-20 | Qualcomm Inc. | Method and apparatus for reverse link loading estimation |
WO2000038348A1 (en) | 1998-12-18 | 2000-06-29 | Nokia Networks Oy | A method for traffic load control in a telecommunication network |
JP2000252918A (en) | 1999-03-03 | 2000-09-14 | Oki Electric Ind Co Ltd | Method for updating transmission power initial value |
US6317435B1 (en) | 1999-03-08 | 2001-11-13 | Qualcomm Incorporated | Method and apparatus for maximizing the use of available capacity in a communication system |
US6628956B2 (en) * | 1999-03-15 | 2003-09-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive power control in a radio communications systems |
US6498934B1 (en) * | 1999-03-24 | 2002-12-24 | Telefonaktiebologet Lm Ericsson (Publ) | Channel allocation using enhanced pathloss estimates |
US6356531B1 (en) | 1999-06-07 | 2002-03-12 | Qualcomm Incorporated | Monitoring of CDMA load and frequency reuse based on reverse link signal-to-noise ratio |
EP1063788A1 (en) | 1999-06-18 | 2000-12-27 | Alcatel | Method for determining the needed transmission power in a CDMA network |
GB0003369D0 (en) | 2000-02-14 | 2000-04-05 | Nokia Networks Oy | Radio resource management in a communication system |
EP1176730A1 (en) | 2000-07-26 | 2002-01-30 | Motorola, Inc. | Interference estimation in a communications system |
US7302232B2 (en) * | 2000-09-01 | 2007-11-27 | Nippon Telegraph And Telephone Corporation | Adaptive antenna control method and adaptive antenna transmission/reception characteristic control method |
US6714523B2 (en) * | 2001-05-14 | 2004-03-30 | Interdigital Technology Corporation | Assigning physical channels to time slots using a fragmentation parameter in a hybrid time division multiple access/code division multiple access communication system |
US6850500B2 (en) * | 2001-05-15 | 2005-02-01 | Interdigital Technology Corporation | Transmission power level estimation |
-
2001
- 2001-05-15 US US09/855,268 patent/US6850500B2/en not_active Expired - Fee Related
-
2002
- 2002-05-07 AU AU2002256475A patent/AU2002256475A1/en not_active Abandoned
- 2002-05-07 CA CA002638957A patent/CA2638957A1/en not_active Abandoned
- 2002-05-07 KR KR1020097005167A patent/KR20090042844A/en not_active Application Discontinuation
- 2002-05-07 EP EP04104911A patent/EP1494367B1/en not_active Expired - Lifetime
- 2002-05-07 KR KR1020087011074A patent/KR100940288B1/en not_active IP Right Cessation
- 2002-05-07 EP EP06124069A patent/EP1750378A2/en not_active Withdrawn
- 2002-05-07 KR KR1020077010365A patent/KR20070055631A/en not_active Application Discontinuation
- 2002-05-07 WO PCT/US2002/014338 patent/WO2002093777A2/en active Application Filing
- 2002-05-07 KR KR1020057015356A patent/KR100865100B1/en not_active IP Right Cessation
- 2002-05-07 ES ES02725944T patent/ES2227463T3/en not_active Expired - Lifetime
- 2002-05-07 KR KR1020037014851A patent/KR100688140B1/en not_active IP Right Cessation
- 2002-05-07 KR KR1020077019058A patent/KR100893309B1/en not_active IP Right Cessation
- 2002-05-07 DE DE60201902T patent/DE60201902T2/en not_active Expired - Lifetime
- 2002-05-07 AT AT02725944T patent/ATE282266T1/en not_active IP Right Cessation
- 2002-05-07 DK DK04104911T patent/DK1494367T3/en active
- 2002-05-07 CA CA002447241A patent/CA2447241C/en not_active Expired - Fee Related
- 2002-05-07 KR KR1020087023096A patent/KR100940289B1/en not_active IP Right Cessation
- 2002-05-07 AT AT04104911T patent/ATE345604T1/en not_active IP Right Cessation
- 2002-05-07 DE DE60216154T patent/DE60216154T2/en not_active Expired - Lifetime
- 2002-05-07 CN CNA028098781A patent/CN1526207A/en active Pending
- 2002-05-07 JP JP2002590533A patent/JP4198471B2/en not_active Expired - Fee Related
- 2002-05-07 MX MXPA03010486A patent/MXPA03010486A/en active IP Right Grant
- 2002-05-07 CN CNA2005101381726A patent/CN1801676A/en active Pending
- 2002-05-07 ES ES04104911T patent/ES2274384T3/en not_active Expired - Lifetime
- 2002-05-07 EP EP02725944A patent/EP1388217B1/en not_active Expired - Lifetime
- 2002-05-10 TW TW095133767A patent/TW200729770A/en unknown
- 2002-05-10 TW TW092127548A patent/TWI255101B/en not_active IP Right Cessation
- 2002-05-10 TW TW091109853A patent/TWI234354B/en not_active IP Right Cessation
- 2002-05-10 TW TW094116333A patent/TWI272787B/en not_active IP Right Cessation
-
2003
- 2003-11-13 NO NO20035050A patent/NO20035050L/en not_active Application Discontinuation
-
2005
- 2005-01-27 US US11/044,092 patent/US7613159B2/en not_active Expired - Fee Related
-
2006
- 2006-10-17 JP JP2006282785A patent/JP4521388B2/en not_active Expired - Fee Related
-
2008
- 2008-08-11 JP JP2008207159A patent/JP2009010976A/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO02093777A2 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1388217B1 (en) | Transmission power level estimation | |
JP4729231B2 (en) | Downlink power control system for multiple downlink time slots in time division duplex communication system | |
JP4216694B2 (en) | Base station and transmission power setting method in mobile communication system | |
US8184532B2 (en) | Estimation of interference variation caused by the addition or deletion of a connection | |
KR20050007420A (en) | Method and system for control of congestion in cdma systems | |
WO2003103158A2 (en) | Modeling of hybrid time-code division multiple access communication systems | |
KR100916031B1 (en) | Pilot signal transmitting method and wireless communication system for allowing highly precise measurement of reception quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031119 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040204 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ZEIRA, ELDAD Inventor name: ZHANG, GUODONG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041110 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60201902 Country of ref document: DE Date of ref document: 20041216 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050210 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2227463 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050507 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050811 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140507 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140430 Year of fee payment: 13 Ref country code: FR Payment date: 20140509 Year of fee payment: 13 Ref country code: SE Payment date: 20140513 Year of fee payment: 13 Ref country code: ES Payment date: 20140411 Year of fee payment: 13 Ref country code: IT Payment date: 20140514 Year of fee payment: 13 Ref country code: FI Payment date: 20140512 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20140512 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60201902 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20150531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150507 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150507 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150507 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20170203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150508 |