EP1385475A2 - Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant - Google Patents

Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant

Info

Publication number
EP1385475A2
EP1385475A2 EP02720085A EP02720085A EP1385475A2 EP 1385475 A2 EP1385475 A2 EP 1385475A2 EP 02720085 A EP02720085 A EP 02720085A EP 02720085 A EP02720085 A EP 02720085A EP 1385475 A2 EP1385475 A2 EP 1385475A2
Authority
EP
European Patent Office
Prior art keywords
composition
suspension
solution
cation
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02720085A
Other languages
German (de)
English (en)
Inventor
Gérard Trouve
Laurent Dupuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe dExploitation de Produits pour les Industries Chimiques SEPPIC SA
Original Assignee
Societe dExploitation de Produits pour les Industries Chimiques SEPPIC SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe dExploitation de Produits pour les Industries Chimiques SEPPIC SA filed Critical Societe dExploitation de Produits pour les Industries Chimiques SEPPIC SA
Publication of EP1385475A2 publication Critical patent/EP1385475A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/113Multiple emulsions, e.g. oil-in-water-in-oil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to new adjuvants for vaccine compositions as well as said compositions comprising at least one antigen, in particular an antigen of viral, bacterial or parasitic origin and at least one adjuvant.
  • injectable oils used as adjuvants in veterinary vaccines. They are very effective but they sometimes induce local reactions. They are used in admixture with the antigenic medium to form injectable fluid emulsions.
  • vaccine compositions comprising, as an adjuvant, from 1 to 5% weight / volume of sodium alginate and of the insolubilization ions of the alginate, such as the calcium ion, the concentration of the sequestered ions of insolubilization of the alginate being less than the necessary concentration to form an amount of insoluble gel.
  • the subject of the invention is a composition comprising a fatty phase and a non-zero quantity of an organometallic gel obtained by complexing an anionic polymer or a mixture of different anionic polymers, with a multivalent metal cation. or a mixture of different multivalent metal cations.
  • the organometallic gel can be obtained by mixing a volume Vc of a suspension or a solution containing the multivalent cation salt or a mixture of multivalent cation salts, with a volume Vp of a solution or a suspension containing the anionic polymer or a mixture of anionic polymers in proportions sufficient to cause the phenomenon of gelation leading to the organometallic gel, with, if necessary, stirring of the resulting mixture.
  • the fatty phase constituting the composition which is the subject of the present invention generally comprises one or more compounds chosen from oils of mineral, vegetable or animal origin, the alkyl esters of said oils, the alkyl esters of fatty acids or the ethers fatty acid alkyls, fatty acid esters and polyols or fatty alcohol ethers and polyols.
  • oils of mineral origin there are oils of petroleum origin, such as white mineral oils such as MARCOL TM 52.
  • oils of vegetable origin there is oil of peanut, olive oil, sesame oil, soybean oil, wheat germ oil, grape seed oil, sunflower oil, castor oil, l linseed oil, soybean oil, corn oil, coconut oil, palm oil, walnut oil, hazelnut oil, rapeseed oil or even squalane or olive squalene.
  • oils of animal origin are spermaceti oil, tallow oil, squalane or squalene extracted from fish livers.
  • alkyl esters of oils there are the methyl, ethyl, linear or branched propyl or linear or branched butyl esters of said oils.
  • fatty acids suitable for the preparation of the esters mentioned above there are more particularly, those containing from 12 to 22 carbon atoms, such as for example, myristic acid, palmitic acid, oleic acid, ricinoleic acid or isostearic acid and advantageously a liquid fatty acid at 20 ° C.
  • fatty acid esters are the alkyl esters of fatty acids, such as ethyl oleate, methyl oleate, isopropyl myristate or octyl palmitate, esters of fatty acids and polyols or ethers of fatty alcohols and polyols, and more particularly, monoglycerides of fatty acids, diglycerides of fatty acids, triglycerides of fatty acids, esters of fatty acids with a polyglycerol or the fatty acid esters of propylene glycol, the fatty acid esters with a hexol, such as for example sorbitol or mannitol, the fatty acid esters with a hexol anhydride, such as sorbi - tane or mannitane.
  • the fatty phase may comprise only one of the compounds mentioned above or else a mixture of several of the compounds mentioned above.
  • composition which is the subject of the present invention generally comprises between approximately 5% and 70% by weight, and more particularly between 15% and 60% by weight of fatty phase.
  • the multivalent metal cations liable to be complexed with the anionic polymer or the mixture of anionic polymers there are more particularly the divalent or trivalent metal cations and very particularly the divalent cations of calcium, magnesium, manganese or zinc or the trivalent cations of iron or aluminum.
  • the concentration of metal cations [C] expressed in moles per liter of solution or suspension, is generally between approximately 10 ⁇ 3 moles per liter and 10 moles per liter, more particularly between 10 2 moles per liter and 5 moles per liter and very particularly between 0.1 moles per liter and 1 mole per liter
  • cation salts are pharmaceutically acceptable, for example a hydroxide, a carbonate, a citrate, a gluconate, a glucoheptonate, a fructo- heptonate, lactate, acetate, propionate, salicylate, chloride or glycerophosphate.
  • salts used in the preparation of the organometallic gel of the composition which is the subject of the present invention there are calcium hydroxide, magnesium carbonate, manganese carbonate, calcium gluconate, manganese gluconate , manganese glycerophosphate, zinc gluconate, calcium fructoheptonate, aluminum salicylate or aluminum acetate.
  • the multivalent cation salt used is manganese glycerophosphate or a mixture of manganese glycerophosphate and manganese gluconate.
  • anionic polymers capable of being complexed with multivalent metal cations there are more particularly sulfated polymers, dextran, carrageenans, carboxylic polymers, polyacrylates, pectins, alginates, natural gums, xanthan gum or guar gum.
  • the anionic polymer used is a sodium alginate.
  • the concentration of anionic polymers [P], expressed as a percentage by weight of the solution or of the suspension is generally between approximately 0.1% and 10% by weight, more particularly between 0.5% and 5% by weight and very particularly between 1% and 5% by weight.
  • the proportions in suspension or solution of salt of the cation and in solution or suspension of anionic polymer to produce the mixture leading to the obtaining of the organic gel are chosen so that the ratio [P] / [C] is understood between 0.01 and 100, more particularly between 0.1 and 50 and very particularly between 1 and approximately 10.
  • the solvents of said suspensions or solutions used to prepare the organometallic gel are generally polar solvents and preferably miscible with each other. It is preferably water or a pharmaceutically acceptable hydroalcoholic mixture.
  • the organometallic gel can be obtained by mixing a suspension or an aqueous solution containing the multivalent cation salt or a mixture of multivalent cation salts, with an aqueous solution or suspension containing the anionic polymer or the mixture of anionic polymers, with stirring of the resulting mixture if necessary.
  • the organometallic gel can be obtained by mixing an aqueous suspension or solution containing a salt of multivalent cation, with an aqueous solution or suspension containing an anionic polymer, with, if necessary, stirring of the resulting mixture.
  • composition as defined above is preferably in the form of an emulsion and in particular in the form of an emulsion the continuous phase of which is the fatty phase and the dispersed phase the gelled anionic polymer - multivalent metal cation complex.
  • composition as defined above can also comprise one or more pharmaceutically acceptable surfactants.
  • nonionic surfactants for example, polyglycerol esters, sugar esters such as mannitane or sucrose sorbitan esters, esters of ethoxylated sugars, alkoxylated fatty alcohols, ethoxylated fatty acids, monoglycerides and diglycerides modified by reaction with acetic acid or lactic acid; mono glycerides, diglycerides or ethoxylated triglycerides, sugar ethers, such as glucose ethers, xylose ethers or lactitol ethers.
  • nonionic surfactants for example, polyglycerol esters, sugar esters such as mannitane or sucrose sorbitan esters, esters of ethoxylated sugars, alkoxylated fatty alcohols, ethoxylated fatty acids, monoglycerides and diglycerides modified by reaction with acetic acid or lactic acid; mono glycerides, diglycerides or e
  • the surfactants used are more particularly chosen so that the HLB of the mixture of surfactants is between 4 and 12 and preferably between 5 and 8.
  • composition as defined above generally comprises between approximately 0.5% and 10% by weight and preferably between 1% and 5% by weight of surfactants.
  • the subject of the invention is also a process for preparing the emulsion as defined above, comprising the following steps:
  • Step (e) of the process generally consists of a mixture of a volume Vc of a suspension or of a solution of the salt of the cation with a volume Vp of a solution or of a suspension of anionic polymer, in a volume ratio Nc / Vp generally between 1/100 and 1/1 preferably between 1/50 and 1/10, either by pouring the suspension or the cation salt solution into the solution or the suspension of anionic polymer with, if necessary, stirring of the resulting mixture, either by pouring the suspension or solution of anionic polymer into the solution or suspension of cation salt with, if necessary, stirring of the resulting mixture.
  • step (a) is preferably used, one or more salts chosen from calcium hydroxide, magnesium carbonate, manganese carbonate, calcium gluconate, manganese gluconate, glycerophosphate manganese, zinc gluconate, calcium fructoheptonate, aluminum salicylate or aluminum acetate.
  • the emulsion obtained in step (e) is dissolved in a solvent for the fatty phase to obtain an organometallic gel suspension and the resulting suspension is subjected to centrifugation. tion to isolate said gel.
  • This variant is used to prepare a composition with a low oil content.
  • composition as defined above, as an adjuvant phase of a vaccine composition.
  • the subject of the invention is also a method for preparing a vaccine comprising the addition as an immunity adjuvant, of an effective amount of the composition as defined above.
  • composition as defined above can be used in combination with conventional oily adjuvants, known to those skilled in the art.
  • the composition object of the present invention is mixed with the antigenic phase and then the whole is emulsified.
  • its subject is a composition comprising at least one antigen or at least one in vivo generator of a compound comprising a sequence of amino acids and a non-zero amount of a composition as defined above.
  • the term “antigen or at least one in vivo generator of a compound comprising an amino acid sequence” denotes either killed microorganisms, such as viruses, bacteria or parasites, or purified fractions of these microorganisms. , or living microorganisms whose pathogenic power has been reduced.
  • viruses which can constitute an antigen according to the present invention there is the rabies virus, the herpes viruses, such as the Aujeszky's disease virus, the orthomixoviruses such as Influenzae, the picornaviruses. such as FMD virus or retroviruses such as HIV.
  • the herpes viruses such as the Aujeszky's disease virus
  • the orthomixoviruses such as Influenzae
  • the picornaviruses. such as FMD virus or retroviruses
  • retroviruses such as HIV.
  • a microorganism of the bacterial type which can constitute an antigen according to the present invention mention may be made of E. Coli, and those of the genera Pasteurella, Furonculosis, Vibriosis, Staphylococcus and Streptococcus. Examples of parasites are those of the genera Trypanosoma, Plasmodium and Leishmania.
  • Non-enveloped viruses such as adenoviruses, vaccinia virus, Canarypox virus, herpes viruses or baculoviruses.
  • a live non-enveloped viral recombinant vector is also designated, the genome of which contains, preferably inserted into a part which is not essential for the replication of the corresponding enveloped virus, a sequence coding for an antigenic subunit inducing antibody synthesis and / or a protective effect against the above enveloped virus or pathogenic microorganism; these antigenic subunits can be, for example, a protein, a glycoprotein, a peptide or a peptide fraction and / or protective against infection by a living microorganism such as an enveloped virus, a bacterium or a parasite.
  • the exogenous gene inserted into the microorganism can be, for example, from an Aujeszky or HIV virus.
  • the aim of this last nucleotide sequence is to allow the expression of a compound comprising an amino acid sequence, this compound itself having the aim of triggering an immune reaction in a host organism.
  • the term “in vivo” generator of a compound comprising an amino acid sequence means a whole biological product capable of expressing said compound in the host organism into which said generator has been introduced in vivo.
  • the compound comprising the amino acid sequence can be a protein, a peptide or a glycoprotein.
  • generators in vivo are generally obtained by processes resulting from genetic engineering. More particularly, they can consist of living microorganisms, generally a virus, playing the role of recombinant vector, into which is inserted a nucleotide sequence, in particular an exogenous gene. These compounds are known as such and used in particular as a recombinant unitary vaccine. In this regard, reference may be made to the article by M. ELOIT et al., Journal of virology (1990) 71, 2925-2431 and to international patent applications published under the numbers WO-A-91/00107 and WO-A-94/16681.
  • the in vivo generators according to the invention can also consist of a recombinant plasmid comprising an exogenous nucleotide sequence, capable of expressing in a host organism a compound comprising an amino acid sequence.
  • a recombinant plasmid comprising an exogenous nucleotide sequence, capable of expressing in a host organism a compound comprising an amino acid sequence.
  • Such recombinant plasmids and their mode of administration in a host organism were described in 1990, by LIN et al., Circulation 82: 2217,2221; COX et al., J. of VIROL, Sept. 1993, 67, 9, 5664-5667 and in the international application published under the number WO 95/25542.
  • the compound comprising the amino acid sequence which is expressed within the host organism can: (i) be an antigen, and allow the triggering of a immune reaction,
  • (ii) have a curative action vis-à-vis a disease, essentially a functional disease, which is triggered in the host organism.
  • the in vivo generator allows treatment of the host, of the gene therapy type.
  • such a curative action may consist in a synthesis by the in vivo generator of cytokines, such as interleukins, in particular interleukin 2. These allow the triggering or the strengthening of an immune reaction aimed at selective elimination of cancer cells.
  • cytokines such as interleukins, in particular interleukin 2.
  • a composition according to the invention comprises an antigen concentration which depends on the nature of this antigen and on the nature of the subject treated. It is however particularly remarkable that an adjuvant according to the invention makes it possible to significantly reduce the usual dose of antigen required.
  • the appropriate concentration of antigen can be determined conventionally by those skilled in the art. Generally, this dose is of the order of 0.1 ⁇ g / cm 3 to 1 g / cm 3 more generally between 1 ⁇ g / cm 3 and 100 mg / cm 3 .
  • the concentration of said generator in vivo in the composition according to the invention depends, in particular, on the nature of said generator and on the host in which it is administered. This concentration can be easily determined by a person skilled in the art, on the basis of routine experience.
  • the generator in vivo when the generator in vivo is a recombinant microorganism, its concentration in the composition according to the invention can be between 10 and 10 microorganisms / cm, preferably between 10 and 10 12 microorganisms / cm 3 .
  • the generator in vivo is a recombinant plasmid, its concentration in the composition according to the invention can be between 0.01 g / dm 3 and 100 g / dm 3 .
  • the vaccine as defined above is prepared by mixing the adjuvant phase and the antigenic phase, optionally adding water or a pharmaceutically acceptable diluent medium. The following examples illustrate the invention without, however, limiting it.
  • a 1% solution of high viscosity, high guluronic acid sodium alginate (SATIALGINE TM SG800) is prepared.
  • a 500 millimolar aqueous suspension of an insoluble salt of a salt insoluble in water, calcium hydroxide, is prepared. 1 ml of the suspension and 20 g of the sodium alginate solution are mixed. The mixture obtained is dispersed by means of a rapid stirrer in 100 g of a white mineral oil (MARCOL TM 52) containing 1% by weight of a lipophilic surfactant, sorbitan monoleate or MONT ANE TM 80, HLB number equal to about 4.3.
  • MARCOL TM 52 white mineral oil
  • An emulsion is obtained which is acidified with a few drops of concentrated acetic acid.
  • This emulsion is in continuous oil phase; its dispersed phase consists of a stable gelled complex of calcium alginate.
  • This calcium alginate emulsion constitutes an immunity adjuvant, which can be emulsified with an antigenic medium to form a vaccine W / O type, stable, with improved efficacy.
  • This new immunity adjuvant can optionally be mixed with another oily adjuvant such as those of the MONTANIDE TM ISA family, sold by the company Seppic before manufacture of the final vaccine.
  • Example 2
  • a 3.5% solution of low viscosity, high guluronic acid sodium alginate (SATIALGINE TM S80) is prepared.
  • An emulsion is obtained which is acidified with a few drops of concentrated acetic acid to dissolve the manganese carbonate.
  • An immunity adjuvant is thus obtained, which is an emulsion which has a continuous oil phase and whose dispersed phase consists of a stable gelled manganese alginate complex.
  • a 3.5% solution of low viscosity, high guluronic acid sodium alginate (SATIALGINE TM S80) is produced.
  • a 500 millimolar suspension of a poorly soluble salt, manganese glycerophosphate, is prepared.
  • the adjuvant thus obtained is an emulsion the continuous phase of which is the oil phase and the dispersed phase of which consists of a stable gelled complex of manganese alginate.
  • the effectiveness of this adjuvant is evaluated in female OF1 strain mice weighing 20 grams, which are injected subcutaneously with 100 ⁇ l of vaccines containing ovalbumin grade V (OVA), as antigen (all preparations have been adjusted so that the dose of antigen administered per animal is constant and equal to 1 ⁇ g per injection).
  • the vaccination schedule includes a booster 28 days after the first injection.
  • a first group of mice receives a dose of OVA alone without adjuvant (control 1),
  • a second group of mice receives a vaccine (A) of the W / O type (preparation A), consisting of a part of standard oily adjuvant (MONTANIDE TM ISA 564, sold by the company SEPPIC) and a part of 'OVA in physiological saline (composition according to the state of the art).
  • a vaccine of the W / O type (preparation A)
  • preparation A consisting of a part of standard oily adjuvant (MONTANIDE TM ISA 564, sold by the company SEPPIC) and a part of 'OVA in physiological saline (composition according to the state of the art).
  • a third group of mice receives a preparation (B) consisting of three parts of vaccine (A) for 1 part of adjuvant containing a manganese alginate complex prepared as described above, (composition according to the invention)
  • a fourth group of mice receives a preparation (C) consisting of a part of vaccine (A) for a part of adjuvant containing a manganese alginate complex prepared as described above (composition according to the invention).
  • An immunity adjuvant consisting of a manganese alginate complex emulsified in mineral oil is prepared as in Example 3.
  • a placebo emulsion (P) is prepared which consists of a part of standard MONTANIDE TM ISA 564 adjuvant and a part of physiological saline.
  • This adjuvant is evaluated in female OF1 strain mice weighing 20 grams, which are injected subcutaneously with 100 ⁇ l of vaccines containing ovalbumin grade V (OVA), as antigen (all preparations have been adjusted so that the dose of antigen administered per animal is constant and equal to 1 ⁇ g per injection).
  • the vaccination schedule includes a booster 28 days after the first injection.
  • a first group of mice receives a dose of OVA alone without adjuvant (control 1),
  • a second group of mice receives a vaccine (A) of W / O type (preparation A), consisting of a portion of MONTANIDE TM ISA 564 and part of OVA in physiological saline (composition according to the state of the art),
  • a third group of mice receives a preparation (D) consisting of three parts of placebo (P) for a part of preparation (I) (composition according to the invention),
  • a fourth group of mice receives a preparation (E) consisting of a part of placebo (P) for a part of preparation (I) (composition according to the invention).
  • the emulsified manganese alginate complex obtained in Example 3 is half-diluted in an organic solvent (ether or isopropyl alcohol). Part of the mineral oil in the emulsion is dissolved and the alginate complex beads are isolated by centrifugation. The solvent residue is evaporated and an immunity adjuvant enriched in complex is obtained containing only about 5% of residual mineral oil.
  • organic solvent ether or isopropyl alcohol
  • This adjuvant is evaluated in female OF1 strain mice weighing 20 grams, which are injected subcutaneously with 100 ⁇ l of vaccines containing ovalbumin grade V (OVA), as antigen (all preparations have been adjusted so that the dose of antigen administered per animal is constant and equal to 1 ⁇ g per injection).
  • the vaccination schedule includes a booster 28 days after the first injection.
  • a first group of mice receives a dose of OVA alone without adjuvant (control 1),
  • a second group of mice receives a vaccine containing, as an adjuvant, manganese glycerophosphate so that the concentration of Mn ++ cation is the same as that of preparation F and containing the same amount of OVA as preparation F (witness 2) (composition according to the state of the art),
  • a third group of mice receives a preparation (F) consisting of the mixture of the adjuvant, enriched in manganese alginate complex with an antigenic solution of OVA to form a vaccine preparation (F) containing 10 ⁇ g / ml of albumin.
  • a vaccine (G) is obtained consisting of the OVA antigen and an oily adjuvant composed of an oil and a manganese alginate complex.
  • This adjuvant is evaluated in female OF1 strain mice weighing 20 grams, which are injected subcutaneously with 100 ⁇ l of vaccines containing ovalbumin grade V (OVA), as antigen (all preparations have been adjusted so that the dose of antigen administered per animal is constant and equal to 1 ⁇ g per injection).
  • the vaccination schedule includes a booster 28 days after the first injection.
  • a first group of mice receives a dose of OVA alone without adjuvant (control 1),
  • a second group of mice receives a vaccine (A) of the W / O type (preparation A), consisting of a part of MONTANIDE TM ISA 564 and a part of OVA in physiological saline (composition according to the state technique),
  • a third group of mice receives the vaccine (G) (composition according to the invention),
  • a fourth group of mice receives a preparation (H) consisting of a part of the placebo (P) prepared in Example 4, and a part of vaccine (G) (composition according to the invention).
  • Table 4 Vaccine G containing the emulsified complex as an adjuvant is more effective than standard vaccine A in the short term and of similar efficacy in the longer term.
  • the H vaccine containing a mixture of two adjuvants is clearly more effective than the two vaccines with a single adjuvant, both in the short term and after 56 days. A synergy is therefore observed
  • the emulsified manganese alginate complex obtained in Example 3 is taken up and half diluted in an organic solvent (ether or isopropyl alcohol). Part of the mineral oil in the emulsion is dissolved and the alginate complex beads can be isolated by centrifugation.
  • organic solvent ether or isopropyl alcohol
  • the solvent residue is evaporated and an immunity adjuvant enriched in complex is obtained containing only about 5% of residual mineral oil.
  • the efficacy of this adjuvant is evaluated in female OF1 strain mice weighing 20 grams, which are injected subcutaneously with 100 ⁇ l of vaccines containing a parasitic antigen of Trichinella spiralis larvae (all preparations have been adjusted for that the dose of antigen administered per animal is constant and equal to 5 ⁇ g per injection).
  • the vaccination schedule includes a booster 28 days after the first injection.
  • a first group of mice receives a W / O type vaccine, consisting of part of
  • mice receives a vaccine containing, as an adjuvant, manganese glycerophosphate so that the concentration of Mn ++ cation is the same as that of preparation J and containing the same quantity of parasitic antigen of larvae of. Trichinella spiralis as preparation J. (control 5),
  • a third group of mice receives a preparation (J) containing 50 ⁇ g / ml of antigen consisting of the mixture of the adjuvant, enriched in manganese alginate complex with the antigenic solution of parasitic antigen of Trichinella spiralis larvae (compo - sition according to the invention).
  • the vaccine according to the invention is as effective in the short term, as the vaccine containing the soluble salt and that it is more effective than the W / O type vaccine. In the long term it is almost as efficient as the oily W / O vaccine and more efficient than the soluble salt vaccine.
  • the vaccines containing the various adjuvants described in examples 1 to 6 are injected subcutaneously into mice of OF1 strain (volume injected: 100 ⁇ l).
  • the intensity of local reactions at the injection site is noted after seven days, on a numerical scale ranging from 0 (no reaction) to 5 (very strong reaction with tissue necrosis), after 7 days.
  • the results recorded in the following table show that the vaccines containing the adjuvants according to the invention are well tolerated, the local reactions not exceeding that of control A

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Composition comprenant une phase grasse, et une quantité non nulle d'un gel organométallique obtenu par complexation d'un polymère anionique ou d'un mélange de polymères anioniques différents, avec un cation métallique multivalent ou un mélange de cations métalliques différents; notamment sous forme d'une émulsion dont la phase continue est la phase grasse et la phase dispersée le complexe gélifié polymère anionique - cation métallique multivalent. Procédé de préparation de l'émulsion, comprenant la préparation d'une suspension aqueuse contenant au moins un sel insoluble de cation multivalent, au moins un polymère anionique hydrosoluble et éventuellement au moins un agent tensioactif hydrophile, l'émulsification de la suspension ainsi préparée, avec une phase huileuse contenant éventuellement un agent tensioactif lipophile, si nécessaire la solubilisation du sel insoluble de cation multivalent par modification de pH de l'émulsion, éventuellement l'ajout d'un excès de cation multivalent et la neutralisation de l'émulsion finale obtenue. Vaccin contenant ladite composition.

Description

ADJUVANT D'IMMUNITE CONTENANT UN CATION METALLIQUE COMPLEXE ET VACCIN LE CONTENANT
La présente invention concerne de nouveaux adjuvants pour compositions vaccina- les ainsi que lesdites compositions comprenant au moins un antigène, notamment un antigène d'origine virale, bactérienne ou parasitaire et au moins un adjuvant.
De très nombreuses substances sont décrites comme améliorant la réponse immunitaire à un antigène.
Il y a les sels minéraux insolubles dans l'eau, parmi lesquels l'hydroxyde d'aluminium et le phosphate de calcium sont les plus connus et sont les seuls autorisés à ce jour pour la vaccination humaine. Ils induisent peu de réactions d'intolérance au site d'injection mais leur efficacité est par contre médiocre et leur effet de courte durée.
Il y aussi les huiles injectables utilisées comme adjuvants dans les vaccins vétérinaires. Elles sont très efficaces mais elles induisent parfois des réactions locales. Elles sont mises en œuvre en mélange avec le milieu antigénique pour former des emulsions fluides injectables.
Lorsque ces emulsions sont du type huile - dans - eau (H/E), la protection de l'animal contre la maladie est assurée rapidement, mais seulement pendant une courte durée, de l'ordre de quelques mois. Lorsque ces emulsions sont du type eau - dans - huile (E/H), la protection de l'animal contre la maladie n'est assurée qu'au bout de quelques semaines mais elle dure longtemps, jusqu'à une année ou plus. On pense que cette protection à long terme est due à l'enrobage par l'huile, des gouttes de milieu antigénique.
Il y a encore les sels hydrosolubles de cations multivalents associés à un anion or- ganique qui ont été décrits dans les brevets français publiés sous les numéros FR 2 733 151 et FR 2 754 715. Ces sels solubles sont très bien tolérés et assurent une protection rapide, mais de courte durée, lorsqu'ils sont utilisés comme adjuvant unique. Lorsqu'ils sont combinés à des huiles sous forme d'émulsions ou de micro - emulsions (H/E), ils induisent une protection prolongée de durée cependant inférieure à celle conférée par des vaccins de type (E/H).
Le brevet américain publié sous le numéro 3,925,544 et le brevet belge publié sous le numéro 623,825, divulguent des compositions vaccinales comprenant comme adjuvant, de 1 à 5 % poids / volume d'alginate de sodium et des ions d'insolubilisation de l'alginate, tels que l'ion calcium, la concentration des ions séquestrés d'insolubilisation de l'alginate, étant inférieure à la concentration nécessaire pour former une quantité de gel insoluble.
Il n'existe pas aujourd'hui de moyens de vaccination permettant à la fois d'assurer très rapidement une protection contre la maladie et de maintenir cette protection pendant longtemps. La demanderesse s'est donc attachée à résoudre ce problème en développant un adjuvant d'immunité qui n'ait pas les inconvénients précités.
C'est pourquoi l'invention a pour objet, une composition comprenant une phase grasse et une quantité non nulle d'un gel organométallique obtenu par complexation d'un polymère anionique ou d'un mélange de polymères anioniques différents, avec un cation métallique multivalent ou un mélange de cations métalliques multivalents différents.
Dans la composition objet de la présente invention, le gel organométallique est susceptible d'être obtenu par mélange d'un volume Vc d'une suspension ou d'une solution contenant le sel de cation multivalent ou un mélange de sels de cations multivalents, avec un volume Vp d'une solution ou d'une suspension contenant le polymère anionique ou un mélange de polymères anioniques en des proportions suffisantes pour provoquer le phénomène de gélification conduisant au gel organométallique, avec si nécessaire, agitation du mélange résultant.
La phase grasse constitutive de la composition objet de la présente invention, com- prend généralement un ou plusieurs composés choisis parmi les huiles d'origine minérale, végétale ou animale, les esters alkyliques desdites huiles, les esters alkyliques d'acides gras ou les éthers alkyliques d'acides gras, les esters d'acides gras et de polyols ou les éthers d'alcools gras et de polyols.
Comme exemples d'huile d'origine minérale, il y a les huiles d'origine pétrolière, comme les huiles blanches minérales telles que le MARCOL™ 52. Comme exemples d'huiles d'origine végétale, il y a l'huile d'arachide, l'huile d'olive, l'huile de sésame, l'huile de soja, l'huile de germes de blé, l'huile de pépins de raisin, l'huile de tournesol, l'huile de ricin, l'huile de lin, l'huile de soja, l'huile de maïs, l'huile de coprah, l'huile de palme, l'huile de noix, l'huile de noisette, l'huile de colza ou encore le squalane ou le squalène d'olive. Comme exemples d'huiles d'origine animale, il y a l'huile de spermaceti, l'huile de suif, le squalane ou le squalène extraits des foies de poissons. Comme exemples d'esters alkyliques d'huiles, il y a les esters méthylique, éthylique, propyliques linéaire ou ramifié ou butyliques, linéaire ou ramifiés, desdites huiles.
Comme acides gras appropriés à la préparation des esters cités ci-dessus, il y a plus particulièrement, ceux comportant de 12 à 22 atomes de carbone, tels que par exemple, l'acide myristique, l'acide palmitique, l'acide oléique, l'acide ricinoléique ou l'acide isostéa- rique et avantageusement un acide gras liquide à 20°C.
Comme exemples d'esters d'acides gras, il y a les esters alkyliques d'acides gras, tels que, l'oléate d'éthyle, l'oléate de méthyle, le myristate d'isopropyle ou le palmitate d'octyle, les esters d'acides gras et de polyols ou les éthers d'alcools gras et de polyols, et plus particulièrement, les monoglycerides d'acides gras, les diglycérides d'acides gras, les triglycérides d'acides gras, les esters d'acides gras avec un polyglycérol ou les esters d'acides gras et de propylèneglycol, les esters d'acides gras avec un hexol, tel que par exemple le sorbitol ou le mannitol, les esters d'acides gras avec un anhydride d'hexol, comme le sorbi- tane ou le mannitane. Dans le cadre de la présente invention, la phase grasse peut comprendre un seul des composés cités ci-dessus ou bien un mélange de plusieurs des composés cités ci-dessus.
La composition objet de la présente invention comprend généralement entre environ 5% et 70% en poids, et plus particulièrement entre 15% et 60% en poids de phase grasse.
Parmi les cations métalliques multivalents susceptibles d'être complexés avec le po- lymère anionique ou le mélange de polymères anioniques, il y a plus particulièrement les cations métalliques divalents ou trivalents et tout particulièrement les cations divalents du calcium, du magnésium, du manganèse ou du zinc ou bien les cations trivalents du fer ou de l'aluminium.
Dans la suspension ou la solution de sels de cations, susceptible d'être mise en œu- vre pour obtenir le gel organométallique, contenu dans la composition objet de la présente invention, la concentration en cations métalliques [C], exprimée en mole par litre de solution ou suspension, est généralement comprise entre environ 10"3 mole par litre et 10 moles par litre, plus particulièrement entre 10 2 mole par litre et 5 moles par litre et tout particulièrement entre 0,1 mole par litre et 1 mole par litre. Ces sels de cations sont pharmaceutiquement acceptables. Il s'agit par exemple d'un hydroxyde, d'un carbonate, d'un citrate, d'un gluconate, d'un glucoheptonate, d'un fructo- heptonate, d'un lactate, d'un acétate, d'un propionate, d'un salicylate, d'un chlorure ou d'un glycérophosphate.
Comme exemples de sels mis en œuvre dans la préparation du gel organométallique de la composition objet de la présente invention, il y a l'hydroxyde de calcium, le carbonate de magnésium, le carbonate de manganèse, le gluconate de calcium, le gluconate de manganèse, le glycérophosphate de manganèse, le gluconate de zinc, le fructoheptonate de calcium, le salicylate d'aluminium ou l'acétate d'aluminium.
Selon un mode particulier de la présente invention, le sel de cation multivalent mis en œuvre est le glycérophosphate de manganèse ou un mélange de glycérophosphate de manganèse et de gluconate de manganèse.
Parmi les polymères anioniques susceptibles d'être complexés avec les cations métalliques multivalents, il y a plus particulièrement les polymères sulfatés, le dextrane, les carraghénates, les polymères carboxyliques, les polyacrylates, les pectines, les alginates, les gommes naturelles, la gomme xanthane ou la gomme de guar. Selon un mode particulier de la présente invention, le polymère anionique mis en œuvre est un alginate de sodium.
Dans la suspension ou la solution de polymères anioniques, susceptible d'être mise en œuvre pour obtenir le gel organométallique, contenu dans la composition objet de la présente invention, la concentration en polymères anioniques [P], exprimée en pourcentage pondéral de la solution ou de la suspension, est généralement comprise entre environ 0,1 % et 10 % en poids, plus particulièrement entre 0,5 % et 5 % en poids et tout particulièrement entre 1 % et 5 % en poids.
Les proportions en suspension ou solution de sel du cation et en solution ou suspension de polymère anionique pour réaliser le mélange conduisant à l'obtention du gel orga- nometallique, sont choisies de sorte que le rapport [P] / [C], est compris entre 0,01 et 100, plus particulièrement entre 0,1 et 50 et tout particulièrement entre 1 et environ 10.
Les solvants desdites suspensions ou solutions mises en œuvre pour préparer le gel organométalliques sont généralement des solvants polaires et de préférences miscibles entre eux. Il s'agit de préférence d'eau ou d'un mélange hydro - alcoholique pharmaceutique- ment acceptable.
Selon un aspect particulier de la présente invention, le gel organométallique est susceptible d'être obtenu par mélange d'une suspension ou d'une solution aqueuse contenant le sel de cation multivalent ou un mélange de sels de cations multivalents, avec une solution ou une suspension aqueuse contenant le polymère anionique ou le mélange de polymères anioniques, avec si nécessaire, agitation du mélange résultant.
Selon un autre aspect particulier de la présente invention, le gel organométallique est susceptible d'être obtenu par mélange d'une suspension ou d'une solution aqueuse contenant un sel de cation multivalent, avec une solution ou une suspension aqueuse contenant un polymère anionique, avec si nécessaire, agitation du mélange résultant.
La composition telle que définie précédemment, est de préférence sous forme d'une emulsion et en particulier sous forme d'une emulsion dont la phase continue est la phase grasse et la phase dispersée le complexe gélifié polymère anionique - cation métallique multivalent.
La composition telle que définie précédemment, peut comprendre aussi un ou plusieurs tensioactifs pharmaceutiquement acceptables.
Parmi les agents tensioactifs mis en œuvre dans la composition objet de la présente invention, il y a les tensioactifs non ioniques, par exemple, les esters de polyglycérols, les esters de sucres comme les esters de sorbitan de mannitane ou de saccharose, les esters de sucres éthoxylés, les alcools gras alcoxylés, les acides gras éthoxylés, les monoglycerides et les diglycérides modifiés par réaction avec l'acide acétique ou l'acide lactique; les mono glycérides, les diglycérides ou les triglycérides éthoxylés, les éthers de sucres, tels que les éthers de glucose, les éthers de xylose ou les éthers de lactitol.
Les tensioactifs mis en œuvre sont plus particulièrement choisis de façon à ce que le HLB du mélange de tensioactifs soit compris entre 4 et 12 et de préférence, entre 5 et 8.
La composition telle que définie ci-dessus, comprend généralement entre environ 0,5% et 10% en poids et de préférence entre 1% et 5% en poids de tensioactifs. L'invention a aussi pour objet un procédé de préparation de l'émulsion telle que définie précédemment, comprenant les étapes suivantes :
(a) la préparation d'une suspension ou d'une solution aqueuse contenant au moins un sel insoluble de cation multivalent, au moins un polymère anionique hydrosoluble et éventuellement au moins un agent tensioactif hydrophile ; (b) l'émulsification de la suspension préparée à l'étape a), avec une phase huileuse contenant éventuellement un agent tensioactif lipophile ; (c) si nécessaire la solubilisation du sel insoluble de cation multivalent par modification de pH de l'émulsion ;
(d) éventuellement l'ajout d'un excès de cation multivalent ; et
(e) la neutralisation de l'émulsion finale obtenue. L'étape (a) du procédé consiste généralement en un mélange d'un volume Vc d'une suspension ou d'une solution de sel du cation avec un volume Vp d'une solution ou d'une suspension de polymère anionique, dans un rapport volumique Nc/Vp généralement compris entre 1/ 100 et 1 / 1 de préférence entre 1 / 50 et 1 / 10, soit en versant la suspension ou la solution de sel de cation dans la solution ou la suspension de polymère anionique avec, si nécessaire, agitation du mélange résultant, soit en versant la suspension ou la solution de polymère anionique dans la solution ou la suspension de sel de cation avec, si nécessaire, agitation du mélange résultant.
On met de préférence en œuvre dans l'étape (a), un ou plusieurs sels choisis parmi l'hydroxyde de calcium, le carbonate de magnésium, le carbonate de manganèse, le gluco- nate de calcium, le gluconate de manganèse, le glycérophosphate de manganèse, le gluconate de zinc, le fructoheptonate de calcium, le salicylate d'aluminium ou l'acétate d'aluminium.
Selon une variante particulière du procédé tel que défini précédemment, l'émulsion obtenue à l'étape (e) est dissoute dans un solvant de la phase grasse pour obtenir une sus- pension de gel organométallique et la suspension résultante est soumise à une centrifuga- tion pour isoler ledit gel. Cette variante est mise en œuvre pour préparer une composition à faible teneur en huile.
Selon un autre aspect de la présente invention, celle - ci a pour objet, l'utilisation de la composition telle que définie précédemment, comme phase adjuvante d'une composition vaccinale.
L'invention a aussi pour objet un procédé de préparation d'un vaccin comprenant l'adjonction comme adjuvant d'immunité, d'une quantité efficace de la composition telle que définie précédemment.
La composition telle définie précédemment peut être utilisée en combinaison avec des adjuvants huileux classiques, connus de l'homme du métier.
Lorsque le vaccin préparé est de type emulsion E/H, on mélange la composition objet de la présente invention avec la phase antigénique puis on émulsionne le tout. Selon un dernier aspect de la présente invention celle a pour objet une composition comprenant au moins un antigène ou au moins un générateur in vivo d'un composé comprenant une séquence d'acides aminés et une quantité non nulle d'une composition telle que définie précédemment. Par antigène ou au moins un générateur in vivo d'un composé comprenant une séquence d'acides aminés, on désigne soit des micro-organismes tués, tels que les virus, les bactéries ou les parasites, soit des fractions purifiées de ces micro-organismes, soit des micro-organismes vivants dont le pouvoir pathogène a été atténué. A titre d'exemples de virus pouvant constituer un antigène selon la présente invention, il y a le virus de la rage, les herpès virus, tels que le virus de la maladie d'Aujeszky, les orthomixovirus tels que In- fluenzae, les picornavirus tels que le virus de la fièvre aphteuse ou les rétrovirus tels que les VIH. A titre de micro-organisme du type bactérien pouvant constituer un antigène selon la présente invention, on peut citer E. Coli, et ceux des genres Pasteurella, Furonculosis, Vibriosis, Staphylococcus et Streptococcus. A titre d'exemples de parasites, il y a ceux des genres Trypanosoma, Plasmodium et Leishmania. On peut aussi citer les virus recombinants notamment les virus non enveloppés, tels que les adénovirus, le virus de la vaccine, le virus Canarypox, les herpès virus ou les baculovirus. On désigne aussi un vecteur recombinant viral non enveloppé vivant, dont le génome contient, insérée de préférence dans une partie non essentielle pour la réplication du virus enveloppé correspondant, une sé- quence codant pour une sous - unité antigénique induisant une synthèse d'anticorps et/ou un effet protecteur contre le susdit virus enveloppé ou micro-organisme pathogène ; ces sous - unités antigéniques peuvent être par exemple, une protéine, une glycoprotéine, un peptide ou une fraction peptidique et ou protectrice contre une infection par un micro-organisme vivant tel un virus enveloppé, une bactérie ou un parasite. Le gène exogène inséré dans le micro-organisme peut être, par exemple, issu d'un virus Aujeszky ou HIV.
On peut citer notamment un plasmide recombinant constitué d'une séquence de nu- cléotides, dans laquelle est insérée une séquence nucléotidique exogène, provenant d'un micro-organisme ou d'un virus pathogène. Cette dernière séquence nucléotidique a pour but de permettre l'expression d'un composé comprenant une séquence d'acides aminés, ce com- posé ayant lui-même pour but de déclencher une réaction immune dans un organisme hôte. Par générateur "in vivo" d'un composé comprenant une séquence d'acides aminés, on désigne tout un produit biologique capable d'exprimer ledit composé dans l'organisme hôte dans lequel on a introduit ledit générateur in vivo. Le composé comprenant la séquence d'acides aminés, peut être une protéine, un peptide ou une glycoprotéine. Ces géné- rateurs in vivo sont généralement obtenus par des procédés issus du génie génétique. Plus particulièrement, ils peuvent consister en des micro-organismes vivants, généralement un virus, jouant le rôle de vecteur recombinant, dans lequel est insérée une séquence nucléotidique, notamment un gène exogène. Ces composés sont connus en tant que tels et utilisés notamment comme vaccin sous unitaire recombinant. A cet égard, on peut se référer à l'ar- ticle de M. ELOIT et al., Journal of virology (1990) 71, 2925-2431 et aux demandes internationales de brevet publiées sous les numéros WO-A-91/00107 et WO-A-94/16681. Les générateurs in vivo selon l'invention peuvent aussi consister en un plasmide recombinant comprenant une séquence nucléotidique exogène, capable d'exprimer dans un organisme hôte un composé comprenant une séquence d'acides aminés. De tels plasmides recombi- nants et leur mode d'administration dans un organisme hôte ont été décrits en 1990, par LIN et al., Circulation 82:2217,2221 ; COX et al., J. of VIROL, Sept. 1993, 67, 9, 5664- 5667 et dans la demande internationale publiée sous le numéro WO 95/25542. Selon la nature de la séquence nucléotidique comprise dans le générateur in vivo, le composé comprenant la séquence d'acides aminés qui est exprimé au sein de l'organisme hôte, peut : (i) être un antigène, et permettre le déclenchement d'une réaction immune,
(ii) avoir une action curative vis-à-vis d'une maladie, essentiellement une maladie d'ordre fonctionnel, qui s'est déclenchée chez l'organisme hôte. Dans ce cas, le générateur in vivo permet un traitement de l'hôte, du type thérapie génique.
A titre d'exemple, une telle action curative peut consister en une synthèse par le gé- nérateur in vivo de cytokines, comme les interleukines, notamment l'interleukine 2. Celles- ci permettent le déclenchement ou le renforcement d'une réaction immune visant à l'élimination sélective des cellules cancéreuses.
Une composition selon l'invention comprend une concentration en antigène qui dépend de la nature de cet antigène et de la nature du sujet traité. Il est toutefois particulière- ment remarquable qu'un adjuvant selon l'invention, permette de diminuer notablement la dose habituelle d'antigène requise. La concentration adéquate d'antigène peut être déterminée de manière classique par l'homme du métier. Généralement, cette dose est de l'ordre de 0,1 μg / cm3 à 1 g / cm3 plus généralement comprise entre 1 μg / cm3 et 100 mg / cm3. La concentration dudit générateur in vivo dans la composition selon l'invention dépend, là encore, notamment de la nature dudit générateur et de l'hôte dans lequel il est administré. Cette concentration peut être aisément déterminée par l'homme du métier, sur la base d'ex- périence de routine. A titre indicatif, on peut toutefois préciser que lorsque le générateur in vivo est un micro-organisme recombinant, sa concentration dans la composition selon l'in- vention peut être comprise entre 10 et 10 microorganismes/cm , de préférence entre 10 et 1012 microorganismes/cm3. Lorsque le générateur in vivo est un plasmide recombinant, sa concentration dans la composition selon l'invention peut être comprise entre 0,01 g /dm3 et 100 g / dm3. Le vaccin tel que défini précédemment, est préparé en mélangeant la phase adjuvante et la phase antigénique, en ajoutant éventuellement de l'eau ou un milieu diluant pharmaceutiquement acceptable. Les exemples suivants illustrent l'invention sans toutefois la limiter.
Exemple 1
On prépare une solution à 1% d'alginate de sodium haute viscosité et haute teneur en acide guluronique (SATIALGINE™ SG800).
On prépare une suspension aqueuse 500 millimolaire d'un sel insoluble d'un sel insoluble dans l'eau, l'hydroxyde de calcium. On mélange 1 ml de la suspension et 20g de la solution d'alginate de sodium. Le mélange obtenu est dispersé au moyen d'un agitateur rapide dans 100 g d'une huile blanche minérale (MARCOL™ 52) contenant 1% en poids d'un agent tensioactif lipophile, le mo- nooléate de sorbitan ou MONT ANE™ 80, de nombre HLB égal à environ 4,3.
On obtient une emulsion qui est acidifiée par quelques gouttes d'acide acétique concentré. Cette emulsion est à phase huile continue; sa phase dispersée est constituée d'un complexe gélifié stable d'alginate de calcium.
Cette emulsion d'alginate de calcium constitue un adjuvant d'immunité, qui peut être émulsionné avec un milieu antigénique pour former un vaccin de type E/H, stable, à efficacité améliorée. Ce nouvel adjuvant d'immunité peut éventuellement être mélangé à un autre adjuvant huileux tel que ceux de la famille des MONTANIDE™ ISA, commercialisés par la société Seppic avant fabrication du vaccin final. Exemple 2
On prépare une solution à 3.5% d'alginate de sodium basse viscosité et haute teneur en acide guluronique (SATIALGINE™ S80). On prépare une suspension aqueuse 500 millimolaire d'un sel insoluble, le carbonate de manganèse.
On mélange 1 ml de la suspension et 20g de la solution d'alginate de sodium. Le mélange obtenu est dispersé dans 100 g de MARCOL™ 52 contenant 2% en poids de MONTANE™ 80, au moyen d'un agitateur rapide tournant à 3000 tours / mn pendant 3 minutes.
On obtient une emulsion qui est acidifiée par quelques gouttes d'acide acétique concentré pour solubiliser le carbonate de manganèse.
On obtient ainsi un adjuvant d'immunité qui est une emulsion est à phase huile continue et dont la phase dispersée est constituée d'un complexe gélifié stable d'alginate de manganèse.
Exemple 3
On réalise une solution à 3.5% d'alginate de sodium basse viscosité et haute teneur en acide guluronique (SATIALGINE™ S80). On prépare une suspension 500 millimolaire d'un sel peu soluble, le glycérophosphate de manganèse.
On mélange 1 ml de la suspension, 20 ml de la solution d'alginate et 1,05 g (5%) d'un agent tensioactif hydrophile, d'oléate de sorbitan polyéthoxylé (indice d'OE = 80), le MONTANOX™ 80 de nombre HLB égal à 15. Le mélange obtenu est dispersé dans 100 g de MARCOL™ 52, contenant 5% en poids de MONTANE™ 80, au moyen d'un agitateur rapide tournant à 3000 tours / mn pendant 3 minutes. Le nombre HLB du système tensioactif mis en œuvre (MONTANOX™ 80 + MONTANE™ 80) est de 6.
On obtient une emulsion qui est acidifiée par quelques gouttes d'acide acétique concentré pour solubiliser le glycérophosphate de manganèse et former le complexe d'alginate de manganèse puis qui est neutralisée à pH égal à 5,5 avec de la soude. L'adjuvant ainsi obtenu, est une emulsion dont la phase continue est la phase huile et dont la phase dispersée est constituée d'un complexe gélifié stable d'alginate de manganèse. L'efficacité de cet adjuvant, est évaluée chez des souris femelles de souche OF1 pesant 20 grammes, auxquelles on injecte par voie sous cutanée 100 μl de vaccins contenant de l'ovalbumine grade V (OVA), comme antigène (toutes les préparations ont été ajustées pour que la dose d'antigène administrée par animal soit constante et égale à 1 μg par injection). Le schéma de vaccination comprend un rappel 28 jours après la première injection.
Un premier groupe de souris reçoit une dose d'OVA seule sans adjuvant (témoin 1),
Un second groupe de souris, reçoit un vaccin (A) de type E/H (préparation A), constitué d'une partie d'adjuvant huileux standard (MONTANIDE™ ISA 564, commercialisé par la société SEPPIC) et d'une partie d'OVA dans du sérum physiologique (composition selon l'état de la technique).
Un troisième groupe de souris, reçoit une préparation (B) constituée de trois parties de vaccin (A) pour 1 partie d'adjuvant contenant un complexe d'alginate de manganèse préparé comme décrit ci - dessus, (composition selon l'invention)
Un quatrième groupe de souris reçoit une préparation (C) constituée d'une partie de vaccin (A) pour une partie d'adjuvant contenant un complexe d'alginate de manganèse préparé comme décrit ci - dessus (composition selon l'invention).
Les taux d'anticorps IgGl et IgG2 sont mesurés à J = 28 jours, juste avant le rappel à J = 56 jours et à J = 90 jours. Les résultats sont consignés dans le tableau suivant.
Tableau 1 Les résultats font apparaître que l'ajout du complexe d'alginate de manganèse augmente nettement l'efficacité du vaccin E/H standard (A) à court terme (28 jours), aussi bien dans la réponse humorale (IgGl), que dans la réponse cellulaire (IgG2a). Un effet similaire est observé après le rappel, à 56 jours et à 90 jours.
Exemple 4
On prépare un adjuvant d'immunité constitué d'un complexe d'alginate de manganèse émulsionné dans de l'huile minérale comme à l'exemple 3.
On mélange une partie de cet adjuvant avec une partie de solution d'ovalbumine dans du sérum physiologique, pour obtenir une préparation intermédiaire (I).
On prépare une emulsion placebo (P) constituée d'une partie d'adjuvant standard MONTANIDE™ ISA 564 et d'une partie de sérum physiologique.
L'efficacité de cet adjuvant, est évaluée chez des souris femelles de souche OF1 pesant 20 grammes, auxquelles on injecte par voie sous cutanée 100 μl de vaccins contenant de l'ovalbumine grade V (OVA), comme antigène (toutes les préparations ont été ajustées pour que la dose d'antigène administrée par animal soit constante et égale à 1 μg par injection). Le schéma de vaccination comprend un rappel 28 jours après la première injection.
Un premier groupe de souris reçoit une dose d'OVA seule sans adjuvant (témoin 1), Un second groupe de souris, reçoit un vaccin (A) de type E/H (préparation A), cons- titué d'une partie de MONTANIDE™ ISA 564 et d'une partie d'OVA dans du sérum physiologique (composition selon l'état de la technique),
Un troisième groupe de souris, reçoit une préparation (D) constituée de trois parties de placebo (P) pour une partie de préparation (I) (composition selon l'invention),
Un quatrième groupe de souris reçoit une préparation (E) constituée d'une partie de placebo (P) pour une partie de préparation (I) (composition selon l'invention).
Les taux d'anticorps IgGl et IgG2 sont mesurés à J = 28 jours, juste avant le rappel à J = 56 jours et à J = 90 jours. Les résultats sont consignés dans le tableau suivant.
Tableau 2
Les résultats présentés dans le tableau 2 font apparaître une nette amélioration de l'efficacité du vaccin contenant un complexe d'alginate de manganèse à court terme (J = 28 jours) et après rappel. Les taux d'anticorps IgGl ne sont pas significativement différents de ceux obtenus avec la méthode de préparation du vaccin de l'exemple 3. Ceci démontre que les adjuvants selon l'invention sont efficaces, quelle que soit leur méthode de mise en œuvre, (l'addition à un vaccin huileux standard comme dans l'exemple 3 ou bien l'addition à un milieu antigénique puis addition à un adjuvant huileux standard comme dans l'exemple 4).
Exemple 5
On dilue à moitié le complexe d'alginate de manganèse émulsionné obtenu à l'exemple 3 dans un solvant organique (éther ou alcool isopropylique). Une partie de l'huile minérale de l'émulsion est dissoute et les billes de complexe d'alginate sont isolées par centrifugation. Le résidu de solvant est évaporé et on obtient un adjuvant d'immunité enrichi en complexe contenant seulement environ 5% d'huile minérale résiduelle.
L'efficacité de cet adjuvant, est évaluée chez des souris femelles de souche OF1 pesant 20 grammes, auxquelles on injecte par voie sous cutanée 100 μl de vaccins contenant de l'ovalbumine grade V (OVA), comme antigène (toutes les préparations ont été ajustées pour que la dose d'antigène administrée par animal soit constante et égale à 1 μg par injection). Le schéma de vaccination comprend un rappel 28 jours après la première injection. Un premier groupe de souris reçoit une dose d'OVA seule sans adjuvant (témoin 1),
Un second groupe de souris, reçoit un vaccin contenant comme adjuvant, du glycérophosphate de manganèse de façon à ce que la concentration en cation Mn ++ soit la même que celle de la préparation F et contenant la même quantité d'OVA que la préparation F.(témoin 2) (composition selon l'état de la technique),
Un troisième groupe de souris, reçoit une préparation (F) constituée du mélange de l'adjuvant, enrichi en complexe d'alginate de manganèse avec une solution antigénique d'OVA pour former une préparation vaccinale (F) contenant 10 μg / ml d'albumine.
Les taux d'anticorps IgGl et IgG2 sont mesurés à J = 28 jours, juste avant le rappel à J = 56 jours et à J = 90 jours. Les résultats sont consignés dans le tableau suivant.
Tableau 3
L'effet retard de l'adjuvant, "complexe d'alginate de manganèse", par rapport au témoin 2, cation non complexé, est clairement mis en évidence par les dosages d'anticorps.
Exemple 6
On prépare 100 g d'une solution contenant 3,5 g d'alginate de sodium, 1,13 g de glycérophosphate de manganèse et 5,7 mg d'OVA. 60 g du mélange obtenu sont dispersés, au moyen d'un agitateur rapide tournant à 3000 tours / mn, dans 100 g de MARCOL™ 52 contenant 5% en poids, d'un mélange de monooléate de mannitane et d'acide oléïque poly- éthoxylé, en proportion telle que le nombre HLB du mélange est égal à 6.
On obtient une emulsion qui est acidifiée par quelques gouttes d'acide acétique concentré pour solubiliser le glycérophosphate de manganèse et former le complexe d'alginate de manganèse. L'émulsion est ensuite portée à pH = 5.5 par ajout de triéthanolamine. On obtient un vaccin (G) constitué de l'antigène OVA et d'un adjuvant huileux composé d'une huile et d'un complexe d'alginate de manganèse.
L'efficacité de cet adjuvant, est évaluée chez des souris femelles de souche OF1 pesant 20 grammes, auxquelles on injecte par voie sous cutanée 100 μl de vaccins contenant de l'ovalbumine grade V (OVA), comme antigène (toutes les préparations ont été ajustées pour que la dose d'antigène administrée par animal soit constante et égale à 1 μg par injection). Le schéma de vaccination comprend un rappel 28 jours après la première injection.
Un premier groupe de souris reçoit une dose d'OVA seule sans adjuvant (témoin 1),
Un second groupe de souris, reçoit un vaccin (A) de type E/H (préparation A), constitué d'une partie de MONTANIDE™ ISA 564 et d'une partie d'OVA dans du sérum physiologique (composition selon l'état de la technique),
Un troisième groupe de souris, reçoit le vaccin (G) (composition selon l'invention),
Un quatrième groupe de souris reçoit une préparation (H) constituée d'une partie du placebo (P) préparé à l'exemple 4, et d'une partie de vaccin (G) (composition selon l'invention).
Les taux d'anticorps IgGl et IgG2 sont mesurés à J = 28 jours, juste avant le rappel à J = 56 jours et à J = 180 jours. Les résultats sont consignés dans le tableau suivant.
Tableau 4 Le vaccin G contenant le complexe émulsionné comme adjuvant, est plus efficace que le vaccin standard A à court terme et d'efficacité voisine à plus long terme. Le vaccin H contenant un mélange de deux adjuvants, est nettement plus performant que les deux vaccins à un seul adjuvant, aussi bien à court terme qu'après 56 jours. Une syner- gie est donc observée
Exemple 7
On reprend le complexe d'alginate de manganèse émulsionné obtenu à l'exemple 3 et on le dilue à moitié dans un solvant organique (éther ou alcool isopropylique). Une par- tie de l'huile minérale de l'émulsion est dissoute et les billes de complexe d'alginate peuvent être isolées par centrifugation.
Le résidu de solvant est évaporé et on obtient un adjuvant d'immunité enrichi en complexe contenant seulement environ 5% d'huile minérale résiduelle.
L'efficacité de cet adjuvant, est évaluée chez des souris femelles de souche OF1 pe- sant 20 grammes, auxquelles on injecte par voie sous cutanée 100 μl de vaccins contenant un antigène parasitaire de larves de Trichinella spiralis (toutes les préparations ont été ajustées pour que la dose d'antigène administrée par animal soit constante et égale à 5 μg par injection). Le schéma de vaccination comprend un rappel 28 jours après la première injection. Un premier groupe de souris, reçoit un vaccin de type E/H, constitué d'une partie de
MONTANIDE™ ISA 763 et d'une partie d'antigène parasitaire de larves de Trichinella spiralis dans du sérum physiologique, (témoin 4),
Un second groupe de souris, reçoit un vaccin contenant comme adjuvant, du glycérophosphate de manganèse de façon à ce que la concentration en cation Mn ++ soit la même que celle de la préparation J et contenant la même quantité d' antigène parasitaire de larves de Trichinella spiralis que la préparation J.(témoin 5),
Un troisième groupe de souris, reçoit une préparation (J) contenant 50μg / ml d'antigène constituée du mélange de l'adjuvant, enrichi en complexe d'alginate de manganèse avec la solution antigénique d'antigène parasitaire de larves de Trichinella spiralis (compo- sition selon l'invention).
Les taux d'anticorps IgGl et IgG2 sont mesurés à J = 14 jours, J = 42 jours et J = 90 jours. Les résultats sont consignés dans le tableau suivant.
Tableau 5
Les résultats font apparaître que le vaccin selon l'invention est aussi performant à court terme, que le vaccin contenant le sel soluble et qu'il est plus performant que le vaccin de type E/H. A long terme il est presque aussi performant que le vaccin huileux E/H et plus performant que le vaccin à sel soluble.
Exemple 8
Les vaccins contenant les différents adjuvants décrits dans les exemples 1 à 6 sont injectés par voie sous-cutanée à des souris de souche OFl (volume injecté : 100 μl). L'intensité des réactions locales au point d'injection est notée après sept jours, sur une échelle numérique allant de 0 (pas de réaction) à 5 (très forte réaction avec nécrose du tissus), au bout de 7 jours. Les résultats consignés dans le tableau suivant, font apparaître que les vaccins contenant les adjuvants selon l'invention sont bien tolérés, les réactions locales n'excé- dant pas celle du témoin A

Claims

Revendications
1. Composition comprenant une phase grasse, et une quantité non nulle d'un gel organométallique obtenu par complexation d'un polymère anionique ou d'un mélange de po- lymères anioniques différents, avec un cation métallique multivalent ou un mélanges de cations métalliques différents.
2. Composition telle que définie à la revendication 1, dans laquelle le gel organométallique est susceptible d'être obtenu par mélange d'un volume Vc d'une suspension ou d'une solution contenant le sel de cation multivalent ou un mélange de sels de cations multivalents, avec un volume Vp d'une solution ou d'une suspension contenant le polymère anionique ou un mélange de polymères anioniques, en des proportions suffisantes pour provoquer le phénomène de gélification conduisant au gel organométallique, avec si nécessaire, agitation du mélange résultant.
3. Composition tel que définie à l'une quelconque des revendications 1 ou 2, dans laquelle la phase grasse comprend un ou plusieurs composés choisis parmi les huiles d'origine minérale, végétale ou animale, les esters alkyliques desdites huiles, les esters alkyliques d'acides gras, les éthers alkyliques d'acides gras, les esters d'acides gras et de polyols ou les éthers d'alcools gras et de polyols.
4. Composition tel que définie à la revendication 3, dans laquelle les esters alkyli- ques d'huiles sont choisis parmi les esters methylique, ethylique, propyliques linéaire ou ramifié ou butyliques, linéaire ou ramifiés, desdites huiles.
5. Composition tel que définie à l'une quelconque des revendications 3 ou 4, dans laquelle les huiles sont choisies parmi les huiles blanches minérales, les huiles d'arachide, d'olive, de sésame, de soja, de germes de blé, de pépins de raisin de tournesol, de ricin, de lin, de soja, de maïs, de coprah, de palme, de noix, de noisettes ou de colza, le squalane ou le squalène d'olive ou extrait des foies de poissons.
6. Composition tel que définie à la revendication 3, dans laquelle les esters d'acide gras sont choisis les esters d'acides gras comportant de 12 à 22 atomes de carbone, et plus particulièrement choisis parmi les esters des acides myristique, palmitique, oléique, ricino- léique ou isostéarique.
7. Composition tel que définie à l'une quelconque des revendications 3 ou 6, dans laquelle les esters alkyliques d'acides gras sont choisis parmi l'oléate d'éthyle, l'oléate de méthyle, le myristate d'isopropyle ou le palmitate d'octyle.
8. Composition tel que définie à la revendication 3, dans laquelle les esters d'acides gras et de polyols sont choisis parmi les monoglycerides d'acides gras, les diglycérides d'acides gras, les triglycérides d'acides gras, les esters d'acides gras avec un polyglycérol, les esters d'acides gras et de propylèneglycol, les esters d'acides gras avec un hexol, et plus particulièrement avec le sorbitol ou le mannitol ou les esters d'acides gras avec un anhydride d'hexol et plus particulièrement avec le sorbitane ou le mannitane.
9. Composition tel que définie à l'une quelconque des revendications 1 à 8, comprenant entre environ 5% et 70% en poids, et plus particulièrement entre 15% et 60% en poids de phase grasse.
10. Composition tel que définie à l'une quelconque des revendications 1 à 9, dans laquelle les cations métalliques multivalents sont choisis parmi les cations métalliques di- valents ou trivalents et tout particulièrement parmi les cations divalents du calcium, du magnésium, du manganèse ou du zinc ou bien les cations trivalents du fer ou de l'aluminium.
11. Composition tel que définie à l'une quelconque des revendications 2 à 10 pour laquelle, dans la suspension ou la solution de sels de cations, susceptible d'être mise en œuvre pour obtenir le gel organométallique, la concentration en cations métalliques [C], exprimée en mole par litre de solution ou suspension, est généralement comprise entre en- viron 10" et 10 moles / litre, plus particulièrement entre 10" et 5 moles / litre et tout particulièrement entre 0,1 et 1 mole par litre.
12. Composition tel que définie à l'une quelconque des revendications 2 à 11 pour laquelle, dans la suspension ou la solution de sels de cations, susceptible d'être mise en œuvre pour obtenir le gel organométallique, les sels de cations sont choisis parmi les hy- droxydes, carbonates, citrates, gluconates, glucoheptonates, fructoheptonates, lactates, acétates, propionates, salicylates, chlorures ou les glycérophosphates desdits cations.
13. Composition tel que définie à la revendication 12 pour laquelle, dans la suspension ou la solution de sels de cations, susceptible d'être mise en œuvre pour obtenir le gel organométallique, les sels sont choisis parmi l'hydroxyde de calcium, le carbonate de magnésium, le carbonate de manganèse, le gluconate de calcium, le gluconate de manganèse, le glycérophosphate de manganèse, le gluconate de zinc, le fructoheptonate de calcium, le salicylate d'aluminium ou l'acétate d'aluminium.
14. Composition tel que définie à la revendication 13 pour laquelle, dans la suspension ou la solution de sels de cations, susceptible d'être mise en œuvre pour obtenir le gel organométallique, le sel est le glycérophosphate de manganèse ou un mélange de glycérophosphate de manganèse et de gluconate de manganèse.
15. Composition tel que définie à l'une quelconque des revendications 2 à 14 pour laquelle, dans la suspension ou la solution de polymères anioniques susceptibles d'être complexés avec les cations métalliques multivalents, les polymères anioniques sont choisis parmi les polymères sulfatés, le dextrane, les carraghénates, les polymères carboxyliques, les polyacrylates, les pectines, les alginates ou les gommes naturelles, la gomme xanthane ou la gomme de guar.
16. Composition tel que définie à l'une quelconque des revendications 2 à 15 pour laquelle, dans la suspension ou la solution de polymères anioniques susceptibles d'être complexés avec les cations métalliques multivalents, le polymère anionique mis en œuvre est un alginate de sodium.
17. Composition tel que définie à l'une quelconque des revendications 2 à 16 pour laquelle, dans la suspension ou solution de polymères anioniques, susceptible d'être mise en œuvre pour obtenir le gel organométallique, la concentration en polymères anioniques [P], exprimée en pourcentage pondéral de la solution ou de la suspension, est généralement comprise entre environ 0,1 % et 10 % en poids, plus particulièrement entre 0,5 % et 5 % en poids et tout particulièrement entre 1 % et 5 % en poids.
18. Composition tel que définie à l'une quelconque des revendications 16 ou 17, pour laquelle les proportions en suspension ou en solution de sel du cation et en solution ou suspension de polymère anionique pour réaliser le mélange conduisant à l'obtention du gel organométallique, sont choisies de sorte que le rapport [P] / [C], est compris entre 0,01 et 100, plus particulièrement entre 0,1 et 50 et tout particulièrement entre 1 et environ 10.
19. Composition tel que définie à l'une quelconque des revendications 2 à 18, pour laquelle les solvants desdites suspensions ou solutions mises en œuvre pour préparer le gel organométalliques sont l'eau.
20. Composition tel que définie à la revendication 19 dans laquelle le gel organométallique est susceptible d'être obtenu par mélange d'une suspension ou d'une solution aqueuse contenant un sel de cation multivalent, avec une solution ou une suspension aqueuse contenant un polymère anionique, avec, si nécessaire, agitation du mélange résultant.
21. Composition telle que définie à l'une quelconque des revendications 1 à 20, sous forme d'une emulsion et en particulier sous forme d'une emulsion dont la phase continue est la phase grasse et la phase dispersée le complexe gélifié polymère anionique - cation métallique multivalent.
22. Composition telle que définie à l'une quelconque des revendications 1 à 22, comprenant aussi un ou plusieurs tensioactifs pharmaceutiquement acceptables.
23. Composition telle que définie à la 22, dans les tensioactifs sont choisis parmi les agents tensioactifs non ioniques, et plus particulièrement parmi les esters de polyglycérols, les esters de sucres comme les esters de sorbitan de mannitane ou de saccharose, les esters de sucres éthoxylés, les alcools gras alcoxylés, les acides gras éthoxylés, les monoglycerides et les diglycérides modifiés par réaction avec l'acide acétique ou l'acide lactique; les mono glycérides, les diglycérides ou les triglycérides éthoxylés, les éthers de sucres, tels que les éthers de glucose, les éthers de xylose ou les éthers de lactitol.
24. Composition telle que définie à l'une quelconque des revendications 22 ou 23 dans laquelle, le ou les tensioactifs mis en œuvre sont choisis de façon à ce que le HLB du tensioactif ou du mélange de tensioactifs soit compris entre 4 et 12 et de préférence, entre 5 et 8.
25. Composition telle que définie à l'une quelconque des revendications 22 à 24 comprenant environ 0,5% et 10% en poids et de préférence entre 1% et 5% en poids de tensioactifs.
26. Procédé de préparation d'une emulsion telle que définie à l'une quelconque des revendications 1 à 25, comprenant les étapes suivantes : a) la préparation d'une suspension ou d'une solution aqueuse contenant au moins un sel insoluble de cation multivalent, au moins un polymère anionique hydrosoluble et éventuellement au moins un agent tensioactif hydrophile ; b) l'émulsification de la suspension préparée à l'étape a), avec une phase huileuse contenant éventuellement un agent tensioactif lipophile ; c) si nécessaire la solubilisation du sel insoluble de cation multivalent par modification de pH de l'émulsion ; d) éventuellement l'ajout d'un excès de cation multivalent ; et e) la neutralisation de l'émulsion finale obtenue.
27. Procédé tel que défini à la revendication 26 dans lequel l'étape (a) consiste à mélanger un volume Vc d'une suspension ou d'une solution de sel du cation avec un vo- lume Vp d'une solution ou d'une suspension de polymère anionique, dans un rapport volu- mique Vc/Vp compris entre 1/ 100 et 1 / 1 et de préférence entre 1 / 50 et 1 / 10, soit en versant la suspension ou la solution de sel de cation dans la solution ou la suspension de polymère anionique avec, si nécessaire, agitation du mélange résultant, soit en versant la suspension ou la solution de polymère anionique dans la solution ou la suspension de sel de cation avec, si nécessaire, agitation du mélange résultant.
28. Variante du procédé tel que défini à l'une des revendications 26 ou 27, dans laquelle, l'émulsion obtenue à l'étape (e) est dissoute dans un solvant de la phase grasse pour obtenir une suspension de gel organométallique et la suspension résultante est soumise à une centrifugation pour isoler ledit gel.
29. Utilisation de la composition telle que définie à l'une des revendications 1 à 25, comme phase adjuvante d'une composition vaccinale.
30 Procédé de préparation d'un vaccin, comprenant l'adjonction comme adjuvant d'immunité, d'une quantité efficace de la composition telle que définie à l'une quelconque des revendications 1 à 25. 31. Composition comprenant au moins un antigène ou au moins un générateur in vivo d'un composé comprenant une séquence d'acides aminés et une quantité non nulle d'une composition telle que définie à l'une quelconque des revendications 1 à 25.
EP02720085A 2001-04-05 2002-03-27 Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant Withdrawn EP1385475A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0104644A FR2823119B1 (fr) 2001-04-05 2001-04-05 Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant
FR0104644 2001-04-05
PCT/FR2002/001057 WO2002080840A2 (fr) 2001-04-05 2002-03-27 Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant

Publications (1)

Publication Number Publication Date
EP1385475A2 true EP1385475A2 (fr) 2004-02-04

Family

ID=8861985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02720085A Withdrawn EP1385475A2 (fr) 2001-04-05 2002-03-27 Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant

Country Status (5)

Country Link
US (2) US20040131650A1 (fr)
EP (1) EP1385475A2 (fr)
JP (1) JP2004527615A (fr)
FR (1) FR2823119B1 (fr)
WO (1) WO2002080840A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717235A (zh) * 2011-06-24 2014-04-09 埃皮托吉尼西斯有限公司 作为抗原特异性免疫调节剂的包含选择的载体、维生素、单宁和类黄酮的组合的药物组合物
CN109498804B (zh) * 2018-12-04 2022-07-26 中国人民解放军军事科学院军事医学研究院 一种温度响应型狂犬疫苗递送系统
CN111821316A (zh) * 2019-04-19 2020-10-27 北京大学 用于免疫增强的锰组合物
CN113940994B (zh) * 2021-11-09 2023-09-15 南华大学 壳聚糖-Pickering乳液白细胞介素12佐剂体系的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048123A1 (fr) * 1980-09-12 1982-03-24 Merck & Co. Inc. Emulsion d'algine gélifiée
JPS6119457A (ja) * 1984-07-06 1986-01-28 Kazuo Hara ゲル状食品
JPH01257449A (ja) * 1988-04-08 1989-10-13 Shimizu Shokuhin Kk ゲル入り飲料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780195A (en) * 1969-10-22 1973-12-18 Balchem Corp Encapsulation process
US3925544A (en) * 1971-07-12 1975-12-09 Univ Southern Illinois Bovine vaccines and methods of making and using same
US4765984A (en) * 1986-01-22 1988-08-23 Colgate-Palmolive Company Stable single unit dose oral product
FR2649013B1 (fr) * 1989-07-03 1991-10-25 Seppic Sa Vaccins et vecteurs de principes actifs fluides contenant une huile metabolisable
FR2649012B1 (fr) * 1989-07-03 1991-10-25 Seppic Sa Emulsions multiphasiques injectables
US5634984A (en) * 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
FR2729307B1 (fr) * 1995-01-18 1997-04-18 Seppic Sa Utilisation d'esters d'acides gras ethoxyles comme composants auto-emulsionnables notamment utiles pour la preparation de produits de traitement phytosanitaires ou de medicaments a usage veterinaire ou humain
US5674495A (en) * 1995-02-27 1997-10-07 Purdue Research Foundation Alginate-based vaccine compositions
US5744337A (en) * 1995-12-26 1998-04-28 The United States Of America As Represented By The Secretary Of The Navy Internal gelation method for forming multilayer microspheres and product thereof
EA199901013A1 (ru) * 1997-05-16 2000-06-26 Амген Инк. Гели пролонгированного действия
GB9817183D0 (en) * 1998-08-06 1998-10-07 Unilever Plc Frozen low-fat food emulsions and processes therefor
CA2366880C (fr) * 1999-04-02 2013-02-12 Fziomed, Inc. Compositions de polyacides et polyethers et procedes d'utilisation destines a la reduction d'adhesions
FR2800280B1 (fr) * 1999-10-29 2003-09-19 Seppic Sa Nouvelle composition vaccinale et utilisation d'agents tensioactifs comme adjuvants d'immunite
PT1280521E (pt) * 2000-05-12 2005-10-31 Pharmacia & Upjohn Co Llc Composicao de vacina, metodo para a sua preparacao, e metodo de vacinacao de vertebrados
FR2811242B1 (fr) * 2000-07-05 2003-02-14 Seppic Sa Nouvelle composition absorbant l'hydrogene, pour sa preparation et utilisation comme composition de remplissage des cables a fibres optiques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048123A1 (fr) * 1980-09-12 1982-03-24 Merck & Co. Inc. Emulsion d'algine gélifiée
JPS6119457A (ja) * 1984-07-06 1986-01-28 Kazuo Hara ゲル状食品
JPH01257449A (ja) * 1988-04-08 1989-10-13 Shimizu Shokuhin Kk ゲル入り飲料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198610, Derwent World Patents Index; AN 1986-066479 *
DATABASE WPI Week 198947, Derwent World Patents Index; AN 1989-344687 *

Also Published As

Publication number Publication date
FR2823119B1 (fr) 2004-02-20
WO2002080840A3 (fr) 2003-01-03
WO2002080840A2 (fr) 2002-10-17
US20080019989A1 (en) 2008-01-24
FR2823119A1 (fr) 2002-10-11
US20040131650A1 (en) 2004-07-08
JP2004527615A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
EP0825875B1 (fr) Composition therapeutique comprenant un antigene ou un generateur in vivo d'un compose comprenant une sequence d'acides amines
EP0480982B2 (fr) Vaccins et vecteurs de principes actifs fluides contenant une huile metabolisable
WO2009053601A2 (fr) Procede de preparation d'une composition vaccinale comprenant au moins un antigene et au moins un adjuvant
US7485656B2 (en) Antifungal remedy formulation for external application
EP0751788B1 (fr) Une composition comprenant un plasmide recombinant et ses utilisations comme vaccin et medicament
EP1385475A2 (fr) Adjuvant d'immunite contenant un cation metallique complexe et vaccin le contenant
EP0939649B1 (fr) Adjuvant, notamment sous forme d'une emulsion contenant un cation metallique trivalent et composition vaccinale le comprenant
EP1095662B1 (fr) Nouvelle composition vaccinale et utilisation d'agents tensioactifs comme adjuvants d'immunite
EP1397122B1 (fr) Adjuvant d'immunité sous forme solide et vaccin le contenant
WO2002089762A1 (fr) Emulsion e/h concentree
FR2814956A1 (fr) Nouvelle composition vaccinale, procede pour sa preparation, utilisation comme composition injectale en medecine humaine ou veterinaire et nouveau procede de conservation
FR2754182A1 (fr) Nouvelles compositions vaccinales comportant comme adjuvant un compose sympathomimetique
EP1163909B1 (fr) Utilisation d'éthers de sucres, comme adjuvants d'immunité dans les compositions vaccinales, compositions thérapeutiques les renfermant et leur utilisation comme vaccins
FR2462166A1 (fr) Compositions antigeniques, leur preparation et vaccins a base de ces compositions
FR2824269A1 (fr) Composition adjuvante constituee de 1% a 15% de tensioactifs a hlb global compris entre 5 et 8 et de 85% a 99% de corps gras

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20070612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090522