EP1381760A2 - Method for determining the oil temperature in an internal combustion engine - Google Patents

Method for determining the oil temperature in an internal combustion engine

Info

Publication number
EP1381760A2
EP1381760A2 EP02724132A EP02724132A EP1381760A2 EP 1381760 A2 EP1381760 A2 EP 1381760A2 EP 02724132 A EP02724132 A EP 02724132A EP 02724132 A EP02724132 A EP 02724132A EP 1381760 A2 EP1381760 A2 EP 1381760A2
Authority
EP
European Patent Office
Prior art keywords
oil temperature
toil
sens
value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02724132A
Other languages
German (de)
French (fr)
Other versions
EP1381760B1 (en
Inventor
Franz Kunz
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1381760A2 publication Critical patent/EP1381760A2/en
Application granted granted Critical
Publication of EP1381760B1 publication Critical patent/EP1381760B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid

Definitions

  • the invention relates to a method for determining the oil temperature in an internal combustion engine according to the preamble of claim 1.
  • the current temperature of the engine oil is required for certain functions in an electronic control device • for internal combustion engines. For example, exceeding a threshold value for the engine oil temperature can be used to trigger on-board diagnosis. It is also known to use the oil temperature as a criterion for setting the idle speed of an internal combustion engine, since at very high oil temperatures a higher idle speed is necessary in order to supply the internal combustion engine with the then thin oil. In addition, the oil temperature can be used to calculate the oil life in order to be able to optimally determine the time of an oil change.
  • the oil temperature is determined from other variables. For this purpose, the period of time during which the coolant temperature is equal to or greater than a temperature threshold value is determined. Through a As a relationship between this time period and the oil temperature, a measure of the oil temperature is determined and the idling speed is set accordingly.
  • a hot running hare of an internal combustion engine requiring an increase in idle speed is recognized when an oil temperature value determined as a function of the coolant temperature, intake air temperature, speed and load of the internal combustion engine exceeds a threshold value.
  • the invention has for its object to provide a method with which an oil temperature in an internal combustion engine can be determined with high accuracy.
  • the oil temperature is calculated using an oil temperature model. At least one parameter characterizing the operating point of the internal combustion engine is included as input variables for the oil temperature model.
  • a modeled oil temperature sensor value of the oil temperature model is compared with a measured oil temperature value and the difference value of these two oil temperatures as an input variable for an immediately or indirectly following iterative calculation cycle of a further oil temperature of the oil temperature model, included in the oil temperature model.
  • the difference value between the modeled oil temperature sensor value and the measured oil temperature is included in the oil temperature model additively or multiplicatively.
  • the method according to the invention is just as suitable for internal combustion engines with a heat exchanger between the oil and coolant circuit as for internal combustion engines which do not have such a heat exchanger, since there is always a certain thermal coupling between the oil and coolant via the engine block.
  • Figure 1 is a schematic representation of an internal combustion engine in which the inventive method is applied
  • Figure 2 is a flowchart for determining the oil temperature
  • Figure 3 is a representation of the temperature profiles of the coolant and oil temperatures depending on the time.
  • the internal combustion engine 1 which is preferably used as a drive source for a motor vehicle, is supplied with the air required for combustion via an intake line 2.
  • An injection system 3 injects fuel into the intake line 2.
  • the method according to the invention can also be used in an internal combustion engine with direct fuel injection, which for example has a high-pressure accumulator injection system with injection valves, which inject the fuel directly into the cylinders of the internal combustion engine 1.
  • the exhaust gas of the internal combustion engine 1 flows via an exhaust pipe 4 to an exhaust gas aftertreatment system and from there via a silencer to the outside (not shown).
  • a load sensor in the form of an air mass sensor 5 is provided, which emits a signal MAF corresponding to the air flow rate.
  • a pressure sensor 6 can also be used as the load sensor for the internal combustion engine 1, which detects the pressure ps prevailing in the intake line 2. This is shown in dashed lines in FIG. 1.
  • An electronic control device 7 is provided for controlling and regulating the internal combustion engine 1.
  • Such electronic control devices which usually have one
  • the microprocessor and, in addition to the ignition control and the fuel injection, perform a large number of other control and regulating tasks are known per se, so that only the structure and its function relevant in connection with the invention are dealt with below.
  • the control device 7 is supplied with the signals from a wide variety of sensors for further processing.
  • a speed sensor 8 for the speed N a sensor 9 for the temperature TCO of the coolant of the internal combustion engine 1
  • a sensor 10 for the temperature TIA of the intake air a sensor 11 for the speed vs of the vehicle are provided.
  • the control device 7 is also connected to further sensors and actuators of the internal combustion engine 1 via a data and control line 12 which is only shown schematically.
  • the control device 7 is assigned a memory device 13, to which it is connected via a data bus (not specified).
  • the oil temperature TOIL in the internal combustion engine 1 is measured by means of an oil temperature sensor 14.
  • step S1 If the internal combustion engine is started in accordance with method step S1 (FIG. 2), there is normally no value for the oil temperature TOIL, since the internal combustion engine 1 (FIG. 1) has not yet reached a warm operating state. Therefore, the coolant temperature TCO is first read out at the beginning of the method. If a certain threshold value of the coolant temperature TCO is exceeded, which can be, for example, 80 ° C, a largely warm internal combustion engine is assumed.
  • the coolant temperature TCO is first input to a delay element V (not shown) in accordance with method step S2.
  • This delay element V delays the output of the entered value by a definable period of time, which can be, for example, 15 seconds.
  • Delay element V is transmitted to a differential element (not shown) in accordance with method step S3.
  • a difference value is then formed in the differential element between the current coolant temperature TCO and the value generated by the delay element V. This gives the change in coolant temperature at the output of the differential element.
  • TCO depends on the length of time that is defined on the delay element.
  • This change in the coolant temperature TCO ie the gradient of the coolant temperature TCO, is determined in accordance with method step S4 and is input into a low-pass filter, not shown.
  • the low-pass filter effects a low-pass filtering of the coolant temperature gradient TCO, an oil temperature gradient value being supplied at the output of the low-pass filter.
  • the filter behavior of the low-pass filter is adjustable and is set by a map KF1 in the memory device 13 (FIG. 1), to which the coolant temperature TCO has been entered. This characteristic map KF 1 thus provides a factor dependent on the coolant temperature range for controlling the low-pass filter. It is thus achieved that the oil temperature gradient value at the output of the low-pass filter drops towards zero as the coolant temperature rises.
  • the coolant temperature TCO according to method steps S4 and S5 is output directly as the oil temperature value TOIL_MDL of the model.
  • This oil temperature value TOIL_MDL is converted into a modeled oil temperature sensor value TOIL_MDL_SENS after method step S ⁇ .
  • An averaging constant specific to the oil temperature sensor is added or multiplied to the oil temperature value TOIL_MDL.
  • This sensor-specific averaging constant is determined empirically and is stored in the memory device 13. Among other things, it depends on the materials from which the oil temperature sensor, for example a thermocouple, is made.
  • an oil temperature value TOIL_SENS is measured using the oil temperature sensor.
  • the modeled Oil temperature sensor value TOIL_MDL_SENS is now compared with the oil temperature value TOIL_SENS measured by the oil temperature sensor.
  • This difference value TOIL_SENS_DIF is then used as an input variable for a calculation step S9 which follows the method step of the difference value calculation TOIL_SENS_DIF indirectly or directly.
  • the value TOIL_SENS_DIF is added or multiplied as a control parameter to adjust the oil temperature TOIL_MDL.
  • An approximation of the modeled oil temperature to the real oil temperature and thus a sufficiently precise determination of the oil temperature using the oil temperature model can be achieved by comparing the oil temperature T0IL_MDL once using the control parameter.
  • a sufficiently precise value can also be achieved by running through the adjustment of the oil temperature TOIL_MDL and forming the difference value TOIL_SENS_DIF.
  • the temperature threshold values can be determined depending on the operating conditions, for example on an installation position of the oil temperature sensor.
  • the oil temperature value TOIL_MDL is fed into a further map KF2, which outputs a gradient-dependent offset between the coolant temperature TCO and the oil temperature TOIL.
  • This offset value is added to the oil temperature value TOIL_MDL and the oil temperature gradient value of the oil temperature model.
  • the offset is only added if the coolant temperature TCO is above a threshold value. This threshold value will usually be close to the coolant pump switching threshold and thus takes into account the fact that the coolant pump in an internal combustion engine is generally only operated above a certain minimum temperature.
  • FIG. 3 shows a course of the oil temperatures TOIL and TOIL_SENS as well as the course of the coolant temperature TCO over time.
  • the curves show a dynamic range in which the temperatures rise. If the warm operating state of the internal combustion engine is reached, the curves flatten out and the steady state is established.
  • the coolant temperature gradient (TCO gradient) is also shown schematically in the dynamic range of the coolant temperature curve. In the dynamic warm-up range, the measured oil temperature T0IL_SENS of the sensor is about 30 ° C below the real oil temperature TOIL.
  • the air mass flow MAF or the intake manifold pressure ps in the intake line 2 can also be used as a variable, for example, and can be used as a parameter that characterizes the operating point of the internal combustion engine.
  • the influence of an air ratio ⁇ are taken into account as parameters characterizing the operating point of the internal combustion engine.
  • the air ratio ⁇ indicates the ratio of the amount of air supplied for the combustion of a unit of quantity of the supplied fuel to the minimum amount of air required for complete combustion.
  • an optical or acoustic signal is generated which can serve as a warning signal and thus, for example, draws the attention of a vehicle user to a defect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The oil temperature (TOIL) in the internal combustion engine is calculated using an oil temperature model, which draws upon at least one parameter that characterizes the operating point of the internal combustion engine. The differential value (TOIL_SENS_DIF) between the modeled temperature value of the oil temperature model (TOIL_MDL_SENS) and the measured temperature value (TOIL_SENS) of the oil, which is measured by the oil temperature sensor, is included as an input variable in the oil temperature model during an iterative calculation cycle of an oil temperature value (TOIL_MDL) of the oil temperature mode, said calculation cycle directly or indirectly following the method step involving the calculation of the differential value.

Description

Beschreibungdescription
Verfahren zum Bestimmen der Oltemperatur in einer BrennkraftmaschineMethod for determining the oil temperature in an internal combustion engine
Die Erfindung betrifft ein Verfahren zum Bestimmen der Oltemperatur in einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for determining the oil temperature in an internal combustion engine according to the preamble of claim 1.
Für bestimmte Funktionen in einer elektronischen Steuerein- richtung für Brennkraftmaschinen wird die aktuelle Temperatur des Motoröls benötigt. So kann beispielweise das Überschreiten eines Schwellenwerts für die Oltemperatur des Motors zum Auslösen einer On-board-Diagnose herangezogen werden. Weiter ist bekannt, die Oltemperatur als Kriterium zur Einstellung der Leerlaufdrehzahl einer Brennkraftmaschine zu verwenden, da bei sehr hohen Öltemperaturen eine höhere Leerlaufdrehzahl nötig ist, um die Brennkraftmaschine ausreichend mit dem dann dünnflüssigen Öl zu versorgen. Darüber hinaus kann man die Oltemperatur für Berechnungen der Ollebensdauer verwenden, um den Zeitpunkt eines Ölwechsels optimal bestimmen zu können.The current temperature of the engine oil is required for certain functions in an electronic control device for internal combustion engines. For example, exceeding a threshold value for the engine oil temperature can be used to trigger on-board diagnosis. It is also known to use the oil temperature as a criterion for setting the idle speed of an internal combustion engine, since at very high oil temperatures a higher idle speed is necessary in order to supply the internal combustion engine with the then thin oil. In addition, the oil temperature can be used to calculate the oil life in order to be able to optimally determine the time of an oil change.
Für alle diese Zwecke ist es bekannt, die Oltemperatur mittels eines Oltemperatursensors zu messen und das Signal des Oltemperatursensors entsprechend zu verarbeiten. Das Bestimmen der Oltemperatur mittels des Oltemperatursensors ist allerdings besonders in der Aufwärmphase des Öls, wenn die Brennkraftmaschine keinen betriebswarmen Zustand aufweist, sehr ungenau.For all these purposes it is known to measure the oil temperature by means of an oil temperature sensor and to process the signal of the oil temperature sensor accordingly. Determining the oil temperature by means of the oil temperature sensor is, however, very imprecise, particularly in the warm-up phase of the oil, when the internal combustion engine is not in a warm operating state.
Aus der Druckschrift DE 40 16 099 C2 ist bekannt, zur Leerlaufeinstellung im normalen Betriebsbereich einer Brennkraftmaschine die Oltemperatur heranzuziehen. Um einen Öltempera- tursensor einzusparen wird dabei die Oltemperatur aus anderen Größen bestimmt. Zu diesem Zweck wird die Zeitspanne ermittelt, während derer die Kühlmitteltemperatur gleich oder größer als ein Temperaturschwellenwert ist. Durch eine vorgege- bene Beziehung zwischen dieser Zeitspanne und der Oltemperatur wird ein Maß für die Oltemperatur bestimmt und die Leerlaufdrehzahl entsprechend eingestellt.From document DE 40 16 099 C2 it is known to use the oil temperature for idle adjustment in the normal operating range of an internal combustion engine. In order to save an oil temperature sensor, the oil temperature is determined from other variables. For this purpose, the period of time during which the coolant temperature is equal to or greater than a temperature threshold value is determined. Through a As a relationship between this time period and the oil temperature, a measure of the oil temperature is determined and the idling speed is set accordingly.
Ein weiteres Verfahren zur Leerlaufeinstellung einer Brennkraftmaschine ist aus der Druckschrift DE 44 33 299 AI bekannt. Dabei wird eine, eine Leerlaufdrehzahlerhöhung erfordernde Heißlauf hase einer Brennkraftmaschine dann erkannt, wenn eine in Abhängigkeit von Kühlmitteltemperatur, Ansaug- lufttemperatur, Drehzahl sowie Last der Brennkraftmaschine ermittelte Ölte peraturersatzgröße einen Schwellenwert überschreitet .Another method for idle adjustment of an internal combustion engine is known from the document DE 44 33 299 AI. A hot running hare of an internal combustion engine requiring an increase in idle speed is recognized when an oil temperature value determined as a function of the coolant temperature, intake air temperature, speed and load of the internal combustion engine exceeds a threshold value.
All diese Verfahren können jedoch keinen exakten Wert für die Oltemperatur liefern, sie sind bloß daraufhin ausgelegt, eine Schwellenwertüberschreitung der Oltemperatur erfassen zu können.However, all of these methods cannot provide an exact value for the oil temperature, they are only designed to be able to detect a threshold value violation of the oil temperature.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, mit dem eine Oltemperatur in einer Brennkraftmaschine mit hoher Genauigkeit bestimmt werden kann.The invention has for its object to provide a method with which an oil temperature in an internal combustion engine can be determined with high accuracy.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of claim 1.
Bei einem Verfahren zum Bestimmen der Oltemperatur in einer Brennkraftmaschine für ein Kraftfahrzeug wird die Oltemperatur mittels eines Oltemperaturmodells berechnet. Als Eingangsgrößen für das Oltemperaturmodell werden mindestens ein den Betriebspunkt der Brennkraftmaschine charakterisierender Parameter eingerechnet.In a method for determining the oil temperature in an internal combustion engine for a motor vehicle, the oil temperature is calculated using an oil temperature model. At least one parameter characterizing the operating point of the internal combustion engine is included as input variables for the oil temperature model.
Erfindungsgemäß wird ein modellierter Öltemperatursensorwert des Oltemperaturmodells mit einem gemessenen Öltemperaturwert verglichen und der Differenzwert dieser beiden Ölte peraturen als Eingangsgröße für einen unmittelbar oder mittelbar folgenden iterativen Berechnungszyklus eines weiteren Öltempera- turwertes des Oltemperaturmodells, in das Oltemperaturmodell eingerechnet .According to the invention, a modeled oil temperature sensor value of the oil temperature model is compared with a measured oil temperature value and the difference value of these two oil temperatures as an input variable for an immediately or indirectly following iterative calculation cycle of a further oil temperature of the oil temperature model, included in the oil temperature model.
Dadurch wird erreicht, dass die Oltemperatur in der Brennkraftmaschine mit einer relativ hohen Genauigkeit bestimmt werden kann .It is thereby achieved that the oil temperature in the internal combustion engine can be determined with a relatively high accuracy.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben .Advantageous refinements are specified in the subclaims.
Es kann dabei vorgesehen sein, dass der Differenzwert zwischen dem modellierten Öltemperatursensorwert und der gemessenen Oltemperatur additiv oder multiplikativ in das Oltemperaturmodell eingerechnet wird.It can be provided that the difference value between the modeled oil temperature sensor value and the measured oil temperature is included in the oil temperature model additively or multiplicatively.
Damit kann erreicht werden, dass durch die geeignete Wahl der mathematischen Rechenvorschrift mit der der Differenzwert in das Oltemperaturmodell eingerechnet wird, ein schnelles Annähern des Öltemperatursensorwertes des Modells an den gemesse- nen Oltemperaturwert des Sensors möglich ist und daher für eine hinreichend genaue Annäherung der beiden Oltemperaturwerte wenige Berechnungszyklen im Modell notwendig sind.It can thus be achieved that the suitable choice of the mathematical calculation rule with which the difference value is included in the oil temperature model enables the oil temperature sensor value of the model to rapidly approach the measured oil temperature value of the sensor and therefore for a sufficiently precise approximation of the two oil temperature values few calculation cycles are necessary in the model.
Es kann auch vorgesehen sein, dass ein erster und ein zweiter Temperaturschwellenwert festgelegt werden und bei Überschreiten des ersten oder Unterschreiten des zweiten Schwellenwerts eine Fehlfunktion des Oltemperatursensors erkannt wird.Provision can also be made for a first and a second temperature threshold value to be established and for the oil temperature sensor to malfunction if the first threshold value is exceeded or the second threshold value is undershot.
Dadurch kann verhindert werden, dass Öltemperaturwerte in weitere Berechnungszyklen des Oltemperaturmodells als Eingangsgrößen eingerechnet werden, die aufgrund eines defekten Sensors zu falschen Ergebnissen führen.This can prevent oil temperature values from being included in further calculation cycles of the oil temperature model as input variables that lead to incorrect results due to a defective sensor.
Normalerweise liegt beim Starten der Brennkraftmaschine kein Wert für die Oltemperatur vor. In solchen Fällen ist es vonThere is normally no oil temperature value when the engine is started. In such cases, it is from
Vorteil, als Startwert von der aktuellen Kühlmittelte peratur auszugehen. Das Aufheizverhalten einer Brennkraftmaschine kann man besonders genau dadurch nachbilden, dass der Gradient der Kühlmitteltemperatur in der nicht betriebswarmen Brennkraftmaschine je nach Absolutwert der Kühlmitteltemperatur unterschiedlich stark zeitlich tief assgefiltert wird. Eine genauere Beschreibung der Tiefpassfilterung wird im weiteren Verlauf der Beschreibung des Ausführungsbeispiels erläutert .The advantage of starting from the current coolant temperature as a starting value. The heating behavior of an internal combustion engine can be reproduced particularly precisely in that the gradient of the coolant temperature in the internal combustion engine which is not at operating temperature is assorted to different depths depending on the absolute value of the coolant temperature. A more detailed description of the low-pass filtering is explained in the further course of the description of the exemplary embodiment.
Liegt kein gültiger Wert für die Kühlmitteltemperatur vor, beispielsweise weil der entsprechende Sensor als defekt erkannt ist, kann ersatzweise zur Modellierung der Oltemperatur immer in einer Modellstufe gerechnet werden, die für die betriebswarme Brennkraftmaschine vorgesehen ist.If there is no valid value for the coolant temperature, for example because the corresponding sensor is identified as defective, it is always possible to use a model level, which is intended for the warm internal combustion engine, to model the oil temperature.
Das erfindungsgemäße Verfahren ist für Brennkraftmaschinen mit Wärmetauscher zwischen Öl und Kühlmittelkreislauf genauso tauglich, wie für Brennkraftmaschinen, die einen derartigen Wärmetauscher nicht aufweisen, da über den Motorblock immer eine gewisse thermische Kopplung zwischen Öl und Kühlmittel gegeben ist.The method according to the invention is just as suitable for internal combustion engines with a heat exchanger between the oil and coolant circuit as for internal combustion engines which do not have such a heat exchanger, since there is always a certain thermal coupling between the oil and coolant via the engine block.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the drawings using an exemplary embodiment. Show it:
Figur 1 eine schematische Darstellung einer Brennkraftmaschine, bei der das erfindungsgemäße Verfahren angewendet wird, Figur 2 ein Ablaufdiagramm zur Bestimmung der Oltemperatur, undFigure 1 is a schematic representation of an internal combustion engine in which the inventive method is applied, Figure 2 is a flowchart for determining the oil temperature, and
Figur 3 eine Darstellung der Temperaturverläufe der Kühlmittel- sowie der Öltemperaturen abhängig von der Zeit.Figure 3 is a representation of the temperature profiles of the coolant and oil temperatures depending on the time.
In Figur 1 ist sehr vereinfacht eine Brennkraftmaschine mit einem Steuergerät gezeigt, wobei nur diejenigen Teile dargestellt sind, die für das Verständnis der Erfindung notwendig sind. Der Brennkraftmaschine 1, die vorzugsweise als Antriebsquelle für ein Kraftfahrzeug herangezogen wird, wird über eine Ansaugleitung 2 die zur Verbrennung notwendige Luft zugeführt. Eine Einspritzanlage 3 spritzt Kraftstoff in die Ansaugleitung 2 ein. Das erfindungsgemäße Verfahren ist aber auch bei einer Brennkraftmaschine mit Kraftstoff-Direkteinspritzung anwendbar, die beispielsweise eine Hochdruckspeicherein- spritzanlage mit Einspritzventilen aufweist, welche den Kraftstoff direkt in die Zylinder der Brennkraftmaschine 1 einspritzen. Das Abgas der Brennkraftmaschine 1 strömt über eine Abgasleitung 4 zu einer Abgasnachbehandlungsanlage und von dieser über einen Schalldämpfer ins Freie (nicht dargestellt) .1 shows an internal combustion engine with a control unit in a very simplified manner, only those parts being shown which are necessary for understanding the invention. The internal combustion engine 1, which is preferably used as a drive source for a motor vehicle, is supplied with the air required for combustion via an intake line 2. An injection system 3 injects fuel into the intake line 2. However, the method according to the invention can also be used in an internal combustion engine with direct fuel injection, which for example has a high-pressure accumulator injection system with injection valves, which inject the fuel directly into the cylinders of the internal combustion engine 1. The exhaust gas of the internal combustion engine 1 flows via an exhaust pipe 4 to an exhaust gas aftertreatment system and from there via a silencer to the outside (not shown).
Im Ansaugkanal 2 ist ein Lastsensor in Form eines Luftmassensensors 5 vorgesehen, der ein dem Luft assenstrom entsprechendes Signal MAF abgibt. Alternativ kann als Lastsensor für die Brennkraftmaschine 1 auch ein Drucksensor 6 verwendet werden, der den in der Ansaugleitung 2 herrschenden Druck ps erfasst. Dies ist in der Figur 1 gestrichelt eingezeichnet.In the intake duct 2, a load sensor in the form of an air mass sensor 5 is provided, which emits a signal MAF corresponding to the air flow rate. Alternatively, a pressure sensor 6 can also be used as the load sensor for the internal combustion engine 1, which detects the pressure ps prevailing in the intake line 2. This is shown in dashed lines in FIG. 1.
Bei mager betriebenen Brennkraftmaschinen, bei denen der Kraftstoff direkt eingespritzt wird, wählt man natürlich eine andere lastkennzeichnende Größe, beispielsweise die eingespritzte Kraftstoffmasse.In the case of lean-burn internal combustion engines in which the fuel is injected directly, one naturally chooses a different load-characterizing quantity, for example the injected fuel mass.
Zur Steuerung und Regelung der Brennkraftmaschine 1 ist eine elektronische Steuerungseinrichtung 7 vorgesehen. Solche e- lektronischen Steuerungseinrichtungen, die in der Regel einenAn electronic control device 7 is provided for controlling and regulating the internal combustion engine 1. Such electronic control devices, which usually have one
Mikroprozessor beinhalten und neben der Zündregelung und der Kraftstoffeinspritzung eine Vielzahl weiterer Steuer- und Regelaufgaben übernehmen, sind an sich bekannt, so dass im folgenden nur auf den im Zusammenhang mit der Erfindung relevan- ten Aufbau und dessen Funktion eingegangen wird. Der Steuerungseinrichtung 7 werden die Signale der verschiedensten Sensoren zur weiteren Verarbeitung zugeführt. Insbesondere ist ein Drehzahlsensor 8 für die Drehzahl N, ein Sensor 9 für die Temperatur TCO der Kühlflüssigkeit der Brennkraftmaschine 1, ein Sensor 10 für die Temperatur TIA der Ansaugluft und ein Sensor 11 für die Geschwindigkeit vs des Fahrzeugs vorge- sehen. Über eine nur schematisch dargestellte Daten- und Steuerleitung 12 ist die Steuerungseinrichtung 7 noch mit weiteren Sensoren und Aktoren der Brennkraftmaschine 1 verbunden.The microprocessor and, in addition to the ignition control and the fuel injection, perform a large number of other control and regulating tasks are known per se, so that only the structure and its function relevant in connection with the invention are dealt with below. The control device 7 is supplied with the signals from a wide variety of sensors for further processing. In particular A speed sensor 8 for the speed N, a sensor 9 for the temperature TCO of the coolant of the internal combustion engine 1, a sensor 10 for the temperature TIA of the intake air and a sensor 11 for the speed vs of the vehicle are provided. The control device 7 is also connected to further sensors and actuators of the internal combustion engine 1 via a data and control line 12 which is only shown schematically.
Der Steuereinrichtung 7 ist eine Speichereinrichtung 13 zugeordnet, mit der es über einen nicht näher bezeichneten Datenbus verbunden ist. Mittels eines Oltemperatursensors 14 wird die Oltemperatur TOIL in der Brennkraftmaschine 1 gemessen.The control device 7 is assigned a memory device 13, to which it is connected via a data bus (not specified). The oil temperature TOIL in the internal combustion engine 1 is measured by means of an oil temperature sensor 14.
Wird die Brennkraftmaschine gemäß Verfahrensschritt Sl gestartet (Figur 2), so liegt normalerweise kein Wert für die Oltemperatur TOIL vor, da die Brennkraftmaschine 1 (Figur 1) noch keinen betriebswarmen Zustand aufweist. Deshalb wird zu Beginn des Verfahrens zunächst die Kühlmitteltemperatur TCO ausgelesen. Bei Überschreiten eines bestimmten Schwellenwertes der Kühlmitteltemperatur TCO, der beispielweise bei 80 °C liegen kann, wird von einer weitgehend betriebswarmen Brennkraftmaschine ausgegangen.If the internal combustion engine is started in accordance with method step S1 (FIG. 2), there is normally no value for the oil temperature TOIL, since the internal combustion engine 1 (FIG. 1) has not yet reached a warm operating state. Therefore, the coolant temperature TCO is first read out at the beginning of the method. If a certain threshold value of the coolant temperature TCO is exceeded, which can be, for example, 80 ° C, a largely warm internal combustion engine is assumed.
Bei Unterschreiten des Schwellenwertes der Kühlmitteltemperatur TCO wird zuerst die Kühlmitteltemperatur TCO einem nicht dargestellten Verzögerungsglied V gemäß Verfahrensschritt S2 eingegeben. Dieses Verzögerungsglied V verzögert die Ausgabe des eingegebenen Wertes um eine festlegbare Zeitdauer, die beispielsweise .15 Sekunden betragen kann. Die Ausgabe desIf the coolant temperature TCO falls below the threshold value, the coolant temperature TCO is first input to a delay element V (not shown) in accordance with method step S2. This delay element V delays the output of the entered value by a definable period of time, which can be, for example, 15 seconds. The edition of the
Verzögerungsgliedes V wird an ein nicht dargestelltes Differenzglied gemäß Verfahrensschritt S3 übertragen. In dem Differenzglied wird dann ein Differenzwert zwischen der aktuellen Kühlmitteltemperatur TCO und dem durch das Verzögerungs- glied V erzeugten Wert gebildet. Dadurch erhält man am Ausgang des Differenzgliedes die Änderung der Kühlmitteltempera- tur TCO abhängig von der Zeitdauer, die am Verzögerungsglied festgelegt ist.Delay element V is transmitted to a differential element (not shown) in accordance with method step S3. A difference value is then formed in the differential element between the current coolant temperature TCO and the value generated by the delay element V. This gives the change in coolant temperature at the output of the differential element. TCO depends on the length of time that is defined on the delay element.
Diese Änderung der Kühlmitteltemperatur TCO, also der Gra- dient der Kühlmitteltemperatur TCO, wird gemäß Verfahrensschritt S4 bestimmt und wird in ein nicht dargestelltes Tiefpassfilter eingegeben. Das Tiefpassfilter bewirkt eine Tief- passfilterung des Kühlmitteltemperaturgradienten TCO wobei am Ausgang des Tiefpassfilters ein Öltemperaturgradientenwert geliefert wird. Das Filterverhalten des Tiefpassfilters ist verstellbar und wird von einem Kennfeld KF1 in der Speichereinrichtung 13 (Figur 1) eingestellt, dem die Kühlmitteltemperatur TCO eingegeben wurde. Durch dieses Kennfeld KF 1 wird somit ein kühlmitteltemperaturbereichsabhängiger Faktor zum Ansteuern des Tiefpassfilters geliefert. Somit wird erreicht, dass der Öltemperaturgradientenwert am Ausgang des Tiefpassfilters mit steigender Kühlmitteltemperatur gegen Null abfällt. Als Oltemperaturwert TOIL_MDL des Modells wird direkt die Kühlmitteltemperatur TCO gemäß den Verfahrens- schritten S4 und S5 ausgegeben.This change in the coolant temperature TCO, ie the gradient of the coolant temperature TCO, is determined in accordance with method step S4 and is input into a low-pass filter, not shown. The low-pass filter effects a low-pass filtering of the coolant temperature gradient TCO, an oil temperature gradient value being supplied at the output of the low-pass filter. The filter behavior of the low-pass filter is adjustable and is set by a map KF1 in the memory device 13 (FIG. 1), to which the coolant temperature TCO has been entered. This characteristic map KF 1 thus provides a factor dependent on the coolant temperature range for controlling the low-pass filter. It is thus achieved that the oil temperature gradient value at the output of the low-pass filter drops towards zero as the coolant temperature rises. The coolant temperature TCO according to method steps S4 and S5 is output directly as the oil temperature value TOIL_MDL of the model.
Dieser Oltemperaturwert TOIL_MDL wird zu einem modellierten Öltemperatursensorwert TOIL_MDL_SENS nach Verfahrensschritt Sβ umgerechnet. Dabei wird eine für den Öltemperatursensor spezifische Mittelungskonstante additiv oder multiplikativ zum Oltemperaturwert TOIL_MDL hinzugerechnet. Diese sensorspezifische Mittelungskonstante wird empirisch ermittelt und ist in der Speichereinrichtung 13 gespeichert. Sie ist unter anderem abhängig von den Werkstoffen, aus denen der Öltempe- ratursensor, beispielsweise ein Thermoelement, gefertigt wird. Durch das Umrechnen des Öltemperaturwerts TOIL_MDL in den modellierten Öltemperatursensorwert TOIL_MDL_SENS wird ein Temperaturwert erhalten, welcher dem real vorliegende Wert der Oltemperatur relativ genau entspricht.This oil temperature value TOIL_MDL is converted into a modeled oil temperature sensor value TOIL_MDL_SENS after method step Sβ. An averaging constant specific to the oil temperature sensor is added or multiplied to the oil temperature value TOIL_MDL. This sensor-specific averaging constant is determined empirically and is stored in the memory device 13. Among other things, it depends on the materials from which the oil temperature sensor, for example a thermocouple, is made. By converting the oil temperature value TOIL_MDL into the modeled oil temperature sensor value TOIL_MDL_SENS, a temperature value is obtained which corresponds relatively exactly to the real value of the oil temperature.
Gemäß Verfahrensschritt S7 wird mittels des Oltemperatursensors ein Oltemperaturwert TOIL_SENS gemessen. Der modellierte Öltemperatursensorwert TOIL_MDL_SENS wird nun mit dem vom Öl- temperatursensor gemessenen Oltemperaturwert TOIL_SENS verglichen. Nach Verfahrensschritt S8 wird dabei die Differenz dieser beiden Temperaturwerte gebildet. Dieser Differenzwert TOIL_SENS_DIF wird dann als Eingangsgröße für einen mittelbar oder unmittelbar an einen, den Verfahrensschritt der Diffe- renzwertberechung TOIL_SENS_DIF nachfolgenden Berechnungs- schritt S9 verwendet. Dabei wird der Wert TOIL_SENS_DIF additiv oder multiplikativ als Regelparameter zum Abgleichen der Oltemperatur TOIL_MDL hinzugerechnet. Durch erneutes Berechnen der Werte TOIL_MDL_SENS und TOIL_SENS_DIF wird somit ein Annähern des modellierten Öltemperaturwertes an den realen Oltemperaturwert erreicht.According to method step S7, an oil temperature value TOIL_SENS is measured using the oil temperature sensor. The modeled Oil temperature sensor value TOIL_MDL_SENS is now compared with the oil temperature value TOIL_SENS measured by the oil temperature sensor. After method step S8, the difference between these two temperature values is formed. This difference value TOIL_SENS_DIF is then used as an input variable for a calculation step S9 which follows the method step of the difference value calculation TOIL_SENS_DIF indirectly or directly. The value TOIL_SENS_DIF is added or multiplied as a control parameter to adjust the oil temperature TOIL_MDL. By recalculating the values TOIL_MDL_SENS and TOIL_SENS_DIF, the modeled oil temperature value is brought closer to the real oil temperature value.
Ein Annähern der modellierten Oltemperatur an die reale Oltemperatur und damit ein hinreichend genaues Bestimmen der Oltemperatur mittels des Oltemperaturmodells kann durch einmaliges Abgleichen der Oltemperatur T0IL_MDL mittels des Regelparameters erreicht werden. Ein hinreichend genauer Wert kann aber auch durch mehrmaliges Durchlaufen des Abgleichens der Oltemperatur TOIL_MDL und Bilden des Differenzwertes TOIL_SENS_DIF erreicht werden.An approximation of the modeled oil temperature to the real oil temperature and thus a sufficiently precise determination of the oil temperature using the oil temperature model can be achieved by comparing the oil temperature T0IL_MDL once using the control parameter. A sufficiently precise value can also be achieved by running through the adjustment of the oil temperature TOIL_MDL and forming the difference value TOIL_SENS_DIF.
Übersteigt der Differenzwert TOIL_MDL_DIF einen ersten Tempe- raturschwellenwert oder unterschreitet dieser Differenzwert einen zweiten Temperaturschwellenwert, so wird eine Fehlfunktion des Oltemperatursensors erkannt. Die Temperaturschwellenwerte können dabei abhängig von den Betriebsbedingungen, beispielsweise von einer Einbauposition des Öltemperatursen- sors, festgelegt werden.If the difference value TOIL_MDL_DIF exceeds a first temperature threshold value or if this difference value falls below a second temperature threshold value, a malfunction of the oil temperature sensor is detected. The temperature threshold values can be determined depending on the operating conditions, for example on an installation position of the oil temperature sensor.
Sobald für eine festlegbare Zeitdauer, die beispielsweise 10 Minuten betragen kann, nur noch relativ kleine Änderungen im Öltemperatursensorwert TOIL_SENS erfolgen, wird ein stationä- rer Zustand der Oltemperatur erkannt und die Brennkraftmaschine hat den betriebswarmen Zustand erreicht. Zwischen dem Bereich in dem das Öl nach dem Starten der Brennkraftmaschine aufgewärmt wird und der als dynamischer Bereich bezeichnet wird, und dem stationären Bereich ist ein Übergangsbereich vorhanden.As soon as there are only relatively small changes in the oil temperature sensor value TOIL_SENS for a definable period of time, which can be 10 minutes, for example, a steady state of the oil temperature is recognized and the internal combustion engine has reached the warm operating state. There is a transition area between the area in which the oil is warmed up after starting the internal combustion engine and which is referred to as the dynamic area, and the stationary area.
In diesem Übergangsbereich wird der Oltemperaturwert TOIL_MDL in ein weiteres Kennfeld KF2 eingespeist, welches einen gradientenabhängigen Offset zwischen der Kühlmitteltemperatur TCO und der Oltemperatur TOIL ausgibt. Dieser Offsetwert wird dem Oltemperaturwert TOIL_MDL und dem Öltemperaturgradientenwert des Oltemperaturmodells hinzuaddiert. Allerdings wird der Offset nur dann addiert, wenn die Kühlmitteltemperatur TCO über einem Schwellenwert liegt. Dieser Schwellenwert wird meist in der Nähe der Kühlmittelpumpenschaltschwelle liegen und somit wird dadurch der Tatsache Rechnung getragen, dass bei einer Brennkraftmaschine in der Regel die Kühlmittelpumpe nur oberhalb einer gewissen Mindesttemperatur betrieben wird.In this transition area, the oil temperature value TOIL_MDL is fed into a further map KF2, which outputs a gradient-dependent offset between the coolant temperature TCO and the oil temperature TOIL. This offset value is added to the oil temperature value TOIL_MDL and the oil temperature gradient value of the oil temperature model. However, the offset is only added if the coolant temperature TCO is above a threshold value. This threshold value will usually be close to the coolant pump switching threshold and thus takes into account the fact that the coolant pump in an internal combustion engine is generally only operated above a certain minimum temperature.
In Figur 3 ist ein Verlauf der Öltemperaturen TOIL und TOIL_SENS sowie der Verlauf der Kühlmitteltemperatur TCO über die Zeit dargestellt. Die Kurven zeigen am Anfang der Zeitachse einen dynamischen Bereich in dem die Temperaturen ansteigen. Wird der betriebswarme Zustand der Brennkraftmaschine erreicht, so flachen die Kurven ab und es stellt sich der stationäre Zustand ein. Im dynamischen Bereich der Kühlmitteltemperaturkurve ist auch schematisch der Kühlmitteltemperaturgradient (TCO-Gradient) eingezeichnet. Im dynamischen Aufwärmbereich liegt die gemessene Oltemperatur T0IL_SENS des Sensors um etwa 30 °C unter der realen Oltemperatur TOIL.FIG. 3 shows a course of the oil temperatures TOIL and TOIL_SENS as well as the course of the coolant temperature TCO over time. At the beginning of the time axis, the curves show a dynamic range in which the temperatures rise. If the warm operating state of the internal combustion engine is reached, the curves flatten out and the steady state is established. The coolant temperature gradient (TCO gradient) is also shown schematically in the dynamic range of the coolant temperature curve. In the dynamic warm-up range, the measured oil temperature T0IL_SENS of the sensor is about 30 ° C below the real oil temperature TOIL.
Neben der Kühlmitteltemperatur TCO kann auch beispielweise der Luftmassenstrom MAF oder der Saugrohrdruck ps in der Ansaugleitung 2 (Figur 1) als Größe verwendet und als den Betriebspunkt der Brennkraftmaschine charakterisierender Para- meter herangezogen werden. Zusätzlich kann bei Brennkraftmaschinen, bei denen Kraftstoff unter hohem Druck direkt in die Zylinder eingespritzt wird, der Einfluss einer Luftzahl λ als den Betriebspunkt der Brennkraftmaschine charakterisierender Parameter berücksichtigt werden. Die Luftzahl λ gibt dabei das Verhältnis der für die Verbrennung einer Mengeneinheit des zugeführten Kraftstoffs zugeführten Luftmenge zu der für die vollkommene Verbrennung erforderlichen Mindestluft- menge an. Dabei wird abhängig von dem aktuellen Wert der Luftzahl λ , mit dem die Brennkraftmaschine gerade betrieben wird, aus einem weiteren Kennfeld KF3 ein Faktor ausgelesen, der typischerweise zwischen 1 (stöchio etrischer Betrieb mit λ =l ) und 2 liegt (geschichtet, homogener Magerbetrieb).In addition to the coolant temperature TCO, the air mass flow MAF or the intake manifold pressure ps in the intake line 2 (FIG. 1) can also be used as a variable, for example, and can be used as a parameter that characterizes the operating point of the internal combustion engine. In addition, in the case of internal combustion engines in which fuel is injected directly into the cylinders under high pressure, the influence of an air ratio λ are taken into account as parameters characterizing the operating point of the internal combustion engine. The air ratio λ indicates the ratio of the amount of air supplied for the combustion of a unit of quantity of the supplied fuel to the minimum amount of air required for complete combustion. Depending on the current value of the air ratio λ with which the internal combustion engine is currently being operated, a factor is read out from a further map KF3, which is typically between 1 (stoichiometric operation with λ = 1) and 2 (stratified, homogeneous lean operation) ,
Es kann auch vorgesehen sein, dass beim Erkennen einer Fehlfunktion des Oltemperatursensors 14 (Figur 1) ein optisches oder akustisches Signal erzeugt wird, welches als Warnsignal dienen kann und damit beispielsweise einen Fahrzeugnutzer auf einen Defekt aufmerksam macht .It can also be provided that when a malfunction of the oil temperature sensor 14 (FIG. 1) is detected, an optical or acoustic signal is generated which can serve as a warning signal and thus, for example, draws the attention of a vehicle user to a defect.
Mit dem Verfahren kann somit bereits beim dynamischen Anstieg der Oltemperatur beim Starten einer Brennkraftmaschine eine relativ genaue Bestimmung der Oltemperatur durchgeführt werden. With the method, a relatively precise determination of the oil temperature can thus already be carried out when the oil temperature rises dynamically when an internal combustion engine is started.

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen der Oltemperatur in einer Brennkraftmaschine, bei dem die Oltemperatur durch ein Öltempera- turmodell berechnet wird und als Eingangsgrößen des Oltemperaturmodells mindestens ein den Betriebspunkt der Brennkraftmaschine charakterisierender Parameter eingerechnet werden, dadurch gekennzeichnet, dass ein modellierter Öltemperatursensorwert des Oltemperaturmodells (TOIL_MDL_SENS) mit einem gemessenen Oltemperaturwert (TOIL_SENS) verglichen wird und der Differenzwert der beiden Temperaturwerte (TOIL_SENS_DIF) als Eingangsgröße, in einen auf den Verfahrensschritt der Bildung des Differenzwertes (TOIL_SENS_DIF) unmittelbar oder mittelbar folgenden iterativen Berechnungszyklus eines weite- ren Oltemperaturwerts (TOIL_MDL) des Oltemperaturmodells, in das Oltemperaturmodell eingerechnet wird.1. Method for determining the oil temperature in an internal combustion engine, in which the oil temperature is calculated by an oil temperature model and at least one parameter characterizing the operating point of the internal combustion engine is included as input variables of the oil temperature model, characterized in that a modeled oil temperature sensor value of the oil temperature model (TOIL_MDL_SENS) is compared with a measured oil temperature value (TOIL_SENS) and the difference value of the two temperature values (TOIL_SENS_DIF) as an input variable in an iterative calculation cycle of a further oil temperature value (TOIL_MDL) of the oil temperature model immediately or indirectly following the step of forming the difference value (TOIL_SENS_DIF). is included in the oil temperature model.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der gemessene Öltemperaturwerte (TOIL_SENS) mittels eines Öl- temperatursensors durchgeführt wird.2. The method according to claim 1, characterized in that the measured oil temperature values (TOIL_SENS) is carried out by means of an oil temperature sensor.
3. Verfahren nach einem der Ansprüche 1 oder 2 , dadurch gekennzeichnet, dass der Differenzwert (TOIL_SENS_DIF) zwischen dem modellierten Öltemperatursensorwert (TOIL_MDL_SENS) und der gemessenen Oltemperatur (TOIL_SΞNS) additiv oder multiplikativ in das Oltemperaturmodell eingerechnet wird.3. The method according to any one of claims 1 or 2, characterized in that the difference value (TOIL_SENS_DIF) between the modeled oil temperature sensor value (TOIL_MDL_SENS) and the measured oil temperature (TOIL_SΞNS) is added to the oil temperature model additively or multiplicatively.
4. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass eine Fehlfunktion des Oltemperatursensors erkannt wird, wenn der Differenzwert (TOIL_SENS_DIF) einen ersten Temperaturschwellenwert überschreitet oder einen zweiten Temperaturschwellenwert unterschreitet.4. The method according to any one of the preceding claims, characterized in that a malfunction of the oil temperature sensor is detected when the difference value (TOIL_SENS_DIF) exceeds a first temperature threshold or falls below a second temperature threshold.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass beim Erkennen einer Fehlfunktion des Oltemperatursensors ein optisches und/oder akustisches Signal erzeugt wird und/oder ein Eintrag in einen Fehlerspeicher einer Speichereinheit durchgeführt wird.5. The method according to claim 4, characterized in that when a malfunction of the oil temperature sensor is detected, an optical and / or acoustic signal is generated and / or an entry is made in an error memory of a storage unit.
6. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass als den Betriebspunkt der Brennkraftmaschine charakterisierender Parameter mindestens eine der Größen Kühlmitteltemperatur (TCO) , Luftmassenstrom (MAF) , Saugrohrdruck (ps) , Luftzahl ( λ ) herangezogen wird. 6. The method according to any one of the preceding claims, characterized in that at least one of the quantities coolant temperature (TCO), air mass flow (MAF), intake manifold pressure (ps), air ratio (λ) is used as the parameter characterizing the operating point of the internal combustion engine.
EP02724132A 2001-04-23 2002-04-04 Method for determining the oil temperature in an internal combustion engine Expired - Lifetime EP1381760B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10119786 2001-04-23
DE10119786A DE10119786A1 (en) 2001-04-23 2001-04-23 Method for determining the oil temperature in an internal combustion engine
PCT/DE2002/001231 WO2002086296A2 (en) 2001-04-23 2002-04-04 Method for determining the oil temperature in an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1381760A2 true EP1381760A2 (en) 2004-01-21
EP1381760B1 EP1381760B1 (en) 2007-01-24

Family

ID=7682360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02724132A Expired - Lifetime EP1381760B1 (en) 2001-04-23 2002-04-04 Method for determining the oil temperature in an internal combustion engine

Country Status (4)

Country Link
US (1) US7069141B2 (en)
EP (1) EP1381760B1 (en)
DE (2) DE10119786A1 (en)
WO (1) WO2002086296A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043695A1 (en) * 2000-09-04 2002-03-14 Bosch Gmbh Robert Method for determining a hot start situation in an internal combustion engine
FR2851784B1 (en) * 2003-02-27 2005-05-27 Peugeot Citroen Automobiles Sa METHOD AND SYSTEM FOR EVALUATING THE OIL TEMPERATURE OF A COMBUSTION ENGINE
DE10318241B4 (en) * 2003-04-23 2016-12-08 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE102004061815A1 (en) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Method for monitoring the functionality of a temperature sensor
DE102006057801B4 (en) * 2006-12-06 2016-12-22 Robert Bosch Gmbh Method and device for diagnosing the functionality of a coolant pump
US7930077B2 (en) * 2007-04-23 2011-04-19 GM Global Technology Operations LLC Engine oil temperature diagnostic methods and systems
GB2486195A (en) * 2010-12-06 2012-06-13 Gm Global Tech Operations Inc Method of Operating an I.C. Engine Variable Displacement Oil Pump by Measurement of Metal Temperature
DE102011088858B4 (en) * 2011-12-16 2014-12-24 Continental Automotive Gmbh Method for determining an oil temperature of an internal combustion engine
EP3211418A1 (en) * 2016-02-23 2017-08-30 C.C. Jensen A/S Liquid condition assessment for a multimode operational system
EP3211417A1 (en) 2016-02-23 2017-08-30 C.C. Jensen A/S System and sensor unit for monitoring and evaluation of the condition of a liquid
DE102016222044B3 (en) * 2016-11-10 2018-05-30 Continental Automotive Gmbh Method and device for determining the oil temperature in an internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176323B1 (en) * 1984-09-19 1988-12-07 Nippondenso Co., Ltd. Electronically controlled fuel injection based on minimum time control for diesel engines
US4847768A (en) 1988-08-29 1989-07-11 General Motors Corporation Automatic engine oil change indicator system
JP2847142B2 (en) 1989-05-18 1999-01-13 富士重工業株式会社 Engine idle speed control device
DE4433299A1 (en) 1994-09-19 1996-03-21 Bosch Gmbh Robert Method and device for idle adjustment of an internal combustion engine
US5633796A (en) * 1994-12-12 1997-05-27 Ford Motor Company Method and apparatus for inferring engine oil temperature for use with an oil change indicator
DE19634368C2 (en) 1996-08-26 2000-11-23 Daimler Chrysler Ag Sensor system with PT1 measuring element
US6246950B1 (en) * 1998-09-01 2001-06-12 General Electric Company Model based assessment of locomotive engines
DE19961118A1 (en) * 1999-12-17 2001-07-05 Siemens Ag Method for determining engine oil temperature in an internal combustion engine
DE10006533B4 (en) * 2000-02-15 2005-11-17 Siemens Ag Method for determining the oil temperature in an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02086296A2 *

Also Published As

Publication number Publication date
US7069141B2 (en) 2006-06-27
WO2002086296A3 (en) 2003-01-03
DE10119786A1 (en) 2002-10-31
WO2002086296A2 (en) 2002-10-31
EP1381760B1 (en) 2007-01-24
DE50209345D1 (en) 2007-03-15
US20040128059A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
DE3486373T2 (en) Vehicle engine control system with the ability to convey the operating state of the engine and to select the appropriate operating scheme.
DE19944044C2 (en) Method and device for controlling an engine
DE69824024T2 (en) Method and device for determining the temperature values in a combustion engine
DE102013220589B3 (en) Method for operating an internal combustion engine and device for controlling and regulating an internal combustion engine, injection system and internal combustion engine
DE102016224919B4 (en) Fuel injection system, fuel injection control device and method
DE69627100T2 (en) Catalytic converter deterioration detection device of an internal combustion engine
EP1381760B1 (en) Method for determining the oil temperature in an internal combustion engine
DE3608237A1 (en) OIL DEGRADATION WARNING SYSTEM
DE4225198A1 (en) FUEL QUANTITY CONTROL DEVICE AND METHOD FOR COMBUSTION ENGINES
DE10157641C2 (en) Method for controlling an internal combustion engine
DE112013007115T5 (en) Downstream NOx estimation
DE102004052429A1 (en) Injection control device for an engine
DE69128398T2 (en) Method and device for monitoring the deterioration of the exhaust gas cleaner of an internal combustion engine
DE19513370B4 (en) Method and device for controlling the power of an internal combustion engine
DE602004010340T2 (en) Fuel properties Determination device
DE102004040270B4 (en) A method of predicting the temperature at the tip of a fuel injector
WO2002033241A1 (en) Method, device and computer program for operating an internal combustion engine, and internal combustion engine
DE3429525A1 (en) METHOD FOR CYLINDER GROUP-SPECIFIC CONTROL OF A MULTI-CYLINDER COMBUSTION ENGINE AND DEVICE FOR CARRYING OUT THE METHOD
WO2001075300A1 (en) Method for starting an internal combustion engine and starter device for an internal combustion engine
DE19708243C1 (en) IC motor vehicle engine management method
DE4322281C2 (en) Device for load detection in an internal combustion engine
DE19958465C2 (en) Method for operating an internal combustion engine
DE10138045A1 (en) Device and method for CPU diagnosis
DE10006533B4 (en) Method for determining the oil temperature in an internal combustion engine
DE102005000204A1 (en) Fuel injection quantity control apparatus for internal combustion engine of motor vehicle has electronic controller comprised with central processing unit (CPU) and microcomputer, and connected to fuel injection valve of engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031008

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50209345

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090414

Year of fee payment: 8

Ref country code: IT

Payment date: 20090423

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209345

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101