EP1380369B1 - Method for casting using a casting core, method for producing the core and core - Google Patents

Method for casting using a casting core, method for producing the core and core Download PDF

Info

Publication number
EP1380369B1
EP1380369B1 EP03291651A EP03291651A EP1380369B1 EP 1380369 B1 EP1380369 B1 EP 1380369B1 EP 03291651 A EP03291651 A EP 03291651A EP 03291651 A EP03291651 A EP 03291651A EP 1380369 B1 EP1380369 B1 EP 1380369B1
Authority
EP
European Patent Office
Prior art keywords
core
casting
cores
mixture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03291651A
Other languages
German (de)
French (fr)
Other versions
EP1380369A1 (en
Inventor
José Sole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1380369A1 publication Critical patent/EP1380369A1/en
Application granted granted Critical
Publication of EP1380369B1 publication Critical patent/EP1380369B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/002Removing cores by leaching, washing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores

Definitions

  • the invention relates to a method of molding a metal part in a mold which encloses at least one molding core, a method of producing the core and the molding core obtained by this method.
  • foundry parts are made of metals such as aluminum and its alloys, which may have complex shapes, both as regards the external surface of the workpiece. internal surfaces delimiting cavities inside the room.
  • Such parts are made in molds whose internal imprint makes it possible to obtain the external shape of the part and in which one or more cores are placed in order to obtain the desired shape of the inner surface of the molded part which may comprise cavities of complex shape.
  • the cores are obtained industrially by injecting, using air under pressure, a mixture of sand grains coated with a resin, in cores boxes having shapes adapted to obtain the core required for molding.
  • the resin is then cured by chemical reaction to provide mechanical cohesion between the core sand grains.
  • the cores comprise, by weight, a mixture of 98% to 99% of siliceous sand grains to which is added 1% to 2% of organic resin, for example the chemical family of formophenolic substances.
  • the cores comprise 45 to 65% of sand grains and the balance, ie 55 to 35%, consists of air filling the porosities of the core. This inclusion of air between the grains of sand in the porous cores is permeable to the pyrolysis gases and alloys which are cast. During casting, the alloy heats the core and the resin, so that the resin thermally and mechanically degrades and undergoes pyrolysis which generates unwanted gases and residues.
  • the cores can undergo deformations and breaks at ambient temperature, during transport, storage or during casting in a mold.
  • the elastic limit at 20 ° C of the sand cores obtained in the foundry is generally between 0.4 MPa and 0.8 MPa and the breaking stress of these cores is between 2 MPa and 2.5 MPa. Because of these relatively low values, the size of the cores must be less than 200 mm to reduce the bending they undergo during handling.
  • the cores are also subjected to hot deformation and breakage during casting, since their breaking stress between 200 ° C. and 400 ° C. is generally only between 1.5 MPa and 3.5. MPa, the corresponding elastic limit varying from 0.2 MPa to 1.4 MPa. Given these weak mechanical properties, the thickness of the cores must be greater than 8 mm, in order to obtain sufficient stiffness when hot during casting.
  • the evolution of gas can be bulky, this gas evolution generally being 5 cm 3 / g of the core at 700 ° C.
  • the organic type resin generates significant amounts of carbon residues during its pyrolysis.
  • the resin emits carbonaceous residues with a mass greater than 15% of the mass of the resin of the cores.
  • the overpressure is generally greater than 0.15 bar. This phenomenon is due to the high permeability of the nucleus which is between 120 and 200 Georg Fisher units.
  • the roughness of the surface of the molded parts obtained can be strongly marked, because it is highly dependent on the particle size of the sand grains. It has been observed that the measurement of the roughness average (Ra) varies from 150 ⁇ m for a sand-blasted particle of 55 AFS, to a minimum value of 20 ⁇ m for a sand having a minimum particle size of 90 AFS.
  • the molding cores according to the known technique can not be used in certain cases.
  • the current manufacturing technique of resin-bonded sand cores can not be applied either to the production of very fine cores having a thickness of less than 8 mm and / or to cores having a great length, for example greater than 200 mm.
  • the current technique can not be used for the realization of nuclei both very thin and long, regardless of the casting processes used.
  • the cores of the known technique can not also be used to obtain parts having a very smooth skin, whose roughness is less than 15 microns.
  • the object of the invention is therefore to propose a method of molding a metal part in a mold containing at least one molding core into which a liquid metal is cast into the mold containing the at least one molding core, demolding the piece after cooling and eliminating the core of the molded part, this method both to improve the quality of the parts obtained, in particular their surface condition, to use mold cores of dimensions not achievable until here and having improved mechanical characteristics and to limit the air pollution in the molding workshops, the cores can be manufactured by a process easy to implement, at a moderate temperature ..
  • the at least one molding core is made of a material consisting of a mixture of at least two water-soluble salts corresponding to a eutectic or eutectic-like composition, and the core is removed, after molding the piece, by dissolution in water.
  • the invention also relates to methods for producing water-soluble salt molding cores and the resulting molding cores.
  • water-soluble salt foundry cores for carrying out the invention can be carried out by one of the following three techniques: hot sintering, casting of the core from a liquid in a steel or refractory mold, injecting a liquid into a steel mold.
  • the hot sintering technique in a steel mold can be used for single-form cores. Indeed, the cores produced by sintering must be easily compressible and easily removable hot.
  • the casting of the cores from a liquid in a mold made of steel or of compact refractory material or of a porous refractory material that can be destroyed after casting can be used for cores of very complex shape that are difficult to demold.
  • the liquid injection of the core material into a steel mold can be used for medium complex cores. This injection technique makes it possible to obtain a very high production rate.
  • a particularly satisfactory material for the production of soluble salt cores consists of a mixture of two salts, namely sodium chloride NaCl in a proportion of 43% to 47% by weight and the carbonate of Na 2 CO 3 , in a proportion of 57% to 53% by weight.
  • This mixture of salts has made it possible to lower the melting point of the mixture relative to that of the two salts by forming a eutectic compound.
  • the melting point of sodium chloride is 805 ° C, that of sodium carbonate 850 ° C while a mixture of sodium chloride and sodium carbonate containing 45% by weight of sodium chloride and % by weight of sodium carbonate has a melting point of 636 ° C.
  • a eutectic mixture is produced whose melting temperature is substantially lower than that of the constituents.
  • the salt mixture is introduced into the core box, either in liquid form by casting or by injection, or in the form of particles which are sintered under a pressure of 50 to 1000 bar and at a temperature below the melting temperature of 50.degree. Eutectic or its constituents, in the kernel box.
  • the cores are extracted from the core box and cooled to room temperature.
  • the rheological properties and in particular the flowability of the mixture of soluble salts at 45% by weight of NaCl and 55% by weight of Na 2 CO 3 are very satisfactory when the cores are made by casting or by injection of the material containing the soluble salts. , in the liquid state in the core box. Indeed, the mixture of salts in the liquid state is very fluid, its viscosity being low, from 0.01 Pa.s to 0.03 Pa.s at 700 ° C., which is generally the casting temperature greater than the temperature. fusion of the eutectic.
  • the material of the core consisting of the mixture of salts in the liquid state is non-wetting and therefore does not tend to adhere or cling to the wall of the steel mold (or silica) in which one mold the nuclei.
  • the surface tension of the salt mixture at 700 ° C, which is the casting temperature, is sufficiently low and between 0.04 and 0.07 N / m.
  • the solidification rate is satisfactory in the case of the core manufacturing process, the duration of solidification of the liquid mixture being from 0.5 to 2 minutes. This solidification time is sufficient to allow the filling of the kernel box without the occurrence of solidification before the end of filling. In addition, this duration makes it possible to carry out sufficiently rapid manufacturing cycles.
  • the melting or solidification energies of the mixture are between 330 J / g and 350 J / g.
  • thermomechanical properties of the cores consisting of 45% sodium chloride and 55% sodium carbonate are quite satisfactory.
  • the cores obtained are very mechanically resistant, the breaking stress of the material of the cores being 35 to 40 MPa; this value is approximately 50 times greater than that obtained in the case of conventional cores made of sand agglomerated with resin.
  • nuclei are very compact, their permeability being less than 5 Georg Fisher units, that is to say about 20 times lower than that of a conventional sand core.
  • the cores obtained are sufficiently refractory, since the melting point of the mixture of salts is 636 ° C .; this temperature is generally sufficient to allow the casting of metals usually used in the manufacture of parts, for example for the automotive industry, such as alloys of aluminum, magnesium or zinc.
  • the cores obtained are overmouldable directly in a conventional stone box filled with sand, because they are very mechanically resistant.
  • the cores obtained have a smooth surface, so that during the molding of a workpiece, they generate only a small skin roughness of the workpiece, this roughness being generally less than 15 microns.
  • the soluble salt cores greatly reduce gas inclusion defects and carbon residues that are present in molded parts using conventional sand and resin cores. Indeed, these soluble salt cores do not generate hot pyrolysis products. In particular, the salt cores do not create gas inclusions by gassing at the casting and carbon residues during the casting. The volume of gas evolved is less than 2 cm 3 / g at 700 ° C. and the carbonaceous residues are in a proportion of less than 0.1% of the mass of the cores, during a casting at 700 ° C.
  • a mold for example a sand mold for casting parts such as cylinder heads or a steel mold.
  • the liquid metal of the part is poured into the mold containing the cores, for example aluminum or an aluminum alloy at a temperature of the order of 700 ° C.
  • the part is cooled inside the mold and the solidified and cooled part is demolded.
  • This removal of the nuclei is carried out by dissolving in water, either water at room temperature or hot water, for example at a temperature of 20 to 70 ° C.
  • the soluble salt cores are brought into contact with water, either by immersing the pieces in a container containing water, or by circulating water inside the molded part to dissolve the nuclei into salts. soluble.
  • the soluble salts constituting the nuclei have a good solubility in water, this solubility being from 35 to 45 g / l in cold water or in hot water.
  • the brine obtained by dissolving the salts in water is not toxic because the salts are not toxic themselves.
  • the recycling of the salts extracted from the brine is an operation which can easily be carried out, for example by boiling or evaporation of the water.
  • the operation of removing the cores is carried out without causing air pollution of the molding plants by volatile organic compounds, as in the case of sand and resin cores which are removed by heat treatment.
  • the salt cores used in the context of the invention are sufficiently resistant to be used in foundry processes using pressure injection of alloys into the casting mold, thixomolding, die casting, squeeze casting, and other molding processes using injection of a metal such as aluminum, magnesium, zinc or other metals and alloys in a mold.
  • the cores according to the invention can also be made in the form of fine and long cores for use in gravity casting processes.
  • the cores in the form of very fine cores with a thickness of less than 8 mm, long cores longer than 200 mm or even very fine and long cores.
  • the cores used in the implementation of the invention can make it possible to make cavities having a small dimension such as inter-cylinder water passages in V6 engines or recesses between the valves, in the cylinder heads of the cylinders. HDI type motors.
  • the mixture of soluble salts for the constitution of the cores may comprise more than two salts; in this case also, at least two of the salts may be in proportions forming a eutectic composition.
  • the invention can also be used in different fields of motor vehicle engine parts production.
  • the invention may have applications in many fields of industry, for the production of parts by molding in a mold enclosing at least one molding core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Casting of metal component in mold enclosing at least one casting core consists of casting molten metal into the mold, removing the component after cooling and eliminating the core from the cast component. Core is produced in a material made up of a mixture of at least two water soluble salts corresponding to eutectic or close to eutectic composition and core is eliminated by dissolving in water. Independent claims are also included for the following: (a) a method for the production of the casting core; and (b) the casting core made from at least two water soluble salts.

Description

L'invention concerne un procédé de moulage d'une pièce métallique dans un moule qui renferme au moins un noyau de moulage, un procédé de réalisation du noyau et le noyau de moulage obtenu par ce procédé.The invention relates to a method of molding a metal part in a mold which encloses at least one molding core, a method of producing the core and the molding core obtained by this method.

Dans certaines industries, par exemple dans l'industrie automobile, on réalise des pièces de fonderie, en des métaux tels que l'aluminium et ses alliages, qui peuvent présenter des formes complexes, aussi bien en ce qui concerne la surface externe de la pièce que des surfaces internes délimitant des cavités à l'intérieur de la pièce.In some industries, for example in the automotive industry, foundry parts are made of metals such as aluminum and its alloys, which may have complex shapes, both as regards the external surface of the workpiece. internal surfaces delimiting cavities inside the room.

De telles pièces sont réalisées dans des moules dont l'empreinte interne permet d'obtenir la forme extérieure de la pièce et dans lesquels on place un ou plusieurs noyaux permettant d'obtenir la forme voulue de la surface intérieure de la pièce moulée qui peut comporter des cavités de forme complexe.Such parts are made in molds whose internal imprint makes it possible to obtain the external shape of the part and in which one or more cores are placed in order to obtain the desired shape of the inner surface of the molded part which may comprise cavities of complex shape.

Habituellement, les noyaux sont obtenus industriellement en injectant, à l'aide d'air sous pression, un mélange de grains de sable enrobés d'une résine, dans des boîtes à noyaux ayant des formes adaptées pour obtenir le noyau nécessaire au moulage. La résine est ensuite durcie par réaction chimique, afin d'assurer une cohésion mécanique entre les grains de sable du noyau.Usually, the cores are obtained industrially by injecting, using air under pressure, a mixture of sand grains coated with a resin, in cores boxes having shapes adapted to obtain the core required for molding. The resin is then cured by chemical reaction to provide mechanical cohesion between the core sand grains.

Généralement, les noyaux comportent, en masse, un mélange de 98 % à 99 % de grains de sable siliceux auxquels est ajouté 1 % à 2 % de résine organique, par exemple de la famille chimique des substances formophénoliques. En volume, les noyaux comportent de 45 à 65 % de grains de sable et le complément, soit de 55 à 35 %, est constitué par de l'air remplissant les porosités du noyau. Cette inclusion d'air entre les grains de sable dans les noyaux poreux est donc perméable aux gaz de pyrolyse et aux alliages dont on réalise la coulée. Lors de la coulée, l'alliage échauffe le noyau et la résine, si bien que la résine se dégrade thermiquement et mécaniquement et subit une pyrolyse qui génère des gaz et des résidus non désirés.Generally, the cores comprise, by weight, a mixture of 98% to 99% of siliceous sand grains to which is added 1% to 2% of organic resin, for example the chemical family of formophenolic substances. In terms of volume, the cores comprise 45 to 65% of sand grains and the balance, ie 55 to 35%, consists of air filling the porosities of the core. This inclusion of air between the grains of sand in the porous cores is permeable to the pyrolysis gases and alloys which are cast. During casting, the alloy heats the core and the resin, so that the resin thermally and mechanically degrades and undergoes pyrolysis which generates unwanted gases and residues.

Les différents phénomènes mentionnés ci-dessus liés à la porosité et à la pyrolyse de la résine sont à l'origine de difficultés et limites techniques qui seront indiquées ci-dessous.The various phenomena mentioned above related to the porosity and the pyrolysis of the resin are at the origin of difficulties and technical limits which will be indicated below.

Tout d'abord, les noyaux peuvent subir des déformations et ruptures à température ambiante, lors de leur transport, de leur stockage ou lors de la coulée dans un moule.Firstly, the cores can undergo deformations and breaks at ambient temperature, during transport, storage or during casting in a mold.

D'autre part, la limite élastique à 20°C des noyaux de sable obtenus en fonderie est généralement comprise entre 0,4 MPa et 0,8 MPa et la contrainte à la rupture de ces noyaux est comprise entre 2 MPa et 2,5 MPa. Du fait de ces valeurs relativement faibles, la taille des noyaux doit être inférieure à 200 mm pour réduire les flexions qu'ils subissent lors des manipulations.On the other hand, the elastic limit at 20 ° C of the sand cores obtained in the foundry is generally between 0.4 MPa and 0.8 MPa and the breaking stress of these cores is between 2 MPa and 2.5 MPa. Because of these relatively low values, the size of the cores must be less than 200 mm to reduce the bending they undergo during handling.

Les noyaux subissent en outre des déformations et ruptures à chaud, lors de la coulée, du fait que leur contrainte à la rupture, entre 200°C et 400°C n'est généralement comprise qu'entre 1,5 MPa et 3,5 MPa, la limite élastique correspondante variant de 0,2 MPa à 1,4 MPa. Compte tenu de ces faibles propriétés mécaniques, l'épaisseur des noyaux doit être supérieure à 8 mm, afin d'obtenir une rigidité suffisante à chaud, lors de la coulée.The cores are also subjected to hot deformation and breakage during casting, since their breaking stress between 200 ° C. and 400 ° C. is generally only between 1.5 MPa and 3.5. MPa, the corresponding elastic limit varying from 0.2 MPa to 1.4 MPa. Given these weak mechanical properties, the thickness of the cores must be greater than 8 mm, in order to obtain sufficient stiffness when hot during casting.

En outre, lors de la coulée, le dégagement gazeux dû à la dégradation thermique de la résine produit, à l'intérieur de la pièce, des inclusions de gaz qui ne sont pas souhaitées. Le dégagement gazeux peut être volumineux, ce dégagement gazeux étant généralement de 5 cm3/g du noyau à 700°C.In addition, during casting, the gassing due to the thermal degradation of the resin produced, within the room, gas inclusions that are not desired. The evolution of gas can be bulky, this gas evolution generally being 5 cm 3 / g of the core at 700 ° C.

On observe également des inclusions de carbone dans la pièce qui sont liées à la pyrolyse de la résine. En effet, la résine de type organique génère des quantités importantes de résidus carbonés lors de sa pyrolyse. Ainsi, à 700°C, la résine émet des résidus carbonés d'une masse supérieure à 15 % de la masse de la résine des noyaux.There are also inclusions of carbon in the part which are related to the pyrolysis of the resin. Indeed, the organic type resin generates significant amounts of carbon residues during its pyrolysis. Thus, at 700 ° C., the resin emits carbonaceous residues with a mass greater than 15% of the mass of the resin of the cores.

D'autre part, lors de la coulée, le noyau subit une imprégnation par le métal liquide coulé dans le moule dont la surpression est généralement supérieure à 0,15 bar. Ce phénomène est dû à la forte perméabilité du noyau qui est comprise entre 120 et 200 unités Georg Fisher.On the other hand, during casting, the core is impregnated by the liquid metal cast in the mold, the overpressure is generally greater than 0.15 bar. This phenomenon is due to the high permeability of the nucleus which is between 120 and 200 Georg Fisher units.

En outre, la rugosité de la surface des pièces moulées obtenues peut être fortement marquée, du fait qu'elle est fortement tributaire de la granulométrie des grains de sable. On a ainsi observé que la mesure de la rugosité moyenne (Ra) varie de 150 µm pour un sablé de granulométrie de 55 AFS, jusqu'à une valeur minimale de 20 µm pour un sable ayant une granulométrie minimale de 90 AFS.In addition, the roughness of the surface of the molded parts obtained can be strongly marked, because it is highly dependent on the particle size of the sand grains. It has been observed that the measurement of the roughness average (Ra) varies from 150 μm for a sand-blasted particle of 55 AFS, to a minimum value of 20 μm for a sand having a minimum particle size of 90 AFS.

Enfin, les dégagements gazeux de composés organiques volatiles ou pyrolysés provenant des résines à température ambiante ou à chaud pendant la coulée entraînent une pollution de l'air des ateliers de moulage qui peut être dangereuse ou désagréable pour le personnel de ces ateliers, du fait des odeurs et de la toxicité de certains composés.Finally, gaseous releases of volatile organic compounds or pyrolyzed from resins at room temperature or hot during casting cause air pollution molding workshops that can be dangerous or unpleasant for the staff of these workshops, because of odors and toxicity of certain compounds.

Du fait de ces inconvénients et limitations techniques, les noyaux de moulage selon la technique connue ne peuvent être utilisés dans certains cas.Because of these drawbacks and technical limitations, the molding cores according to the known technique can not be used in certain cases.

En particulier, il n'est pas possible de les utiliser dans le cadre de procédés de fonderie dans lesquels on utilise des surpressions de remplissage des moules supérieures à 0,15 bar, par exemple comme dans le cas du "squeeze casting", la coulée avec mise en dépression d'une partie au moins de l'espace du moule ou encore le thixomoulage.In particular, it is not possible to use them in the context of foundry processes in which mold overpressures above 0.15 bar are used, for example as in the case of "squeeze casting", the casting with depression of at least part of the mold space or thixomolding.

La technique de fabrication actuelle des noyaux en sable liés par la résine ne peut être appliquée non plus à la fabrication de noyaux très fins ayant une épaisseur inférieure à 8 mm et/ou aux noyaux ayant une grande longueur, par exemple supérieure à 200 mm. A fortiori, la technique actuelle ne peut être utilisée pour la réalisation de noyaux à la fois très fins et longs, quels que soient les procédés de coulée utilisés.The current manufacturing technique of resin-bonded sand cores can not be applied either to the production of very fine cores having a thickness of less than 8 mm and / or to cores having a great length, for example greater than 200 mm. A fortiori, the current technique can not be used for the realization of nuclei both very thin and long, regardless of the casting processes used.

Les noyaux de la technique connue ne peuvent également être utilisés pour obtenir des pièces ayant une peau très lisse, dont la rugosité est inférieure à 15 µm.The cores of the known technique can not also be used to obtain parts having a very smooth skin, whose roughness is less than 15 microns.

Enfin, de manière générale, il est souhaitable de réduire la pollution aérienne des ateliers de moulage.Finally, in general, it is desirable to reduce aerial pollution of molding plants.

On connaît également, par exemple par le US-4,840,219 , des noyaux pour le moulage de métaux, notamment d'aluminium, constitués d'un mélange de 50% à 90% de sels solubles dans l'eau et de 10% à 50% de matériau réfractaire ne réagissant pas avec le sel soluble ; la composition du mélange de sels solubles est choisie pour obtenir un point de fusion des noyaux supérieur à une limite fixée, par exemple 1225°F (ou 663°C).It is also known, for example by US 4840219 cores for molding metals, especially aluminum, consisting of a mixture of 50% to 90% of water-soluble salts and 10% to 50% of refractory material not reacting with the soluble salt; the composition of the soluble salt mixture is selected to provide a melting point of the nuclei greater than a fixed limit, for example 1225 ° F (or 663 ° C).

On connaît également par FR 2 077 555 des noyaux de fonderie en sels solubles dans l'eau comprenant du chlorure de magnésium.We also know by FR 2,077,555 foundry cores of water-soluble salts comprising magnesium chloride.

Le but de l'invention est donc de proposer un procédé de moulage d'une pièce métallique dans un moule renfermant au moins un noyau de moulage dans lequel on coule un métal liquide dans le moule renfermant l'au moins un noyau de moulage, on démoule la pièce après refroidissement et on élimine le noyau de la pièce moulée, ce procédé permettant à la fois d'améliorer la qualité des pièces obtenues, en particulier leur état de surface, d'utiliser des noyaux de moulage de dimensions non réalisables jusqu'ici et ayant des caractéristiques mécaniques améliorées et de limiter la pollution de l'air dans les ateliers de moulage, les noyaux pouvant être fabriqués par un procédé facile à mettre en oeuvre, à une température modérée..The object of the invention is therefore to propose a method of molding a metal part in a mold containing at least one molding core into which a liquid metal is cast into the mold containing the at least one molding core, demolding the piece after cooling and eliminating the core of the molded part, this method both to improve the quality of the parts obtained, in particular their surface condition, to use mold cores of dimensions not achievable until here and having improved mechanical characteristics and to limit the air pollution in the molding workshops, the cores can be manufactured by a process easy to implement, at a moderate temperature ..

Dans ce but, on réalise l'au moins un noyau de moulage en un matériau constitué par un mélange d'au moins deux sels solubles dans l'eau correspondant à une composition eutectique ou proche d'un eutectique, et on élimine le noyau, après moulage de la pièce, par dissolution dans de l'eau.For this purpose, the at least one molding core is made of a material consisting of a mixture of at least two water-soluble salts corresponding to a eutectic or eutectic-like composition, and the core is removed, after molding the piece, by dissolution in water.

L'invention est également relative à des procédés de réalisation de noyaux de moulage en sel soluble dans l'eau et aux noyaux de moulage obtenus.The invention also relates to methods for producing water-soluble salt molding cores and the resulting molding cores.

Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple, la fabrication de noyaux de moulage en sel soluble suivant plusieurs modes de réalisation et l'utilisation des noyaux en sel soluble pour la fabrication de pièces pour l'industrie automobile, telles que des culasses et des blocs moteurs.In order to better understand the invention, the manufacture of soluble salt molding cores according to several embodiments and the use of soluble salt cores for the manufacture of parts for the production of soluble salt cores will now be described by way of example. automotive industry, such as cylinder heads and engine blocks.

De manière générale, la réalisation de noyaux de fonderie en sel soluble dans l'eau, pour la mise en oeuvre de l'invention, peut être effectuée par l'une des trois techniques suivantes : frittage à chaud, coulée du noyau à partir d'un liquide dans un moule en acier ou en matériau réfractaire, injection d'un liquide dans un moule en acier.In general, the production of water-soluble salt foundry cores for carrying out the invention can be carried out by one of the following three techniques: hot sintering, casting of the core from a liquid in a steel or refractory mold, injecting a liquid into a steel mold.

La technique de frittage à chaud dans un moule en acier peut être utilisée pour les noyaux de forme simple. En effet, les noyaux fabriqués par frittage doivent être aisément compressibles et facilement démoulables à chaud.The hot sintering technique in a steel mold can be used for single-form cores. Indeed, the cores produced by sintering must be easily compressible and easily removable hot.

La coulée des noyaux à partir d'un liquide dans un moule en acier ou en matériau réfractaire compact ou encore en un matériau réfractaire poreux destructible après coulée peut être utilisée pour les noyaux de forme très complexe et difficilement démoulables.The casting of the cores from a liquid in a mold made of steel or of compact refractory material or of a porous refractory material that can be destroyed after casting can be used for cores of very complex shape that are difficult to demold.

L'injection à l'état liquide du matériau du noyau dans un moule en acier peut être utilisée pour les noyaux de forme moyennement complexe. Cette technique d'injection permet d'obtenir une très haute cadence de fabrication.The liquid injection of the core material into a steel mold can be used for medium complex cores. This injection technique makes it possible to obtain a very high production rate.

Exemple de fabrication d'un noyau en sel soluble.Example of manufacturing a soluble salt core.

Pour réaliser la coulée ou l'injection à l'état liquide du matériau du noyau, on a réalisé différents mélanges de sels solubles dans l'eau, de manière à optimiser les caractéristiques de coulabilité du matériau, les propriétés physiques et thermomécaniques des noyaux, de minimiser les défauts présents dans les pièces après coulée autour des noyaux et de régler au mieux les problèmes relatifs au respect de l'environnement, dans la gestion de l'atelier de moulage de pièces.In order to carry out the pouring or the liquid injection of the core material, different mixtures of water-soluble salts have been made, in order to optimize the material's flow characteristics, the physical and thermomechanical properties of the cores, to minimize the defects present in the parts after casting around the cores and to solve as well as possible the problems relating to the respect of the environment, in the management of the workshop of molding of parts.

Les essais effectués ont montré qu'un matériau particulièrement satisfaisant pour la réalisation des noyaux en sels solubles est constitué par un mélange de deux sels, à savoir le chlorure de sodium NaCI dans une proportion de 43 % à 47 % en masse et le carbonate de sodium Na2CO3, dans une proportion de 57 % à 53 % en masse.The tests carried out have shown that a particularly satisfactory material for the production of soluble salt cores consists of a mixture of two salts, namely sodium chloride NaCl in a proportion of 43% to 47% by weight and the carbonate of Na 2 CO 3 , in a proportion of 57% to 53% by weight.

Ce mélange de sels a permis d'abaisser la température de fusion du mélange par rapport à celle des deux sels, par constitution d'un composé eutectique.This mixture of salts has made it possible to lower the melting point of the mixture relative to that of the two salts by forming a eutectic compound.

Ainsi, le point de fusion du chlorure de sodium est de 805°C, celui du carbonate de sodium de 850°C alors qu'un mélange de chlorure de sodium et de carbonate de sodium renfermant 45 % en masse de chlorure de sodium et 55 % en masse de carbonate de sodium a un point de fusion de 636°C. On réalise pour les proportions massiques données ci-dessus un mélange eutectique dont la température de fusion est sensiblement inférieure à celle des constituants.Thus, the melting point of sodium chloride is 805 ° C, that of sodium carbonate 850 ° C while a mixture of sodium chloride and sodium carbonate containing 45% by weight of sodium chloride and % by weight of sodium carbonate has a melting point of 636 ° C. For the mass proportions given above, a eutectic mixture is produced whose melting temperature is substantially lower than that of the constituents.

On a également pu observer un abaissement sensible de la température de fusion du mélange, dans tout le domaine des compositions proches de l'eutectique entourant la composition à 45 % de chlorure de sodium et 55 % de carbonate de sodium.It has also been possible to observe a significant lowering of the melting temperature of the mixture, in the whole range of the compositions that are close together. of the eutectic surrounding the composition at 45% sodium chloride and 55% sodium carbonate.

Du fait de l'abaissement de la température de fusion, l'utilisation d'un mélange de sels tel qu'indiqué permet d'obtenir des températures de mise en oeuvre du procédé de réalisation des noyaux qui procurent des économies substantielles et une plus grande facilité de mise en oeuvre industrielle, que le noyau soit fabriqué par coulée, frittage ou injection. On peut utiliser des moules en acier de type habituel Z35CDV05, appelés boîtes à noyaux.Due to the lowering of the melting temperature, the use of a mixture of salts as indicated makes it possible to obtain operating temperatures of the process for producing the cores which provide substantial savings and a greater degree of ease of industrial implementation, whether the core is made by casting, sintering or injection. Steel molds of the usual type Z35CDV05, called core boxes, can be used.

Le mélange de sels est introduit dans la boîte à noyaux, soit sous forme liquide par coulée ou par injection, soit sous forme de particules qui sont frittées sous une pression de 50 à 1000 bars et à une température inférieure à la température de fusion de l'eutectique ou de ses constituants, dans la boîte à noyaux.The salt mixture is introduced into the core box, either in liquid form by casting or by injection, or in the form of particles which are sintered under a pressure of 50 to 1000 bar and at a temperature below the melting temperature of 50.degree. Eutectic or its constituents, in the kernel box.

Après moulage ou frittage et refroidissement, les noyaux sont extraits de la boîte à noyaux et refroidis jusqu'à une température ambiante.After molding or sintering and cooling, the cores are extracted from the core box and cooled to room temperature.

Les propriétés rhéologiques et en particulier la coulabilité du mélange de sels solubles à 45 % en masse de NaCI et 55 % en masse de Na2CO3 sont très satisfaisantes lorsqu'on réalise les noyaux par coulée ou par injection du matériau renfermant les sels solubles, à l'état liquide dans la boîte à noyaux. En effet, le mélange de sels à l'état liquide est très fluide, sa viscosité étant faible, de 0,01 Pa.s à 0,03 Pa.s à 700°C qui est généralement la température de coulée supérieure à la température de fusion de l'eutectique.The rheological properties and in particular the flowability of the mixture of soluble salts at 45% by weight of NaCl and 55% by weight of Na 2 CO 3 are very satisfactory when the cores are made by casting or by injection of the material containing the soluble salts. , in the liquid state in the core box. Indeed, the mixture of salts in the liquid state is very fluid, its viscosity being low, from 0.01 Pa.s to 0.03 Pa.s at 700 ° C., which is generally the casting temperature greater than the temperature. fusion of the eutectic.

En outre, le matériau du noyau constitué par le mélange de sels à l'état liquide est non mouillant et donc n'a pas tendance à adhérer ou à s'accrocher à la paroi du moule en acier (ou en silice) dans lequel on moule les noyaux. En effet, la tension superficielle du mélange de sels à 700°C, qui est la température de coulée, est suffisamment faible et comprise entre 0,04 et 0,07 N/m.In addition, the material of the core consisting of the mixture of salts in the liquid state is non-wetting and therefore does not tend to adhere or cling to the wall of the steel mold (or silica) in which one mold the nuclei. Indeed, the surface tension of the salt mixture at 700 ° C, which is the casting temperature, is sufficiently low and between 0.04 and 0.07 N / m.

En outre, la vitesse de solidification est satisfaisante dans le cas du procédé de fabrication du noyau , la durée de solidification du mélange liquide étant de 0,5 à 2 minutes. Cette durée de solidification est suffisante pour permettre le remplissage de la boîte à noyaux sans qu'il se produise de solidification avant la fin du remplissage. En outre, cette durée permet d'effectuer des cycles de fabrication suffisamment rapides.In addition, the solidification rate is satisfactory in the case of the core manufacturing process, the duration of solidification of the liquid mixture being from 0.5 to 2 minutes. This solidification time is sufficient to allow the filling of the kernel box without the occurrence of solidification before the end of filling. In addition, this duration makes it possible to carry out sufficiently rapid manufacturing cycles.

Les énergies de fusion ou de solidification du mélange se situent entre 330 J/g et 350 J/g.The melting or solidification energies of the mixture are between 330 J / g and 350 J / g.

Les propriétés thermomécaniques des noyaux constitués de 45 % de chlorure de sodium et de 55 % de carbonate de sodium sont tout à fait satisfaisantes.The thermomechanical properties of the cores consisting of 45% sodium chloride and 55% sodium carbonate are quite satisfactory.

En effet, les noyaux obtenus sont très résistants mécaniquement, la contrainte à la rupture du matériau des noyaux étant de 35 à 40 MPa ; cette valeur est environ 50 fois plus grande que celle obtenue dans le cas des noyaux classiques en sable aggloméré par de la résine.Indeed, the cores obtained are very mechanically resistant, the breaking stress of the material of the cores being 35 to 40 MPa; this value is approximately 50 times greater than that obtained in the case of conventional cores made of sand agglomerated with resin.

Ces noyaux sont très rigides, la valeur de l'écrasement à la rupture étant de 2 à 3 % seulement.These cores are very rigid, the crush value at break being only 2 to 3%.

Ces noyaux sont très compacts, leur perméabilité étant inférieure à 5 unités Georg Fisher, c'est-à-dire environ 20 fois plus faible que celle d'un noyau classique en sable. Les noyaux obtenus sont suffisamment réfractaires, puisque la température de fusion du mélange de sels est de 636°C ; cette température est généralement suffisante pour permettre la coulée de métaux habituellement utilisés dans le cadre de la fabrication de pièces, par exemple pour l'industrie automobile, tels que les alliages d'aluminium, de magnésium ou de zinc.These nuclei are very compact, their permeability being less than 5 Georg Fisher units, that is to say about 20 times lower than that of a conventional sand core. The cores obtained are sufficiently refractory, since the melting point of the mixture of salts is 636 ° C .; this temperature is generally sufficient to allow the casting of metals usually used in the manufacture of parts, for example for the automotive industry, such as alloys of aluminum, magnesium or zinc.

Les noyaux obtenus sont surmoulables directement dans une boîte à noyaux classique à remplissage de sable, du fait qu'ils sont très résistants mécaniquement.The cores obtained are overmouldable directly in a conventional stone box filled with sand, because they are very mechanically resistant.

Enfin, les noyaux obtenus ont une surface lisse, si bien qu'au cours du moulage d'une pièce, ils ne génèrent qu'une faible rugosité en peau de la pièce, cette rugosité étant généralement inférieure à 15 µm.Finally, the cores obtained have a smooth surface, so that during the molding of a workpiece, they generate only a small skin roughness of the workpiece, this roughness being generally less than 15 microns.

En outre, les noyaux en sels solubles réduisent fortement les défauts d'inclusions de gaz et de résidus carbonés qui sont présents dans les pièces obtenues par moulage utilisant des noyaux classiques en sable et en résine. En effet, ces noyaux en sels solubles ne génèrent pas à chaud de produits de pyrolyse. En particulier, les noyaux en sels ne créent pas d'inclusions de gaz par dégagement gazeux à la coulée et de résidus carbonés lors de la coulée. Le volume de gaz dégagé est inférieur à 2 cm3/g à 700°C et les résidus carbonés sont dans une proportion inférieure à 0,1 % de la masse des noyaux, lors d'une coulée à 700°C.In addition, the soluble salt cores greatly reduce gas inclusion defects and carbon residues that are present in molded parts using conventional sand and resin cores. Indeed, these soluble salt cores do not generate hot pyrolysis products. In particular, the salt cores do not create gas inclusions by gassing at the casting and carbon residues during the casting. The volume of gas evolved is less than 2 cm 3 / g at 700 ° C. and the carbonaceous residues are in a proportion of less than 0.1% of the mass of the cores, during a casting at 700 ° C.

Après démoulage et refroidissement des noyaux, on place ceux-ci à l'intérieur d'un moule, par exemple un moule en sable pour la coulée de pièces telles que des culasses ou encore un moule en acier. On coule le métal liquide de la pièce à l'intérieur du moule renfermant les noyaux, par exemple de l'aluminium ou un alliage d'aluminium à une température de l'ordre de 700°C.After demolding and cooling the cores, they are placed inside a mold, for example a sand mold for casting parts such as cylinder heads or a steel mold. The liquid metal of the part is poured into the mold containing the cores, for example aluminum or an aluminum alloy at a temperature of the order of 700 ° C.

On refroidit la pièce à l'intérieur du moule et on réalise le démoulage de la pièce solidifiée et refroidie.The part is cooled inside the mold and the solidified and cooled part is demolded.

Il reste alors à éliminer les noyaux présents à l'intérieur de la pièce.It remains to eliminate the nuclei present in the room.

Cette élimination des noyaux est réalisée par dissolution dans de l'eau, soit de l'eau à température ambiante, soit de l'eau chaude, par exemple à une température de 20 à 70°C.This removal of the nuclei is carried out by dissolving in water, either water at room temperature or hot water, for example at a temperature of 20 to 70 ° C.

Les noyaux en sels solubles sont mis au contact de l'eau, soit par trempage des pièces dans un récipient contenant de l'eau, soit par circulation d'eau à l'intérieur de la pièce moulée pour réaliser la dissolution des noyaux en sels solubles.The soluble salt cores are brought into contact with water, either by immersing the pieces in a container containing water, or by circulating water inside the molded part to dissolve the nuclei into salts. soluble.

Les sels solubles constituant les noyaux ont une bonne solubilité dans l'eau, cette solubilité étant de 35 à 45 g/l dans l'eau froide ou dans l'eau chaude.The soluble salts constituting the nuclei have a good solubility in water, this solubility being from 35 to 45 g / l in cold water or in hot water.

La saumure obtenue par dissolution des sels dans l'eau n'est pas toxique car les sels ne sont pas toxiques eux-mêmes.The brine obtained by dissolving the salts in water is not toxic because the salts are not toxic themselves.

Le recyclage des sels extraits de la saumure est une opération qui peut être facilement réalisée, par exemple par ébullition ou évaporation de l'eau.The recycling of the salts extracted from the brine is an operation which can easily be carried out, for example by boiling or evaporation of the water.

L'opération d'élimination des noyaux est réalisée sans entraîner de pollution de l'air des ateliers de moulage par des composés organiques volatils, comme dans le cas des noyaux en sable et résine dont on réalise l'élimination par traitement thermique.The operation of removing the cores is carried out without causing air pollution of the molding plants by volatile organic compounds, as in the case of sand and resin cores which are removed by heat treatment.

Les noyaux de sels utilisés dans le cadre de l'invention sont suffisamment résistants pour être utilisés dans des procédés de fonderie utilisant l'injection sous pression d'alliages dans le moule de coulée, dans les procédés de thixomoulage, de moulage sous pression, de "squeeze casting", et autres procédés de moulage utilisant une injection d'un métal tel que l'aluminium, le magnésium, le zinc ou d'autres métaux et alliages dans un moule.The salt cores used in the context of the invention are sufficiently resistant to be used in foundry processes using pressure injection of alloys into the casting mold, thixomolding, die casting, squeeze casting, and other molding processes using injection of a metal such as aluminum, magnesium, zinc or other metals and alloys in a mold.

Les noyaux suivant l'invention peuvent être également réalisés sous la forme de noyaux fins et longs utilisables dans des procédés de coulée par gravité.The cores according to the invention can also be made in the form of fine and long cores for use in gravity casting processes.

En particulier, on peut réaliser les noyaux sous forme de noyaux très fins d'une épaisseur inférieure à 8 mm, de noyaux longs d'une longueur supérieure à 200 mm ou encore de noyaux très fins et longs. En particulier, les noyaux utilisés dans la mise en oeuvre de l'invention peuvent permettre de réaliser des cavités ayant une faible dimension telles que des passages d'eau inter-cylindres dans des moteurs V6 ou des évidements entre les soupapes, dans les culasses des moteurs de type HDI.In particular, it is possible to make the cores in the form of very fine cores with a thickness of less than 8 mm, long cores longer than 200 mm or even very fine and long cores. In particular, the cores used in the implementation of the invention can make it possible to make cavities having a small dimension such as inter-cylinder water passages in V6 engines or recesses between the valves, in the cylinder heads of the cylinders. HDI type motors.

Le mélange de sels solubles pour la constitution des noyaux peut comporter plus de deux sels ; dans ce cas également, au moins deux des sels peuvent être dans des proportions formant une composition eutectique.The mixture of soluble salts for the constitution of the cores may comprise more than two salts; in this case also, at least two of the salts may be in proportions forming a eutectic composition.

L'invention peut être également utilisée dans des domaines différents de la production de pièces pour moteur de véhicule automobile.The invention can also be used in different fields of motor vehicle engine parts production.

L'invention peut connaître des applications dans de nombreux domaines de l'industrie, pour la production de pièces par moulage dans un moule renfermant au moins un noyau de moulage.The invention may have applications in many fields of industry, for the production of parts by molding in a mold enclosing at least one molding core.

Claims (6)

  1. Method for casting a metallic piece in a mould containing at least one casting core constituted by soluble salts, in which liquid metal is poured in the mould containing the at least one casting core, the piece is stripped after cooling and the core of the cast piece is eliminated, characterized in that the at least one casting core is realized by mixing by mass from 43% to 47% sodium chloride NaCl and from 57% to 53% sodium carbonate Na2CO3, and that the core is eliminated, after casting of the piece, by dissolving in water.
  2. Method according to Claim 1, characterized in that the mixture of sodium chloride and of sodium carbonate contains, by mass, 45% sodium chloride and 55% sodium carbonate.
  3. Method according to Claim 1 or Claim 2, characterized in that the at least one casting core is realized by one of the following methods: casting or injection in a mould of the material containing the at least two soluble salts in molten state, calcination of particles of the material containing at least one water-soluble salt, in a mould constituting a core box.
  4. Casting core for the casting of a metallic piece in a mould, characterized in that it is constituted by a material constituted by a mixture of 43% to 47% by mass of sodium chloride NaCl and 57% to 53%, by mass, of sodium carbonate Na2CO3.
  5. Core according to Claim 4, characterized in that it has a thickness less than 8 mm and/or a length greater than 200 mm.
  6. Core according to Claim 4 or Claim 5, for the realization of cavities, in cylinder heads of automobile engines, realized by casting.
EP03291651A 2002-07-10 2003-07-03 Method for casting using a casting core, method for producing the core and core Expired - Lifetime EP1380369B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0208691A FR2842129B1 (en) 2002-07-10 2002-07-10 METHOD FOR MOLDING A METAL PIECE IN A MOLD COMPRISING AT LEAST ONE MOLDING CORE, METHOD FOR PRODUCING A MOLDING CORE, AND MOLDING CORE
FR0208691 2002-07-10

Publications (2)

Publication Number Publication Date
EP1380369A1 EP1380369A1 (en) 2004-01-14
EP1380369B1 true EP1380369B1 (en) 2010-09-15

Family

ID=29725306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03291651A Expired - Lifetime EP1380369B1 (en) 2002-07-10 2003-07-03 Method for casting using a casting core, method for producing the core and core

Country Status (4)

Country Link
EP (1) EP1380369B1 (en)
AT (1) ATE481192T1 (en)
DE (1) DE60334179D1 (en)
FR (1) FR2842129B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010449A2 (en) * 2004-07-23 2006-02-02 Ceramtec Ag Innovative Ceramic Engineering Ceramic cores
JP4950998B2 (en) * 2005-09-30 2012-06-13 セラムテック アクチエンゲゼルシャフト イノヴェイティヴ セラミック エンジニアリング Core and core manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2077555A1 (en) * 1969-12-16 1971-10-29 Sumitomo Chemical Co Magnesium chloride-based water-soluble - removable casting cores
US4840219A (en) * 1988-03-28 1989-06-20 Foreman Robert W Mixture and method for preparing casting cores and cores prepared thereby
JPH02121748A (en) * 1988-10-31 1990-05-09 Aisin Seiki Co Ltd Method for confirming dissolving of soluble core

Also Published As

Publication number Publication date
DE60334179D1 (en) 2010-10-28
FR2842129A1 (en) 2004-01-16
EP1380369A1 (en) 2004-01-14
ATE481192T1 (en) 2010-10-15
FR2842129B1 (en) 2005-04-08

Similar Documents

Publication Publication Date Title
US5803151A (en) Soluble core method of manufacturing metal cast products
BE1010959A3 (en) METHOD FOR MANUFACTURING EXOTHERMIC SLEEVES AND CASTING OF METAL PARTS, AND SLEEVES AND METAL PARTS OBTAINED THEREBY.
KR20210102975A (en) Molding composition comprising sugar component
CA2876132A1 (en) Method for producing an aluminium alloy foam by moulding
JP5641248B2 (en) Method for producing foam metal precursor and method for producing foam metal
EP1380369B1 (en) Method for casting using a casting core, method for producing the core and core
US7134478B2 (en) Method of die casting spheroidal graphite cast iron
FR2709690A1 (en) Consumable model casting process using sand with specific thermal properties.
FR2466293A1 (en) CONSUMABLE SAND CORE FOR SHELL MOLDING, AND MOLD AND MOLDING METHOD COMPRISING SAME
WO2006064188A1 (en) Method of casting an article
Pacyniak The effect of refractory coating permeability on the Lost Foam Process
JPH05501226A (en) How to control heat extraction rate in casting
WO2013172375A1 (en) Cooling method and cooling system for casting
EP3487649B1 (en) Process for manufacturing a shell mold
WO2004101197A3 (en) Method for centrifugal casting
JP2009166106A (en) Method for manufacturing magnesium billet, and mold to be used for manufacturing magnesium billet
EP3277451A1 (en) Sand shell-moulding method for the production of a part for use in the automotive and aeronautics fields
WO2018043685A1 (en) Spherical graphite cast iron semi-solid casting method and semi-solid cast product
Dańko et al. Comparative study of properties of molding sand produced by the AM and traditional method
FR2476515A1 (en) Expendable die casting cores for forming undercut castings - contain boronated aluminium phosphate binder having alkaline earth hardener
FR2819205A1 (en) Foundry core for production of hollow cast articles comprises mineral salts including potassium borates
FR3143393A1 (en) METHOD FOR MANUFACTURING HOLLOW METAL PARTS BY MOLDING, WITHOUT CORE
JPH02241644A (en) Core for manufacturing hollow casting
FR3073434A1 (en) INSERTION ELEMENT AND METHOD OF MANUFACTURING
DE102008016160A1 (en) Method of casting metal by insertion of casting core of lower melting point than component to be cast into casting tool generally useful in foundry technology ensures high surface quality of and presence of an undercut in hollow space

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040625

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60334179

Country of ref document: DE

Date of ref document: 20101028

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110616

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60334179

Country of ref document: DE

Effective date: 20110725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60334179

Country of ref document: DE

Effective date: 20110616

BERE Be: lapsed

Owner name: PEUGEOT CITROEN AUTOMOBILES SA

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130626

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130621

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130722

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60334179

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60334179

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731