EP1380369B1 - Method for casting using a casting core, method for producing the core and core - Google Patents
Method for casting using a casting core, method for producing the core and core Download PDFInfo
- Publication number
- EP1380369B1 EP1380369B1 EP03291651A EP03291651A EP1380369B1 EP 1380369 B1 EP1380369 B1 EP 1380369B1 EP 03291651 A EP03291651 A EP 03291651A EP 03291651 A EP03291651 A EP 03291651A EP 1380369 B1 EP1380369 B1 EP 1380369B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- casting
- cores
- mixture
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005266 casting Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 28
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 22
- 239000011780 sodium chloride Substances 0.000 claims description 14
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 5
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims 1
- 230000005496 eutectics Effects 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 238000005058 metal casting Methods 0.000 abstract description 2
- 239000011162 core material Substances 0.000 description 81
- 238000000465 moulding Methods 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000004576 sand Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000003915 air pollution Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 239000011833 salt mixture Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000009716 squeeze casting Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 238000010119 thixomolding Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D29/00—Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
- B22D29/001—Removing cores
- B22D29/002—Removing cores by leaching, washing or dissolving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/105—Salt cores
Definitions
- the invention relates to a method of molding a metal part in a mold which encloses at least one molding core, a method of producing the core and the molding core obtained by this method.
- foundry parts are made of metals such as aluminum and its alloys, which may have complex shapes, both as regards the external surface of the workpiece. internal surfaces delimiting cavities inside the room.
- Such parts are made in molds whose internal imprint makes it possible to obtain the external shape of the part and in which one or more cores are placed in order to obtain the desired shape of the inner surface of the molded part which may comprise cavities of complex shape.
- the cores are obtained industrially by injecting, using air under pressure, a mixture of sand grains coated with a resin, in cores boxes having shapes adapted to obtain the core required for molding.
- the resin is then cured by chemical reaction to provide mechanical cohesion between the core sand grains.
- the cores comprise, by weight, a mixture of 98% to 99% of siliceous sand grains to which is added 1% to 2% of organic resin, for example the chemical family of formophenolic substances.
- the cores comprise 45 to 65% of sand grains and the balance, ie 55 to 35%, consists of air filling the porosities of the core. This inclusion of air between the grains of sand in the porous cores is permeable to the pyrolysis gases and alloys which are cast. During casting, the alloy heats the core and the resin, so that the resin thermally and mechanically degrades and undergoes pyrolysis which generates unwanted gases and residues.
- the cores can undergo deformations and breaks at ambient temperature, during transport, storage or during casting in a mold.
- the elastic limit at 20 ° C of the sand cores obtained in the foundry is generally between 0.4 MPa and 0.8 MPa and the breaking stress of these cores is between 2 MPa and 2.5 MPa. Because of these relatively low values, the size of the cores must be less than 200 mm to reduce the bending they undergo during handling.
- the cores are also subjected to hot deformation and breakage during casting, since their breaking stress between 200 ° C. and 400 ° C. is generally only between 1.5 MPa and 3.5. MPa, the corresponding elastic limit varying from 0.2 MPa to 1.4 MPa. Given these weak mechanical properties, the thickness of the cores must be greater than 8 mm, in order to obtain sufficient stiffness when hot during casting.
- the evolution of gas can be bulky, this gas evolution generally being 5 cm 3 / g of the core at 700 ° C.
- the organic type resin generates significant amounts of carbon residues during its pyrolysis.
- the resin emits carbonaceous residues with a mass greater than 15% of the mass of the resin of the cores.
- the overpressure is generally greater than 0.15 bar. This phenomenon is due to the high permeability of the nucleus which is between 120 and 200 Georg Fisher units.
- the roughness of the surface of the molded parts obtained can be strongly marked, because it is highly dependent on the particle size of the sand grains. It has been observed that the measurement of the roughness average (Ra) varies from 150 ⁇ m for a sand-blasted particle of 55 AFS, to a minimum value of 20 ⁇ m for a sand having a minimum particle size of 90 AFS.
- the molding cores according to the known technique can not be used in certain cases.
- the current manufacturing technique of resin-bonded sand cores can not be applied either to the production of very fine cores having a thickness of less than 8 mm and / or to cores having a great length, for example greater than 200 mm.
- the current technique can not be used for the realization of nuclei both very thin and long, regardless of the casting processes used.
- the cores of the known technique can not also be used to obtain parts having a very smooth skin, whose roughness is less than 15 microns.
- the object of the invention is therefore to propose a method of molding a metal part in a mold containing at least one molding core into which a liquid metal is cast into the mold containing the at least one molding core, demolding the piece after cooling and eliminating the core of the molded part, this method both to improve the quality of the parts obtained, in particular their surface condition, to use mold cores of dimensions not achievable until here and having improved mechanical characteristics and to limit the air pollution in the molding workshops, the cores can be manufactured by a process easy to implement, at a moderate temperature ..
- the at least one molding core is made of a material consisting of a mixture of at least two water-soluble salts corresponding to a eutectic or eutectic-like composition, and the core is removed, after molding the piece, by dissolution in water.
- the invention also relates to methods for producing water-soluble salt molding cores and the resulting molding cores.
- water-soluble salt foundry cores for carrying out the invention can be carried out by one of the following three techniques: hot sintering, casting of the core from a liquid in a steel or refractory mold, injecting a liquid into a steel mold.
- the hot sintering technique in a steel mold can be used for single-form cores. Indeed, the cores produced by sintering must be easily compressible and easily removable hot.
- the casting of the cores from a liquid in a mold made of steel or of compact refractory material or of a porous refractory material that can be destroyed after casting can be used for cores of very complex shape that are difficult to demold.
- the liquid injection of the core material into a steel mold can be used for medium complex cores. This injection technique makes it possible to obtain a very high production rate.
- a particularly satisfactory material for the production of soluble salt cores consists of a mixture of two salts, namely sodium chloride NaCl in a proportion of 43% to 47% by weight and the carbonate of Na 2 CO 3 , in a proportion of 57% to 53% by weight.
- This mixture of salts has made it possible to lower the melting point of the mixture relative to that of the two salts by forming a eutectic compound.
- the melting point of sodium chloride is 805 ° C, that of sodium carbonate 850 ° C while a mixture of sodium chloride and sodium carbonate containing 45% by weight of sodium chloride and % by weight of sodium carbonate has a melting point of 636 ° C.
- a eutectic mixture is produced whose melting temperature is substantially lower than that of the constituents.
- the salt mixture is introduced into the core box, either in liquid form by casting or by injection, or in the form of particles which are sintered under a pressure of 50 to 1000 bar and at a temperature below the melting temperature of 50.degree. Eutectic or its constituents, in the kernel box.
- the cores are extracted from the core box and cooled to room temperature.
- the rheological properties and in particular the flowability of the mixture of soluble salts at 45% by weight of NaCl and 55% by weight of Na 2 CO 3 are very satisfactory when the cores are made by casting or by injection of the material containing the soluble salts. , in the liquid state in the core box. Indeed, the mixture of salts in the liquid state is very fluid, its viscosity being low, from 0.01 Pa.s to 0.03 Pa.s at 700 ° C., which is generally the casting temperature greater than the temperature. fusion of the eutectic.
- the material of the core consisting of the mixture of salts in the liquid state is non-wetting and therefore does not tend to adhere or cling to the wall of the steel mold (or silica) in which one mold the nuclei.
- the surface tension of the salt mixture at 700 ° C, which is the casting temperature, is sufficiently low and between 0.04 and 0.07 N / m.
- the solidification rate is satisfactory in the case of the core manufacturing process, the duration of solidification of the liquid mixture being from 0.5 to 2 minutes. This solidification time is sufficient to allow the filling of the kernel box without the occurrence of solidification before the end of filling. In addition, this duration makes it possible to carry out sufficiently rapid manufacturing cycles.
- the melting or solidification energies of the mixture are between 330 J / g and 350 J / g.
- thermomechanical properties of the cores consisting of 45% sodium chloride and 55% sodium carbonate are quite satisfactory.
- the cores obtained are very mechanically resistant, the breaking stress of the material of the cores being 35 to 40 MPa; this value is approximately 50 times greater than that obtained in the case of conventional cores made of sand agglomerated with resin.
- nuclei are very compact, their permeability being less than 5 Georg Fisher units, that is to say about 20 times lower than that of a conventional sand core.
- the cores obtained are sufficiently refractory, since the melting point of the mixture of salts is 636 ° C .; this temperature is generally sufficient to allow the casting of metals usually used in the manufacture of parts, for example for the automotive industry, such as alloys of aluminum, magnesium or zinc.
- the cores obtained are overmouldable directly in a conventional stone box filled with sand, because they are very mechanically resistant.
- the cores obtained have a smooth surface, so that during the molding of a workpiece, they generate only a small skin roughness of the workpiece, this roughness being generally less than 15 microns.
- the soluble salt cores greatly reduce gas inclusion defects and carbon residues that are present in molded parts using conventional sand and resin cores. Indeed, these soluble salt cores do not generate hot pyrolysis products. In particular, the salt cores do not create gas inclusions by gassing at the casting and carbon residues during the casting. The volume of gas evolved is less than 2 cm 3 / g at 700 ° C. and the carbonaceous residues are in a proportion of less than 0.1% of the mass of the cores, during a casting at 700 ° C.
- a mold for example a sand mold for casting parts such as cylinder heads or a steel mold.
- the liquid metal of the part is poured into the mold containing the cores, for example aluminum or an aluminum alloy at a temperature of the order of 700 ° C.
- the part is cooled inside the mold and the solidified and cooled part is demolded.
- This removal of the nuclei is carried out by dissolving in water, either water at room temperature or hot water, for example at a temperature of 20 to 70 ° C.
- the soluble salt cores are brought into contact with water, either by immersing the pieces in a container containing water, or by circulating water inside the molded part to dissolve the nuclei into salts. soluble.
- the soluble salts constituting the nuclei have a good solubility in water, this solubility being from 35 to 45 g / l in cold water or in hot water.
- the brine obtained by dissolving the salts in water is not toxic because the salts are not toxic themselves.
- the recycling of the salts extracted from the brine is an operation which can easily be carried out, for example by boiling or evaporation of the water.
- the operation of removing the cores is carried out without causing air pollution of the molding plants by volatile organic compounds, as in the case of sand and resin cores which are removed by heat treatment.
- the salt cores used in the context of the invention are sufficiently resistant to be used in foundry processes using pressure injection of alloys into the casting mold, thixomolding, die casting, squeeze casting, and other molding processes using injection of a metal such as aluminum, magnesium, zinc or other metals and alloys in a mold.
- the cores according to the invention can also be made in the form of fine and long cores for use in gravity casting processes.
- the cores in the form of very fine cores with a thickness of less than 8 mm, long cores longer than 200 mm or even very fine and long cores.
- the cores used in the implementation of the invention can make it possible to make cavities having a small dimension such as inter-cylinder water passages in V6 engines or recesses between the valves, in the cylinder heads of the cylinders. HDI type motors.
- the mixture of soluble salts for the constitution of the cores may comprise more than two salts; in this case also, at least two of the salts may be in proportions forming a eutectic composition.
- the invention can also be used in different fields of motor vehicle engine parts production.
- the invention may have applications in many fields of industry, for the production of parts by molding in a mold enclosing at least one molding core.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Mold Materials And Core Materials (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
L'invention concerne un procédé de moulage d'une pièce métallique dans un moule qui renferme au moins un noyau de moulage, un procédé de réalisation du noyau et le noyau de moulage obtenu par ce procédé.The invention relates to a method of molding a metal part in a mold which encloses at least one molding core, a method of producing the core and the molding core obtained by this method.
Dans certaines industries, par exemple dans l'industrie automobile, on réalise des pièces de fonderie, en des métaux tels que l'aluminium et ses alliages, qui peuvent présenter des formes complexes, aussi bien en ce qui concerne la surface externe de la pièce que des surfaces internes délimitant des cavités à l'intérieur de la pièce.In some industries, for example in the automotive industry, foundry parts are made of metals such as aluminum and its alloys, which may have complex shapes, both as regards the external surface of the workpiece. internal surfaces delimiting cavities inside the room.
De telles pièces sont réalisées dans des moules dont l'empreinte interne permet d'obtenir la forme extérieure de la pièce et dans lesquels on place un ou plusieurs noyaux permettant d'obtenir la forme voulue de la surface intérieure de la pièce moulée qui peut comporter des cavités de forme complexe.Such parts are made in molds whose internal imprint makes it possible to obtain the external shape of the part and in which one or more cores are placed in order to obtain the desired shape of the inner surface of the molded part which may comprise cavities of complex shape.
Habituellement, les noyaux sont obtenus industriellement en injectant, à l'aide d'air sous pression, un mélange de grains de sable enrobés d'une résine, dans des boîtes à noyaux ayant des formes adaptées pour obtenir le noyau nécessaire au moulage. La résine est ensuite durcie par réaction chimique, afin d'assurer une cohésion mécanique entre les grains de sable du noyau.Usually, the cores are obtained industrially by injecting, using air under pressure, a mixture of sand grains coated with a resin, in cores boxes having shapes adapted to obtain the core required for molding. The resin is then cured by chemical reaction to provide mechanical cohesion between the core sand grains.
Généralement, les noyaux comportent, en masse, un mélange de 98 % à 99 % de grains de sable siliceux auxquels est ajouté 1 % à 2 % de résine organique, par exemple de la famille chimique des substances formophénoliques. En volume, les noyaux comportent de 45 à 65 % de grains de sable et le complément, soit de 55 à 35 %, est constitué par de l'air remplissant les porosités du noyau. Cette inclusion d'air entre les grains de sable dans les noyaux poreux est donc perméable aux gaz de pyrolyse et aux alliages dont on réalise la coulée. Lors de la coulée, l'alliage échauffe le noyau et la résine, si bien que la résine se dégrade thermiquement et mécaniquement et subit une pyrolyse qui génère des gaz et des résidus non désirés.Generally, the cores comprise, by weight, a mixture of 98% to 99% of siliceous sand grains to which is added 1% to 2% of organic resin, for example the chemical family of formophenolic substances. In terms of volume, the cores comprise 45 to 65% of sand grains and the balance, ie 55 to 35%, consists of air filling the porosities of the core. This inclusion of air between the grains of sand in the porous cores is permeable to the pyrolysis gases and alloys which are cast. During casting, the alloy heats the core and the resin, so that the resin thermally and mechanically degrades and undergoes pyrolysis which generates unwanted gases and residues.
Les différents phénomènes mentionnés ci-dessus liés à la porosité et à la pyrolyse de la résine sont à l'origine de difficultés et limites techniques qui seront indiquées ci-dessous.The various phenomena mentioned above related to the porosity and the pyrolysis of the resin are at the origin of difficulties and technical limits which will be indicated below.
Tout d'abord, les noyaux peuvent subir des déformations et ruptures à température ambiante, lors de leur transport, de leur stockage ou lors de la coulée dans un moule.Firstly, the cores can undergo deformations and breaks at ambient temperature, during transport, storage or during casting in a mold.
D'autre part, la limite élastique à 20°C des noyaux de sable obtenus en fonderie est généralement comprise entre 0,4 MPa et 0,8 MPa et la contrainte à la rupture de ces noyaux est comprise entre 2 MPa et 2,5 MPa. Du fait de ces valeurs relativement faibles, la taille des noyaux doit être inférieure à 200 mm pour réduire les flexions qu'ils subissent lors des manipulations.On the other hand, the elastic limit at 20 ° C of the sand cores obtained in the foundry is generally between 0.4 MPa and 0.8 MPa and the breaking stress of these cores is between 2 MPa and 2.5 MPa. Because of these relatively low values, the size of the cores must be less than 200 mm to reduce the bending they undergo during handling.
Les noyaux subissent en outre des déformations et ruptures à chaud, lors de la coulée, du fait que leur contrainte à la rupture, entre 200°C et 400°C n'est généralement comprise qu'entre 1,5 MPa et 3,5 MPa, la limite élastique correspondante variant de 0,2 MPa à 1,4 MPa. Compte tenu de ces faibles propriétés mécaniques, l'épaisseur des noyaux doit être supérieure à 8 mm, afin d'obtenir une rigidité suffisante à chaud, lors de la coulée.The cores are also subjected to hot deformation and breakage during casting, since their breaking stress between 200 ° C. and 400 ° C. is generally only between 1.5 MPa and 3.5. MPa, the corresponding elastic limit varying from 0.2 MPa to 1.4 MPa. Given these weak mechanical properties, the thickness of the cores must be greater than 8 mm, in order to obtain sufficient stiffness when hot during casting.
En outre, lors de la coulée, le dégagement gazeux dû à la dégradation thermique de la résine produit, à l'intérieur de la pièce, des inclusions de gaz qui ne sont pas souhaitées. Le dégagement gazeux peut être volumineux, ce dégagement gazeux étant généralement de 5 cm3/g du noyau à 700°C.In addition, during casting, the gassing due to the thermal degradation of the resin produced, within the room, gas inclusions that are not desired. The evolution of gas can be bulky, this gas evolution generally being 5 cm 3 / g of the core at 700 ° C.
On observe également des inclusions de carbone dans la pièce qui sont liées à la pyrolyse de la résine. En effet, la résine de type organique génère des quantités importantes de résidus carbonés lors de sa pyrolyse. Ainsi, à 700°C, la résine émet des résidus carbonés d'une masse supérieure à 15 % de la masse de la résine des noyaux.There are also inclusions of carbon in the part which are related to the pyrolysis of the resin. Indeed, the organic type resin generates significant amounts of carbon residues during its pyrolysis. Thus, at 700 ° C., the resin emits carbonaceous residues with a mass greater than 15% of the mass of the resin of the cores.
D'autre part, lors de la coulée, le noyau subit une imprégnation par le métal liquide coulé dans le moule dont la surpression est généralement supérieure à 0,15 bar. Ce phénomène est dû à la forte perméabilité du noyau qui est comprise entre 120 et 200 unités Georg Fisher.On the other hand, during casting, the core is impregnated by the liquid metal cast in the mold, the overpressure is generally greater than 0.15 bar. This phenomenon is due to the high permeability of the nucleus which is between 120 and 200 Georg Fisher units.
En outre, la rugosité de la surface des pièces moulées obtenues peut être fortement marquée, du fait qu'elle est fortement tributaire de la granulométrie des grains de sable. On a ainsi observé que la mesure de la rugosité moyenne (Ra) varie de 150 µm pour un sablé de granulométrie de 55 AFS, jusqu'à une valeur minimale de 20 µm pour un sable ayant une granulométrie minimale de 90 AFS.In addition, the roughness of the surface of the molded parts obtained can be strongly marked, because it is highly dependent on the particle size of the sand grains. It has been observed that the measurement of the roughness average (Ra) varies from 150 μm for a sand-blasted particle of 55 AFS, to a minimum value of 20 μm for a sand having a minimum particle size of 90 AFS.
Enfin, les dégagements gazeux de composés organiques volatiles ou pyrolysés provenant des résines à température ambiante ou à chaud pendant la coulée entraînent une pollution de l'air des ateliers de moulage qui peut être dangereuse ou désagréable pour le personnel de ces ateliers, du fait des odeurs et de la toxicité de certains composés.Finally, gaseous releases of volatile organic compounds or pyrolyzed from resins at room temperature or hot during casting cause air pollution molding workshops that can be dangerous or unpleasant for the staff of these workshops, because of odors and toxicity of certain compounds.
Du fait de ces inconvénients et limitations techniques, les noyaux de moulage selon la technique connue ne peuvent être utilisés dans certains cas.Because of these drawbacks and technical limitations, the molding cores according to the known technique can not be used in certain cases.
En particulier, il n'est pas possible de les utiliser dans le cadre de procédés de fonderie dans lesquels on utilise des surpressions de remplissage des moules supérieures à 0,15 bar, par exemple comme dans le cas du "squeeze casting", la coulée avec mise en dépression d'une partie au moins de l'espace du moule ou encore le thixomoulage.In particular, it is not possible to use them in the context of foundry processes in which mold overpressures above 0.15 bar are used, for example as in the case of "squeeze casting", the casting with depression of at least part of the mold space or thixomolding.
La technique de fabrication actuelle des noyaux en sable liés par la résine ne peut être appliquée non plus à la fabrication de noyaux très fins ayant une épaisseur inférieure à 8 mm et/ou aux noyaux ayant une grande longueur, par exemple supérieure à 200 mm. A fortiori, la technique actuelle ne peut être utilisée pour la réalisation de noyaux à la fois très fins et longs, quels que soient les procédés de coulée utilisés.The current manufacturing technique of resin-bonded sand cores can not be applied either to the production of very fine cores having a thickness of less than 8 mm and / or to cores having a great length, for example greater than 200 mm. A fortiori, the current technique can not be used for the realization of nuclei both very thin and long, regardless of the casting processes used.
Les noyaux de la technique connue ne peuvent également être utilisés pour obtenir des pièces ayant une peau très lisse, dont la rugosité est inférieure à 15 µm.The cores of the known technique can not also be used to obtain parts having a very smooth skin, whose roughness is less than 15 microns.
Enfin, de manière générale, il est souhaitable de réduire la pollution aérienne des ateliers de moulage.Finally, in general, it is desirable to reduce aerial pollution of molding plants.
On connaît également, par exemple par le
On connaît également par
Le but de l'invention est donc de proposer un procédé de moulage d'une pièce métallique dans un moule renfermant au moins un noyau de moulage dans lequel on coule un métal liquide dans le moule renfermant l'au moins un noyau de moulage, on démoule la pièce après refroidissement et on élimine le noyau de la pièce moulée, ce procédé permettant à la fois d'améliorer la qualité des pièces obtenues, en particulier leur état de surface, d'utiliser des noyaux de moulage de dimensions non réalisables jusqu'ici et ayant des caractéristiques mécaniques améliorées et de limiter la pollution de l'air dans les ateliers de moulage, les noyaux pouvant être fabriqués par un procédé facile à mettre en oeuvre, à une température modérée..The object of the invention is therefore to propose a method of molding a metal part in a mold containing at least one molding core into which a liquid metal is cast into the mold containing the at least one molding core, demolding the piece after cooling and eliminating the core of the molded part, this method both to improve the quality of the parts obtained, in particular their surface condition, to use mold cores of dimensions not achievable until here and having improved mechanical characteristics and to limit the air pollution in the molding workshops, the cores can be manufactured by a process easy to implement, at a moderate temperature ..
Dans ce but, on réalise l'au moins un noyau de moulage en un matériau constitué par un mélange d'au moins deux sels solubles dans l'eau correspondant à une composition eutectique ou proche d'un eutectique, et on élimine le noyau, après moulage de la pièce, par dissolution dans de l'eau.For this purpose, the at least one molding core is made of a material consisting of a mixture of at least two water-soluble salts corresponding to a eutectic or eutectic-like composition, and the core is removed, after molding the piece, by dissolution in water.
L'invention est également relative à des procédés de réalisation de noyaux de moulage en sel soluble dans l'eau et aux noyaux de moulage obtenus.The invention also relates to methods for producing water-soluble salt molding cores and the resulting molding cores.
Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple, la fabrication de noyaux de moulage en sel soluble suivant plusieurs modes de réalisation et l'utilisation des noyaux en sel soluble pour la fabrication de pièces pour l'industrie automobile, telles que des culasses et des blocs moteurs.In order to better understand the invention, the manufacture of soluble salt molding cores according to several embodiments and the use of soluble salt cores for the manufacture of parts for the production of soluble salt cores will now be described by way of example. automotive industry, such as cylinder heads and engine blocks.
De manière générale, la réalisation de noyaux de fonderie en sel soluble dans l'eau, pour la mise en oeuvre de l'invention, peut être effectuée par l'une des trois techniques suivantes : frittage à chaud, coulée du noyau à partir d'un liquide dans un moule en acier ou en matériau réfractaire, injection d'un liquide dans un moule en acier.In general, the production of water-soluble salt foundry cores for carrying out the invention can be carried out by one of the following three techniques: hot sintering, casting of the core from a liquid in a steel or refractory mold, injecting a liquid into a steel mold.
La technique de frittage à chaud dans un moule en acier peut être utilisée pour les noyaux de forme simple. En effet, les noyaux fabriqués par frittage doivent être aisément compressibles et facilement démoulables à chaud.The hot sintering technique in a steel mold can be used for single-form cores. Indeed, the cores produced by sintering must be easily compressible and easily removable hot.
La coulée des noyaux à partir d'un liquide dans un moule en acier ou en matériau réfractaire compact ou encore en un matériau réfractaire poreux destructible après coulée peut être utilisée pour les noyaux de forme très complexe et difficilement démoulables.The casting of the cores from a liquid in a mold made of steel or of compact refractory material or of a porous refractory material that can be destroyed after casting can be used for cores of very complex shape that are difficult to demold.
L'injection à l'état liquide du matériau du noyau dans un moule en acier peut être utilisée pour les noyaux de forme moyennement complexe. Cette technique d'injection permet d'obtenir une très haute cadence de fabrication.The liquid injection of the core material into a steel mold can be used for medium complex cores. This injection technique makes it possible to obtain a very high production rate.
Pour réaliser la coulée ou l'injection à l'état liquide du matériau du noyau, on a réalisé différents mélanges de sels solubles dans l'eau, de manière à optimiser les caractéristiques de coulabilité du matériau, les propriétés physiques et thermomécaniques des noyaux, de minimiser les défauts présents dans les pièces après coulée autour des noyaux et de régler au mieux les problèmes relatifs au respect de l'environnement, dans la gestion de l'atelier de moulage de pièces.In order to carry out the pouring or the liquid injection of the core material, different mixtures of water-soluble salts have been made, in order to optimize the material's flow characteristics, the physical and thermomechanical properties of the cores, to minimize the defects present in the parts after casting around the cores and to solve as well as possible the problems relating to the respect of the environment, in the management of the workshop of molding of parts.
Les essais effectués ont montré qu'un matériau particulièrement satisfaisant pour la réalisation des noyaux en sels solubles est constitué par un mélange de deux sels, à savoir le chlorure de sodium NaCI dans une proportion de 43 % à 47 % en masse et le carbonate de sodium Na2CO3, dans une proportion de 57 % à 53 % en masse.The tests carried out have shown that a particularly satisfactory material for the production of soluble salt cores consists of a mixture of two salts, namely sodium chloride NaCl in a proportion of 43% to 47% by weight and the carbonate of Na 2 CO 3 , in a proportion of 57% to 53% by weight.
Ce mélange de sels a permis d'abaisser la température de fusion du mélange par rapport à celle des deux sels, par constitution d'un composé eutectique.This mixture of salts has made it possible to lower the melting point of the mixture relative to that of the two salts by forming a eutectic compound.
Ainsi, le point de fusion du chlorure de sodium est de 805°C, celui du carbonate de sodium de 850°C alors qu'un mélange de chlorure de sodium et de carbonate de sodium renfermant 45 % en masse de chlorure de sodium et 55 % en masse de carbonate de sodium a un point de fusion de 636°C. On réalise pour les proportions massiques données ci-dessus un mélange eutectique dont la température de fusion est sensiblement inférieure à celle des constituants.Thus, the melting point of sodium chloride is 805 ° C, that of sodium carbonate 850 ° C while a mixture of sodium chloride and sodium carbonate containing 45% by weight of sodium chloride and % by weight of sodium carbonate has a melting point of 636 ° C. For the mass proportions given above, a eutectic mixture is produced whose melting temperature is substantially lower than that of the constituents.
On a également pu observer un abaissement sensible de la température de fusion du mélange, dans tout le domaine des compositions proches de l'eutectique entourant la composition à 45 % de chlorure de sodium et 55 % de carbonate de sodium.It has also been possible to observe a significant lowering of the melting temperature of the mixture, in the whole range of the compositions that are close together. of the eutectic surrounding the composition at 45% sodium chloride and 55% sodium carbonate.
Du fait de l'abaissement de la température de fusion, l'utilisation d'un mélange de sels tel qu'indiqué permet d'obtenir des températures de mise en oeuvre du procédé de réalisation des noyaux qui procurent des économies substantielles et une plus grande facilité de mise en oeuvre industrielle, que le noyau soit fabriqué par coulée, frittage ou injection. On peut utiliser des moules en acier de type habituel Z35CDV05, appelés boîtes à noyaux.Due to the lowering of the melting temperature, the use of a mixture of salts as indicated makes it possible to obtain operating temperatures of the process for producing the cores which provide substantial savings and a greater degree of ease of industrial implementation, whether the core is made by casting, sintering or injection. Steel molds of the usual type Z35CDV05, called core boxes, can be used.
Le mélange de sels est introduit dans la boîte à noyaux, soit sous forme liquide par coulée ou par injection, soit sous forme de particules qui sont frittées sous une pression de 50 à 1000 bars et à une température inférieure à la température de fusion de l'eutectique ou de ses constituants, dans la boîte à noyaux.The salt mixture is introduced into the core box, either in liquid form by casting or by injection, or in the form of particles which are sintered under a pressure of 50 to 1000 bar and at a temperature below the melting temperature of 50.degree. Eutectic or its constituents, in the kernel box.
Après moulage ou frittage et refroidissement, les noyaux sont extraits de la boîte à noyaux et refroidis jusqu'à une température ambiante.After molding or sintering and cooling, the cores are extracted from the core box and cooled to room temperature.
Les propriétés rhéologiques et en particulier la coulabilité du mélange de sels solubles à 45 % en masse de NaCI et 55 % en masse de Na2CO3 sont très satisfaisantes lorsqu'on réalise les noyaux par coulée ou par injection du matériau renfermant les sels solubles, à l'état liquide dans la boîte à noyaux. En effet, le mélange de sels à l'état liquide est très fluide, sa viscosité étant faible, de 0,01 Pa.s à 0,03 Pa.s à 700°C qui est généralement la température de coulée supérieure à la température de fusion de l'eutectique.The rheological properties and in particular the flowability of the mixture of soluble salts at 45% by weight of NaCl and 55% by weight of Na 2 CO 3 are very satisfactory when the cores are made by casting or by injection of the material containing the soluble salts. , in the liquid state in the core box. Indeed, the mixture of salts in the liquid state is very fluid, its viscosity being low, from 0.01 Pa.s to 0.03 Pa.s at 700 ° C., which is generally the casting temperature greater than the temperature. fusion of the eutectic.
En outre, le matériau du noyau constitué par le mélange de sels à l'état liquide est non mouillant et donc n'a pas tendance à adhérer ou à s'accrocher à la paroi du moule en acier (ou en silice) dans lequel on moule les noyaux. En effet, la tension superficielle du mélange de sels à 700°C, qui est la température de coulée, est suffisamment faible et comprise entre 0,04 et 0,07 N/m.In addition, the material of the core consisting of the mixture of salts in the liquid state is non-wetting and therefore does not tend to adhere or cling to the wall of the steel mold (or silica) in which one mold the nuclei. Indeed, the surface tension of the salt mixture at 700 ° C, which is the casting temperature, is sufficiently low and between 0.04 and 0.07 N / m.
En outre, la vitesse de solidification est satisfaisante dans le cas du procédé de fabrication du noyau , la durée de solidification du mélange liquide étant de 0,5 à 2 minutes. Cette durée de solidification est suffisante pour permettre le remplissage de la boîte à noyaux sans qu'il se produise de solidification avant la fin du remplissage. En outre, cette durée permet d'effectuer des cycles de fabrication suffisamment rapides.In addition, the solidification rate is satisfactory in the case of the core manufacturing process, the duration of solidification of the liquid mixture being from 0.5 to 2 minutes. This solidification time is sufficient to allow the filling of the kernel box without the occurrence of solidification before the end of filling. In addition, this duration makes it possible to carry out sufficiently rapid manufacturing cycles.
Les énergies de fusion ou de solidification du mélange se situent entre 330 J/g et 350 J/g.The melting or solidification energies of the mixture are between 330 J / g and 350 J / g.
Les propriétés thermomécaniques des noyaux constitués de 45 % de chlorure de sodium et de 55 % de carbonate de sodium sont tout à fait satisfaisantes.The thermomechanical properties of the cores consisting of 45% sodium chloride and 55% sodium carbonate are quite satisfactory.
En effet, les noyaux obtenus sont très résistants mécaniquement, la contrainte à la rupture du matériau des noyaux étant de 35 à 40 MPa ; cette valeur est environ 50 fois plus grande que celle obtenue dans le cas des noyaux classiques en sable aggloméré par de la résine.Indeed, the cores obtained are very mechanically resistant, the breaking stress of the material of the cores being 35 to 40 MPa; this value is approximately 50 times greater than that obtained in the case of conventional cores made of sand agglomerated with resin.
Ces noyaux sont très rigides, la valeur de l'écrasement à la rupture étant de 2 à 3 % seulement.These cores are very rigid, the crush value at break being only 2 to 3%.
Ces noyaux sont très compacts, leur perméabilité étant inférieure à 5 unités Georg Fisher, c'est-à-dire environ 20 fois plus faible que celle d'un noyau classique en sable. Les noyaux obtenus sont suffisamment réfractaires, puisque la température de fusion du mélange de sels est de 636°C ; cette température est généralement suffisante pour permettre la coulée de métaux habituellement utilisés dans le cadre de la fabrication de pièces, par exemple pour l'industrie automobile, tels que les alliages d'aluminium, de magnésium ou de zinc.These nuclei are very compact, their permeability being less than 5 Georg Fisher units, that is to say about 20 times lower than that of a conventional sand core. The cores obtained are sufficiently refractory, since the melting point of the mixture of salts is 636 ° C .; this temperature is generally sufficient to allow the casting of metals usually used in the manufacture of parts, for example for the automotive industry, such as alloys of aluminum, magnesium or zinc.
Les noyaux obtenus sont surmoulables directement dans une boîte à noyaux classique à remplissage de sable, du fait qu'ils sont très résistants mécaniquement.The cores obtained are overmouldable directly in a conventional stone box filled with sand, because they are very mechanically resistant.
Enfin, les noyaux obtenus ont une surface lisse, si bien qu'au cours du moulage d'une pièce, ils ne génèrent qu'une faible rugosité en peau de la pièce, cette rugosité étant généralement inférieure à 15 µm.Finally, the cores obtained have a smooth surface, so that during the molding of a workpiece, they generate only a small skin roughness of the workpiece, this roughness being generally less than 15 microns.
En outre, les noyaux en sels solubles réduisent fortement les défauts d'inclusions de gaz et de résidus carbonés qui sont présents dans les pièces obtenues par moulage utilisant des noyaux classiques en sable et en résine. En effet, ces noyaux en sels solubles ne génèrent pas à chaud de produits de pyrolyse. En particulier, les noyaux en sels ne créent pas d'inclusions de gaz par dégagement gazeux à la coulée et de résidus carbonés lors de la coulée. Le volume de gaz dégagé est inférieur à 2 cm3/g à 700°C et les résidus carbonés sont dans une proportion inférieure à 0,1 % de la masse des noyaux, lors d'une coulée à 700°C.In addition, the soluble salt cores greatly reduce gas inclusion defects and carbon residues that are present in molded parts using conventional sand and resin cores. Indeed, these soluble salt cores do not generate hot pyrolysis products. In particular, the salt cores do not create gas inclusions by gassing at the casting and carbon residues during the casting. The volume of gas evolved is less than 2 cm 3 / g at 700 ° C. and the carbonaceous residues are in a proportion of less than 0.1% of the mass of the cores, during a casting at 700 ° C.
Après démoulage et refroidissement des noyaux, on place ceux-ci à l'intérieur d'un moule, par exemple un moule en sable pour la coulée de pièces telles que des culasses ou encore un moule en acier. On coule le métal liquide de la pièce à l'intérieur du moule renfermant les noyaux, par exemple de l'aluminium ou un alliage d'aluminium à une température de l'ordre de 700°C.After demolding and cooling the cores, they are placed inside a mold, for example a sand mold for casting parts such as cylinder heads or a steel mold. The liquid metal of the part is poured into the mold containing the cores, for example aluminum or an aluminum alloy at a temperature of the order of 700 ° C.
On refroidit la pièce à l'intérieur du moule et on réalise le démoulage de la pièce solidifiée et refroidie.The part is cooled inside the mold and the solidified and cooled part is demolded.
Il reste alors à éliminer les noyaux présents à l'intérieur de la pièce.It remains to eliminate the nuclei present in the room.
Cette élimination des noyaux est réalisée par dissolution dans de l'eau, soit de l'eau à température ambiante, soit de l'eau chaude, par exemple à une température de 20 à 70°C.This removal of the nuclei is carried out by dissolving in water, either water at room temperature or hot water, for example at a temperature of 20 to 70 ° C.
Les noyaux en sels solubles sont mis au contact de l'eau, soit par trempage des pièces dans un récipient contenant de l'eau, soit par circulation d'eau à l'intérieur de la pièce moulée pour réaliser la dissolution des noyaux en sels solubles.The soluble salt cores are brought into contact with water, either by immersing the pieces in a container containing water, or by circulating water inside the molded part to dissolve the nuclei into salts. soluble.
Les sels solubles constituant les noyaux ont une bonne solubilité dans l'eau, cette solubilité étant de 35 à 45 g/l dans l'eau froide ou dans l'eau chaude.The soluble salts constituting the nuclei have a good solubility in water, this solubility being from 35 to 45 g / l in cold water or in hot water.
La saumure obtenue par dissolution des sels dans l'eau n'est pas toxique car les sels ne sont pas toxiques eux-mêmes.The brine obtained by dissolving the salts in water is not toxic because the salts are not toxic themselves.
Le recyclage des sels extraits de la saumure est une opération qui peut être facilement réalisée, par exemple par ébullition ou évaporation de l'eau.The recycling of the salts extracted from the brine is an operation which can easily be carried out, for example by boiling or evaporation of the water.
L'opération d'élimination des noyaux est réalisée sans entraîner de pollution de l'air des ateliers de moulage par des composés organiques volatils, comme dans le cas des noyaux en sable et résine dont on réalise l'élimination par traitement thermique.The operation of removing the cores is carried out without causing air pollution of the molding plants by volatile organic compounds, as in the case of sand and resin cores which are removed by heat treatment.
Les noyaux de sels utilisés dans le cadre de l'invention sont suffisamment résistants pour être utilisés dans des procédés de fonderie utilisant l'injection sous pression d'alliages dans le moule de coulée, dans les procédés de thixomoulage, de moulage sous pression, de "squeeze casting", et autres procédés de moulage utilisant une injection d'un métal tel que l'aluminium, le magnésium, le zinc ou d'autres métaux et alliages dans un moule.The salt cores used in the context of the invention are sufficiently resistant to be used in foundry processes using pressure injection of alloys into the casting mold, thixomolding, die casting, squeeze casting, and other molding processes using injection of a metal such as aluminum, magnesium, zinc or other metals and alloys in a mold.
Les noyaux suivant l'invention peuvent être également réalisés sous la forme de noyaux fins et longs utilisables dans des procédés de coulée par gravité.The cores according to the invention can also be made in the form of fine and long cores for use in gravity casting processes.
En particulier, on peut réaliser les noyaux sous forme de noyaux très fins d'une épaisseur inférieure à 8 mm, de noyaux longs d'une longueur supérieure à 200 mm ou encore de noyaux très fins et longs. En particulier, les noyaux utilisés dans la mise en oeuvre de l'invention peuvent permettre de réaliser des cavités ayant une faible dimension telles que des passages d'eau inter-cylindres dans des moteurs V6 ou des évidements entre les soupapes, dans les culasses des moteurs de type HDI.In particular, it is possible to make the cores in the form of very fine cores with a thickness of less than 8 mm, long cores longer than 200 mm or even very fine and long cores. In particular, the cores used in the implementation of the invention can make it possible to make cavities having a small dimension such as inter-cylinder water passages in V6 engines or recesses between the valves, in the cylinder heads of the cylinders. HDI type motors.
Le mélange de sels solubles pour la constitution des noyaux peut comporter plus de deux sels ; dans ce cas également, au moins deux des sels peuvent être dans des proportions formant une composition eutectique.The mixture of soluble salts for the constitution of the cores may comprise more than two salts; in this case also, at least two of the salts may be in proportions forming a eutectic composition.
L'invention peut être également utilisée dans des domaines différents de la production de pièces pour moteur de véhicule automobile.The invention can also be used in different fields of motor vehicle engine parts production.
L'invention peut connaître des applications dans de nombreux domaines de l'industrie, pour la production de pièces par moulage dans un moule renfermant au moins un noyau de moulage.The invention may have applications in many fields of industry, for the production of parts by molding in a mold enclosing at least one molding core.
Claims (6)
- Method for casting a metallic piece in a mould containing at least one casting core constituted by soluble salts, in which liquid metal is poured in the mould containing the at least one casting core, the piece is stripped after cooling and the core of the cast piece is eliminated, characterized in that the at least one casting core is realized by mixing by mass from 43% to 47% sodium chloride NaCl and from 57% to 53% sodium carbonate Na2CO3, and that the core is eliminated, after casting of the piece, by dissolving in water.
- Method according to Claim 1, characterized in that the mixture of sodium chloride and of sodium carbonate contains, by mass, 45% sodium chloride and 55% sodium carbonate.
- Method according to Claim 1 or Claim 2, characterized in that the at least one casting core is realized by one of the following methods: casting or injection in a mould of the material containing the at least two soluble salts in molten state, calcination of particles of the material containing at least one water-soluble salt, in a mould constituting a core box.
- Casting core for the casting of a metallic piece in a mould, characterized in that it is constituted by a material constituted by a mixture of 43% to 47% by mass of sodium chloride NaCl and 57% to 53%, by mass, of sodium carbonate Na2CO3.
- Core according to Claim 4, characterized in that it has a thickness less than 8 mm and/or a length greater than 200 mm.
- Core according to Claim 4 or Claim 5, for the realization of cavities, in cylinder heads of automobile engines, realized by casting.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0208691A FR2842129B1 (en) | 2002-07-10 | 2002-07-10 | METHOD FOR MOLDING A METAL PIECE IN A MOLD COMPRISING AT LEAST ONE MOLDING CORE, METHOD FOR PRODUCING A MOLDING CORE, AND MOLDING CORE |
FR0208691 | 2002-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1380369A1 EP1380369A1 (en) | 2004-01-14 |
EP1380369B1 true EP1380369B1 (en) | 2010-09-15 |
Family
ID=29725306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03291651A Expired - Lifetime EP1380369B1 (en) | 2002-07-10 | 2003-07-03 | Method for casting using a casting core, method for producing the core and core |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1380369B1 (en) |
AT (1) | ATE481192T1 (en) |
DE (1) | DE60334179D1 (en) |
FR (1) | FR2842129B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006010449A2 (en) * | 2004-07-23 | 2006-02-02 | Ceramtec Ag Innovative Ceramic Engineering | Ceramic cores |
JP4950998B2 (en) * | 2005-09-30 | 2012-06-13 | セラムテック アクチエンゲゼルシャフト イノヴェイティヴ セラミック エンジニアリング | Core and core manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2077555A1 (en) * | 1969-12-16 | 1971-10-29 | Sumitomo Chemical Co | Magnesium chloride-based water-soluble - removable casting cores |
US4840219A (en) * | 1988-03-28 | 1989-06-20 | Foreman Robert W | Mixture and method for preparing casting cores and cores prepared thereby |
JPH02121748A (en) * | 1988-10-31 | 1990-05-09 | Aisin Seiki Co Ltd | Method for confirming dissolving of soluble core |
-
2002
- 2002-07-10 FR FR0208691A patent/FR2842129B1/en not_active Expired - Fee Related
-
2003
- 2003-07-03 AT AT03291651T patent/ATE481192T1/en not_active IP Right Cessation
- 2003-07-03 DE DE60334179T patent/DE60334179D1/en not_active Expired - Lifetime
- 2003-07-03 EP EP03291651A patent/EP1380369B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE60334179D1 (en) | 2010-10-28 |
FR2842129A1 (en) | 2004-01-16 |
EP1380369A1 (en) | 2004-01-14 |
ATE481192T1 (en) | 2010-10-15 |
FR2842129B1 (en) | 2005-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5803151A (en) | Soluble core method of manufacturing metal cast products | |
BE1010959A3 (en) | METHOD FOR MANUFACTURING EXOTHERMIC SLEEVES AND CASTING OF METAL PARTS, AND SLEEVES AND METAL PARTS OBTAINED THEREBY. | |
KR20210102975A (en) | Molding composition comprising sugar component | |
CA2876132A1 (en) | Method for producing an aluminium alloy foam by moulding | |
JP5641248B2 (en) | Method for producing foam metal precursor and method for producing foam metal | |
EP1380369B1 (en) | Method for casting using a casting core, method for producing the core and core | |
US7134478B2 (en) | Method of die casting spheroidal graphite cast iron | |
FR2709690A1 (en) | Consumable model casting process using sand with specific thermal properties. | |
FR2466293A1 (en) | CONSUMABLE SAND CORE FOR SHELL MOLDING, AND MOLD AND MOLDING METHOD COMPRISING SAME | |
WO2006064188A1 (en) | Method of casting an article | |
Pacyniak | The effect of refractory coating permeability on the Lost Foam Process | |
JPH05501226A (en) | How to control heat extraction rate in casting | |
WO2013172375A1 (en) | Cooling method and cooling system for casting | |
EP3487649B1 (en) | Process for manufacturing a shell mold | |
WO2004101197A3 (en) | Method for centrifugal casting | |
JP2009166106A (en) | Method for manufacturing magnesium billet, and mold to be used for manufacturing magnesium billet | |
EP3277451A1 (en) | Sand shell-moulding method for the production of a part for use in the automotive and aeronautics fields | |
WO2018043685A1 (en) | Spherical graphite cast iron semi-solid casting method and semi-solid cast product | |
Dańko et al. | Comparative study of properties of molding sand produced by the AM and traditional method | |
FR2476515A1 (en) | Expendable die casting cores for forming undercut castings - contain boronated aluminium phosphate binder having alkaline earth hardener | |
FR2819205A1 (en) | Foundry core for production of hollow cast articles comprises mineral salts including potassium borates | |
FR3143393A1 (en) | METHOD FOR MANUFACTURING HOLLOW METAL PARTS BY MOLDING, WITHOUT CORE | |
JPH02241644A (en) | Core for manufacturing hollow casting | |
FR3073434A1 (en) | INSERTION ELEMENT AND METHOD OF MANUFACTURING | |
DE102008016160A1 (en) | Method of casting metal by insertion of casting core of lower melting point than component to be cast into casting tool generally useful in foundry technology ensures high surface quality of and presence of an undercut in hollow space |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040625 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20070807 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60334179 Country of ref document: DE Date of ref document: 20101028 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101216 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101226 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110616 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 60334179 Country of ref document: DE Effective date: 20110725 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60334179 Country of ref document: DE Effective date: 20110616 |
|
BERE | Be: lapsed |
Owner name: PEUGEOT CITROEN AUTOMOBILES SA Effective date: 20110731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130626 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130621 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130722 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60334179 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140703 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60334179 Country of ref document: DE Effective date: 20150203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140703 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |