EP1378052A1 - Entrainement direct redondant a accumulation d'energie electrocinetique - Google Patents

Entrainement direct redondant a accumulation d'energie electrocinetique

Info

Publication number
EP1378052A1
EP1378052A1 EP02708123A EP02708123A EP1378052A1 EP 1378052 A1 EP1378052 A1 EP 1378052A1 EP 02708123 A EP02708123 A EP 02708123A EP 02708123 A EP02708123 A EP 02708123A EP 1378052 A1 EP1378052 A1 EP 1378052A1
Authority
EP
European Patent Office
Prior art keywords
motor
main motor
auxiliary
actuator
auxiliary motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02708123A
Other languages
German (de)
English (en)
Inventor
Alexander Stoev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1378052A1 publication Critical patent/EP1378052A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the invention relates to a device and a method for a redundant direct drive with electro-kinetic energy buffering according to claims 1 and 9, respectively.
  • Electric motors are used as converters of electrical energy into mechanical energy (motors) or as generators of electrical energy into mechanical energy (generators). Electric motors are designed as asynchronous motors or as synchronous motors, the latter being designed with permanently excited excitation (magnets) or as externally excited motors.
  • the rotor of the low-pole motor (auxiliary motor) also stores considerably more energy than the rotor of the multi-pole motor when these motors are electrically coupled and are fed by an actuator, ie with the same stator frequency.
  • a multi-stage gear consists of a slow rotating gear and at least one fast rotating gear.
  • the fast rotating parts have considerable kinetic energy, which contributes to a certain inertia of the system.
  • a slowly turning multi-pole motor does not have the inertia of the equivalent gearbox because the small, fast rotating gearwheel is missing.
  • minimal inertia is required in order to avoid abrupt accelerations.
  • the inertia of the mechanical transmission leads to braking with limited braking acceleration.
  • kinetic energy buffering is described in which the main motor and the motor with the flywheel either directly or via a gear drives are coupled together.
  • Directly coupled storage systems have the disadvantage that the auxiliary motor cannot store enough energy in the flywheel when the main motor is rotating slowly. Since this energy is quadratic with the speed, the speed of the auxiliary motor can be increased by means of a gear, which is expensive and undesirable.
  • the object of the present invention is to provide a device for braking deceleration which does not require any maintenance elements (gears) or complex electronics and which offers the possibility of installing the lack of inertia in mechanically slow rotating multi-pole motors or in linear drive systems.
  • a further task consists in the redundant design of these devices and in the description of a method for their redundant operation.
  • Fig. 1 basic arrangement
  • Fig. 2 Extended basic arrangement with an auxiliary converter
  • Fig. 3 Redundant motor group with split windings and a redundant frequency converter.
  • Fig. 4 Redundant motor group with a faulty actuator
  • Fig. 5 Redundant motor group with a faulty partial winding 1 shows a basic arrangement according to the invention.
  • This comprises a high-pole three-phase main motor 1, for example a synchronous motor, and a low-pole three-phase auxiliary motor 2, for example an asynchronous motor.
  • the main motor 1 is coupled to a load 4 via a first rotor 3, which is part of the main motor.
  • the auxiliary motor 2 is coupled to a flywheel 6 via a second rotor 5, which is part of the auxiliary motor.
  • the two motors are mechanically separated from one another, but are electrically connected in parallel via lines 10.1, 10.2 and 10.3. They are fed by an actuator 8 via a switch 7.
  • the motors must: have the same number (three) phases, and essentially have the same phase voltage at the same frequencies, in the entire spectrum from zero to the maximum stator frequency.
  • the voltages must be balanced so that normal operation of the main motor and the auxiliary motor is possible at the same time.
  • the actuator 8 is fed by a network 9, preferably a three-phase network.
  • the actuator 8 can be switched from the motor group, e.g. in the event of a fault, be switched off and galvanically isolated.
  • a frequency converter can be used as actuator 8. Its electronic switches, which are integrated in the frequency converter, can be blocked and thus interrupt the energy flow from / to the motors.
  • this motor group is connected to a rope-drawn ski lift via the first rotor 3 with the load 4, which is designed as a rope pulley.
  • the high-pole main motor 1 and the low-pole auxiliary motor 2 are raised simultaneously by the actuator 8.
  • the auxiliary motor preferably has only two poles and the main motor has a number of poles Np> 2, the mechanical speed of the rotor 3 of the main motor is Np times lower than the speed of the rotor 5 of the auxiliary motor 2.
  • the main motor does the main work, whereby the auxiliary engine only the Rotation losses covers, the fast rotating flywheel 6 of the auxiliary motor stores the mechanical energy.
  • the actuator 8 is disconnected from the motors 1, 2 via the switch 7.
  • the main motor is braked by the pulley 4 and tries to reduce its speed.
  • the auxiliary motor 2 is connected in parallel to the main motor 1, a negative slip frequency is formed, i.e. the auxiliary motor works as a generator and feeds electrical energy into the main motor. According to the invention, this electrical energy drives the main motor 1 and thus reduces the braking acceleration of the load or the pulley 4.
  • the kinetic energy of the auxiliary motor 2 is converted into electrical energy, which according to the invention is transmitted to the main motor and converted again into mechanical energy of the first rotor 3 becomes.
  • the braking acceleration of the rope pulley 4 coupled to it is limited.
  • the resulting braking time results from the ratio of the stored kinetic energy of the auxiliary motor to the braking power that the load generates.
  • the stored kinetic energy of the auxiliary motor 2 is converted into mechanical energy of the first rotor 3 of the main motor 1 via the electrical coupling of the two motors without any intermediate element.
  • the auxiliary motor 2 shows a basic arrangement expanded with an auxiliary converter.
  • the auxiliary motor 2 can be operated separately from the main motor by an auxiliary converter 8.3 with an auxiliary switch 7.3, the phase voltages of both motors having to have essentially the same voltage at the same frequency in stationary operation.
  • the auxiliary motor In the event of a fault, or if the kinetic energy is required, the auxiliary motor must be connected in parallel with the main motor using a switch 7.4.
  • the voltages of both motors must be in phase, ie both stator voltages must be synchronized. This avoids disruptive compensation processes between the two motors.
  • the electronic switches of the actuator or the auxiliary converter 8.3 are blocked so that no energy can flow from / to this actuator. The same can be done by opening the Switch 7.3 can be reached.
  • the motor group can also be connected directly to the network 9.
  • the actuators 8 and 8.3 are bridged.
  • the frequency converter 8 is only required during the acceleration of the motor group to the mains frequency.
  • the motor group can then work directly on network 9.
  • the motor group is switched off via switches 7 and 7.3.
  • the two motors remain electrically coupled so that the braking process can be delayed by the auxiliary motor.
  • the remaining reference numerals correspond to those in FIG. 1.
  • Fig. 3 shows a redundant group of motors with split windings and two redundant frequency converters.
  • the operational safety of directly driven systems with multi-pole motors can be increased by installing redundancy in the motor.
  • the windings are divided according to the invention into two equivalent partial windings 1.1 and 1.2, so that each partial winding can drive the motor alone.
  • the two partial windings are each driven by a frequency converter 8.1 and 8.2, which are switched off with a switch 7.1 and 7.2.
  • the windings are analogously divided into two partial windings 2.1 and 2.2.
  • Fig. 4 shows a redundant motor group with a faulty actuator.
  • a frequency converter for example the frequency converter 8.2
  • the two partial windings 1.1 and 1.2 of the main motor 1 can be connected in series and the switch 7.2 of the faulty actuator can be opened.
  • the voltages of the partial windings or the mechanical moments which these windings generate must add up.
  • the main motor 1 can then be operated by the frequency converter 8.1 at full torque but only at half the speed.
  • the auxiliary motor 2 must also be equipped with two partial windings 2.1 and 2.2, which can drive the auxiliary motor alone.
  • These partial windings are also connected in series in the event of a fault in a frequency converter, for example the frequency converter 8.2, so that the stator voltages of the main and auxiliary motors remain adjusted and can be operated in parallel.
  • FIG. 5 shows a redundant motor group with a faulty partial winding. If a partial winding of the main motor 1 is faulty, e.g. the partial winding 1.2, then this is separated from the motor group.
  • the main motor is operated with the functional partial winding 1.1, which can be fed by the frequency converter 8.2 or by the two frequency converters 8.1 and 8.2 connected in parallel.
  • the detection of the fault of a partial winding of the main motor and the switching off of this partial winding is preferably carried out automatically.
  • the frequency converters 8.1 and 8.2 can be switched over and disconnected not only using switches 7.1 or 7.2, but also manually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

L'invention concerne des entraînements directs sans boîte, avec moteurs triphasés à nombre de pôles élevé, ces entraînements ayant une inertie élevée pour des affectations de transport. Un bloc d'entraînement comprenant un moteur triphasé principal (1) à nombre de pôles élevé et un moteur triphasé auxiliaire (2) à nombre de pôles faible, de préférence à deux pôles, ces moteurs étant électriquement accouplés mais mécaniquement désaccouplés, et alimentés par un actionneur (8) commun. Le nombre de pôles et le couple permanent du moteur principal (1) sont supérieurs au nombre de pôles et au couple permanent du moteur auxiliaire (2), le rotor (5) du moteur auxiliaire étant doté d'un volant (6) et fonctionnant à un régime plus élevé que le moteur principal (1). En cas d'erreur ou de nécessité, l'actionneur (8) est mis hors circuit au moyen d'un commutateur, le moteur principal (1) et le moteur auxiliaire (2) restant électriquement accouplés, de sorte que le moteur auxiliaire (2) transforme l'énergie cinétique du volant (6) en énergie électrique, qu'il transmet au moteur principal (1). Le moteur principal convertit à nouveau cette énergie électrique en énergie mécanique, réduisant ainsi l'accélération de freinage du rotor (3) et la charge (4) associée à celui-ci en-dessous d'une valeur maximale autorisée. La présente invention porte également sur des procédés d'exploitation redondante de tels blocs d'entraînement. Les domaines d'application de cette invention sont la construction de systèmes de transport par câbles ou par bandes, notamment les téléphériques, les téléskis, les escaliers roulants et les tapis roulants équipés d'entraînements directs sans boîte, à accélération de freinage maximum déterminée.
EP02708123A 2001-04-09 2002-04-08 Entrainement direct redondant a accumulation d'energie electrocinetique Withdrawn EP1378052A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH663012001 2001-04-09
CH6632001 2001-04-09
PCT/CH2002/000195 WO2002082629A1 (fr) 2001-04-09 2002-04-08 Entrainement direct redondant a accumulation d'energie electrocinetique

Publications (1)

Publication Number Publication Date
EP1378052A1 true EP1378052A1 (fr) 2004-01-07

Family

ID=4527078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02708123A Withdrawn EP1378052A1 (fr) 2001-04-09 2002-04-08 Entrainement direct redondant a accumulation d'energie electrocinetique

Country Status (2)

Country Link
EP (1) EP1378052A1 (fr)
WO (1) WO2002082629A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995050A1 (fr) 2007-05-24 2008-11-26 Fagor, S.Coop. Système d'alimentation en énergie électrique pour presses
FR2936380B1 (fr) * 2008-09-24 2010-10-29 Messier Bugatti Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut
IT1392185B1 (it) * 2008-12-12 2012-02-22 Univ Degli Studi Trieste Dispositivo di limitazione di decelerazione per impianto di risalita ad azionamento ad accoppiamento diretto
DE202009001759U1 (de) * 2009-02-12 2010-07-22 Aradex Ag Antriebssystem
DE102016221304A1 (de) * 2016-10-28 2018-05-03 Siemens Aktiengesellschaft Elektrische Maschine zum Antreiben eines Vortriebsmittels
CN108054831A (zh) * 2018-01-17 2018-05-18 江苏新美星包装机械股份有限公司 一种轴转设备断电保护制动控制系统及控制方法
KR102135276B1 (ko) * 2019-02-01 2020-07-17 주식회사 만도 동력 보조 제어 장치 및 동력 보조 제어 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2827812C3 (de) * 1978-06-24 1981-06-11 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Spulmaschine
DE3733590A1 (de) * 1986-12-27 1988-07-07 Dornier Gmbh Lindauer Verfahren und schaltungsanordnung zum anwerfen von mit einem elektrischen hauptantrieb ausgeruesteten webmaschinen
DE3922410A1 (de) * 1989-07-07 1991-01-17 Schneidersmann Ernst Otto Antrieb mit erhoehter verfuegbarkeit
DE4306307C2 (de) * 1993-03-01 1997-08-14 Siemens Ag Verfahren zur Schadensverhütung an numerisch gesteuerten Maschinen bei Netzausfall
TR200103468T2 (tr) * 1999-05-31 2002-04-22 Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Elektrikli diziler için alternatif akım motor sürücüsü.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02082629A1 *

Also Published As

Publication number Publication date
WO2002082629A1 (fr) 2002-10-17

Similar Documents

Publication Publication Date Title
DE69508512T2 (de) Verfahren und Vorrichtung zum Bremsen eines Synchronmotors
EP2636144B1 (fr) Circuit d'entraînement d'un moteur de correction de pitch apte à fonctionner en régime de secours
WO2015128103A1 (fr) Système d'entraînement électrique
EP1916417A2 (fr) Commutateur de commande pour moteur à courant continu doté d'un frein et d'un dispositif d'alimentation de fonctionnement d'urgence
WO2019068542A1 (fr) Enroulement de stator pour machine électrique tournante
CH618556A5 (fr)
DE102014224432A1 (de) Permanenterregte Synchronmaschine und Kraftfahrzeugsystem
EP1561273B1 (fr) Procede de fonctionnement d'un convertisseur matriciel et generateur avec convertisseur matriciel utilise pour la mise en oeuvre de ce procede
EP3238337B1 (fr) Procédé de fonctionnement de transmission
EP2570291B1 (fr) Système d'entraînement d'un véhicule fonctionnant sur batterie doté d'une machine synchrone à excitation permanente alimentée par convertisseur
WO2013020148A2 (fr) Installation d'extraction d'énergie, en particulier éolienne
EP1378052A1 (fr) Entrainement direct redondant a accumulation d'energie electrocinetique
EP3223420B1 (fr) Système de convertisseur de courant destiné au freinage fiable d'un système d'entrainement
WO2003025390A1 (fr) Installation de parc eolien
AT510119B1 (de) Differenzialgetriebe für eine windkraftanlage und verfahren zum betreiben dieses differenzialgetriebes
DE102009007961A1 (de) Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
EP2761732A2 (fr) Moteur électrique notamment moteur à commutation de polarités, procédé pour faire fonctionner un moteur électrique et moteur électrique
DE102014203568A1 (de) Elektrisches Antriebssystem
EP2117108B1 (fr) Procédé de démarrage d'un système destiné à la production d'énergie électrique
WO2012001135A2 (fr) Générateur à variation de la vitesse de rotation pour une éolienne et procédé permettant de faire fonctionner ce générateur
EP0045951A2 (fr) Procédé pour mettre en marche un convertisseur ayant un circuit intermédiaire à courant continu alimentant un moteur électrique synchrone
DE112019001048T5 (de) Motorantriebssteuervorrichtung und motorantriebssteuerverfahren
EP0476460A2 (fr) Dispositif de sécurité pour un entraînement d'un engin de levage
WO2014048462A1 (fr) Système de propulsion de véhicule automobile
DE202006012200U1 (de) Antriebssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050624