EP1376506A1 - Smoke simulator piece for regulating the sensitivity of scattered light smoke detectors - Google Patents

Smoke simulator piece for regulating the sensitivity of scattered light smoke detectors Download PDF

Info

Publication number
EP1376506A1
EP1376506A1 EP03011662A EP03011662A EP1376506A1 EP 1376506 A1 EP1376506 A1 EP 1376506A1 EP 03011662 A EP03011662 A EP 03011662A EP 03011662 A EP03011662 A EP 03011662A EP 1376506 A1 EP1376506 A1 EP 1376506A1
Authority
EP
European Patent Office
Prior art keywords
simulation body
body according
prismatoid
smoke
main beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03011662A
Other languages
German (de)
French (fr)
Other versions
EP1376506B1 (en
Inventor
Heiner Politze
Tido Krippendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Novar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novar GmbH filed Critical Novar GmbH
Publication of EP1376506A1 publication Critical patent/EP1376506A1/en
Application granted granted Critical
Publication of EP1376506B1 publication Critical patent/EP1376506B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a smoke simulation body with in its volume embedded scattering centers, for insertion in the measuring chamber of scattered light smoke detectors with at least a transmission LED and at least one photo receiver.
  • Such a smoke simulation body which for comparison, i.e. for setting the smoke sensitivity of scattered-light smoke detectors is used is from EP 0 658 264 B1 known and consists of silicone rubber, in the as scattering centers Aluminum oxide particles with a grain diameter of 30 to 50 ⁇ m evenly distributed are firmly enclosed.
  • the disadvantage of this is that it is not a commercially available but one specifically for the intended purpose material to be produced is also initially in is in liquid form and therefore poured into a mold and has to be hardened, whereby the dimensional accuracy of the Simulation body can suffer. It also comes through Circular segment-like geometry of the simulation body to the Interfering reflections of the incident radiation influencing the adjustment value Radiation inside or at outer interfaces of the simulation body.
  • scattered light detectors that detect the forward scattered radiation evaluate and those that are both reverse and also evaluate the forward scatter radiation.
  • a scattered light detector is the well-known simulation body on the one hand because of its geometric shape, on the other hand and unsuitable mainly because of the size of its scattering centers.
  • these generate one by up to two orders of magnitude greater forward scatter radiation.
  • the invention has for its object a smoke simulation body to create the genus specified in the introduction, for the comparison of all types of scattered light smoke detectors is usable, i.e. those that have the forward scatter radiation evaluate those that have the backscatter radiation evaluate and especially those that have both scattered radiation directions evaluate.
  • This task is the case of a smoke simulation body initially specified type solved according to the invention by that the simulation body is a straight prismatoid, whose central axis is perpendicular to that of the main beam axes the transmitter LED and the photo receiver Level runs and that from an essentially transparent Plastic with a scattering power ⁇ between approximately 0.05 and 0.1.
  • L 20 ° , L 70 ° and L 5 ° are the intensities of the scattered light measured at the specified angles.
  • the transparent material preferably has a backward scattering capacity of a return between approximately 0.05 and approximately 0.01 (claim 2).
  • the transparent material can in particular be polymethyl methacrylate be (claim 3).
  • polycarbonate is also available as a transparent material into consideration (claim 4).
  • the light entry and the light emission surfaces of the prismatoid are rectangular to the respective main beam axes of the transmit LED (s) or of the photo receiver (s) are (claim 7). So you can all side surfaces of the prismatoid are plane surfaces.
  • the dimensions of the prismatoid it is recommended to measure the dimensions of the prismatoid to choose that by cutting the spatial beam angle the transmission LED (s) with the spatial reception angle of the photo receiver (s) defined, approximately spherical measuring volume completely inside the Prismatoids located (claim 8).
  • This regulation concerns especially that corresponding to the length of its central axis Height of the prismatoid, which is determined by the height of the Detector is limited. If necessary, by selecting send LEDs and photo receivers with appropriately bundled Beam or receiving club to ensure that the spherical measuring volume has a diameter that is smaller than the height of the simulation body, so the measurement volume the upper and lower large areas of the prismatoid not touched.
  • Suitable materials for the prismatoid are usually in the form of plates whose thickness is less than that height of the prismatoid required for the aforementioned reasons is.
  • the prismatoid can then be glued together from two Plates exist (claim 11).
  • the plates are parallel to that of the main beam axes of the transmit LED and the Photo receiver arranged spanned level.
  • Another measure to minimize interference reflections consists in the lower and the upper large area of the prismatoid each to arrange an absorbent cover plate (Claim 12).
  • this is for the absorption of towards the lower and upper large surface of the prismatoid scattered radiation better than the coating of these surfaces only with absorbent varnish and offers on the other hand the possibility of choosing the right thickness especially the lower cover plate to ensure that the center of the measurement volume of the fit in the detector used simulation body in the of the main beam axes the transmitter LED and the photo receiver Level lies.
  • the plates i.e. those from which the primatoid possibly exists and the cover plates, using a two-component polymerization adhesive to glue (claim 14).
  • the scattered light smoke detector shown in Fig. 1 comprises a base plate 1, under which the not of interest here known addressing, measuring and evaluation electronics located.
  • a first transmission LED 2 with the Main beam direction A On the base plate 1 are a first transmission LED 2 with the Main beam direction A, a second transmitter LED 3 with the Main beam direction B and a photo receiver 4 with the Main beam axis C arranged.
  • the main beam axes A, B and C intersect approximately at a point D which is the center of the spherical Measurement volume is.
  • This measurement volume is from the outside for the entry of smoke accessible.
  • the transmission LED 2 shines in pulses into the measuring volume.
  • the photo receiver 4 measures the radiation coming from smoke particles in the forward direction under e.g. Is scattered 40 °.
  • the photo receiver also measures 4 compared to that of the transmission LED 3 with a time delay of the transmit LED 2 are pulsed into the measurement volume Radiation that part of the smoke particles in Reverse direction, i.e. at an angle of approx. 110 °, is scattered.
  • the photo receiver sit and the photo receiver in tubes 2a, 3a and 4a.
  • the base plate 1 bodies 5, 6 and 7 profiled as light traps. These serve as positioning aids for a smoke simulation body 10, for testing and, if necessary, for comparison the sensitivity of the detector and its manufacture is used.
  • the detector shown only as an example works with two transmit LEDs, which delay infrared pulses into the Radiate measuring volume.
  • This solution requires fewer components and less space for electronics than that too possible version with only one transmit LED and two Photo receivers, on the other hand, has the advantage that the Forward scatter and backward scatter exactly at the same time can be measured and evaluated.
  • the simulation body 10 the shape of a straight prismatoid with the Light entry surfaces 11 and 12 and the light exit surface 13.
  • the opposite of these surfaces Side surfaces 21, 22 and 23 and the remaining side surfaces 24 and 25 are with one in this illustration dashed, light-absorbing, black Lacquer 30 coated.
  • the light entry and exit areas opposing compartments are parallel to the former, causing interference reflections of the radiated radiation minimized on the surfaces mentioned and in particular interference reflections largely in the direction of the light exit surface 13 be suppressed.
  • the actual simulation body consists of two plates 14, 15 glued together. They are made of an essentially transparent polymethyl methacrylate with a light scattering power ⁇ and ⁇ back of approximately 0.08 each. These are extremely small values that are normally not used technically.
  • the two plates 14, 15 are by means of a two-component polymerization adhesive glued together. This one has about the same refractive index as the plates themselves. Use the same adhesive to apply to the bottom and the bottom upper large area of the simulation body light-absorbing Cover plates 16 and 17 glued on, which have the same refractive index like the plates 14 and 15 have.
  • Fig. 4 shows the layered structure of the complete Smoke simulation body.
  • Transmitter LED 3 shows, for example, in an enlarged representation Transmitter LED 3 in connection with a modified embodiment of the simulation body in the form of a cutout from the side surface 12.
  • the view can be used as a top view can also be viewed as a side view.
  • these and all other side surfaces are plane surfaces that thus except in the intersection point E of the main beam axis B of the transmit LED 3 interference reflections at the interface between the air and the material of the simulation body, is the light entry surface in this embodiment 12a spherically curved so that it approximates that Course of the approximately spherical wavefront of the von the transmit LED 3 emits infrared light, so that from an idealized point of view also the secondary beam axes, such as. B1, at right angles to the corresponding one Impact partial area of the light entry surface 12a, whereby reflected and / or diffracted in different directions Interference radiation is further minimized.

Abstract

The smoke simulation body for adjustment of scatter-light smoke detectors is a straight prismatic body whose central axis is oriented perpendicular to the principal radiation axes of the sender LED and the photo-receiver. It is made of a substantially transparent material with a scatter capability between 0.01 and 0.1.

Description

Die Erfindung betrifft einen Rauchsimulationskörper mit in dessen Volumen eingebetteten Streuzentren, zum Einsetzen in die Messkammer von Streulichtrauchmeldern mit mindestens einer Sende-LED und mindestens einem Fotoempfänger.The invention relates to a smoke simulation body with in its volume embedded scattering centers, for insertion in the measuring chamber of scattered light smoke detectors with at least a transmission LED and at least one photo receiver.

Ein derartiger Rauchsimulationskörper, der zum Abgleichen, d.h. zur Einstellung der Rauchempfindlichkeit von Streulichtrauchmeldern benutzt wird, ist aus der EP 0 658 264 B1 bekannt und besteht aus Silikonkautschuk, in den als Streuzentren Aluminiumoxydpartikel mit einem Korndurchmesser von 30 bis 50 µm gleichmäßig verteilt fest eingeschlossen sind. Daran ist nachteilig, dass es sich nicht um ein handelsübliches sondern ein für den vorgesehenen Zweck eigens herzustellendes Material handelt, das zudem zunächst in flüssiger Form vorliegt und deshalb in eine Form gegossen und ausgehärtet werden muss, wodurch die Maßhaltigkeit des Simulationskörpers leiden kann. Außerdem kommt es durch die kreissegmentartige Geometrie des Simulationskörpers zu den Abgleichwert beeinflussenden Störreflexionen der eingestrahlten Strahlung im Inneren bzw. an äußeren Grenzflächen des Simulationskörpers. Vor allem hat sich gezeigt, dass der bekannte Simulationskörper nur zum Abgleich von solchen Rauchmeldern geeignet ist, die auf dem Prinzip der Rückwärtsstreuung beruhen. Damit ist gemeint, dass von der Strahlung, die die Sende-LED in das Messvolumen abgibt, nur derjenige Teil gemessen wird, der an den Rauchpartikeln unter einem Winkel von mehr als 90° zur Hauptstrahlachse der Sende-LED gestreut wird. Die Rauchdichte wird anhand der Intensität dieser Rückwärtsstreustrahlung bestimmt, die mittels eines Fotoempfängers gemessen wird, der in der Regel aus einer Fotodiode oder einem Fototransistor besteht.Such a smoke simulation body, which for comparison, i.e. for setting the smoke sensitivity of scattered-light smoke detectors is used is from EP 0 658 264 B1 known and consists of silicone rubber, in the as scattering centers Aluminum oxide particles with a grain diameter of 30 to 50 µm evenly distributed are firmly enclosed. The disadvantage of this is that it is not a commercially available but one specifically for the intended purpose material to be produced is also initially in is in liquid form and therefore poured into a mold and has to be hardened, whereby the dimensional accuracy of the Simulation body can suffer. It also comes through Circular segment-like geometry of the simulation body to the Interfering reflections of the incident radiation influencing the adjustment value Radiation inside or at outer interfaces of the simulation body. Above all, it has been shown that the known simulation body only for comparison of such Smoke detectors based on the principle of Back scatter. This means that the Radiation, which the transmitter LED emits into the measuring volume, only the part is measured that is on the smoke particles at an angle of more than 90 ° to the main beam axis the transmit LED is scattered. The smoke density is based on the intensity of this backscattered radiation determines that is measured by means of a photo receiver which is in the Usually consists of a photodiode or a phototransistor.

Es gibt jedoch auch Streulichtmelder, die die Vorwärtsstreustrahlung auswerten und solche, die sowohl die Rückwärtsals auch die Vorwärtsstreustrahlung auswerten. Zur Eichung solcher Streulichtmelder ist der bekannte Simulationskörper einerseits wegen seiner geometrischen Form, andererseits und vor allem wegen der Größe seiner Streuzentren ungeeignet. Diese erzeugen nämlich neben der sehr schwachen Rückwärtsstreustrahlung eine um bis zu zwei Größenordnungen größere Vorwärtsstreustrahlung. Unter Berücksichtigung der in Streulichtmeldern üblicherweise erzeugten Lichtintensitäten kommt daher der bekannte Simulationskörper für die Eichung von nur die Vorwärtsstreustrahlung messenden Meldern nicht in Betracht, weil der Simulationskörper so ausgelegt ist, dass er die zur Eichung erforderliche Rückwärtsstreustrahlung mit einer definierten, innerhalb des Empfindlichkeitsbereiches des betreffenden Fotoempfängers liegenden Intensität erzeugt, so dass die Vorwärtsstreustrahlung eine Intensität hat, bei der der entsprechende Fotoempfänger sich bereits.in der Sättigung befindet. Deshalb müsste zur Eichung von die Vorwärtsstreustrahlung messenden Meldern ein anderer Simulationskörper aus einem im Stand der Technik allerdings nicht bekannten Material verwendet werden, das eine entsprechend geringere, mit der Empfindlichkeit des betreffenden Fotoempfängers verträgliche Streustrahlung erzeugt. Zum Abgleichen von Meldern, die sowohl die Vorwärtsstreustrahlung als auch die Rückwärtsstreustrahlung auswerten, müsste zunächst dieser hypothetische Simulationskörper in die Messkammer eingesetzt werden, um die Empfindlichkeit des Melders in Vorwärtsstreurichtung einzustellen und in einem zweiten Schritt müsste der bekannte Simulationskörper in die Messkammer eingesetzt werden, um die Empfindlichkeit in Rückwärtsstreurichtung einzustellen.However, there are also scattered light detectors that detect the forward scattered radiation evaluate and those that are both reverse and also evaluate the forward scatter radiation. For verification such a scattered light detector is the well-known simulation body on the one hand because of its geometric shape, on the other hand and unsuitable mainly because of the size of its scattering centers. In addition to the very weak backscatter radiation, these generate one by up to two orders of magnitude greater forward scatter radiation. Under consideration of Light intensities usually generated in scattered light detectors therefore comes the well-known simulation body for the Calibration of detectors measuring only forward scatter radiation not considered because the simulation body is designed in this way is that it has the backscatter radiation required for calibration with a defined, within the Sensitivity range of the relevant photo receiver lying intensity generated so that the forward scatter radiation has an intensity at which the corresponding Photo receiver is already in saturation. Therefore would need to calibrate the forward scatter radiation measuring detectors another simulation body from one material not known in the prior art be used, the correspondingly lower, with the Sensitivity of the relevant photo receiver Scattered radiation generated. For matching detectors, which are both the forward scatter and the back scatter would first have to evaluate this hypothetical Simulation body inserted in the measuring chamber the sensitivity of the detector in the forward scattering direction adjust and in a second step the known simulation body would have to go into the measuring chamber be used to adjust the sensitivity in the backscatter direction adjust.

Mangels eines brauchbaren Simulationskörpers werden deshalb Melder, die die Rückwärts- und die Vorwärtsstreustrahlung oder nur die Vorwärtsstreustrahlung auswerten, im Rauchkanal abgeglichen. Dieses Abgleichverfahren ist zwar sehr zuverlässig, weil anders als bei dem bekannten Rauchsimulationskörper der mittlere Durchmesser der im Rauchkanal erzeugten Aerosole mit ca. 1 µm etwa dem mittleren Durchmesser von Brandaerosolen entspricht, deren tatsächlicher Durchmesser von etwa 100 nm bis zu einigen µm reicht. Wie allgemein bekannt, ist jedoch der Abgleich im Rauchkanal außerordentlich zeitraubend und damit gewissermaßen das Nadelör bei der Serienfertigung von Streulichtrauchmeldern.Therefore a lack of a usable simulation body Detector, the back and forward scatter radiation or only evaluate the forward scatter radiation in the smoke duct adjusted. This comparison procedure is very much reliable because different from the well-known smoke simulation body the average diameter in the smoke channel generated aerosols with about 1 µm about the average diameter of fire aerosols corresponds to their actual Diameter ranges from about 100 nm to a few µm. How Commonly known, however, is the adjustment in the smoke channel extraordinarily time consuming and so to speak Needle in the series production of scattered light smoke detectors.

Der Erfindung liegt die Aufgabe zugrunde, einen Rauchsimulationskörper der einleitend angegebenen Gattung zu schaffen, der zum Abgleich aller Arten von Streulichtrauchmeldern verwendbar ist, d.h. solchen, die die Vorwärtsstreustrahlung auswerten, solchen, die die Rückwärtsstreustrahlung auswerten und vor allem auch solchen, die beide Streustrahlungsrichtungen auswerten.The invention has for its object a smoke simulation body to create the genus specified in the introduction, for the comparison of all types of scattered light smoke detectors is usable, i.e. those that have the forward scatter radiation evaluate those that have the backscatter radiation evaluate and especially those that have both scattered radiation directions evaluate.

Diese Aufgabe ist bei einem Rauchsimulationskörper der einleitend angegebenen Art erfindungsgemäß dadurch gelöst, dass der Simulationskörper ein gerades Prismatoid ist, dessen Mittelachse rechtwinklig zu der von den Hauptstrahlachsen der Sende-LED und des Fotoempfängers aufgespannten Ebene verläuft und das aus einem im Wesentlichen transparenten Kunststoff mit einem Streuvermögen σ zwischen etwa 0,05 und 0,1 besteht.This task is the case of a smoke simulation body initially specified type solved according to the invention by that the simulation body is a straight prismatoid, whose central axis is perpendicular to that of the main beam axes the transmitter LED and the photo receiver Level runs and that from an essentially transparent Plastic with a scattering power σ between approximately 0.05 and 0.1.

Hierin ist das streuvermögen σ eine dimensionslose Zahl, die gemäß DIN 5036 wie folgt definiert ist: σ = L20° + L70° 2 · L Herein the scattering power σ is a dimensionless number, which is defined according to DIN 5036 as follows: σ = L 20 ° + L 70 ° 2 · L 5 °

Hierin sind L20°, L70° und L die unter den angegebenen Winkeln gemessenen Intensitäten des gestreuten Lichts.Here L 20 ° , L 70 ° and L 5 ° are the intensities of the scattered light measured at the specified angles.

Vorzugsweise hat das transparente Material ein Rückwärtsstreuvermögen von a rück zwischen ca. 0,05 und ca. 0,01 (Anspruch 2).The transparent material preferably has a backward scattering capacity of a return between approximately 0.05 and approximately 0.01 (claim 2).

Analog dem (Vorwärts-)streuvermögen σ ist hierin das Rückwärtsstreuvermögen wie folgt definiert: σrück = L160° + L110° 2 · L Analogous to the (forward) scattering capacity σ, the backward scattering capacity is defined as follows: σ reset = L 160 ° + L 110 ° 2 · L 5 °

Das transparente Material kann insbesondere Polymethylmetacrylat sein (Anspruch 3).The transparent material can in particular be polymethyl methacrylate be (claim 3).

Alternativ kommt als transparentes Material auch Polycarbonat in Betracht (Anspruch 4).Alternatively, polycarbonate is also available as a transparent material into consideration (claim 4).

Ein geeignetes Material, bei dem die Streuzentren aus Farbstoffpartikeln mit einem Durchmesser von weniger als 10µm bestehen, ist beispielsweise unter der Handelsbezeichnung "Plexiglas GS GRÜN 777" von der Firma Röhm erhältlich.A suitable material in which the scattering centers consist of dye particles with a diameter of less than 10µm exist, for example, is under the trade name "Plexiglas GS GRÜN 777" available from Röhm.

Wie diesseits festgestellt wurde, liefert ein Material mit dem angegebenen Streuvermögen in Rückwärtsstreurichtung ein hinreichend starkes Signal, ohne dass dabei das Signal in Vorwärtsstreurichtung so stark ist, dass der entsprechende Fotoempfänger in die Sättigung geht, vorausgesetzt, dass die Geometrie des Simulationskörpers Bedingungen genügt, die Verfälschungen der gemessenen Intensitäten der Streusignale durch Störreflexionen der von der Sende-LED eingestrahlten Strahlung an Grenzflächen des Simulationskörpers minimieren.As stated on this page, a material is included the specified spreading capacity in the backward scattering direction sufficiently strong signal without the signal in Forward scattering direction is so strong that the corresponding Photo receivers go into saturation, provided that the geometry of the simulation body meets conditions, the falsifications of the measured intensities of the scatter signals due to interfering reflections of those emitted by the transmitter LED Radiation at interfaces of the simulation body minimize.

Zur Minimierung solcher Störreflexionen trägt es bei, wenn die der (mindestens einen) Sende-LED zugewandte Lichteintrittsfläche des Prismatoids zumindest im Durchstoßpunkt der Hauptstrahlachse der Sende-LED rechtwinklig zu dieser Hauptstrahlachse ist und die dem (mindestens einen) Fotoempfänger zugewandte Lichtaustrittsfläche zumindest im Durchstoßpunkt der Hauptstrahlachse des Fotoempfängers rechtwinklig zu dieser Hauptstrahlachse ist (Anspruch 5).It helps to minimize such interference reflections if the light entry surface facing the (at least one) transmitter LED of the prismatoid at least at the point of penetration the main beam axis of the transmit LED perpendicular to this The main beam axis is and that of the (at least one) photo receiver facing light exit surface at least in Penetration point of the main beam axis of the photoreceiver is perpendicular to this main beam axis (claim 5).

Unter Berücksichtigung dessen, dass sowohl die von der Sende-LED abgegebene Strahlung als auch die von den Streuzentren ausgehende Strahlung sphärisch gekrümmte Wellenfronten haben, sind idealerweise die Lichteintrittsfläche(n) und/oder die Lichtaustrittsfläche(n) in entsprechender Weise so sphärisch gekrümmt, dass alle Flächenelemente rechtwinklig zu den entsprechenden Nebenstrahlrichtungen sind (Anspruch 6). Das gelingt zwar nur näherungsweise, minimiert aber die an den betreffenden Flächen auftretenden Beugungserscheinungen.Taking into account that both those of the Send LED emitted radiation as well as that from the scattering centers outgoing radiation spherically curved wave fronts ideally are the light entry surface (s) and / or the light exit surface (s) in a corresponding manner Way so spherically curved that all surface elements at right angles to the corresponding secondary beam directions are (claim 6). This only works approximately, but minimizes those occurring on the areas in question Diffraction phenomena.

Fertigungstechnisch- einfacher und für den Abgleich in der Regel ausreichend ist es jedoch, wenn die Lichteintrittsund die Lichtaustriffsflächen des Prismatoids rechtwinklig zu den jeweiligen Hauptstrahlachsen der Sende-LED(s) bzw. des/der Fotoempfänger(s) sind (Anspruch 7). Mithin können alle Seitenflächen des Prismatoids Planflächen sein.Manufacturing technology - easier and for comparison in the However, it is usually sufficient if the light entry and the light emission surfaces of the prismatoid are rectangular to the respective main beam axes of the transmit LED (s) or of the photo receiver (s) are (claim 7). So you can all side surfaces of the prismatoid are plane surfaces.

Ebenfalls zur Vermeidung von Störreflexionen an Grenzflächen empfiehlt es sich, die Abmessungen des Prismatoids so zu wählen, dass das durch den Schnitt des räumlichen Abstrahlwinkels der Sende-LED(s) mit dem räumlichen Empfangswinkel des/der Fotoempfänger(s) definierte, näherungsweise kugelförmige Messvolumen sich vollständig im Inneren des Prismatoids befindet (Anspruch 8). Diese Vorschrift betrifft insbesondere die der Länge seiner Mittelachse entsprechende Höhe des Prismatoids, die durch die Bauhöhe des Melders begrenzt ist. Nötigenfalls ist durch Wahl von Sende-LEDs und Fotoempfängern mit entsprechend gebündelter Abstrahl- bzw. Empfangskeule dafür zu sorgen, dass das kugelförmige Messvolumen einen Durchmesser hat, der kleiner als die Höhe des Simulationskörpers ist, so dass das Messvolumen die obere und die untere Großfläche des Prismatoids nicht berührt.Also to avoid interference reflections at interfaces it is recommended to measure the dimensions of the prismatoid to choose that by cutting the spatial beam angle the transmission LED (s) with the spatial reception angle of the photo receiver (s) defined, approximately spherical measuring volume completely inside the Prismatoids located (claim 8). This regulation concerns especially that corresponding to the length of its central axis Height of the prismatoid, which is determined by the height of the Detector is limited. If necessary, by selecting send LEDs and photo receivers with appropriately bundled Beam or receiving club to ensure that the spherical measuring volume has a diameter that is smaller than the height of the simulation body, so the measurement volume the upper and lower large areas of the prismatoid not touched.

Eine weitere, vorteilhafte Maßnahme zur Minimierung von Störreflexionen besteht darin, dass mit Ausnahme der Lichteintritts- und der Lichtaustrittsflächen zumindest alle Seitenflächen mit absorbierendem Lack beschichtet sind (Anspruch 9).Another advantageous measure to minimize Disturbing reflections consist in the fact that, with the exception of the light and at least all of the light exit surfaces Side surfaces are coated with absorbent paint (Claim 9).

Bewährt hat sich hierfür ein Acryllack auf Wasserbasis (Anspruch 10).A water-based acrylic paint has proven itself for this (Claim 10).

Für das Prismatoid geeignete Werkstoffe liegen normalerweise in Form von Platten vor, deren Dicke geringer als die aus den vorgenannten Gründen benötigte Höhe des Prismatoids ist. Das Prismatoid kann dann aus zwei miteinander verklebten Platten bestehen (Anspruch 11). Die Platten sind parallel zu der von den Hauptstrahlachsen der Sende-LED und des Fotoempfängers aufgespannten Ebene angeordnet.Suitable materials for the prismatoid are usually in the form of plates whose thickness is less than that height of the prismatoid required for the aforementioned reasons is. The prismatoid can then be glued together from two Plates exist (claim 11). The plates are parallel to that of the main beam axes of the transmit LED and the Photo receiver arranged spanned level.

Eine weitere Maßnahme zur Minimierung von Störreflexionen besteht darin, auf der unteren und der oberen Großfläche des Prismatoids je eine absorbierende Abdeckplatte anzuordnen (Anspruch 12). Dies ist einerseits zur Absorption von in Richtung der unteren und der oberen Großfläche des Prismatoids gestreuter Strahlung besser als die Beschichtung dieser Flächen nur mit absorbierendem Lack und bietet andererseits die Möglichkeit, durch passende Wahl der Dicke insbesondere der unteren Abdeckplatte sicherzustellen, dass der Mittelpunkt des Messvolumens des in den Melder passgenau eingesetzten Simulationskörpers in der von den Hauptstrahlachsen der Sende-LED und des Fotoempfängers aufgespannten Ebene liegt.Another measure to minimize interference reflections consists in the lower and the upper large area of the prismatoid each to arrange an absorbent cover plate (Claim 12). On the one hand, this is for the absorption of towards the lower and upper large surface of the prismatoid scattered radiation better than the coating of these surfaces only with absorbent varnish and offers on the other hand the possibility of choosing the right thickness especially the lower cover plate to ensure that the center of the measurement volume of the fit in the detector used simulation body in the of the main beam axes the transmitter LED and the photo receiver Level lies.

Die beste Absorbtionswirkung wird erreicht, wenn das Material der Abdeckplatten den gleichen Brechungsindex wie das Material des Prismatoids hat (Anspruch 13).The best absorption effect is achieved when the material the cover plates have the same refractive index as that Has material of the prismatoid (claim 13).

Bewährt hat sich, die Platten, d.h. diejenigen, aus denen das Primatoid gegebenenfalls besteht und die Abdeckplatten, mittels eines Zweikomponenten-Polymerisationsklebers miteinander zu verkleben (Anspruch 14).The plates, i.e. those from which the primatoid possibly exists and the cover plates, using a two-component polymerization adhesive to glue (claim 14).

Ein Ausführungsbeispiel eines Rauchsimulationskörpers nach der Erfindung ist in der Zeichnung dargestellt. Es zeigt:

Fig. 1
eine vereinfachte Aufsicht auf einen geöffneten Streulichtrauchmelder mit zum Zweck dessen Abgleichs eingesetztem Simulationskörper,
Fig. 2
eine Aufsicht auf den Simulationskörper,
Fig. 3
einen Schnitt längs der Linie III-III in Fig. 2,
Fig. 4
eine perspektivische Darstellung des Simulationskörpers und
Fig. 5
eine stark schematisierte Teilansicht einer anderen Ausführungsform des Simulationskörpers.
An embodiment of a smoke simulation body according to the invention is shown in the drawing. It shows:
Fig. 1
a simplified supervision of an open scattered light smoke detector with a simulation body used for the purpose of its comparison,
Fig. 2
a supervision of the simulation body,
Fig. 3
3 shows a section along the line III-III in FIG. 2,
Fig. 4
a perspective view of the simulation body and
Fig. 5
a highly schematic partial view of another embodiment of the simulation body.

Der in Fig. 1 dargestellte Streulichtrauchmelder umfaßt eine Grundplatte 1, unter der sich die hier nicht interessierende, an sich bekannte Adressier-, Mess- und Auswerteelektronik befindet.The scattered light smoke detector shown in Fig. 1 comprises a base plate 1, under which the not of interest here known addressing, measuring and evaluation electronics located.

Auf der Grundplatte 1 sind eine erste Sende-LED 2 mit der Hauptstrahlrichtung A, eine zweite Sende-LED 3 mit der Hauptstrahlrichtung B und ein Fotoempfänger 4 mit der Hauptstrahlachse C angeordnet.On the base plate 1 are a first transmission LED 2 with the Main beam direction A, a second transmitter LED 3 with the Main beam direction B and a photo receiver 4 with the Main beam axis C arranged.

Die Hauptstrahlachsen A, B und C schneiden sich näherungsweise in einem Punkt D, der der Mittelpunkt des kugelförmigen Messvolumens ist. Dieses Messvolumen ist von außen für den Eintritt von Rauch zugänglich. Die Sende-LED 2 strahlt impulsweise in das Messvolumen. Der Fotoempfänger 4 misst die Strahlung, die an Rauchpartikeln in Vorwärtsrichtung unter z.B. 40° gestreut wird. Außerdem misst der Fotoempfänger 4 von der von der Sende-LED 3 zeitversetzt gegenüber der Sende-LED 2 impulsweise in das Messvolumen eingestrahlten Strahlung denjenigen Teil, der an den Rauchpartikeln in Rückwärtsrichtung, d.h. unter einem Winkel von ca. 110°, gestreut wird. Um eine direkte Beleuchtung des Fotoempfängers durch die Sende-LEDs zu vermeiden, sitzen letztere und der Fotoempänger jeweils in Tuben 2a, 3a und 4a. Zur Vermeidung einer Beleuchtung des Fotoempfängers mit an Gehäuseteilen reflektierter Strahlung sind auf der Grundplatte 1 als Lichfallen profilierte Körper 5, 6 und 7 angeordnet. Diese dienen als Positionierhilfen für einen Rauchsimulationskörper 10, der zur Prüfung und gegebenenfalls zum Abgleich der Empfindlichkeit des Melders noch dessen Fertigung benutzt wird.The main beam axes A, B and C intersect approximately at a point D which is the center of the spherical Measurement volume is. This measurement volume is from the outside for the entry of smoke accessible. The transmission LED 2 shines in pulses into the measuring volume. The photo receiver 4 measures the radiation coming from smoke particles in the forward direction under e.g. Is scattered 40 °. The photo receiver also measures 4 compared to that of the transmission LED 3 with a time delay of the transmit LED 2 are pulsed into the measurement volume Radiation that part of the smoke particles in Reverse direction, i.e. at an angle of approx. 110 °, is scattered. For direct lighting of the photo receiver by avoiding the transmit LEDs, the latter sit and the photo receiver in tubes 2a, 3a and 4a. To avoid Illumination of the photo receiver with on housing parts reflected radiation are on the base plate 1 bodies 5, 6 and 7 profiled as light traps. These serve as positioning aids for a smoke simulation body 10, for testing and, if necessary, for comparison the sensitivity of the detector and its manufacture is used.

Der nur beispielshalber dargestellte Melder arbeitet mit zwei Sende-LEDs, die zeitversetzt Infrarotimpulse in das Messvolumen abstrahlen. Diese Lösung benötigt weniger Bauteile und weniger Platz für die Elektronik als die ebenfalls mögliche Ausführung mit nur einer Sende-LED und zwei Fotoempfängern, die andererseits den Vorteil hat, dass die Vorwärtsstreuung und die Rückwärtsstreuung exakt gleichzeitig gemessen und ausgewertet werden können.The detector shown only as an example works with two transmit LEDs, which delay infrared pulses into the Radiate measuring volume. This solution requires fewer components and less space for electronics than that too possible version with only one transmit LED and two Photo receivers, on the other hand, has the advantage that the Forward scatter and backward scatter exactly at the same time can be measured and evaluated.

Gemäß der Aufsichtdarstellung in Fig. 2 hat der Simulationskörper 10 die Form eines geraden Prismatoids mit den Lichteintrittflächen 11 und 12 sowie der Lichtaustrittsfläche 13. Die diesen Flächen jeweils gegenüberliegenden Seitenflächen 21, 22 und 23 sowie die verbleibenden Seitenflächen 24 und 25 sind mit einem in dieser Darstellung gestrichelt angedeuteten, lichtabsorbierenden, schwarzen Lack 30 überzogen. Die den Lichteintritts- bzw. -austrittsflächen gegenüberliegenden Fächen sind zu ersteren parallel, wodurch Störreflexionen der eingestrahlten Strahlung an den genannten Flächen minimiert und insbesondere Störreflexionen in Richtung der Lichtaustrittsfläche 13 weitgehend unterdrückt werden.According to the top view in FIG. 2, the simulation body 10 the shape of a straight prismatoid with the Light entry surfaces 11 and 12 and the light exit surface 13. The opposite of these surfaces Side surfaces 21, 22 and 23 and the remaining side surfaces 24 and 25 are with one in this illustration dashed, light-absorbing, black Lacquer 30 coated. The light entry and exit areas opposing compartments are parallel to the former, causing interference reflections of the radiated radiation minimized on the surfaces mentioned and in particular interference reflections largely in the direction of the light exit surface 13 be suppressed.

Wie Fig. 3 zeigt, besteht der eigentliche Simulationskörper aus zwei miteinander verklebten Platten 14, 15. Sie sind aus einem im Wesentlichen transpartenten Polymethylmetacrylat mit einem Lichtstreuvermögen σ und σrück von jeweils etwa 0,08. Das sind außerordentlich kleine Werte, die normalerweise technisch nicht genutzt werden.As shown in FIG. 3, the actual simulation body consists of two plates 14, 15 glued together. They are made of an essentially transparent polymethyl methacrylate with a light scattering power σ and σ back of approximately 0.08 each. These are extremely small values that are normally not used technically.

Die beiden Platten 14, 15 sind mittels eines Zweikomponenten-Polymerisationsklebers miteinander verklebt. Dieser hat etwa den gleichen Brechungsindex wie die Platten selbst. Mittels des gleichen Klebers sind auf die untere und die obere-Großfläche des Simulationskörpers lichtabsorbierende Abdeckplatten 16 und 17 aufgeklebt, die den gleichen Brechungsindex wie die Platten 14 und 15 haben.The two plates 14, 15 are by means of a two-component polymerization adhesive glued together. This one has about the same refractive index as the plates themselves. Use the same adhesive to apply to the bottom and the bottom upper large area of the simulation body light-absorbing Cover plates 16 and 17 glued on, which have the same refractive index like the plates 14 and 15 have.

Fig. 4 zeigt den geschichteten Aufbau des vollständigen Rauchsimulationskörpers.Fig. 4 shows the layered structure of the complete Smoke simulation body.

Fig. 5 zeigt in vergrößerter Darstellung beispielsweise die Sende-LED 3 in Verbindung mit einer abgewandelten Ausführungsform des Simulationskörpers in Form eines Ausschnittes aus der Seitenfläche 12. Die Ansicht kann sowohl als Aufsicht als auch als Seitenansicht betrachtet werden.5 shows, for example, in an enlarged representation Transmitter LED 3 in connection with a modified embodiment of the simulation body in the form of a cutout from the side surface 12. The view can be used as a top view can also be viewed as a side view.

Während bei der Ausführungsform nach den Figuren 1 bis 4 diese und alle anderen Seitenflächen Planflächen sind, die somit ausgenommen im Durchstoßpunkt E der Hauptstrahlachse B der Sende-LED 3 Störreflexionen an der Grenzfläche zwischen der Luft und dem Material des Simulationskörpers erzeugen, ist bei dieser Ausführungsform die Lichteintrittsflache 12a sphärisch so gekrümmt, dass sie annähernd dem Verlauf der näherungsweise sphärischen Wellenfront des von der Sende-LED 3 abgestrahlten Infrarotlichts folgt, so dass in idealisierter Betrachtungsweise auch die Nebenstrahlachsen, wie z.B. B1, im rechten Winkel auf die entsprechende Teilfläche der Lichteintrittsfläche 12a auftreffen, wodurch in unterschiedlichen Richtungen reflektierte und/oder gebeugte Störstrahlung weiter minimiert wird.While in the embodiment according to FIGS. 1 to 4 these and all other side surfaces are plane surfaces that thus except in the intersection point E of the main beam axis B of the transmit LED 3 interference reflections at the interface between the air and the material of the simulation body, is the light entry surface in this embodiment 12a spherically curved so that it approximates that Course of the approximately spherical wavefront of the von the transmit LED 3 emits infrared light, so that from an idealized point of view also the secondary beam axes, such as. B1, at right angles to the corresponding one Impact partial area of the light entry surface 12a, whereby reflected and / or diffracted in different directions Interference radiation is further minimized.

Claims (14)

Rauchsimulationskörper mit in dessen Volumen eingebetteten Streuzentren, zum Einsetzen in die Messkammer von Streulichtrauchmeldern mit mindestens einer Sende-LED (2, 3) und mindestens einem Fotoempfänger (4), dadurch gekennzeichnet, dass der Simulationskörper ein gerades Prismatoid (10) ist, dessen Mittelachse recht-winklig zu der von den Hauptstrahlachsen (A, B, C) der Sende-LED (2, 3) und des Fotoempfängers (4) aufgespannten Ebene verläuft und das aus einem im Wesentlichen transparenten Material mit einem Streuvermögen σ zwischen 0,05 und 0,1 besteht.Smoke simulation body with scatter centers embedded in its volume, for insertion into the measuring chamber of scattered light smoke detectors with at least one transmitter LED (2, 3) and at least one photo receiver (4), characterized in that the simulation body is a straight prismatoid (10), the central axis of which runs at right angles to the plane spanned by the main beam axes (A, B, C) of the transmitter LED (2, 3) and the photo receiver (4) and is made of an essentially transparent material with a scattering power σ between 0.05 and 0.1 exists. Simulationskörper nach Anspruch 1, dadurch gekennzeichnet, dass das transparente Material ein Rückwärtsstreuvermögen von σrück zwischen ca. 0,05 und ca. 0,1 hat.Simulation body according to claim 1, characterized in that the transparent material has a backward scattering power of σ back between about 0.05 and about 0.1. Simulationskörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das transparente Material Polymethylmetacrylat ist.Simulation body according to claim 1 or 2, characterized in that the transparent material is polymethyl methacrylate. Simulationskörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das transparente Material Polycarbonat ist.Simulation body according to claim 1 or 2, characterized in that the transparent material is polycarbonate. Simulationskörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die der (mindestens einen) Sende-LED (2, 3) zugewandte Lichteintrittsfläche (11, 12) des Prismatoids (10) zumindest im Durchstoßpunkt der Hauptstrahlachse (A, B) der Sende-LED (2, 3) recht-winklig zu dieser Hauptstrahlachse ist und dass die dem (mindestens einen) Fotoempfänger (4) zugewandte Lichtaustrittsfläche (13) zumindest im Durchstoßpunkt der Hauptstrahlachse des Fotoempfängers (4) rechtwinklig zu dieser Hauptstrahlachse ist.Simulation body according to one of Claims 1 to 4, characterized in that the light entry surface (11, 12) of the prismatoid (10) facing the (at least one) transmission LED (2, 3) at least at the point of intersection of the main beam axis (A, B) Transmitter LED (2, 3) is at right angles to this main beam axis and that the light exit surface (13) facing the (at least one) photo receiver (4) is at least at the point of penetration of the main beam axis of the photo receiver (4) at right angles to this main beam axis. Simulationskörper nach Anspruch 5, dadurch gekennzeichnet, dass die Lichteintrittsfläche(n) (12a) und/oder die Lichtaustrittsfläche(n) sphärisch gekrümmt sind.Simulation body according to claim 5, characterized in that the light entry surface (s) (12a) and / or the light exit surface (s) are spherically curved. Simulationskörper nach Anspruch 5, dadurch gekennzeichnet, dass die Lichteintritts- und die Lichtaustriffsflächen (11, 12, 13) des Prismatoids (10) recht-winklig zu den jeweiligen Hauptstrahlachsen (A, B, C) der Sende-LED(s) bzw. des/der Fotoempfänger(s) sind.Simulation body according to Claim 5, characterized in that the light entry and light exit surfaces (11, 12, 13) of the prismatoid (10) are at right angles to the respective main beam axes (A, B, C) of the transmitter LED (s) or of the photo receiver (s). Simulationskörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abmessungen des Prismatoids (10) so gewählt sind, dass das durch den Schnitt des räumlichen Abstrahlwinkels der Sende-LED(s) mit dem räumlichen Empfangswinkel des/der Fotoempfänger(s) definierte, näherungsweise kugelförmige Messvolumen sich vollständig im Inneren des Prismatoids befindet.Simulation body according to one of claims 1 to 7, characterized in that the dimensions of the prismatoid (10) are selected such that the intersection of the spatial radiation angle of the transmitter LED (s) with the spatial reception angle of the photo receiver (s) Defined, approximately spherical measuring volume is completely inside the prismatoid. Simulationskörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mit Ausnahme der Lichteintritts- und der Lichtaustrittsflächen zumindest alle Seitenflächen (21 bis 25) mit absorbierendem Lack (30) beschichtet sind.Simulation body according to one of claims 1 to 8, characterized in that, with the exception of the light entry and light exit surfaces, at least all side surfaces (21 to 25) are coated with absorbent lacquer (30). Simulationskörper nach Anspruch 9, dadurch gekennzeichnet, dass der Lack (30) ein Acryllack auf Wasserbasis ist.Simulation body according to claim 9, characterized in that the lacquer (30) is a water-based acrylic lacquer. Simulationskörpernach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Prismatoid (10) aus zwei miteinander verklebten Platten (14, 15) besteht. Simulation body according to one of claims 1 to 10, characterized in that the prismatoid (10) consists of two plates (14, 15) glued together. Simulationskörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass auf der unteren und der oberen Großfläche des Prismatoids (10) je eine absorbierende Abdeckplatte (16, 17) angeordnet ist.Simulation body according to one of claims 1 to 11, characterized in that an absorbing cover plate (16, 17) is arranged on the lower and the upper large surface of the prismatoid (10). Rauchsimulationskörper nach Anspruch 12, dadurch gekennzeichnet, dass das Material der Abdeckplatten (16, 17) den gleichen Brechungsindex wie das Material des Prismatoids (10) hat.Smoke simulation body according to claim 12, characterized in that the material of the cover plates (16, 17) has the same refractive index as the material of the prismatoid (10). Simulationskörper nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Platten (14 bis 17) mittels eines Zweikomponenten-Polymerisationsklebers miteinander verklebt sind.Simulation body according to one of claims 11 to 13, characterized in that the plates (14 to 17) are glued to one another by means of a two-component polymerization adhesive.
EP03011662A 2002-06-20 2003-05-22 Smoke simulator piece for regulating the sensitivity of scattered light smoke detectors Expired - Lifetime EP1376506B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10227614A DE10227614B4 (en) 2002-06-20 2002-06-20 Smoke simulation body for adjusting scattered light smoke detectors
DE10227614 2002-06-20

Publications (2)

Publication Number Publication Date
EP1376506A1 true EP1376506A1 (en) 2004-01-02
EP1376506B1 EP1376506B1 (en) 2006-07-05

Family

ID=29716572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03011662A Expired - Lifetime EP1376506B1 (en) 2002-06-20 2003-05-22 Smoke simulator piece for regulating the sensitivity of scattered light smoke detectors

Country Status (3)

Country Link
EP (1) EP1376506B1 (en)
AT (1) ATE332551T1 (en)
DE (2) DE10227614B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392855A1 (en) * 2017-04-19 2018-10-24 Siemens Schweiz AG Method and device for configuring a smoke detector
EP3570261A1 (en) * 2018-05-14 2019-11-20 Excelitas Canada Inc. Smoke simulator test structure device and method
WO2020123155A1 (en) * 2018-12-11 2020-06-18 Carrier Corporation Calibration of an optical detector
CN111951514A (en) * 2020-08-03 2020-11-17 深圳职业技术学院 Smog detection device based on image recognition
US11662302B2 (en) 2018-12-11 2023-05-30 Carrier Corporation Calibration of optical detector
US11879840B2 (en) 2018-12-11 2024-01-23 Carrier Corporation Calibration of an optical detector using a micro-flow chamber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144459A (en) * 1977-11-29 1979-03-13 Chloride Incorporated Smoke detector with test means for simulating a predetermined percentage of smoke
EP0660283A1 (en) * 1993-12-22 1995-06-28 Nohmi Bosai Ltd. Photoelectric type fire detector and sensitivity adjustment unit therefor
US5497144A (en) * 1993-07-07 1996-03-05 Cerberus Ag Testing and adjustment of scattered-light smoke detectors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722362B2 (en) * 1992-03-27 1998-03-04 三井金属鉱業株式会社 Method and apparatus for measuring particle or defect size information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144459A (en) * 1977-11-29 1979-03-13 Chloride Incorporated Smoke detector with test means for simulating a predetermined percentage of smoke
US5497144A (en) * 1993-07-07 1996-03-05 Cerberus Ag Testing and adjustment of scattered-light smoke detectors
EP0660283A1 (en) * 1993-12-22 1995-06-28 Nohmi Bosai Ltd. Photoelectric type fire detector and sensitivity adjustment unit therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392855A1 (en) * 2017-04-19 2018-10-24 Siemens Schweiz AG Method and device for configuring a smoke detector
CN108732072A (en) * 2017-04-19 2018-11-02 西门子公司 Method and apparatus for adjusting smoke detector
US11069226B2 (en) 2017-04-19 2021-07-20 Siemens Schweiz Ag Smoke detector methods and systems
CN108732072B (en) * 2017-04-19 2022-02-11 西门子公司 Method and apparatus for adjusting a smoke detector
EP3570261A1 (en) * 2018-05-14 2019-11-20 Excelitas Canada Inc. Smoke simulator test structure device and method
WO2020123155A1 (en) * 2018-12-11 2020-06-18 Carrier Corporation Calibration of an optical detector
US11650152B2 (en) 2018-12-11 2023-05-16 Carrier Corporation Calibration of an optical detector
US11662302B2 (en) 2018-12-11 2023-05-30 Carrier Corporation Calibration of optical detector
US11879840B2 (en) 2018-12-11 2024-01-23 Carrier Corporation Calibration of an optical detector using a micro-flow chamber
CN111951514A (en) * 2020-08-03 2020-11-17 深圳职业技术学院 Smog detection device based on image recognition

Also Published As

Publication number Publication date
ATE332551T1 (en) 2006-07-15
DE50304123D1 (en) 2006-08-17
DE10227614A1 (en) 2004-01-15
DE10227614B4 (en) 2006-04-20
EP1376506B1 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
EP0075766B1 (en) Device for the photometric measuring by reflection
EP0658264B1 (en) Smoke simulator for scattered light detectors, process for regulating their sensitivity to smoke and use of the simulator
DE10319543B4 (en) Apparatus and method for determining surface properties
DE10306008B4 (en) Apparatus for measuring the absorption dose distribution
DE102012102363A1 (en) Method and apparatus for determining the size of a transparent particle
EP1408469A2 (en) Fire detection method and fire detector for its implementation
DE202004011811U1 (en) Apparatus for the goniometric examination of optical surface properties
DE102006045285B4 (en) Device for the investigation of surface properties with indirect lighting
EP0476361B1 (en) Reflection light barrier
EP2533032A1 (en) Measuring method and device for determining transmission and/or reflection characteristics
DE3304780C2 (en)
DE102005010657A1 (en) Object detecting device
EP1376506B1 (en) Smoke simulator piece for regulating the sensitivity of scattered light smoke detectors
DE102007006405B4 (en) Reflector with a trapezoidal reflection and method for fine light scanning to detect an object
EP0821330A1 (en) Smoke detector
DE3644293C2 (en)
DD142648A5 (en) DEVICE FOR TESTING THE VOLUME OF CIGARETTE ENDS
DE3002559C2 (en) Measuring head for measuring the radiant power and the radiant energy of lasers
DE19628250B4 (en) Device for measuring characteristics of an at least partially transparent sample
EP0225895A1 (en) Integration receiving device for laser radiation
EP0821331B1 (en) Smoke detector
DE4201024A1 (en) PORTABLE SPECTRAL PHOTOMETER FOR SITU EXAMINATION OF THE ABSORPTION SPECTRUM OF A SUBSTANCE
EP2634598B1 (en) Optical sensor
DE19804684C1 (en) Optoelectronic device for object detection in surveillance zone
DE102006032404A1 (en) Apparatus and method for determining surface properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20031120

AKX Designation fees paid

Designated state(s): AT CH DE IT LI NL

17Q First examination report despatched

Effective date: 20050307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060705

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

REF Corresponds to:

Ref document number: 50304123

Country of ref document: DE

Date of ref document: 20060817

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304123

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304123

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180528

Year of fee payment: 17

Ref country code: AT

Payment date: 20180529

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 332551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200527

Year of fee payment: 18

Ref country code: NL

Payment date: 20200526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210527

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523