EP1370488A2 - Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode - Google Patents

Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode

Info

Publication number
EP1370488A2
EP1370488A2 EP02708238A EP02708238A EP1370488A2 EP 1370488 A2 EP1370488 A2 EP 1370488A2 EP 02708238 A EP02708238 A EP 02708238A EP 02708238 A EP02708238 A EP 02708238A EP 1370488 A2 EP1370488 A2 EP 1370488A2
Authority
EP
European Patent Office
Prior art keywords
layer electrode
fibers
layer
electrode according
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02708238A
Other languages
German (de)
French (fr)
Inventor
Thomas Scholz
Christoph Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1370488A2 publication Critical patent/EP1370488A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • the invention relates to a layer electrode for electrochemical components with a large number of fibers.
  • the invention relates to a capacitor with the layer electrode.
  • electrochemical double-layer capacitors are known, the electrodes of which are activated carbon cloths.
  • the known cloths consist of threads that are cross-woven. Weaving the towels is an expensive process, which makes them difficult to manufacture.
  • the known carbon sheets have the disadvantage that they have a relatively large thickness between 250 microns and 600 microns. With a fixed capacitor volume, this means that only a small number of electrode layers can be introduced into the capacitor volume. With this number of electrode layers, there is also the one available for contacting the carbon cloths with the AI conductors
  • the production of the cloths from interwoven threads has the disadvantage that the density of carbon is relatively low due to the cavities formed during the weaving, which means that the volume-related capacity of a capacitor made from the cloths is relatively low.
  • the aim of the present invention is therefore to provide layer electrodes for electrochemical components which have a rings have layer thickness and which are inexpensive to produce.
  • the invention specifies a layer electrode for electrochemical components which contains a multiplicity of fibers, all of which run at least in sections in a preferred direction next to one another and in which the fibers are connected to one another by adhesion.
  • the layer electrode according to the invention has the advantage that it is possible to dispense with the weaving of fibers or threads due to the fibers running side by side in a single preferred direction. As a result, the layer electrode according to the invention is inexpensive to produce. Since the fibers are also connected to one another by adhesion, it is no longer necessary to superimpose and interweave fibers to produce the cohesion of the elements of the layer electrode, as a result of which it is possible to use much smaller layer thicknesses for the layer electrode, namely layer thicknesses between 10 and 500 ⁇ m.
  • the fibers can be activated carbon fibers, which are present as a strand (also known as "tow”).
  • the number of layer electrodes that can be introduced into a capacitor with a given capacitor volume increases. Since the area available for contacting the layer electrode is predetermined by the area of the layer thickness, and since the totality of the contact resistances for a capacitor can be represented by a parallel connection of individual contact resistances, which each represent individual layer electrodes, the contact resistance and thus the ohmic losses of a capacitor decrease with increasing number of layer electrodes.
  • the adhesion of the fibers to one another can be created, for example, by piercing a strand of fibers from needles with barbs transverse to the fiber direction. After pulling out such needles again, some fiber sections deviate from the preferred direction and are hooked together. This creates the mechanical cohesion within the layer electrode.
  • the proportion of fibers having fiber sections deviating from the preferred direction is a maximum of 20%, so that the fiber strand differs significantly from a nonwoven, where the individual fibers have no preferred direction.
  • a number of fibers can be stranded together and thus form a yarn.
  • This embodiment of the invention has the advantage that the mechanical cohesion transverse to the preferred direction is improved in comparison to the non-stranded fibers.
  • the embodiment of the layer electrode according to the invention has the further advantage that it enables an increased material density compared to fibers that are woven together, as a result of which electrochemical double-layer capacitors produced with the layer electrode can have an increased capacitance.
  • the fibers used are preferably plastics which are converted to carbon fibers by pyrolysis (also known as carbonization) and subsequent activation of the surface.
  • the fibers can be sewn with a sewing thread either before pyrolysis and activation of the plastic raw material or only after activation. All materials that do not impair the electrical properties of the electrochemical component are suitable as materials for the sewing thread.
  • the electrochemical component is an electrochemical double-layer capacitor, polypropylene, polyethylene or Teflon, for example, are suitable as sewing thread.
  • sewing threads with a thickness between 10 ⁇ m and 50 ⁇ m are preferably used.
  • the sewing thread can consist of a single fiber or a thread.
  • the cohesion of the fibers within the layer electrode can also be promoted in that a material which promotes adhesion between the fibers is applied to the surface of the layer electrode.
  • the adhesion of the material mediating between the fibers can be introduced into the layer electrode in places.
  • the cohesion of the fibers in the layer electrode can be produced or produced by polymer additives.
  • Possible polymer additives are, for example, polyethylene, polypropylene, polyvinyl difluoride and tetrafluoropolyethylene.
  • the polymer additives are preferably added with a weight fraction between 2 and 20% based on the carbon content of the layer electrode.
  • the use of a metal as the material mediating the adhesion between the fibers has the advantage that it can simultaneously be used for contacting the layer electrode.
  • Metals such as aluminum or copper, can also be brought onto or into the layer electrode by flame spraying, arc spraying or vapor deposition. It is also possible to press a layer electrode into a foil made of softened metal, which can be caused by electrical heating, convection heat, radiant heat or also induction heat or heating with adjacent heating surfaces or
  • Heating rollers is heated.
  • Plastics which contain Cg rings can be used particularly advantageously as the raw material for the fibers. These plastics can be pyrolyzed by heating in the absence of air or in an atmosphere with a low oxygen content, so that they are almost completely in Convert carbon. This process is also known as carbonization.
  • the surface of the fibers can be activated by etching processes. The etching can be carried out by gas treatment, for example using CO2 or H2O, and also chemically or electrochemically. By activating the fibers, the surfaces of the fibers are greatly enlarged. For example, a specific surface area of 3000 m 2 / g can be generated from a specific surface area of 100 m 2 / g.
  • phenol aldehyde fibers cellulose fibers, pitch, polyvinyl alcohol and its derivatives or else polyacrylonitrile can be used as raw materials for the fibers.
  • the invention also specifies an electrochemical capacitor which contains a capacitor winding with two layer electrodes according to the invention.
  • the layer electrodes are impregnated with an ion-containing liquid and separated from one another by a separating layer.
  • the separating layer electrically isolates the layer electrodes from one another and is permeable to the ions and the liquid.
  • Each of the layer electrodes is connected to a contacting layer, which allow the layer electrodes to be electrically contacted via an external connection of the capacitor.
  • the capacitor In this case, the winding can in particular be designed as a layer stack of pairs of electrode layers lying one above the other.
  • the contacting layers can have connection lugs which are led out of the layer stack on one side and contacted with an external connection of the capacitor.
  • Figure 1 shows an example of a layer electrode according to the invention in a perspective view.
  • Figure 2 shows an example of a first embodiment of the mechanical stabilization of a layer electrode in plan view.
  • Figure 3 shows an example of a further embodiment of the mechanical stabilization of a layer electrode in a schematic cross section.
  • FIG. 4 shows a layer electrode according to the invention, on the surface of which a material that promotes adhesion between the fibers is applied in a schematic cross section.
  • FIG. 5 shows an example of a capacitor winding of a capacitor in a schematic cross section.
  • FIG. 1 shows a layer electrode according to the invention with fibers 1 running in a preferred direction.
  • the preferred direction is marked with the arrow.
  • Each fiber 1 is in direct contact with an adjacent fiber 1, which is particularly advantageous for the material density.
  • FIG. 2 shows * the cohesion between fibers 1, as indicated by a deviation from the preferred direction (by an arrow characterized) extending fiber sections 2, which are hooked together, is produced.
  • the fibers 1 are twisted into a yarn 5.
  • FIG. 3 shows fibers 1 of a thickness D which lie next to one another in a single layer and which are sewn together by means of a sewing thread 3.
  • the sewing thread 3 can be significantly thinner than the fibers 1, whereby the sewing of the fibers 1 does not result in a significant increase in layer thickness for the layer electrode. It should be noted that the distance between the fibers is shown enlarged for the purpose of explaining the sewing.
  • FIG. 4 shows a layer electrode 6, which is produced from a strand of adjacent fibers 1 according to FIG. 1 by spot-coating an aluminum metal on the surface, which forms a material 4 that mediates the adhesion between the fibers 1.
  • the vapor deposition may only take place in places, otherwise the fibers would have a too small free and thus active surface.
  • the layer thickness d of the layer electrode 6 is 50 ⁇ m in the example according to FIG. 4. Fibers 1 with a thickness of 10 ⁇ m were used.
  • FIG. 5 shows the part of a layer winding of an electrochemical double-layer capacitor with layer electrodes 6, which are separated from one another by a separating layer 7.
  • the layer electrodes 6 are impregnated with an electrolyte.
  • the insulating separating layer 7 is permeable to the ions of the ion-containing electrolyte.
  • the electrode layers 6 can be electrically contacted laterally by means of the contacting layers 8, in particular by means of their contact tabs 9 projecting beyond the layer electrodes 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to a layer electrode (6) for electrochemical components, comprising a plurality of fibers (1), all of which extend next to one another in a preferred direction at least in certain areas, wherein the fibers (1) are bonded to one another. Bonding of the fibers (1) to one another can be produced by piercing the layer electrodes (6) with harpoons or by stitching them. One advantage of the layer electrodes (6) disclosed in the invention is that they are thin and can be produced economically. The invention also relates to the capacitor having the invention layer electrode (6).

Description

Beschreibungdescription
Schichtelektrode für elektrochemische Bauelemente und elektrochemischer Doppelschichtkondensator mit der Schichtelek- trodeLayer electrode for electrochemical components and electrochemical double layer capacitor with the layer electrode
Die Erfindung betrifft eine Schichtelektrode für elektrochemische Bauelemente mit einer Vielzahl von Fasern. Darüber hinaus betrifft die Erfindung einen Kondensator mit der Schichtelektrode.The invention relates to a layer electrode for electrochemical components with a large number of fibers. In addition, the invention relates to a capacitor with the layer electrode.
Aus der Druckschrift EP 0 786 142 Bl sind elektrochemische Doppelschichtkondensatoren bekannt, deren Elektroden aktivierte Kohlenstofftücher sind. Die bekannten Tücher bestehen aus quer miteinander verwobenen Fäden. Das Weben der Tücher ist ein teurer Prozeß, wodurch diese Tücher aufwendig in der Herstellung sind.From publication EP 0 786 142 B1, electrochemical double-layer capacitors are known, the electrodes of which are activated carbon cloths. The known cloths consist of threads that are cross-woven. Weaving the towels is an expensive process, which makes them difficult to manufacture.
Darüber hinaus haben die bekannten Kohlenstofftücher den Nachteil, daß sie eine relativ große Dicke zwischen 250 μm und 600 μm aufweisen. Dadurch kann bei festem Kondensatorvolumen nur eine geringe Anzahl von Elektrodenlagen in das Kondensatorvolumen eingebracht werden. Mit dieser Anzahl der Elektrodenlagen ist auch die für die Kontaktierung der Koh- lenstofftücher zu den AI-Abieitern zur Verfügung stehendeIn addition, the known carbon sheets have the disadvantage that they have a relatively large thickness between 250 microns and 600 microns. With a fixed capacitor volume, this means that only a small number of electrode layers can be introduced into the capacitor volume. With this number of electrode layers, there is also the one available for contacting the carbon cloths with the AI conductors
Fläche gering, weswegen die bekannten Kondensatoren einen relativ hohen ohmschen Widerstand aufweisen.Small area, which is why the known capacitors have a relatively high ohmic resistance.
Desweiteren hat die Herstellung der Tücher aus zueinander verwobenen Fäden den Nachteil, daß die Dichte an Kohlenstoff aufgrund der beim Verweben entstehenden Hohlräume relativ gering ist, womit die volumenbezogene Kapazität eines aus den Tüchern hergestellten Kondensators relativ gering ist.Furthermore, the production of the cloths from interwoven threads has the disadvantage that the density of carbon is relatively low due to the cavities formed during the weaving, which means that the volume-related capacity of a capacitor made from the cloths is relatively low.
Ziel der vorliegenden Erfindung ist es daher, Schichtelektroden für elektrochemische Bauelemente anzugeben, die eine ge- ringe Schichtdicke aufweisen und die kostengünstig herstellbar sind.The aim of the present invention is therefore to provide layer electrodes for electrochemical components which have a rings have layer thickness and which are inexpensive to produce.
Dieses Ziel wird erfindungsgemäß durch eine Schichtelektrode nach Patentanspruch 1 erreicht . Vorteilhafte Ausgestaltungen der Erfindung sowie ein Kondensator mit der erfindungsgemäßen Schichtelektrode sind den weiteren Ansprüchen zu entnehmen.This aim is achieved according to the invention by a layer electrode according to claim 1. Advantageous embodiments of the invention and a capacitor with the layer electrode according to the invention can be found in the further claims.
Die Erfindung gibt eine Schichtelektrode für elektrochemische Bauelemente an, die eine Vielzahl von Fasern enthält, die alle wenigstens abschnittsweise in einer Vorzugsrichtung nebeneinander verlaufen und bei der die Fasern durch Haftung miteinander verbunden sind.The invention specifies a layer electrode for electrochemical components which contains a multiplicity of fibers, all of which run at least in sections in a preferred direction next to one another and in which the fibers are connected to one another by adhesion.
Die erfindungsgemäße Schichtelektrode hat den Vorteil, daß durch die in einer einzigen Vorzugsrichtung nebeneinanderverlaufenden Fasern auf das Verweben von Fasern oder Fäden verzichtet werden kann. Dadurch ist die erfindungsgemäße Schichtelektrode kostengünstig herstellbar. Da die Fasern darüber hinaus durch Haftung miteinander verbunden sind, ist das Übereinanderlegen und miteinander Verweben von Fasern zur Herstellung des Zusammenhalts der Elemente der Schichtelektrode nicht mehr notwendig, wodurch es möglich wird, wesentlich geringere Schichtdicken für die Schichtelektrode, näm- lieh Schichtdicken zwischen 10 und 500 μm, zu realisieren.The layer electrode according to the invention has the advantage that it is possible to dispense with the weaving of fibers or threads due to the fibers running side by side in a single preferred direction. As a result, the layer electrode according to the invention is inexpensive to produce. Since the fibers are also connected to one another by adhesion, it is no longer necessary to superimpose and interweave fibers to produce the cohesion of the elements of the layer electrode, as a result of which it is possible to use much smaller layer thicknesses for the layer electrode, namely layer thicknesses between 10 and 500 μm.
Insbesondere können die Fasern aktivierte Kohlenstofffasern sein, die als Strang (auch bekannt als engl . "tow")vorliegen.In particular, the fibers can be activated carbon fibers, which are present as a strand (also known as "tow").
Mit sinkender Schichtdicke steigt die Anzahl von Schichtelektroden, die bei vorgegebenem Kondensatorvolumen in einen Kondensator eingebracht werden können. Da die zur Kontaktierung der Schichtelektrode zur Verfügung stehende Fläche durch die Fläche der Schichtdicke vorgegeben ist, und da die Gesamtheit der Kontaktwiderstände für einen Kondensator durch eine Parallelschaltung von Einzelkontaktwiderständen, die jeweils einzelne Schichtelektrode repräsentieren, darstellbar ist, sinkt mit steigender Anzahl von Schichtelektroden der Kontaktwiderstand und damit die ohmschen Verluste eines Kondensators .As the layer thickness decreases, the number of layer electrodes that can be introduced into a capacitor with a given capacitor volume increases. Since the area available for contacting the layer electrode is predetermined by the area of the layer thickness, and since the totality of the contact resistances for a capacitor can be represented by a parallel connection of individual contact resistances, which each represent individual layer electrodes, the contact resistance and thus the ohmic losses of a capacitor decrease with increasing number of layer electrodes.
Die Haftung der Fasern untereinander kann beispielsweise erzeugt werden, indem ein Strang von Fasern von Nadeln mit Widerhaken quer zur Faserrichtung durchstochen wird. Nach dem Wiederherausziehen derartiger Nadeln verlaufen einige Faserabschnitte abweichend von der Vorzugsrichtung und sind mit- einander verhakt. Dadurch wird der mechanische Zusammenhalt innerhalb der Schichtelektrode hergestellt. Der Anteil der von der Vorzugsrichtung abweichende Faserabschnitte aufweisenden Fasern beträgt allerdings maximal 20 %, so daß der Faserstrang sich deutlich von einem Vlies unterscheidet, wo die einzelnen Fasern keinerlei Vorzugsrichtung aufweisen.The adhesion of the fibers to one another can be created, for example, by piercing a strand of fibers from needles with barbs transverse to the fiber direction. After pulling out such needles again, some fiber sections deviate from the preferred direction and are hooked together. This creates the mechanical cohesion within the layer electrode. However, the proportion of fibers having fiber sections deviating from the preferred direction is a maximum of 20%, so that the fiber strand differs significantly from a nonwoven, where the individual fibers have no preferred direction.
In einer weiteren Ausführungsform der Erfindung kann eine Anzahl von Fasern miteinander verseilt sein und somit ein Garn bilden. Diese Ausführungsform der Erfindung hat den Vorteil, daß der mechanische Zusammenhalt quer zur Vorzugsrichtung im Vergleich zu den nicht verseilten Fasern verbessert ist.In a further embodiment of the invention, a number of fibers can be stranded together and thus form a yarn. This embodiment of the invention has the advantage that the mechanical cohesion transverse to the preferred direction is improved in comparison to the non-stranded fibers.
Die erfindungsgemäße Ausführung der Schichtelektrode hat des- weiteren den Vorteil, daß sie eine gegenüber miteinander ver- wobenen Fasern eine erhöhte Materialdichte ermöglicht, wodurch mit der Schichtelektrode hergestellte elektrochemische Doppelschichtkondensatoren eine erhöhte Kapazität aufweisen können.The embodiment of the layer electrode according to the invention has the further advantage that it enables an increased material density compared to fibers that are woven together, as a result of which electrochemical double-layer capacitors produced with the layer electrode can have an increased capacitance.
Auch bei den zu einem Garn miteinander verseilten Fasern kann die Haftung der Garne und mithin der die Garne bildenden Fasern untereinander durch abweichend von der Vorzugsrichtung verlaufende Faserabschnitte, die miteinander verhakt sind, realisiert werden.Even in the case of the fibers stranded together to form a yarn, the adhesion of the yarns and therefore of the fibers forming the yarns to one another can be achieved by fiber sections which run differently from the preferred direction and which are hooked together.
Eine weitere Möglichkeit, den mechanischen Zusammenhalt der Schichtelektrode herzustellen, besteht darin, die Fasern quer zur Faserrichtung mittels eines Nähfadens miteinander zu vernähen. Als Fasern werden vorzugsweise Kunststoffe verwendet, die durch Pyrolyse (auch bekannt als Karbonisieren) sowie anschließendes Aktivieren der Oberfläche zu Kohlenstoffasern umgewandelt werden. Das Vernähen der Fasern mit einem Nähfaden kann entweder vor der Pyrolyse und dem Aktivieren des Kunststoff-Rohmaterials erfolgen oder aber auch erst nach der Aktivierung. Als Materialien für den Nähfaden sind sämtliche Materialien geeignet, die die elektrischen Eigenschaften des elektrochemischen Bauelements nicht verschlechtern. Für den Fall, daß das elektrochemische Bauelement ein elektrochemischer DoppelSchichtkondensator ist, kommen beispielsweise als Nähfaden Polypropylen, Polyethylen oder auch Teflon in Betracht .Another way to achieve the mechanical cohesion of the layer electrode is to cross the fibers to sew together with a sewing thread to the direction of the fibers. The fibers used are preferably plastics which are converted to carbon fibers by pyrolysis (also known as carbonization) and subsequent activation of the surface. The fibers can be sewn with a sewing thread either before pyrolysis and activation of the plastic raw material or only after activation. All materials that do not impair the electrical properties of the electrochemical component are suitable as materials for the sewing thread. In the event that the electrochemical component is an electrochemical double-layer capacitor, polypropylene, polyethylene or Teflon, for example, are suitable as sewing thread.
Um die Schichtdicke der Schichtelektrode nicht unnötig zu erhöhen, werden vorzugsweise Nähfäden mit einer Dicke zwischen 10 μm und 50 μm verwendet. Der Nähfaden kann aus einer einzelnen Faser oder auch aus einem Garn bestehen.In order not to unnecessarily increase the layer thickness of the layer electrode, sewing threads with a thickness between 10 μm and 50 μm are preferably used. The sewing thread can consist of a single fiber or a thread.
In einer weiteren Ausführungsform der Erfindung kann der Zusammenhalt der Fasern innerhalb der Schichtelektrode auch dadurch gefördert werden, daß auf der Oberfläche der Schichtelektrode stellenweise ein die Haftung zwischen den Fasern vermittelndes Material aufgebracht ist. Ebenso kann das die Haftung der zwischen den Fasern vermittelnde Material stellenweise in die Schichtelektrode eingebracht werden.In a further embodiment of the invention, the cohesion of the fibers within the layer electrode can also be promoted in that a material which promotes adhesion between the fibers is applied to the surface of the layer electrode. Likewise, the adhesion of the material mediating between the fibers can be introduced into the layer electrode in places.
Dafür sind sämtliche Materialien geeignet, die die elektri- sehen Eigenschaften des elektrochemischen Bauelements nicht verschlechtern. Im Falle eines elektrochemischen Doppel- Schichtkondensators sind insbesondere Materialien geeignet, die gegenüber den in elektrochemischen Doppelschichtkondensatoren verwendeten Elektrolyten inert sind. Zur Stabilisierung der Schichtelektrode kommt es daher beispielsweise in Betracht, als Material Kohlenstoff in die Schichtelektrode oder auf deren Oberfläche mittels GasphasenabScheidung ein- bezie- hungsweise aufzubringen. Mittels Gasphasenabscheidung können aber auch weitere Materialien, insbesondere Metalle, wie zum Beispiel Aluminium oder Kupfer, auf oder in die Schichtelek- trode gebracht werden.All materials that do not impair the electrical properties of the electrochemical component are suitable for this. In the case of an electrochemical double-layer capacitor, materials which are inert towards the electrolytes used in electrochemical double-layer capacitors are particularly suitable. To stabilize the layer electrode, it is therefore possible, for example, to include carbon as the material in the layer electrode or on its surface by means of gas phase deposition. way of applying. However, other materials, in particular metals, such as aluminum or copper, can also be brought onto or into the layer electrode by means of gas phase deposition.
Weiterhin läßt sich der Zusammenhalt der Fasern in der Schichtelektrode durch Polymerzusätze erzeugen beziehungsweise herstellen. Mögliche Polymerzusätze sind zum Beispiel Po-, lyethylen, Polypropylen, Polyvinyldifluorid und Tetrafluorpo- lyethylen. Die Polymerzusätze werden vorzugsweise mit einem Gewichtsanteil zwischen 2 und 20 % bezogen auf den Kohlen- stoffgehalt der Schichtelektrode zugesetzt.Furthermore, the cohesion of the fibers in the layer electrode can be produced or produced by polymer additives. Possible polymer additives are, for example, polyethylene, polypropylene, polyvinyl difluoride and tetrafluoropolyethylene. The polymer additives are preferably added with a weight fraction between 2 and 20% based on the carbon content of the layer electrode.
Die Verwendung eines Metalls als die Haftung zwischen den Fa- sern vermittelndes Material hat den Vorteil, daß es gleichzeitig zur Kontaktierung der Schichtelektrode verwendet werden kann.The use of a metal as the material mediating the adhesion between the fibers has the advantage that it can simultaneously be used for contacting the layer electrode.
Metalle, wie beispielsweise Aluminium oder Kupfer können auch durch Flammspritzen, Lichtbogenspritzen oder Bedampfen auf oder in die Schichtelektrode gebracht werden. In Betracht kommt auch das Eindrücken einer Schichtelektrode in eine Folie aus erweichtem Metall, das durch elektrische Erhitzung, Konvektionswärme, Strahlungswärme oder auch Induktionswärme beziehungsweise Erwärmung mit anliegenden Heizflächen oderMetals, such as aluminum or copper, can also be brought onto or into the layer electrode by flame spraying, arc spraying or vapor deposition. It is also possible to press a layer electrode into a foil made of softened metal, which can be caused by electrical heating, convection heat, radiant heat or also induction heat or heating with adjacent heating surfaces or
Heizrollen erwärmt wird. Bei diesen Verfahren ist es vorteilhaft, die Schichtelektrode beziehungsweise die Fasern der Schichtelektrode in Vorzugsrichtung unter eine Zugspannung zu setzen, so daß eine im wesentlichen parallele Ausrichtung der Fasern während des Einbringens der Fasern in das Metall gewährleistet wird.Heating rollers is heated. In these methods, it is advantageous to place the layer electrode or the fibers of the layer electrode under a tensile stress in the preferred direction, so that an essentially parallel alignment of the fibers is ensured during the introduction of the fibers into the metal.
Als Rohmaterial für die Fasern können besonders vorteilhaft Kunststoffe verwendet werden, die Cg-Ringe enthalten. Diese Kunststoffe können durch Erhitzen unter Luftausschluß beziehungsweise in einer Atmosphäre mit geringem Sauerstoffgehalt pyrolysiert werden, so daß sie sich nahezu vollständig in Kohlenstoff umwandeln. Dieser Vorgang ist auch als Karbonisieren bekannt . Im Anschluß an das Karbonisieren der Fasern kann die Oberfläche der Fasern durch Ätzprozesse aktiviert werden. Die Ätzung kann durch Gasbehandlung zum Beispiel mittels CO2 oder H2O erfolgen, sowie chemisch oder elektrochemisch. Durch Aktivierung der Fasern werden die Oberflächen der Fasern stark vergrößert. So kann beispielsweise aus einer spezifischen Oberfläche von 100 m2/g eine spezifische Oberfläche von 3000 m2/g erzeugt werden.Plastics which contain Cg rings can be used particularly advantageously as the raw material for the fibers. These plastics can be pyrolyzed by heating in the absence of air or in an atmosphere with a low oxygen content, so that they are almost completely in Convert carbon. This process is also known as carbonization. After the fibers have been carbonized, the surface of the fibers can be activated by etching processes. The etching can be carried out by gas treatment, for example using CO2 or H2O, and also chemically or electrochemically. By activating the fibers, the surfaces of the fibers are greatly enlarged. For example, a specific surface area of 3000 m 2 / g can be generated from a specific surface area of 100 m 2 / g.
Beispielsweise können als Rohmaterialien für die Fasern Phenolaldehydfasern, Zellstoffasern, Pech, Polyvinylalkohol und seine Derivate oder auch Polyacrylnitril verwendet werden.For example, phenol aldehyde fibers, cellulose fibers, pitch, polyvinyl alcohol and its derivatives or else polyacrylonitrile can be used as raw materials for the fibers.
Es ist desweiteren vorteilhaft, Fasern mit einer Dicke zwischen 5 und 50 μm zu verwenden, da mit solchen Fasern die Herstellung von dünnen Schichtelektroden mit einer Dicke zwischen 5 und 500 μm erleichtert wird. Bei der Verwendung sehr dünner Fasern können gegebenenfalls auch mehrere Fasern über- einander verwendet werden, um die Schichtelektrode zu bilden. Bei der Verwendung mehrerer Fasern übereinander hat die daraus resultierende Schichtelektrode den Vorteil einer erhöhten mechanischen Stabilität. Demgegenüber ist es jedoch auch möglich, daß die Schichtelektrode lediglich aus einer einzigen Faserlage besteht. Dadurch kann dann die bei gegebener Faserstärke dünnstmögliche Schichtelektrode hergestellt werden.It is furthermore advantageous to use fibers with a thickness between 5 and 50 μm, since with such fibers the production of thin layer electrodes with a thickness between 5 and 500 μm is facilitated. If very thin fibers are used, it is also possible, if appropriate, to use a plurality of fibers one above the other to form the layer electrode. When using several fibers one above the other, the resulting layer electrode has the advantage of increased mechanical stability. In contrast, however, it is also possible that the layer electrode consists of only a single fiber layer. As a result, the thinnest possible layer electrode can be produced for a given fiber thickness.
Die Erfindung gibt darüber hinaus einen elektrochemischen Kondensator an, der einen Kondensatorwickel mit zwei erfin- dungsgemäßen Schichtelektroden enthält. Die Schichtelektroden sind mit einer ionenhaltigen Flüssigkeit getränkt und durch eine Trennschicht voneinander separiert . Die Trennschicht isoliert die Schichtelektroden elektrisch voneinander und ist für die Ionen,der Flüssigkeit durchlässig. Jede der Schichte- lektroden ist mit einer Kontaktierungsschicht verbunden, die die elektrische Kontaktierung der Schichtelektroden über einen Außenanschluß des Kondensators erlauben. Der Kondensator- wickel kann dabei insbesondere als Schichtstapel von überein- anderliegenden Elektrodenschichtpaaren geführt sein. Die Kon- taktierungsschichten können Anschlußfahnen aufweisen, die auf einer Seite des Schichtstapeis aus diesem herausgeführt und mit einem Außenanschluß des Kondensators kontaktiert sind.The invention also specifies an electrochemical capacitor which contains a capacitor winding with two layer electrodes according to the invention. The layer electrodes are impregnated with an ion-containing liquid and separated from one another by a separating layer. The separating layer electrically isolates the layer electrodes from one another and is permeable to the ions and the liquid. Each of the layer electrodes is connected to a contacting layer, which allow the layer electrodes to be electrically contacted via an external connection of the capacitor. The capacitor In this case, the winding can in particular be designed as a layer stack of pairs of electrode layers lying one above the other. The contacting layers can have connection lugs which are led out of the layer stack on one side and contacted with an external connection of the capacitor.
Im folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazugehörigen Figuren näher erläutert.The invention is explained in more detail below with the aid of exemplary embodiments and the associated figures.
Figur 1 zeigt beispielhaft eine erfindungsgemäße Schichtelektrode in perspektivischer Darstellung.Figure 1 shows an example of a layer electrode according to the invention in a perspective view.
Figur 2 zeigt beispielhaft eine erste Ausführungsform der mechanischen Stabilisierung einer Schichtelektrode in Draufsicht.Figure 2 shows an example of a first embodiment of the mechanical stabilization of a layer electrode in plan view.
Figur 3 zeigt beispielhaft eine weitere Ausführungsform der mechanischen Stabilisierung einer Schichtelektrode in einem schematischen Querschnitt.Figure 3 shows an example of a further embodiment of the mechanical stabilization of a layer electrode in a schematic cross section.
Figur 4 zeigt eine erfindungsgemäße Schichtelektrode, auf deren Oberfläche ein die Haftung zwischen den Fasern vermittelndes Material aufgebracht ist im schematischen Querschnitt.FIG. 4 shows a layer electrode according to the invention, on the surface of which a material that promotes adhesion between the fibers is applied in a schematic cross section.
Figur 5 zeigt beispielhaft einen Kondensatorwickel eines Kondensators im schematischen Querschnitt.FIG. 5 shows an example of a capacitor winding of a capacitor in a schematic cross section.
Figur 1 zeigt eine erfindungsgemäße Schichtelektrode mit in einer Vorzugsrichtung verlaufenden Fasern 1. Die Vorzugsrichtung ist mit dem P.feil gekennzeichnet . Dabei befindet sich jede Faser 1 mit einer benachbarten Faser 1 in unmittelbarem Kontakt, was besonders vorteilhaft für die Materialdichte ist.FIG. 1 shows a layer electrode according to the invention with fibers 1 running in a preferred direction. The preferred direction is marked with the arrow. Each fiber 1 is in direct contact with an adjacent fiber 1, which is particularly advantageous for the material density.
Figur 2 zeigt* den Zusammenhalt zwischen Fasern 1, wie er durch abweichend von der Vorzugsrichtung (durch einen Pfeil gekennzeichnet) verlaufende Faserabschnitte 2, die miteinander verhakt sind, hergestellt wird. Die Fasern 1 sind dabei zu einem Garn 5 verseilt.FIG. 2 shows * the cohesion between fibers 1, as indicated by a deviation from the preferred direction (by an arrow characterized) extending fiber sections 2, which are hooked together, is produced. The fibers 1 are twisted into a yarn 5.
Figur 3 zeigt Fasern 1 einer Dicke D, die in einer einzigen Lage nebeneinander liegen, und die durch einen Nähfaden 3 miteinander vernäht sind. Der Nähfaden 3 kann wesentlich dünner sein, als die Fasern 1, wodurch durch das Vernähen der Fasern 1 kein erheblicher Zuwachs an Schichtdicke für die Schichtelektrode resultiert. Es ist zu beachten, daß der Abstand zwischen den Fasern zum Zwecke der Erläuterung des Ver- nähens vergrößert dargestellt ist.FIG. 3 shows fibers 1 of a thickness D which lie next to one another in a single layer and which are sewn together by means of a sewing thread 3. The sewing thread 3 can be significantly thinner than the fibers 1, whereby the sewing of the fibers 1 does not result in a significant increase in layer thickness for the layer electrode. It should be noted that the distance between the fibers is shown enlarged for the purpose of explaining the sewing.
Figur 4 zeigt eine Schichtelektrode 6, die aus einem Strang von nebeneinanderliegenden Fasern 1 gemäß Figur 1 hergestellt ist durch stellenweises Aufdampfen eines Aluminiummetalls auf der Oberfläche, welches ein Material 4 bildet, das die Haftung zwischen den Fasern 1 vermittelt . Das Aufdampfen darf lediglich stellenweise erfolgen, da sonst die Fasern eine zu- kleine freie und damit aktive Oberfläche aufweisen würden.FIG. 4 shows a layer electrode 6, which is produced from a strand of adjacent fibers 1 according to FIG. 1 by spot-coating an aluminum metal on the surface, which forms a material 4 that mediates the adhesion between the fibers 1. The vapor deposition may only take place in places, otherwise the fibers would have a too small free and thus active surface.
Die Schichtdicke d der Schichtelektrode 6 beträgt in dem Beispiel gemäß Figur 4 50 μm. Dabei wurden Fasern 1 mit einer Dicke von 10 μm verwendet.The layer thickness d of the layer electrode 6 is 50 μm in the example according to FIG. 4. Fibers 1 with a thickness of 10 μm were used.
Figur 5 zeigt den Teil eines Schichtwickels eines elektrochemischen Doppelschichtkondensators mit Schichtelektroden 6, die durch eine Trennschicht 7 voneinander getrennt sind. Die Schichtelektroden 6 sind mit einem Elektrolyten getränkt . Die isolierende Trennschicht 7 ist für die Ionen des ionenhalti- gen Elektrolyten durchlässig. Mittels der Kontaktierungs- schichten 8, insbesondere mittels deren die Schichtelektroden 6 überragenden Kontaktfahnen 9 können die Elektrodenschichten 6 seitlich elektrisch kontaktiert werden.FIG. 5 shows the part of a layer winding of an electrochemical double-layer capacitor with layer electrodes 6, which are separated from one another by a separating layer 7. The layer electrodes 6 are impregnated with an electrolyte. The insulating separating layer 7 is permeable to the ions of the ion-containing electrolyte. The electrode layers 6 can be electrically contacted laterally by means of the contacting layers 8, in particular by means of their contact tabs 9 projecting beyond the layer electrodes 6.
Die Erfindung beschränkt sich nicht auf die dargestelltenThe invention is not limited to that shown
Ausführungsbeispiele, sondern wird in ihrer allgemeinen Form durch Patentanspruch 1 definiert . Embodiments, but is defined in its general form by claim 1.

Claims

Patentansprüche claims
1. Schichtelektrode für elektrochemische Bauelemente1. Layer electrode for electrochemical components
- mit einer Vielzahl von Fasern (1) , die alle wenigstens ab- schnittsweise in einer Vorzugsrichtung nebeneinander verlaufen- With a plurality of fibers (1), all of which run at least in sections in a preferred direction side by side
- bei der die Fasern (1) durch Haftung miteinander verbunden sind.- In which the fibers (1) are connected to one another by adhesion.
2. Schichtelektrode nach Anspruch 1, . die eine Schichtdicke (d) zwischen 5 und 500 μm aufweist.2. layer electrode according to claim 1,. which has a layer thickness (d) between 5 and 500 μm.
3. Schichtelektrode nach einem der Ansprüche 1 oder 2 , bei der abweichend von der Vorzugsrichtung verlaufende Faser- abschnitte (2) miteinander verhakt sind.3. Layer electrode according to one of claims 1 or 2, in which deviating from the preferred direction fiber sections (2) are hooked together.
4. Schichtelektrode nach einem der Ansprüche 1 oder 2 , bei der Fasern (1) durch einen Nähfaden (3) miteinander vernäht sind.4. Layer electrode according to one of claims 1 or 2, in which fibers (1) are sewn together by a sewing thread (3).
5.* Schichtelektrode nach einem der Ansprüche 1 bis 3, bei der mehrere Fasern (1) zu einem Garn (5) miteinander verseilt sind.5. * Layer electrode according to one of claims 1 to 3, in which a plurality of fibers (1) are twisted together to form a yarn (5).
6. Schichtelektrode nach einem der Ansprüche 1 bis 5, auf deren Oberfläche stellenweise ein die Haftung zwischen den Fasern (1) vermittelndes Material (4) aufgebracht ist.6. layer electrode according to any one of claims 1 to 5, on the surface of which an adhesion between the fibers (1) imparting material (4) is applied in places.
7. Schichtelektrode nach einem der Ansprüche 1 bis 5, in die stellenweise ein die Haftung zwischen den Fasern (1) vermittelndes Material (4) eingebracht ist.7. Layer electrode according to one of claims 1 to 5, into which a material (4) which imparts the adhesion between the fibers (1) is introduced in places.
8. Schichtelektrode nach einem der Ansprüche 6 oder 7 , bei der das Material (4) gegenüber den in elektrochemischen Doppelschicht-Kondensatoren verwendeten Elektrolyten inert ist. 8. Layer electrode according to one of claims 6 or 7, wherein the material (4) is inert to the electrolytes used in electrochemical double-layer capacitors.
9. Schichtelektrode nach Anspruch 8, bei der das Material (4) ein Metall ist.9. layer electrode according to claim 8, wherein the material (4) is a metal.
10. Schichtelektrode nach Anspruch 8, bei der das Material (4) elementaren Kohlenstoff enthält.10. layer electrode according to claim 8, wherein the material (4) contains elemental carbon.
11. Schichtelektrode nach Anspruch 9, bei der das Material (4) durch Flammspritzen oder Lichtbogenspritzen aufgebracht ist.11. Layer electrode according to claim 9, wherein the material (4) is applied by flame spraying or arc spraying.
12. Schichtelektrode nach Anspruch 9, bei der das Material (4) durch Bedampfen aufgebracht ist.12. Layer electrode according to claim 9, wherein the material (4) is applied by vapor deposition.
13. Schichtelektrode nach einem der Ansprüche 1 bis 12, bei der die Fasern (1) aus einem Kunststoff hergestellt sind, der Cg-Ringe enthält.13. Layer electrode according to one of claims 1 to 12, in which the fibers (1) are made of a plastic which contains Cg rings.
14. Schichtelektrode nach Anspruch 13 , bei der die Fasern (1) pyrolysiert sind.14. Layer electrode according to claim 13, wherein the fibers (1) are pyrolyzed.
15. Schichtelektrode nach Anspruch 14, bei der die Oberfläche der Fasern (1) durch Ätzprozesse aufgerauht ist.15. layer electrode according to claim 14, wherein the surface of the fibers (1) is roughened by etching processes.
16. Schichtelektrode nach einem der Ansprüche 1 bis 15, bei der die Fasern (1) eine Dicke (D) zwischen 5 und 50 μm aufweisen.16. Layer electrode according to one of claims 1 to 15, wherein the fibers (1) have a thickness (D) between 5 and 50 microns.
17. Schichtelektrode nach Anspruch 8, bei der das Material (4) ein Polymer ist.17. Layer electrode according to claim 8, wherein the material (4) is a polymer.
18. Schichtelektrode nach Anspruch 17, bei der das Material (4) Polyethylen, Polypropylen, Po- lyvinyldifluorid oder Polytetrafluorethylen ist. 18. Layer electrode according to claim 17, wherein the material (4) is polyethylene, polypropylene, polyvinyl difluoride or polytetrafluoroethylene.
19. Kondensator mit einem Kondensatorwickel, der zwei Schichtelektroden (6) gemäß einem der Patentansprüche 1 bis 18 enthält, die mit einer ionenhaltigen Flüssigkeit getränkt sind, zwischen denen eine für die Ionen der Flüssigkeit durchlässigen isolierenden Trennschicht (7) angeordnet ist, und bei dem jede Schichtelektrode (6) mit einer Kontaktierungsschicht (8) verbunden ist. 19. A capacitor with a capacitor winding, which contains two layer electrodes (6) according to one of the claims 1 to 18, which are impregnated with an ion-containing liquid, between which an insulating separation layer (7) which is permeable to the ions of the liquid is arranged, and in which each layer electrode (6) is connected to a contacting layer (8).
EP02708238A 2001-03-23 2002-02-12 Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode Withdrawn EP1370488A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001114107 DE10114107A1 (en) 2001-03-23 2001-03-23 Layer electrode for electrochemical components and electrochemical double layer capacitor with the layer electrode
DE10114107 2001-03-23
PCT/DE2002/000507 WO2002078023A2 (en) 2001-03-23 2002-02-12 Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode

Publications (1)

Publication Number Publication Date
EP1370488A2 true EP1370488A2 (en) 2003-12-17

Family

ID=7678609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02708238A Withdrawn EP1370488A2 (en) 2001-03-23 2002-02-12 Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode

Country Status (7)

Country Link
US (1) US20040241411A1 (en)
EP (1) EP1370488A2 (en)
JP (1) JP2004527118A (en)
CN (1) CN1610647A (en)
AU (1) AU2002242628A1 (en)
DE (1) DE10114107A1 (en)
WO (1) WO2002078023A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351899B4 (en) * 2003-11-06 2005-11-17 Epcos Ag Electrolyte solution and electrochemical double-layer capacitor with the electrolyte solution
DE102005032513B4 (en) * 2005-07-12 2011-12-22 Epcos Ag Layer electrode for electrochemical double-layer capacitors, manufacturing method and electrochemical double-layer capacitor
KR102129484B1 (en) * 2018-07-03 2020-07-02 주식회사씨앤에프 Method of manufacturing electrode for thin redox flow battery
CN110993345B (en) * 2019-12-26 2021-03-23 重庆大学 Single fiber capacitor and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790393A (en) * 1969-07-31 1974-02-05 Beckwith Carbon Corp Carbonaceous bodies
US4408259A (en) * 1979-02-09 1983-10-04 Matsushita Electric Industrial Company, Limited Electrochemical double-layer capacitor
US4597028A (en) * 1983-08-08 1986-06-24 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
JP2593231B2 (en) * 1990-04-18 1997-03-26 株式会社日本ワックスポリマー開発研究所 Method for separating wax by solvent extraction from solid wax
US6233135B1 (en) * 1994-10-07 2001-05-15 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes
US5621607A (en) * 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
JPH08138978A (en) * 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
WO1996041745A1 (en) * 1995-06-09 1996-12-27 Zvi Horovitz High bulk density, parallel carbon fibers
DE19612223C2 (en) * 1995-10-28 1998-07-02 Thomas Hahn Irrigation valve
JPH10321482A (en) * 1997-05-22 1998-12-04 Casio Comput Co Ltd Electrical double layer capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02078023A2 *

Also Published As

Publication number Publication date
WO2002078023A2 (en) 2002-10-03
CN1610647A (en) 2005-04-27
JP2004527118A (en) 2004-09-02
AU2002242628A1 (en) 2002-10-08
DE10114107A1 (en) 2002-10-02
WO2002078023A3 (en) 2002-12-27
US20040241411A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
DE60018969T2 (en) SUPPORT STRUCTURE FOR COMPOSITE COMPONENTS
DE2902545C2 (en) Thread with conductive layers
DE112013000896B4 (en) Gas diffusion layer for a fuel cell, fuel cell and method for producing a gas diffusion layer for a fuel cell
DE2543149A1 (en) POROESE RAIL MATERIALS CONTAINING POLYMER, METHOD FOR MANUFACTURING SUCH RAIL MATERIALS AND THEIR USE
DE112013000385T5 (en) Hybrid fleece separator with inverted structure
DE112012004667T5 (en) PET nonwoven fabric as a separator for secondary batteries and separator for secondary batteries comprising this
DE2839845B2 (en) Separator for galvanic elements, especially gas-tight lead-acid batteries
DE2731291A1 (en) SUEDE-LIKE RAIL MATERIAL AND METHOD OF ITS MANUFACTURING
EP1618252A1 (en) Non-woven fibre mat, method for production thereof and fibre composite material
DE102011003186A1 (en) Thin, macroporous polymer films
DE60309331T2 (en) PECH-BASED GRAPHITE SUBSTANCES AND GENOBELED FELTS FOR FUEL CELL GAS DISPERSION SUBSTRATES AND THERMALLY HIGH-LEADING COMPOSITE MATERIALS
DE10151134A1 (en) Diffusion layer for a fuel cell and a method and device for producing the same
DE3418831A1 (en) ELECTRICALLY CONDUCTIVE FILTER PAPER AND FILTER FOR USE OF SUCH A PAPER
DE102018000272A1 (en) Foil-like functional material and method for its production
EP1371073B1 (en) Method for producing a composite electrode for electrochemical components, and a composite electrode
WO2009124862A1 (en) Composite material composed of a metal matrix in which cnt filaments are distributed, and method for the production of such a composite material
DE1802985C3 (en) Paper suitable for electrical insulation purposes
EP1370488A2 (en) Layer electrode for electro-chemical components and electrochemical double layer capacitor having said layer electrode
EP1784877B1 (en) A textile material for a fuel cell, production and use thereof
DE3012288A1 (en) Thread with thermoplastic casing - and code of threads impregnated with epoxy! resin, esp. for sieve fabric
EP3679187B1 (en) Nonwoven fabric for shielding terahertz frequencies
DE3307090A1 (en) Process for producing a laminated material of carbon
EP1428919B1 (en) Method of producing a flat sheet structure from at least partially split yarns, fibres or filaments
DE102008004005A1 (en) Process to make fuel cell gas diffusion cell by hydro-interlacing carbon fiber matrix followed by further treatment stages
DE1802327B2 (en) Liquid impregnated electrical capacitor with dielectric

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030825

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER, CHRISTOPH

Inventor name: SCHOLZ, THOMAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20041105