EP1360736A1 - Waveguide generator device for energizing a cavity - Google Patents

Waveguide generator device for energizing a cavity

Info

Publication number
EP1360736A1
EP1360736A1 EP02706842A EP02706842A EP1360736A1 EP 1360736 A1 EP1360736 A1 EP 1360736A1 EP 02706842 A EP02706842 A EP 02706842A EP 02706842 A EP02706842 A EP 02706842A EP 1360736 A1 EP1360736 A1 EP 1360736A1
Authority
EP
European Patent Office
Prior art keywords
plane
microwaves
waveguide
transmitter
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02706842A
Other languages
German (de)
French (fr)
Other versions
EP1360736B1 (en
Inventor
Alain Germain
André-Jean Berteaud
Michel Delmotte
Patrick Mahe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MES Technologies SAS
Original Assignee
Mes Technologies
Microondes Energie Systemes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mes Technologies, Microondes Energie Systemes SA filed Critical Mes Technologies
Publication of EP1360736A1 publication Critical patent/EP1360736A1/en
Application granted granted Critical
Publication of EP1360736B1 publication Critical patent/EP1360736B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions

Definitions

  • the present invention aims to improve the aforementioned prior art by ensuring that the coupling between the magnetron and the enclosure is not or practically not sensitive to the object or to the load placed in the enclosure.
  • This object is achieved thanks to the fact that the two wave reflection walls are respectively spaced from the plane of the transmitter by a distance substantially equal to 0.2. ⁇ g + k. 2 and a distance substantially equal to 0.3. ⁇ g + p. XJ2, where k and p are whole numbers.
  • the two wave reflection walls are respectively. spaced from the transmitter plane by a distance close to 0.2.
  • the Rieke diagram which, as a function of the distance from the reference plane of the antenna which emits microwaves, indicates the power of the energy carried by the waves and the deviations frequency.
  • This diagram shows that in regions distant from the plane of the antenna by a distance of the order of 0.2. ⁇ g and in regions distant from the antenna by a distance of the order of 0.3. ⁇ g , the energy loss is the lowest. These regions therefore constitute optimal zones from the point of view of limiting energy loss. Due to the repetitivity of the wave at intervals equal to ⁇ g 2 > the regions which are separated from the above optimal zones by a distance which is a multiple of ⁇ g / 2 also constitute optimal regions.
  • planes distant from the plane of the antenna by a distance equal to ⁇ g / 4 modulo ⁇ g / 2 constitute planes of symmetry for the dissipation of energy.
  • the imaginary impedances of the portions are substantially opposite. This is the case of two respectively spaced planes of the plane of the emitter with a distance substantially equal to 0.2 ⁇ g and a distance substantially equal to 0.3. ⁇ g . Due to the repetitivity of the wave at intervals of ⁇ g / 2, the two walls reflectors defined as indicated above are arranged in zones in which the impedances are conjugate.
  • the impedance of the reflected waves measured in the plane of the magnetron transmitting antenna, is substantially purely real, that is to say that it is expressed by a complex number having a imaginary part substantially zero, which means that the resultant of these reflected waves does not disturb the emission of waves by the antenna which consequently emits at maximum power and this, whatever the load which is placed in the pregnant.
  • substantially zero imaginary part it should be understood that the imaginary part contributes at most up to approximately 5% to the value of the modulus of the complex number.
  • the device comprises an adjustment member disposed at a distance from the plane of the transmitter which is equal to n. ⁇ g / 2, n being an integer.
  • the planes which are separated from the plane of the transmitter by a distance equal to a multiple of the half-wavelength in the waveguide ( ⁇ g / 2) constitute equivalent planes, in which the electromagnetic field behaves in the same way as in the transmitter plan.
  • the adjustment member comprises a conductive rod capable of being more or less pressed into the waveguide.
  • This field is in fact the result of the waves emitted by the transmitter and the waves reflected by the reflection walls.
  • the impedance at a point of the waveguide therefore depends on its distance from the plane of the transmitter and from the reflection walls.
  • the respective distances between each of the two reflection walls and the plane of the emitter are such that the imaginary parts of the impedances respectively measured on each of these two walls are substantially opposite.
  • the adjustment of the adjustment member, associated with the choice of the distance between the reflection walls and the plane of the emitter is such that the impedances on each of these two walls are expressed respectively by complex conjugate numbers .
  • the impedance of the resultant of the waves reflected on each of the two reflection walls, measured in the plane of the transmitter has a zero imaginary part.
  • the adjustment means constituted for example by an adjustment screw make it possible to refine the coupling to take account of the deviations in dimensions due to manufacturing tolerances and disturbances in the electromagnetic field due, for example, to the thickness of the antenna .
  • the waveguide has secondary outputs in addition to the aforementioned main outputs.
  • These secondary outlets are formed by secondary slots located in a front wall of the wave guide cavity which opens into the enclosure to be excited by the microwaves, these slots being distributed so as to promote the homogeneity of the distribution. microwaves in the enclosure.
  • FIG. 2 is a side view of the waveguide device
  • FIG. 3 is an elevational view along arrow III of Figure 2.
  • the means used to excite this enclosure include a magnetron 12 capable of generating microwaves, for example at a standard frequency close to 2450 MHz, and a launcher waveguide device, providing the interface between the magnetron and the enclosure.
  • the electric field E of the electromagnetic field which prevails in the waveguide is perpendicular to the front and rear walls 20 and 22, while the magnetic field H is perpendicular to the side walls 24 and 26.
  • the waveguide 16 is delimited by two reflection walls, respectively 28 and 30 which are perpendicular to the direction F.
  • the guide wave has two main outputs, respectively 32 and 34, which are respectively located in the vicinity of the reflection walls 28 and 30. More specifically, the two main outputs are formed by main slots which extend parallel to the reflection walls 28 and 30 and which are respectively located at the junctions of these walls with the front wall 22.
  • the slots 32 and 34 are formed in this front wall and extend over the entire width of this wall, their extreme edges being respectively delimited through walls 28 and 30.
  • the reflection walls 28 and 30 are therefore located in regions in which, as a function of the Rieke diagram associated with magnetron 12, it is expected that the impedances of the wave will be conjugate. However, certain parameters slightly disturb the conformation of the electromagnetic field in the waveguide. In particular, the antenna of the transmitter 18 is not punctual, but it has a certain thickness.
  • the device comprises a member 36.
  • This adjustment member is constituted by a conductive or dielectric rod advantageously disposed in the rear wall 20 which can be more or less pressed into the waveguide 16.
  • This rod is located at a distance D3 from the plane of the transmitter P 0 .
  • This distance D3 is equal to a multiple of the half-wavelength of the electromagnetic wave maintained in the waveguide. It is thus located on an equivalent plane P L
  • the phenomena which occur in such a plane are the same as those which occur in the plane of the emitter P 0 .
  • the adjustment of the rod 36 modifies the value of the electric field in the plane Pi to optimize the power of the wave in this plane. This therefore makes it possible to optimize the power in the plane of the transmitter Po.
  • the presence of this adjustment rod combined with the choice of the distances D1 and D2 for the reflection walls 28 and 30, makes it possible to optimize the power emitted by the antenna and to prevent the latter from having to suffer from disturbances due to the waves reflected on the walls 28 and 30, the imaginary parts of which cancel each other out substantially at the plane P 0 .
  • the waveguide device has, in addition to the main outputs 32 and 34, secondary outputs.
  • the secondary outlets are formed by secondary slots which are located in the front wall 22 and which are inclined relative to the reflection walls 28 and 30.
  • These slots are symmetrical with respect to the median plane PM.
  • the geometric centers of these slots, C38 and C40, are located in a median longitudinal plane P of the device.
  • the secondary outlets further comprise a third secondary slot 42 which is substantially parallel to the direction F of propagation of the microwaves in the cavity 16 and which is substantially located at equal distance from each of the two reflection walls 28 and 30 This slot 42 is centered on the median plane P M and is located in the open part of the angle formed by the slots 38 and 40.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Surgical Instruments (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Pinball Game Machines (AREA)
  • Waveguide Connection Structure (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Particle Accelerators (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Toys (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The invention concerns a waveguide generator device for energizing a cavity with microwaves coming from an emitter (18) for generating in the waveguide (16) an electromagnetic field of microwaves having a wavelength lambda g. The device comprises a site for the emitter (18) defining a plane of the emitter (P0) and two wave reflecting walls (28, 30) in the proximity of which are respectively located two main outlets for the microwaves (32, 34). The two wave reflecting walls (28, 30) are spaced apart from the emitter plane (P0) by a distance substantially equal to 0.2. lambda g +k. lambda g/2 and 0.3 lambda g + p. lambda g/2, wherein k and p are integers. The device comprises an adjusting member (36) arranged at a distance equal to n. lambda g/2, n being an integer, from the plane of the emitter (P0).

Description

DISPOSITIF DE GUIDE D'ONDE LANCEUR POUR L'EXCITATION D'UNE ENCEINTE.LAUNCHER WAVE GUIDE DEVICE FOR EXCITTING A SPEAKER.
La présente invention concerne un dispositif de guide d'onde lanceur pour l'excitation d'une enceinte par des micro-ondes provenant d'un émetteur apte à faire régner dans le guide d'onde du dispositif un champ électromagnétique de micro-ondes ayant une longueur d'ondes λg, le dispositif comprenant un emplacement pour l'émetteur définissant un plan de l'émetteur et deux parois de réflexion d'onde au voisinage desquelles sont respectivement situées deux sorties principales pour les micro-ondes.The present invention relates to a launcher waveguide device for the excitation of an enclosure by microwaves coming from a transmitter capable of causing in the waveguide of the device an electromagnetic microwave field having a wavelength λg, the device comprising a location for the transmitter defining a plane of the transmitter and two wave reflection walls in the vicinity of which are respectively located two main outputs for microwaves.
On rappelle que les micro-ondes sont des ondes électromagnétique dont la fréquence est comprise entre 0,3 GHz et 300 GHz, plus particulièrement entre 0,3 GHz et 5,2 GHz. Pour de nombreuses applications, on choisit des micro-ondes dont la fréquence est de l'ordre de 2,45 GHz.It will be recalled that microwaves are electromagnetic waves whose frequency is between 0.3 GHz and 300 GHz, more particularly between 0.3 GHz and 5.2 GHz. For many applications, microwaves are chosen whose frequency is around 2.45 GHz.
Les micro-ondes sont émises à partir d'un tube émetteur dénommé magnetron, qui émet à la fréquence choisie. Ces micro-ondes sont transmises à l'enceinte devant être excitée par un dispositif de guide d'onde dit lanceur.Microwaves are emitted from a transmitter tube called magnetron, which emits at the chosen frequency. These microwaves are transmitted to the enclosure to be excited by a waveguide device called a launcher.
Cette enceinte peut être constituée par la cavité d'un four à micro-ondes d'usage domestique ou industriel. De manière générale, il s'agit d'une enceinte dans laquelle on doit faire régner un champ de micro-ondes pour traiter un objet à l'aide de micro-ondes. Il peut ainsi s'agir de l'enceinte d'un réacteur à plasma telle que décrite dans le document FR-A-2 631 199.This enclosure can be constituted by the cavity of a microwave oven for domestic or industrial use. Generally speaking, it is an enclosure in which a microwave field must be made to treat an object using microwaves. It may thus be the enclosure of a plasma reactor as described in document FR-A-2 631 199.
Il importe que les micro-ondes générées par le magnetron soient transmises à l'enceinte de façon stable et avec une puissance maximale. Ainsi, l'enceinte ne doit être la cause d'aucun effet perturbateur des relations de phase internes au magnetron, faute de quoi la puissance émise serait réduite et la durée de vie du magnetron en serait affectée.It is important that the microwaves generated by the magnetron are transmitted to the enclosure in a stable manner and with maximum power. Thus, the enclosure must not be the cause of any effect disturbing the phase relationships internal to the magnetron, failing which the emitted power would be reduced and the life of the magnetron would be affected.
Le guide d'onde lanceur constitue un intermédiaire entre le magnetron et l'enceinte qui sert au couplage des micro-ondes, c'est-à-dire à l'adaptation des impédances du champ électromagnétique entre le magnetron et l'enceinte. Ainsi, la géométrie du guide d'onde lanceur peut être déterminée en fonction de celle de l'enceinte pour réaliser un couplage correct. Le problème est que, dès lors qu'une charge est disposée dans l'enceinte, en particulier un objet devant être traité par les micro-ondes, cette charge perturbe l'impédance du champ électromagnétique régnant dans cette enceinte. Le couplage se trouve donc perturbé du fait de la présence même de l'objet devant être traité par les micro-ondes. Il en résulte une distribution non homogène des micro-ondes lorsqu'un objet donné est présent dans l'enceinte. C'est pour cette raison que, au moins dans l'application domestique, de nombreux fours à micro-ondes sont équipés d'un système de plateau tournant qui déplace l'objet devant être traité à l'intérieur du four. Il n'en reste pas moins que le rendement énergétique de l'installation est affecté par les défauts de couplage. De plus, des objets ayant des caractéristiques différentes (en particulier ayant trait à leur géométrie) ne sont pas affectés de la même manière par les micro-ondes, pourtant émises par la même source.The launcher waveguide constitutes an intermediary between the magnetron and the enclosure which is used for the coupling of microwaves, that is to say for the adaptation of the impedances of the electromagnetic field between the magnetron and the enclosure. Thus, the geometry of the launcher waveguide can be determined as a function of that of the enclosure to achieve correct coupling. The problem is that, as soon as a charge is placed in the enclosure, in particular an object to be treated by microwaves, this charge disturbs the impedance of the electromagnetic field prevailing in this enclosure. The coupling is therefore disturbed due to the very presence of the object to be processed by the microwaves. This results in a non-homogeneous distribution of the microwaves when a given object is present in the enclosure. It is for this reason that, at least in the domestic application, many microwave ovens are equipped with a turntable system which moves the object to be treated inside the oven. The fact remains that the energy efficiency of the installation is affected by coupling faults. In addition, objects with different characteristics (in particular relating to their geometry) are not affected in the same way by microwaves, yet emitted by the same source.
Le document FR-A-2 631 199 divulgue la présence de moyens de réglage du couplage entre le magnetron et la cavité devant être excitée par les micro-ondes, ces moyens comprenant des vis réglables pénétrant dans la cavité du guide d'onde et des pistons de réglage modifiant la géométrie de l'enceinte. Comme l'indique ce document, ces moyens de réglage sont mobiles dans le cadre d'une application expérimentale, les opérateurs du dispositif pouvant adapter les réglages en fonction de chaque expérience. Pour des applications industrielles, ces moyens de réglage sont fixes, c'est-à-dire que le couplage peut être réalisé lors de l'installation du dispositif qui est alors dédié à une production industrielle spécifique.Document FR-A-2 631 199 discloses the presence of means for adjusting the coupling between the magnetron and the cavity to be excited by the microwaves, these means comprising adjustable screws penetrating into the cavity of the waveguide and adjustment pistons modifying the geometry of the enclosure. As this document indicates, these adjustment means are mobile within the framework of an experimental application, the operators of the device being able to adapt the adjustments according to each experience. For industrial applications, these adjustment means are fixed, that is to say that the coupling can be carried out during the installation of the device which is then dedicated to a specific industrial production.
Pour des applications nécessitant le traitement par des microondes d'objets de caractéristiques diverses et dans des conditions différentes, ces moyens de réglage sont peu appropriés. En particulier, pour les fours à micro-ondes d'usage domestique, il est exclu que l'utilisateur règle le couplage selon le type de plat devant être chauffé.For applications requiring the processing by microwaves of objects of various characteristics and under different conditions, these adjustment means are not suitable. In particular, for microwave ovens for domestic use, it is not possible for the user to adjust the coupling according to the type of dish to be heated.
La présente invention vise à améliorer l'art antérieur précité en faisant en sorte que le couplage entre le magnetron et l'enceinte ne soit pas ou pratiquement pas sensible à l'objet ou à la charge disposé dans l'enceinte. Ce but est atteint grâce au fait que les deux parois de réflexion d'onde sont respectivement écartées du plan de l'émetteur d'une distance sensiblement égale à 0,2. λg + k. 2 et d'une distance sensiblement égale à 0,3. λg + p. XJ2, où k et p sont des nombres entiers. En d'autres termes, les deux parois de réflexion d'onde sont respectivement. écartées du plan de l'émetteur d'une distance voisine de 0,2. λg modulo λg/2 et d'une distance de 0,3.λg modulo λg/2.The present invention aims to improve the aforementioned prior art by ensuring that the coupling between the magnetron and the enclosure is not or practically not sensitive to the object or to the load placed in the enclosure. This object is achieved thanks to the fact that the two wave reflection walls are respectively spaced from the plane of the transmitter by a distance substantially equal to 0.2. λ g + k. 2 and a distance substantially equal to 0.3. λ g + p. XJ2, where k and p are whole numbers. In other words, the two wave reflection walls are respectively. spaced from the transmitter plane by a distance close to 0.2. λg modulo λg / 2 and a distance of 0.33. g g modulo λ g / 2.
Dans un champ de micro-ondes, l'impédance d'onde s'exprime en tout point par un nombre complexe dont la partie imaginaire traduit une perte d'énergie et une dérive en fréquence. Ainsi, le champ qui règne dans le guide d'onde est la résultante des ondes émises par le magnetron et des ondes réfléchies par les parois de réflexion du guide d'onde.In a microwave field, the wave impedance is expressed at all points by a complex number, the imaginary part of which translates a loss of energy and a frequency drift. Thus, the field which reigns in the waveguide is the result of the waves emitted by the magnetron and the waves reflected by the reflection walls of the waveguide.
Pour un magnetron donné, on peut établir le diagramme de Rieke qui, en fonction de la distance par rapport au plan de référence de l'antenne qui émet les micro-ondes, indique la puissance de l'énergie transportée par les ondes et les écarts de fréquence. Ce diagramme montre que, dans les régions éloignées du plan de l'antenne d'une distance de l'ordre de 0,2. λg et dans les régions éloignées de l'antenne d'une distance de l'ordre de 0,3. λg, la perte d'énergie est la plus faible. Ces régions constituent donc des zones optimales du point de vue de la limitation de la perte d'énergie. En raison de la répétitivité de l'onde à intervalles égaux à λg 2> les régions qui sont écartées des zones optimales précitées d'une distance qui est un multiple de λg/2 constituent également des régions optimales. Par ailleurs, des plans éloignés du plan de l'antenne d'une distance égale à λg/4 modulo λg/2 constituent des plans de symétrie pour la dissipation de l'énergie. En d'autres termes, dans deux plans symétriques l'un de l'autre par "rapport à un tel plan de symétrie, les parties imaginaires des impédances sont sensiblement opposées. C'est le cas de deux plans respectivement écartés du plan de l'émetteur d'une distance sensiblement égale à 0,2. λg et d'une distance sensiblement égale à 0,3. λg. En raison de la répétitivité de l'onde à intervalles de λg/2, les deux parois de réflexion définies comme indiqué ci-dessus sont disposées dans des zones dans lesquelles les impédances sont conjuguées. Le choix judicieux des positions des parois de réflexion selon l'invention combine donc l'optimisation de la limitation des pertes d'énergie avec des impédances conjuguées sur ces parois renvoyant à l'antenne une impédance sensiblement purement réelle. Avec l'invention, l'impédance des ondes réfléchies, mesurée dans le plan de l'antenne d'émission du magnetron, est sensiblement purement réelle, c'est-à-dire qu'elle s'exprime par un nombre complexe ayant une partie imaginaire sensiblement nulle, ce qui signifie que la résultante de ces ondes réfléchies ne perturbe pas l'émission d'ondes par l'antenne qui émet par conséquent à une puissance maximale et ce, quelle que soit la charge qui est disposée dans l'enceinte. Ainsi, en minimisant la partie imaginaire de l'impédance ramenée au plan de l'émetteur, on fait en sorte que celui-ci ne soit pas perturbé par les phénomènes qui prennent place dans l'enceinte. Par "partie imaginaire sensiblement nulle", il faut comprendre que la partie imaginaire contribue tout au plus à hauteur d'environ 5 % à la valeur du module du nombre complexe.For a given magnetron, we can establish the Rieke diagram which, as a function of the distance from the reference plane of the antenna which emits microwaves, indicates the power of the energy carried by the waves and the deviations frequency. This diagram shows that in regions distant from the plane of the antenna by a distance of the order of 0.2. λg and in regions distant from the antenna by a distance of the order of 0.3. λ g , the energy loss is the lowest. These regions therefore constitute optimal zones from the point of view of limiting energy loss. Due to the repetitivity of the wave at intervals equal to λg 2 > the regions which are separated from the above optimal zones by a distance which is a multiple of λ g / 2 also constitute optimal regions. Furthermore, planes distant from the plane of the antenna by a distance equal to λ g / 4 modulo λg / 2 constitute planes of symmetry for the dissipation of energy. In other words, in two symmetrical planes from each other by "relative to such a plane of symmetry, the imaginary impedances of the portions are substantially opposite. This is the case of two respectively spaced planes of the plane of the emitter with a distance substantially equal to 0.2 λ g and a distance substantially equal to 0.3. λ g . Due to the repetitivity of the wave at intervals of λ g / 2, the two walls reflectors defined as indicated above are arranged in zones in which the impedances are conjugate. The judicious choice of the positions of the reflection walls according to the invention therefore combines the optimization of the limitation of energy losses with combined impedances on these walls returning to the antenna a substantially purely real impedance. With the invention, the impedance of the reflected waves, measured in the plane of the magnetron transmitting antenna, is substantially purely real, that is to say that it is expressed by a complex number having a imaginary part substantially zero, which means that the resultant of these reflected waves does not disturb the emission of waves by the antenna which consequently emits at maximum power and this, whatever the load which is placed in the pregnant. Thus, by minimizing the imaginary part of the impedance brought back to the plane of the transmitter, it is ensured that the latter is not disturbed by the phenomena which take place in the enclosure. By "substantially zero imaginary part", it should be understood that the imaginary part contributes at most up to approximately 5% to the value of the modulus of the complex number.
De préférence, le dispositif comporte un organe de réglage disposé à une distance du plan de l'émetteur qui est égale à n.λg/2, n étant un nombre entier.Preferably, the device comprises an adjustment member disposed at a distance from the plane of the transmitter which is equal to n.λ g / 2, n being an integer.
Les plans qui sont écartés du plan de l'émetteur d'une distance égale à un multiple de la demi-longueur d'onde dans le guide d'onde (λg/2) constituent des plans équivalents, dans lesquels le champ électromagnétique se comporte de la même manière que dans le plan de l'émetteur. Ainsi, en disposant l'organe de réglage dans le plan de l'émetteur ou dans un plan équivalent, on fait en sorte que toute action de réglage sur cet organe a un effet sur la conformation du champ électromagnétique dans le plan de l'émetteur.The planes which are separated from the plane of the transmitter by a distance equal to a multiple of the half-wavelength in the waveguide (λg / 2) constitute equivalent planes, in which the electromagnetic field behaves in the same way as in the transmitter plan. Thus, by placing the adjustment member in the plane of the transmitter or in an equivalent plane, it is ensured that any adjustment action on this member has an effect on the conformation of the electromagnetic field in the plane of the transmitter. .
Selon un mode de réalisation particulièrement avantageux, l'organe de réglage comprend une tige conductrice susceptible d'être plus ou moins enfoncée dans le guide d'onde.According to a particularly advantageous embodiment, the adjustment member comprises a conductive rod capable of being more or less pressed into the waveguide.
L'amplitude du champ électrique au droit de la tige conductrice est inversement proportionnelle à la distance entre cette tige et la paroi du guide d'onde qui lui fait face. En d'autres termes, en enfonçant la tige, on augmente le module du champ électrique au droit de cette tige, et donc également dans le plan de l'émetteur. Globalement, l'impédance de l'onde est représentée par le quotient du champ électrique par le champ magnétique. Le degré d'enfoncement de la tige conductrice modifie le champ électrique et modifie donc l'impédance dans le plan équivalent dans lequel se trouve la tige conductrice et dans le plan de l'émetteur. De manière générale, le champ électromagnétique qui règne dans le guide d'onde est fonction de la distance entre les parois de réflexion et le plan de l'émetteur. Ce champ est en effet la résultante des ondes émises par l'émetteur et des ondes réfléchies par les parois de réflexion. L'impédance en un point du guide d'onde dépend donc de sa distance par rapport au plan de l'émetteur et par rapport aux parois de réflexion. En fonction de la longueur d'onde λg, on choisit selon l'invention que les distances respectives entre chacune des deux parois de réflexion et le plan de l'émetteur soient telles que les parties imaginaires des impédances respectivement mesurées sur chacune de ces deux parois soient sensiblement opposées. Ainsi, le réglage de l'organe de réglage, associé au choix de la distance entre les parois de réflexion et le plan de l'émetteur, est tel que les impédances sur chacune de ces deux parois s'expriment respectivement par des nombres complexes conjugués. De ce fait, l'impédance de la résultante des ondes réfléchies sur chacune des deux parois de réflexion, mesurée dans le plan de l'émetteur, présente une partie imaginaire nulle.The amplitude of the electric field in line with the conductive rod is inversely proportional to the distance between this rod and the wall of the waveguide which faces it. In other words, by pushing in the rod, the modulus of the electric field is increased to the right of this rod, and therefore also in the plane of the transmitter. Overall, the impedance of the wave is represented by the quotient of the electric field by the magnetic field. The degree of insertion of the conductive rod modifies the electric field and therefore modifies the impedance in the equivalent plane in which the conductive rod is located and in the plane of the emitter. In general, the electromagnetic field prevailing in the waveguide is a function of the distance between the reflection walls and the plane of the emitter. This field is in fact the result of the waves emitted by the transmitter and the waves reflected by the reflection walls. The impedance at a point of the waveguide therefore depends on its distance from the plane of the transmitter and from the reflection walls. Depending on the wavelength λ g , it is chosen according to the invention that the respective distances between each of the two reflection walls and the plane of the emitter are such that the imaginary parts of the impedances respectively measured on each of these two walls are substantially opposite. Thus, the adjustment of the adjustment member, associated with the choice of the distance between the reflection walls and the plane of the emitter, is such that the impedances on each of these two walls are expressed respectively by complex conjugate numbers . As a result, the impedance of the resultant of the waves reflected on each of the two reflection walls, measured in the plane of the transmitter, has a zero imaginary part.
Les moyens de réglage constitués par exemple par une vis de réglage permettent d'affiner le couplage pour tenir compte des écarts de cotes dus aux tolérances de fabrication et des perturbations dans le champ électromagnétique dues, par exemple, à l'épaisseur de l'antenne.The adjustment means constituted for example by an adjustment screw make it possible to refine the coupling to take account of the deviations in dimensions due to manufacturing tolerances and disturbances in the electromagnetic field due, for example, to the thickness of the antenna .
Avantageusement, selon l'invention, le guide d'onde présente des sorties secondaires en plus des sorties principales précitées. Ces sorties secondaires sont formées par des fentes secondaires situées dans une paroi avant de la cavité guide d'onde qui débouche dans l'enceinte devant être excitée par les micro-ondes, ces fentes étant réparties de manière à favoriser l'homogénéité de la distribution des micro-ondes dans l'enceinte.Advantageously, according to the invention, the waveguide has secondary outputs in addition to the aforementioned main outputs. These secondary outlets are formed by secondary slots located in a front wall of the wave guide cavity which opens into the enclosure to be excited by the microwaves, these slots being distributed so as to promote the homogeneity of the distribution. microwaves in the enclosure.
L'invention sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif.The invention will be clearly understood and its advantages will appear better on reading the detailed description which follows, of an embodiment shown by way of nonlimiting example.
La description se réfère aux dessins annexés, sur lesquels : - la figure 1 est une vue schématique montrant le dispositif de guide d'onde, le magnetron et l'enceinte destinée à être excitée par les micro-ondes ;The description refers to the attached drawings, in which: - Figure 1 is a schematic view showing the waveguide device, the magnetron and the enclosure intended to be excited by the microwaves;
- la figure 2 est une vue de côté du dispositif de guide d'onde ; et- Figure 2 is a side view of the waveguide device; and
- la figure 3 est une vue en élévation selon la flèche III de la figure 2.- Figure 3 is an elevational view along arrow III of Figure 2.
Sur la figure 1 , l'enceinte 10 peut être la cavité d'un four à micro-ondes ou toute autre enceinte destinée à être excitée par des micro-ondes pour le traitement par micro-ondes d'un objet ou d'une charge disposé dans ladite enceinte.In FIG. 1, the enclosure 10 can be the cavity of a microwave oven or any other enclosure intended to be excited by microwaves for the microwave treatment of an object or a load. disposed in said enclosure.
Les moyens utilisés pour l'excitation de cette enceinte comprennent un magnetron 12 apte à générer des micro-ondes, par exemple à une fréquence standard voisine de 2 450 MHz, et un dispositif de guide d'onde lanceur, réalisant l'interface entre le magnetron et l'enceinte.The means used to excite this enclosure include a magnetron 12 capable of generating microwaves, for example at a standard frequency close to 2450 MHz, and a launcher waveguide device, providing the interface between the magnetron and the enclosure.
Les micro-ondes générées par le magnetron 12 sont émises dans le guide d'onde 16 par une antenne d'émission 18 qui se trouve dans ce guide. Comme on le voit mieux sur la figure 2, l'antenne 18 définit, dans le guide d'onde 16, un plan de l'émetteur P0 (le plan de l'émetteur P0 par rapport auquel les distances D1 et D2 sont mesurées est défini par la position de l'axe de symétrie de l'antenne 18). De manière connue en soi, le guide d'onde 16 présente des parois de guide parallèlement auxquelles les ondes émises par l'antenne 18 se propagent dans la direction de propagation F. Dans l'exemple représenté, ces parois comprennent une paroi arrière 20, à laquelle est fixé le magnetron 12 et qui présente un emplacement pour l'émetteur 18. Elles comprennent également une paroi avant 22, qui est opposée à la paroi 20 et qui, lorsque le guide d'onde coopère avec l'enceinte 10, est tournée vers cette enceinte. Les parois de guide comprennent encore des parois latérales 24 et 26 indiquées sur la figure 3.The microwaves generated by the magnetron 12 are emitted in the waveguide 16 by a transmitting antenna 18 which is located in this guide. As best seen in FIG. 2, the antenna 18 defines, in the waveguide 16, a plane of the transmitter P 0 (the plane of the transmitter P 0 with respect to which the distances D1 and D2 are measured is defined by the position of the axis of symmetry of the antenna 18). In a manner known per se, the waveguide 16 has guide walls parallel to which the waves emitted by the antenna 18 propagate in the direction of propagation F. In the example shown, these walls include a rear wall 20, to which the magnetron 12 is fixed and which has a location for the transmitter 18. They also include a front wall 22, which is opposite to the wall 20 and which, when the waveguide cooperates with the enclosure 10, is facing this enclosure. The guide walls also include side walls 24 and 26 indicated in FIG. 3.
Par exemple, le champ électrique E du champ électromagnétique qui règne dans le guide d'onde est perpendiculaire aux parois avant et arrière 20 et 22, tandis que le champ magnétique H est perpendiculaire aux parois latérales 24 et 26. Dans la direction de propagation F, le guide d'onde 16 est délimité par deux parois de réflexion, respectivement 28 et 30 qui sont perpendiculaires à la direction F. Pour la diffusion des micro-ondes dans l'enceinte 10, le guide d'onde présente deux sorties principales, respectivement 32 et 34, qui sont respectivement situées au voisinage des parois de réflexion 28 et 30. Plus précisément, les deux sorties principales sont formées par des fentes principales qui s'étendent parallèlement aux parois de réflexion 28 et 30 et qui sont respectivement situées aux jonctions de ces parois avec la paroi avant 22. En l'espèce, les fentes 32 et 34 sont ménagées dans cette paroi avant et s'étendent sur toute la largeur de cette paroi, leurs bords extrêmes étant respectivement délimités par les parois 28 et 30.For example, the electric field E of the electromagnetic field which prevails in the waveguide is perpendicular to the front and rear walls 20 and 22, while the magnetic field H is perpendicular to the side walls 24 and 26. In the direction of propagation F, the waveguide 16 is delimited by two reflection walls, respectively 28 and 30 which are perpendicular to the direction F. For the diffusion of microwaves in the enclosure 10, the guide wave has two main outputs, respectively 32 and 34, which are respectively located in the vicinity of the reflection walls 28 and 30. More specifically, the two main outputs are formed by main slots which extend parallel to the reflection walls 28 and 30 and which are respectively located at the junctions of these walls with the front wall 22. In this case, the slots 32 and 34 are formed in this front wall and extend over the entire width of this wall, their extreme edges being respectively delimited through walls 28 and 30.
La première paroi de réflexion d'onde 28 est écartée du plan de l'émetteur P0 d'une distance D1 , tandis que la deuxième paroi de réflexion 30 est écartée du plan P0 d'une distance D2. Ces distances D1 et D2 sont choisies pour que les parois de réflexion 28 et 30 soient situées dans des régions qui, en fonction du diagramme de Rieke, soient optimales du point de vue de la transmission de l'énergie et dans lesquelles les impédances sont sensiblement conjuguées. Ainsi, les distances D1 et D2 sont respectivement sensiblement égales à 0,2. λg et 0,3. λg modulo λg/2. Les distances D1 et D2 sont sensiblement égales aux valeurs indiquées, c'est-à-dire qu'elles peuvent s'en écarter seulement dans des plages faibles. Ainsi, considérées modulo λg/2, les distances D1 et D2 sont respectivement voisines de 0,2. λg et de 0,3. λg + 5 % et, de préférence, + 3 %.The first wave reflection wall 28 is spaced from the plane of the transmitter P 0 by a distance D1, while the second reflection wall 30 is spaced from the plane P 0 by a distance D2. These distances D1 and D2 are chosen so that the reflection walls 28 and 30 are located in regions which, according to the Rieke diagram, are optimal from the point of view of the transmission of energy and in which the impedances are substantially conjugated. Thus, the distances D1 and D2 are respectively substantially equal to 0.2. λ g and 0.3. λ g modulo λ g / 2. The distances D1 and D2 are substantially equal to the values indicated, that is to say that they can deviate therefrom only in small ranges. Thus, considered modulo λ g / 2, the distances D1 and D2 are respectively close to 0.2. λ g and 0.3. λ g + 5% and preferably + 3%.
Les parois de réflexion 28 et 30 sont donc situées dans des régions dans lesquelles, en fonction du diagramme de Rieke associé au magnetron 12, on s'attend à ce que les impédances de l'onde soient conjuguées. Toutefois, certains paramètres perturbent légèrement la conformation du champ électromagnétique dans le guide d'onde. En particulier, l'antenne de l'émetteur 18 n'est pas ponctuelle, mais elle présente une certaine épaisseur.The reflection walls 28 and 30 are therefore located in regions in which, as a function of the Rieke diagram associated with magnetron 12, it is expected that the impedances of the wave will be conjugate. However, certain parameters slightly disturb the conformation of the electromagnetic field in the waveguide. In particular, the antenna of the transmitter 18 is not punctual, but it has a certain thickness.
Pour réaliser le couplage entre le guide d'onde et l'émetteur 18 et, en particulier, faire en sorte que les parties imaginaires des ondes réfléchies par les parois 28 et 30 s'annulent dans le plan P0, le dispositif comprend un organe de réglage 36. Cet organe de réglage est constitué par une tige conductrice ou diélectrique avantageusement disposée dans la paroi arrière 20 qui peut être plus ou moins enfoncée dans le guide d'onde 16. Cette tige est située à une distance D3 du plan de l'émetteur P0. Cette distance D3 est égale à un multiple de la demi-longueur d'onde de l'onde électromagnétique entretenue dans le guide d'onde. Elle est ainsi située sur un plan équivalent PL Les phénomènes qui se produisent dans un tel plan sont les mêmes que ceux qui se produisent dans le plan de l'émetteur P0. Ainsi, le réglage de la tige 36 modifie la valeur du champ électrique dans le plan Pi pour optimiser la puissance de l'onde dans ce plan. Ceci permet donc d'optimiser la puissance dans le plan de l'émetteur Po. La présence de cette tige de réglage, conjuguée avec le choix des distances D1 et D2 pour les parois de réflexion 28 et 30, permet d'optimiser la puissance émise par l'antenne et d'éviter que cette dernière n'ait à souffrir des perturbations dues aux ondes réfléchies sur les parois 28 et 30, dont les parties imaginaires s'annulent sensiblement au plan P0. Bien entendu, on pourrait envisager de disposer un organe de réglage directement dans le plan de l'émetteur P0, mais en raison de la longueur axiale de l'antenne de l'émetteur 18, ceci n'est pas toujours possible. C'est pourquoi on choisit de le disposer dans le plan Pi. Comme on le voit mieux sur la figure 3, le dispositif de guide d'onde présente, en plus des sorties principales 32 et 34, des sorties secondaires.To make the coupling between the waveguide and the transmitter 18 and, in particular, ensure that the imaginary parts of the waves reflected by the walls 28 and 30 cancel each other out in the plane P 0 , the device comprises a member 36. This adjustment member is constituted by a conductive or dielectric rod advantageously disposed in the rear wall 20 which can be more or less pressed into the waveguide 16. This rod is located at a distance D3 from the plane of the transmitter P 0 . This distance D3 is equal to a multiple of the half-wavelength of the electromagnetic wave maintained in the waveguide. It is thus located on an equivalent plane P L The phenomena which occur in such a plane are the same as those which occur in the plane of the emitter P 0 . Thus, the adjustment of the rod 36 modifies the value of the electric field in the plane Pi to optimize the power of the wave in this plane. This therefore makes it possible to optimize the power in the plane of the transmitter Po. The presence of this adjustment rod, combined with the choice of the distances D1 and D2 for the reflection walls 28 and 30, makes it possible to optimize the power emitted by the antenna and to prevent the latter from having to suffer from disturbances due to the waves reflected on the walls 28 and 30, the imaginary parts of which cancel each other out substantially at the plane P 0 . Of course, one could consider having an adjustment member directly in the plane of the transmitter P 0 , but due to the axial length of the antenna of the transmitter 18, this is not always possible. This is why we choose to arrange it in the plane Pi. As can be seen better in FIG. 3, the waveguide device has, in addition to the main outputs 32 and 34, secondary outputs.
Les sorties secondaires sont formées par des fentes secondaires qui sont situées dans la paroi avant 22 et qui sont inclinées par rapport aux parois de réflexion 28 et 30.The secondary outlets are formed by secondary slots which are located in the front wall 22 and which are inclined relative to the reflection walls 28 and 30.
Plus précisément, on remarque d'abord deux fentes secondaires 38 et 40 qui sont respectivement situées au voisinage de chacune des deux parois de réflexion 28 et 30. Ceci signifie que ces deux fentes 38 et 40 sont situées de part et d'autres d'un plan transversal médian PM du dispositif qui est parallèle au plan de l'émetteur P0. Ces fentes sont allongées et définissent donc chacune une direction longitudinale, respectivement L38 et L40. L'inclinaison des fentes est telle que l'angle A38 entre le plan PM et la direction L38 et l'angle A40 entre le plan PM et la direction L40 sont sensiblement égaux à 35° (ces angles sont compris entre 30° et 45°). Les fentes 38 et 40 sont ainsi inclinées à la fois par rapport aux parois de réflexion 28 et 30 et par rapport à la direction F de propagation des micro-ondes dans la cavité 16. Ces fentes sont symétriques par rapport au plan médian PM. Les centres géométriques de ces fentes, C38 et C40, sont situés dans un plan longitudinal médian P du dispositif. Les sorties secondaires comportent, en outre, une troisième fente secondaire 42, qui est sensiblement parallèle à la direction F de propagation des micro-ondes dans la cavité 16 et qui est sensiblement située à égale distance de chacune des deux parois de réflexion 28 et 30. Cette fente 42 est centrée sur le plan médian PM et est située dans la partie ouverte de l'angle que forment les fentes 38 et 40.More specifically, we first notice two secondary slots 38 and 40 which are respectively located in the vicinity of each of the two reflection walls 28 and 30. This means that these two slots 38 and 40 are located on either side of a median transverse plane P M of the device which is parallel to the plane of the transmitter P 0 . These slots are elongated and therefore each define a longitudinal direction, respectively L38 and L40. The inclination of the slits is such that the angle A38 between the plane P M and the direction L38 and the angle A40 between the plane P M and the direction L40 are substantially equal to 35 ° (these angles are between 30 ° and 45 °). The slots 38 and 40 are thus inclined both with respect to the reflection walls 28 and 30 and with respect to the direction F of propagation of the microwaves in the cavity 16. These slots are symmetrical with respect to the median plane PM. The geometric centers of these slots, C38 and C40, are located in a median longitudinal plane P of the device. The secondary outlets further comprise a third secondary slot 42 which is substantially parallel to the direction F of propagation of the microwaves in the cavity 16 and which is substantially located at equal distance from each of the two reflection walls 28 and 30 This slot 42 is centered on the median plane P M and is located in the open part of the angle formed by the slots 38 and 40.
Les fentes principales 32 et 34 représentent chacune environ 40 % de la section totale de sortie du dispositif de guide d'onde, tandis que les sorties secondaires comprenant les fentes 38, 40 et 42 représentent, considérées ensemble, environ 20 % de cette section totale.The main slots 32 and 34 each represent approximately 40% of the total output section of the waveguide device, while the secondary outputs comprising the slots 38, 40 and 42 represent, taken together, approximately 20% of this total section .
Cet ensemble de fentes permet, de par la disposition et la longueur des fentes, de maîtriser l'homogénéité de la température des produits traités par les micro-ondes dans l'enceinte. This set of slots allows, by the arrangement and the length of the slots, to control the temperature uniformity of the products treated by microwaves in the enclosure.

Claims

REVENDICATIONS
1. Dispositif de guide d'onde lanceur pour l'excitation d'une enceinte (10) par des micro-ondes provenant d'un émetteur (18) apte à faire régner dans le guide d'onde (16) du dispositif un champ électromagnétique (E, H) de micro-ondes ayant une longueur d'ondes λfl, le dispositif comprenant un emplacement pour l'émetteur (18) définissant un plan de l'émetteur (P0) et deux parois de réflexion d'onde (28, 30) au voisinage desquelles sont respectivement situées deux sorties principales pour les micro-ondes (32, 34), caractérisé en ce que les deux parois de réflexion d'onde (28, 30) sont respectivement écartées du plan de l'émetteur d'une distance (D1 ) sensiblement égale à 0,2. λg + k. λg/2 et d'une distance (D2) sensiblement égale à 0,3. λg + p. λg/2, où k et p sont des nombres entiers. 1. Launcher waveguide device for the excitation of an enclosure (10) by microwaves coming from a transmitter (18) able to make a field in the waveguide (16) of the device electromagnetic (E, H) of microwaves having a wavelength λ fl , the device comprising a location for the transmitter (18) defining a plane of the transmitter (P 0 ) and two wave reflection walls (28, 30) in the vicinity of which are respectively located two main outputs for microwaves (32, 34), characterized in that the two wave reflection walls (28, 30) are respectively spaced from the plane of the transmitter of a distance (D1) substantially equal to 0.2. λ g + k. λ g / 2 and a distance (D2) substantially equal to 0.3. λ g + p. λ g / 2, where k and p are whole numbers.
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte un organe de réglage (36) disposé à une distance (D3) du plan de l'émetteur (P0) qui est égale à n. λg 2, n étant un nombre entier.2. Device according to claim 1, characterized in that it comprises an adjustment member (36) disposed at a distance (D3) from the plane of the transmitter (P 0 ) which is equal to n. λg 2, n being an integer.
3. Dispositif selon la revendication 2, caractérisé en ce que l'organe de réglage comprend une tige conductrice (36) susceptible d'être plus ou moins enfoncée dans le guide d'onde (16).3. Device according to claim 2, characterized in that the adjustment member comprises a conductive rod (36) capable of being more or less pressed into the waveguide (16).
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les deux sorties principales sont formées par des fentes principales (32, 34), qui s'étendent parallèlement aux parois de réflexion (28, 30) et qui sont respectivement situées aux jonctions desdites parois avec une paroi avant (22) de la cavité guide d'onde (16).4. Device according to any one of claims 1 to 3, characterized in that the two main outlets are formed by main slots (32, 34), which extend parallel to the reflection walls (28, 30) and which are respectively located at the junctions of said walls with a front wall (22) of the waveguide cavity (16).
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il présente, en outre, des sorties secondaires formées par des fentes secondaires (38, 40), qui sont situées dans une paroi avant (22) de la cavité guide d'onde (16) et qui sont inclinées par rapport aux parois de réflexion.5. Device according to any one of claims 1 to 4, characterized in that it also has secondary outlets formed by secondary slots (38, 40), which are located in a front wall (22) of the wave guide cavity (16) and which are inclined relative to the reflection walls.
6. Dispositif selon la revendication 5, caractérisé en ce qu'il présente deux fentes secondaires (38, 40) qui sont respectivement situées au voisinage de chacune des deux parois de réflexion (28, 30).6. Device according to claim 5, characterized in that it has two secondary slots (38, 40) which are respectively located in the vicinity of each of the two reflection walls (28, 30).
7. Dispositif selon la revendication 6, caractérisé en ce que lesdites deux fentes secondaires (38, 40) sont inclinées (A38, A40) par rapport aux parois de réflexion et par rapport à la direction (F) de propagation des micro-ondes dans la cavité guide d'onde (16).7. Device according to claim 6, characterized in that said two secondary slots (38, 40) are inclined (A38, A40) by with respect to the reflection walls and with respect to the direction (F) of propagation of the microwaves in the wave guide cavity (16).
8. Dispositif selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il présente une fente secondaire (42), qui est sensiblement parallèle à la direction (F) de propagation des micro-ondes dans la cavité guide d'onde (16) et qui est située sensiblement à égale distance de chacune des deux parois de réflexion (28, 30).8. Device according to any one of claims 5 to 7, characterized in that it has a secondary slot (42), which is substantially parallel to the direction (F) of propagation of the microwaves in the guide cavity. wave (16) and which is located substantially equidistant from each of the two reflection walls (28, 30).
9. Dispositif selon l'une quelconque des revendications 5 à 8, caractérisé en ce que les fentes principales (32, 34) représentent chacune environ 40 % de la section totale de sortie, tandis que les sorties secondaires (38, 40, 42) représentent, considérées ensemble, environ 20 % de la section totale de sortie. 9. Device according to any one of claims 5 to 8, characterized in that the main slots (32, 34) each represent about 40% of the total outlet section, while the secondary outlets (38, 40, 42) represent, taken together, about 20% of the total output section.
EP02706842A 2001-02-13 2002-02-12 Waveguide generator device for energizing a cavity Expired - Lifetime EP1360736B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0101916A FR2820939B1 (en) 2001-02-13 2001-02-13 LAUNCHER WAVE GUIDE DEVICE FOR MICROWAVE ENCLOSURE
FR0101916 2001-02-13
PCT/FR2002/000517 WO2002065575A1 (en) 2001-02-13 2002-02-12 Waveguide generator device for energizing a cavity

Publications (2)

Publication Number Publication Date
EP1360736A1 true EP1360736A1 (en) 2003-11-12
EP1360736B1 EP1360736B1 (en) 2008-06-11

Family

ID=8859936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02706842A Expired - Lifetime EP1360736B1 (en) 2001-02-13 2002-02-12 Waveguide generator device for energizing a cavity

Country Status (8)

Country Link
EP (1) EP1360736B1 (en)
AT (1) ATE398342T1 (en)
DE (1) DE60227051D1 (en)
DK (1) DK1360736T3 (en)
ES (1) ES2307728T3 (en)
FR (1) FR2820939B1 (en)
PT (1) PT1360736E (en)
WO (1) WO2002065575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054874B2 (en) 2010-12-09 2016-12-27 エンドチョイス イノベーション センター リミテッド Flexible electronic circuit board for multi-camera endoscope
US11183369B2 (en) * 2018-12-27 2021-11-23 Industrial Technology Research Institute Focalized microwave plasma reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244589A (en) * 1989-03-17 1990-09-28 Mitsubishi Electric Corp Microwave generating device
SE465495B (en) * 1990-09-21 1991-09-16 Whirlpool Int MICROWAVE OVEN, METHOD FOR EXCITING THE CAVITY IN A MICROWAVE OVEN, AND GUIDANCE MANUAL FOR THE IMPLEMENTATION OF THE METHOD
JP2725938B2 (en) * 1992-02-21 1998-03-11 三洋電機株式会社 High frequency heating equipment
JP2627730B2 (en) * 1993-09-23 1997-07-09 エルジー電子株式会社 Automatic matching device for microwave oven

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02065575A1 *

Also Published As

Publication number Publication date
ES2307728T3 (en) 2008-12-01
FR2820939A1 (en) 2002-08-16
EP1360736B1 (en) 2008-06-11
FR2820939B1 (en) 2003-08-29
DE60227051D1 (en) 2008-07-24
WO2002065575A8 (en) 2004-06-03
WO2002065575A1 (en) 2002-08-22
DK1360736T3 (en) 2008-10-27
PT1360736E (en) 2008-09-19
ATE398342T1 (en) 2008-07-15

Similar Documents

Publication Publication Date Title
EP2202839B1 (en) Compact feed system for the generation of circular polarisation in an antenna and method of producing such system
EP0564359B1 (en) Microwave applicator and plasma reactor using the same
EP1325537A1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
FR2766272A1 (en) DEVICE AND METHOD FOR MICROWAVE REFLECTOMETRY, AND MICROWAVE OVEN THUS EQUIPPED
FR2904478A1 (en) ORTHOMODE TRANSDUCTION DEVICE COMPRISING OPTIMIZED IN THE MESH PLAN FOR AN ANTENNA
EP0134611B1 (en) A flat microwave emitting or receiving antenna array, and microwave signal emitting or receiving system comprising a such flat antenna
EP2223377A1 (en) Radial power amplification device with phase dispersion compensation of the amplification paths
EP1216493B1 (en) Power splitter for plasma device
EP3086409A1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
FR2704358A1 (en) Waveguide polarisation duplexer
EP1360736B1 (en) Waveguide generator device for energizing a cavity
EP1241923B1 (en) Microwave oven
FR3069713A1 (en) ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS
FR2646564A1 (en) SLOTTED FLAT ANTENNA SYSTEM FOR TE MODE WAVE
FR2813995A1 (en) DIRECTIONAL COUPLER, ANTENNA DEVICE AND RADAR SYSTEM
FR2985385A1 (en) Method for emission of electromagnetic wave by emission system, involves generating electromagnetic waves under control of processing unit, where waves are produced in form of coherent wave emitted by emission system
EP3804025B1 (en) Microwave coupler/combiner device and related microwave generator
EP0377155A1 (en) Dual frequency radiating device
FR2760589A1 (en) Microwave oven with improved waveguide
FR2682818A1 (en) JOINT BETWEEN A RECTANGULAR WAVEGUIDE AND A CIRCULAR WAVEGUIDE.
EP4207493B1 (en) Passive directional rf antenna with one or two-dimensional scanning
EP0407258B1 (en) Ultrahigh frequency energy distributor radiating directly
KR100301205B1 (en) Power Distribution Equipment of Microwave Oven
JP2014155077A (en) Matching device
FR2766625A1 (en) SENSE CIRCULAR POLARIZATION ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: M.E.S. TECHNOLOGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60227051

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080910

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2307728

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110223

Year of fee payment: 10

Ref country code: DK

Payment date: 20110223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110310

Year of fee payment: 10

Ref country code: AT

Payment date: 20110316

Year of fee payment: 10

Ref country code: IT

Payment date: 20110226

Year of fee payment: 10

Ref country code: PT

Payment date: 20110207

Year of fee payment: 10

Ref country code: NL

Payment date: 20110223

Year of fee payment: 10

Ref country code: SE

Payment date: 20110221

Year of fee payment: 10

Ref country code: FI

Payment date: 20110223

Year of fee payment: 10

Ref country code: FR

Payment date: 20110316

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110324

Year of fee payment: 10

Ref country code: ES

Payment date: 20110328

Year of fee payment: 10

Ref country code: GB

Payment date: 20110323

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120813

BERE Be: lapsed

Owner name: M.E.S. TECHNOLOGIES

Effective date: 20120228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120213

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120813

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 398342

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60227051

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229