EP1356198B1 - Method and device for determining the throughput of a flowing medium - Google Patents

Method and device for determining the throughput of a flowing medium Download PDF

Info

Publication number
EP1356198B1
EP1356198B1 EP01271494A EP01271494A EP1356198B1 EP 1356198 B1 EP1356198 B1 EP 1356198B1 EP 01271494 A EP01271494 A EP 01271494A EP 01271494 A EP01271494 A EP 01271494A EP 1356198 B1 EP1356198 B1 EP 1356198B1
Authority
EP
European Patent Office
Prior art keywords
throughput
air mass
flowing medium
determining
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01271494A
Other languages
German (de)
French (fr)
Other versions
EP1356198A1 (en
Inventor
Dieter Tank
Josef Kleinhans
Wolfgang Kienzle
Hans Hecht
Manfred Strohrmann
Wolfgang-Michael Mueller
Axel-Werner Haag
Uwe Konzelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1356198A1 publication Critical patent/EP1356198A1/en
Application granted granted Critical
Publication of EP1356198B1 publication Critical patent/EP1356198B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter

Definitions

  • the invention relates to a method and a device for determining the flow rate of a flowing medium, in particular for determining the prevailing in the intake manifold of an internal combustion engine air flow and thus for determining the intake air mass.
  • air mass hot-film air mass meter For detecting the intake of an internal combustion engine air mass hot-film air mass meter are usually used. These have a heatable element, which is exposed to the air flow to be measured and is cooled by this. There are various possibilities for the design of the hot-film air mass meter, as well as for the heating control and the evaluation methods. Both types of air mass meters, or an existing method for detecting the mass air flow with a hot-film air mass meter, based on the measurement of the heat that is delivered to the passing air mass flow. For this purpose, in one type of air mass meters, the electrical energy needed to control the hot film to a constant temperature is measured. A second method, or a second associated Sensor arrangement, based on the fact that the hot film is also controlled to a constant temperature.
  • the temperature difference between these two points is determined by means of a temperature sensor located upstream and downstream of the heating area.
  • Both temperature sensors which are designed as temperature-dependent resistors, are part of a bridge circuit. From the resulting bridge voltage, a measurement signal is obtained which represents the temperature difference between the upstream and downstream of the heating temperature-dependent resistor.
  • Both types of sensors or evaluation methods can be affected by disruptive effects such as humidity or soiling. This can lead to a false display of such a sensor, or to an error in the signal evaluation.
  • DE 197 40 916 A1 discloses methods for determining the throughput of a flowing medium in the intake manifold of an internal combustion engine, in which the output signals of two different sensors, namely an air mass sensor and a pressure sensor, are evaluated. From both output signals, the air mass is finally determined. Since there are different sensors, the evaluation methods are different. In the evaluation method in which the output signal of a pressure sensor is evaluated, an additional measured variable, namely the throttle valve angle, is required to determine the air mass from the pressure signal.
  • the object of the invention is to minimize the mentioned error sources and the resulting false indications.
  • the object is achieved with a method and / or a device according to the invention for determining the flow rate of a flowing medium having the features of claim 1.
  • the inventive method and / or the inventive device for determining the flow rate of a flowing medium, in particular of an internal combustion engine aspirated air mass has the advantage that disturbing effects in the measurement can be compensated. This is advantageously done by performing a redundant measurement operating on two different methods performed on a single sensor, or two different types of air mass measurement sensors, it being essential that the two selected methods and the two sensors react differently to parasitic effects. By combining the two measurement results, it is then possible to compensate for disturbing effects that occur more strongly in one method or the associated sensor than in the other method or in the other sensor.
  • the air mass flow LS to be measured is determined according to two different methods, which both work with the same sensor 13, which comprises a heatable hot film.
  • the sensor 13 is constructed so that it is suitable for both methods of measurement and is exposed to the flowing air mass flow LS, which cools him.
  • the evaluation method which runs in block 10, represents a first type of evaluation method and is based on the measurement of the heat which is emitted at the air mass flow flowing past the sensor.
  • the heat given off to the passing air mass flow is determined by measuring the electrical energy needed to control the hot film to a constant temperature. So it is ultimately the heating power measured and the air mass flow determined from it.
  • the second type of detection of the air mass flow or the second evaluation process takes place in block 12 and takes place by evaluation of the temperature profile.
  • the hot film of the sensor 13 is also regulated to a constant temperature.
  • the measurement signal is not the required Heating power used, but the temperature profile at the diaphragm edge of the hot-film air mass meter is determined.
  • the air mass meter must therefore have at least two temperature-dependent resistors in addition to the hot film and the heating resistor. In such a hot-film air mass meter, for example, the temperature difference between an upstream and downstream of the heating area lying temperature-dependent resistance, which serves as a temperature sensor, evaluated.
  • the two output from the blocks 10 and 11 output signals S1 and S2 are fed to a common evaluation device 12.
  • this evaluation device 12 the evaluation of the two obtained by different methods signals S1 and S2 and there is a compensation of the parasitic effects.
  • the output signal of the evaluation device 12 is then supplied as a corrected measurement signal KM for further processing.
  • This further processing can be carried out, for example, in the control unit of an internal combustion engine, which then calculates the actual air mass flowing in the intake manifold of an internal combustion engine which calculates the control signals required for the control of the internal combustion engine.
  • the arrangement shown in the figure represents a hot-film air mass meter, in which a sensor is present, which is operable in two different methods, or in which the air mass is determined by two different methods.
  • a sensor is present, which is operable in two different methods, or in which the air mass is determined by two different methods.
  • Such an arrangement makes it possible to redundantly detect the air mass flow by measuring the heating power and by evaluating the temperature profile. Since both measuring methods react differently to parasitic effects, the comparison of the two sensor signals on the type and magnitude of the relevant Disturbing effects are closed, and the interference effects thus determined can be taken into account in the further signal evaluation and thus compensated.
  • HFM 2 hot-film air mass meter
  • HFM5 Hot-film air mass meter
  • Evaluation methods of a first type and evaluation method of a second type are then also carried out again and the measurement results are combined with one another, however, for two sensors or sensor elements.
  • the invention has been explained for the determination of a flowing air mass, but it is generally applicable wherever a flowing medium affects a heatable measuring element.

Abstract

The invention relates to methods and/or devices for determining the throughput of a flowing medium, in particular a flowing air mass. According to the invention, the flowing medium is determined using two evaluation methods that function according to different principles and the two measurement signals thus obtained are correlated to determine corrective procedures. As the two measurement methods react differently to disturbances, the type and order of magnitude of the disturbance can be deduced from the comparison of the two output signals and a corrected measurement signal, which is independent of the disturbances, can be obtained.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders zur Ermittlung der im Saugrohr einer Brennkraftmaschine herrschenden Luftströmung und damit zur Bestimmung der angesaugten Luftmasse.The invention relates to a method and a device for determining the flow rate of a flowing medium, in particular for determining the prevailing in the intake manifold of an internal combustion engine air flow and thus for determining the intake air mass.

Stand der TechnikState of the art

Zur Erfassung der von einer Brennkraftmaschine angesaugten Luftmasse werden üblicherweise Heißfilm-Luftmassenmesser eingesetzt. Diese weisen ein beheizbares Element auf, das dem zu messenden Luftstrom ausgesetzt wird und durch diesen gekühlt wird. Für die Ausgestaltung des Heißfilm-Luftmassenmessers gibt es verschiedene Möglichkeiten, ebenso für die Heizungsregelung und die Auswerteverfahren. Beide Arten von Luftmassenmessern, bzw. ein existierendes Verfahren zur Erfassung des Luftmassenstromes mit einem Heißfilm-Luftmassenmesser, beruht auf der Messung der Wärme, die an den vorbeiströmenden Luftmassenstrom abgegeben wird. Dazu wird bei einer Art von Luftmassenmessern die elektrische Energie, die zur Regelung des Heißfilmes auf eine konstante Temperatur benötigt wird, gemessen. Ein zweites Verfahren, bzw. eine zweite zugehörige Sensoranordnung, beruht darauf, daß der Heißfilm ebenfalls auf eine konstante Temperatur geregelt wird. Als Meßsignal wird jedoch nicht die dazu benötigte Heizleistung verwendet, sondern das Temperaturprofil am Rand des als Membran ausgebildeten Heißfilms. Dabei wird mit Hilfe eines stromaufwärts und eines stromabwärts vom Heizbereich liegenden Temperatursensors die Temperaturdifferenz zwischen diesen beiden Stellen bestimmt. Beide Temperatursensoren, die als temperaturabhängige Widerstände ausgebildet sind, sind Bestandteil einer Brückenschaltung. Aus der sich einstellenden Brückenspannung wird ein Meßsignal gewonnen, das die Temperaturdifferenz zwischen dem stromaufwärts und dem stromabwärts vom Heizbereich liegenden temperaturabhängigen Widerstand repräsentiert.For detecting the intake of an internal combustion engine air mass hot-film air mass meter are usually used. These have a heatable element, which is exposed to the air flow to be measured and is cooled by this. There are various possibilities for the design of the hot-film air mass meter, as well as for the heating control and the evaluation methods. Both types of air mass meters, or an existing method for detecting the mass air flow with a hot-film air mass meter, based on the measurement of the heat that is delivered to the passing air mass flow. For this purpose, in one type of air mass meters, the electrical energy needed to control the hot film to a constant temperature is measured. A second method, or a second associated Sensor arrangement, based on the fact that the hot film is also controlled to a constant temperature. As a measuring signal, however, not the required heating power is used, but the temperature profile at the edge of the membrane formed as a hot film. In this case, the temperature difference between these two points is determined by means of a temperature sensor located upstream and downstream of the heating area. Both temperature sensors, which are designed as temperature-dependent resistors, are part of a bridge circuit. From the resulting bridge voltage, a measurement signal is obtained which represents the temperature difference between the upstream and downstream of the heating temperature-dependent resistor.

Beide Arten von Sensoren, bzw. Auswerteverfahren, können durch Störeffekte, wie beispielsweise Luftfeuchtigkeit oder Verschmutzung, beeinträchtigt werden. Dies kann zu einer Fehlanzeige eines solchen Sensors führen, bzw. zu einem Fehler in der Signalauswertung.Both types of sensors or evaluation methods can be affected by disruptive effects such as humidity or soiling. This can lead to a false display of such a sensor, or to an error in the signal evaluation.

Aus der DE 197 40 916 A1 sind Verfahren zur Ermittlung des Durchsatzes eines strömenden Mediums im Saugrohr einer Brennkraftmaschine bekannt, bei denen die Ausgangssignale zweier unterschiedlicher Sensoren, nämlich eines Luftmassensensors und eines Drucksensors ausgewertet werden. Aus beiden Ausgangssignalen wird letztendlich die Luftmasse bestimmt. Da es unterschiedliche Sensoren sind, sind auch die Auswerteverfahren unterschiedlich. Bei dem Auswerteverfahren, bei dem das Ausgangssignal eines Drucksensors ausgewertet wird, wird noch eine zusätzliche Messgröße, nämlich der Drosselklappenwinkel, benötigt, um aus dem Drucksignal die Luftmasse zu bestimmen.DE 197 40 916 A1 discloses methods for determining the throughput of a flowing medium in the intake manifold of an internal combustion engine, in which the output signals of two different sensors, namely an air mass sensor and a pressure sensor, are evaluated. From both output signals, the air mass is finally determined. Since there are different sensors, the evaluation methods are different. In the evaluation method in which the output signal of a pressure sensor is evaluated, an additional measured variable, namely the throttle valve angle, is required to determine the air mass from the pressure signal.

Aufgabe der ErfindungObject of the invention

Die Aufgabe der Erfindung besteht darin, die angesprochenen Fehlerquellen und die daraus resultierenden Fehlanzeigen zu minimieren. Die Lösung der Aufgabe wird mit einem erfindungsgemäßen Verfahren und/oder einer erfindungsgemäßen Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums mit den Merkmalen des Anspruchs 1 erzielt.The object of the invention is to minimize the mentioned error sources and the resulting false indications. The object is achieved with a method and / or a device according to the invention for determining the flow rate of a flowing medium having the features of claim 1.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren und/oder die erfindungsgemäße Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders der von einer Brennkraftmaschine angesaugten Luftmasse, hat den Vorteil, daß Störeffekte bei der Messung kompensiert werden. In vorteilhafter Weise erfolgt dies, indem eine redundante Messung durchgeführt wird, die nach zwei verschiedenen Verfahren arbeitet, die bei einem einzigen Sensor durchgeführt werden oder es sind zwei verschiedenartige Sensoren zur Messung der Luftmasse vorhanden, wobei wesentlich ist, dass die beiden ausgewählten Verfahren bzw. die beiden Sensoren unterschiedlich auf Störeffekte reagieren. Durch Kombination der beiden Meßergebnisse lassen sich dann Störeffekte, die bei einem Verfahren, bzw. dem zugehörigen Sensor, stärker auftreten als beim anderen Verfahren, bzw. beim anderen Sensor, kompensieren. Erzielt werden diese Vorteile dabei durch ein Verfahren und/oder eine Vorrichtung mit den Merkmalen des Anspruchs 1.The inventive method and / or the inventive device for determining the flow rate of a flowing medium, in particular of an internal combustion engine aspirated air mass, has the advantage that disturbing effects in the measurement can be compensated. This is advantageously done by performing a redundant measurement operating on two different methods performed on a single sensor, or two different types of air mass measurement sensors, it being essential that the two selected methods and the two sensors react differently to parasitic effects. By combining the two measurement results, it is then possible to compensate for disturbing effects that occur more strongly in one method or the associated sensor than in the other method or in the other sensor. These advantages are achieved by a method and / or a device having the features of claim 1.

Weitere Vorteile der Erfindung werden durch die in den Unteransprüchen angegebenen Maßnahmen erzielt.Further advantages of the invention are achieved by the measures specified in the dependent claims.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der einzigen Figur dargestellt und wird in der nachfolgenden Beschreibung näher erläutert.An embodiment of the invention is shown in the single figure and will be explained in more detail in the following description.

Beschreibungdescription

Bei der Ermittlung des Durchsatzes eines strömenden Mediums besteht die Gefahr, daß die Genauigkeit durch Störeffekte beeinträchtigt wird. Insbesonders im Zusammenhang mit der Erfassung der im Saugrohr einer Brennkraftmaschine strömenden Luftmasse gibt es verschiedene Probleme, die beispielsweise dadurch verursacht werden, daß die Feuchtigkeit der strömenden Luft nicht genau bekannt ist oder daß die Sensorelemente bei andauerndem Gebrauch verschmutzt werden, wodurch sich Fehler in der Auswertung einstellen können. Eine weitere Problematik bei der Messung der im Saugrohr einer Brennkraftmaschine strömenden Luft wird verursacht durch die Tatsache, daß die Strömung nicht immer in eine Richtung erfolgt, sondern eine sogenannte Strömungsumkehr, bzw. eine Pulsation, auftreten kann. Zur Kompensation von Fehlern und insbesonders zur Kompensation der Störeffekte, die durch solche Saugrohrpulsationen verursacht werden, ist es bekannt, die Ermittlung der strömenden Luftmasse nach zwei unterschiedlichen Verfahren durchzuführen und die erhaltenen Meßergebnisse miteinander zu kombinieren, um damit Fehlmessungen zu minimieren.When determining the flow rate of a flowing medium there is a risk that the accuracy is affected by disruptive effects. In particular, in connection with the detection of the air mass flowing in the intake manifold of an internal combustion engine, there are various problems caused, for example, by the fact that the humidity of the flowing air is not known exactly or that the sensor elements in continuous use be dirty, which can set errors in the evaluation. Another problem in the measurement of air flowing in the intake manifold of an internal combustion engine air is caused by the fact that the flow is not always in one direction, but a so-called flow reversal, or pulsation, can occur. To compensate for errors and in particular to compensate for the disturbing effects caused by such Saugrohrpulsationen, it is known to carry out the determination of the flowing air mass according to two different methods and to combine the results obtained with each other, so as to minimize incorrect measurements.

Dazu wird beispielsweise in der DE-OS 39 25 377 ein Verfahren zur Meßfehlerkorrektur vorgeschlagen, bei dem der durch Rückströmung auftretende Meßfehler eines Heißfilm-Luftmassenmessers kompensiert wird. Dazu wird die Luftmasse mit dem Heißfilm-Luftmassenmesser als ein erster Wert erfaßt und als zweiter Wert wird nach einem davon unabhängig arbeitenden Verfahren die Luftmasse berechnet, indem der Drosselklappenwinkel und die Drehzahl der Brennkraftmaschine ausgewertet werden. Welcher Wert zur tatsächlichen Bestimmung der Luftmasse verwendet wird, hängt davon ab, in welchem Betriebsbereich sich die Brennkraftmaschine befindet. Da die beiden Werte in verschiedenen Betriebsbereichen der Brennkraftmaschine unterschiedliche Sicherheiten aufweisen, kann aus dem Vergleich der beiden Meßgrößen ein Korrektursignal gewonnen werden, das zur Erhöhung der Meßsicherheit berücksichtigt wird.For this purpose, for example, in DE-OS 39 25 377 a method for Meßfehlerkorrektur proposed in which the occurring due to backflow measurement error of a hot-film air mass meter is compensated. For this purpose, the air mass is detected with the hot-film air mass meter as a first value and the second value is calculated according to a method independently operating the air mass by the throttle angle and the speed of the internal combustion engine are evaluated. Which value is used for the actual determination of the air mass depends on the operating range in which the internal combustion engine is located. Since the two values have different collateral in different operating ranges of the internal combustion engine, a correction signal can be obtained from the comparison of the two measured variables, which is taken into account for increasing the measuring reliability.

Bei diesem bekannten Verfahren wird jedoch nur der durch die Rückströmung verursachte Meßfehler kompensiert, andere Meßfehler werden dagegen nicht berücksichtigt. Beim bekannten Verfahren wird im übrigen auch nur ein Luftmassensensor eingesetzt, die zweiten Informationen, die zur Berechnung der Luftmasse benötigt werden, werden nicht direkt gemessen, sondern berechnet, sie lassen sich nicht zur erfindungsgemäßen Korrektur bzw. Kompensation von allgemeinen, verschiedenartigen Meßfehlern heranziehen.In this known method, however, only the measurement error caused by the backflow is compensated, other measurement errors, however, are not taken into account. In the known method, moreover, only one air mass sensor is used, the second information, the are required for the calculation of the air mass, are not measured directly, but calculated, they can not be used for the inventive correction or compensation of general, various measurement errors.

Bei dem erfindungsgemäßen Verfahren, bzw. der zugehörigen Vorrichtung, die in der Figur dargestellt ist, können verschiedene Meßfehler kompensiert werden und somit eine sehr zuverlässige und genaue Erfassung des Durchsatzes eines strömenden Mediums, beispielsweise der von einer Brennkraftmaschine angesaugten Luftmasse, erhalten werden. Dazu wird bei dem in Figur 1 als Blockanordnung dargestellten Ausführungsbeispiel der zu messende Luftmassenstrom LS nach zwei unterschiedlichen Verfahren bestimmt, die beide mit dem selben Sensor 13, der einen beheizbaren Heißfilm umfaßt, arbeiten. Der Sensor 13 ist dabei so aufgebaut ist, dass er für beide Meßverfahren geeignet ist und dem strömenden Luftmassenstrom LS ausgesetzt wird, der ihn kühlt.In the method according to the invention or the associated device, which is shown in the figure, different measurement errors can be compensated and thus a very reliable and accurate detection of the flow rate of a flowing medium, for example the air mass taken in by an internal combustion engine, can be obtained. For this purpose, in the exemplary embodiment illustrated in FIG. 1 as a block arrangement, the air mass flow LS to be measured is determined according to two different methods, which both work with the same sensor 13, which comprises a heatable hot film. The sensor 13 is constructed so that it is suitable for both methods of measurement and is exposed to the flowing air mass flow LS, which cools him.

Das Auswerteverfahren, das in Block 10 abläuft, stellt eine erste Art von Auswerteverfahren dar und beruht auf der Messung der Wärme, die an den am Sensor vorbeiströmenden Luftmassenstrom abgegeben wird. Die Wärme, die an den vorbeiströmenden Luftmassenstrom abgegeben wird, wird ermittelt, indem die elektrische Energie, die zur Regelung des Heißfilms auf eine konstante Temperatur benötigt wird, gemessen wird. Es wird also letztendlich die Heizleistung gemessen und der Luftmassenstrom daraus bestimmt.The evaluation method, which runs in block 10, represents a first type of evaluation method and is based on the measurement of the heat which is emitted at the air mass flow flowing past the sensor. The heat given off to the passing air mass flow is determined by measuring the electrical energy needed to control the hot film to a constant temperature. So it is ultimately the heating power measured and the air mass flow determined from it.

Die zweite Art der Erfassung des Luftmassenstromes bzw. das zweite Auswerteverfahren läuft im Block 12 ab und erfolgt durch Auswertung des Temperaturprofiles. Dabei wird der Heißfilm des Sensors 13 ebenfalls auf konstante Temperatur geregelt. Als Meßsignal wird jedoch nicht die benötigte Heizleistung verwendet, sondern das Temperaturprofil am Membranrand des Heißfilm-Luftmassenmessers wird ermittelt. Der Luftmassenmesser muß also neben dem Heißfilm und dem Heizwiderstand wenigstens noch zwei temperaturabhängige Widerstände aufweisen. Bei einem solchen Heißfilm-Luftmassenmesser wird beispielsweise die Temperaturdifferenz zwischen einem stromaufwärts und einem stromabwärts vom Heizbereich liegenden temperaturabhängigen Widerstand, der als Temperatursensor dient, ausgewertet.The second type of detection of the air mass flow or the second evaluation process takes place in block 12 and takes place by evaluation of the temperature profile. In this case, the hot film of the sensor 13 is also regulated to a constant temperature. However, the measurement signal is not the required Heating power used, but the temperature profile at the diaphragm edge of the hot-film air mass meter is determined. The air mass meter must therefore have at least two temperature-dependent resistors in addition to the hot film and the heating resistor. In such a hot-film air mass meter, for example, the temperature difference between an upstream and downstream of the heating area lying temperature-dependent resistance, which serves as a temperature sensor, evaluated.

Die beiden von den Blöcken 10 und 11 abgegebenen Ausgangssignale S1 und S2 werden einer gemeinsamen Auswerteeinrichtung 12 zugeführt. In dieser Auswerteeinrichtung 12 erfolgt die Auswertung der beiden nach unterschiedlichen Verfahren erhaltenen Signale S1 und S2 und dabei erfolgt eine Kompensation der Störeffekte. Das Ausgangssignal der Auswerteeinrichtung 12 wird dann als korrigiertes Meßsignal KM der weiteren Verarbeitung zugeführt. Diese weitere Verarbeitung kann beispielsweise im Steuergerät einer Brennkraftmaschine erfolgen, das aus dem Meßsignal, das dann die im Saugrohr einer Brennkraftmaschine tatsächlich strömende Luftmasse angibt, die die für die Regelung der Brennkraftmaschine erforderlichen Ansteuersignale berechnet.The two output from the blocks 10 and 11 output signals S1 and S2 are fed to a common evaluation device 12. In this evaluation device 12, the evaluation of the two obtained by different methods signals S1 and S2 and there is a compensation of the parasitic effects. The output signal of the evaluation device 12 is then supplied as a corrected measurement signal KM for further processing. This further processing can be carried out, for example, in the control unit of an internal combustion engine, which then calculates the actual air mass flowing in the intake manifold of an internal combustion engine which calculates the control signals required for the control of the internal combustion engine.

Die in der Figur dargestellte Anordnung stellt einen Heißfilm-Luftmassenmesser dar, bei dem ein Sensor vorhanden ist, der in zwei unterschiedlichen Verfahren betreibbar ist, bzw. bei dem die Luftmasse nach zwei unterschiedlichen Verfahren bestimmt wird. Eine solche Anordnung ermöglicht es, den Luftmassenstrom redundant zu erfassen durch Messung der Heizleistung und durch Auswertung des Temperaturprofils. Da beide Meßverfahren unterschiedlich auf Störeffekte reagieren, kann aus dem Vergleich der beiden Sensorsignale auf die Art und die Größenordnung der betreffenden Störeffekte geschlossen werden, und die so ermittelten Störeffekte können bei der weiteren Signalauswertung berücksichtigt und damit kompensiert werden.The arrangement shown in the figure represents a hot-film air mass meter, in which a sensor is present, which is operable in two different methods, or in which the air mass is determined by two different methods. Such an arrangement makes it possible to redundantly detect the air mass flow by measuring the heating power and by evaluating the temperature profile. Since both measuring methods react differently to parasitic effects, the comparison of the two sensor signals on the type and magnitude of the relevant Disturbing effects are closed, and the interference effects thus determined can be taken into account in the further signal evaluation and thus compensated.

Anstelle eines einzigen Sensors können auch zwei verschiedene Sensoren eingesetzt werden, die als HFM 2 bzw. HFM5 bekannt sind, wobei dann ein erster Sensor ein Heißfilmluftmassenmesser (HFM2) ist, bei dem die Erfassung des Luftmassenstromes durch Messung der Heizleistung erfolgt und ein zweiter Sensor ein Heißfilmluftmassenmesser (HFM5) ist, bei dem die Erfassung des Luftmassenstromes durch Auswertung des Temperaturprofiles auf der Sensormembran erfolgt. Es werden dann also auch wieder Auswerteverfahren einer ersten Art und Auswerteverfahren einer zweiten Art durchgeführt und die Meßergebnisse miteinander kombiniert, allerdings für zwei Sensoren bzw. Sensorelemente.Instead of a single sensor, two different sensors can be used, which are known as HFM 2 or HFM5, in which case a first sensor is a hot-film air mass meter (HFM2) in which the air mass flow is detected by measuring the heating power and a second sensor Hot-film air mass meter (HFM5), in which the detection of the air mass flow takes place by evaluation of the temperature profile on the sensor membrane. Evaluation methods of a first type and evaluation method of a second type are then also carried out again and the measurement results are combined with one another, however, for two sensors or sensor elements.

Die Erfindung wurde für die Bestimmung einer strömenden Luftmasse erläutert, sie ist aber grundsätzlich überall dort anwendbar, wo ein strömendes Medium ein beheizbares Meßelement beeinflußt.The invention has been explained for the determination of a flowing air mass, but it is generally applicable wherever a flowing medium affects a heatable measuring element.

Claims (6)

  1. Method for determining the throughput of a flowing medium, in particular the air mass flow rate flowing in the intake manifold of an internal combustion engine, in which method the air mass flow rate is determined according to two different evaluation methods and the two different measurement results are combined with one another, in order to determine correction variables, in which the two evaluation methods make use of different measurement signals of the same throughput measuring element (13) or different measurement signals of two throughput measuring elements (HFM2, HFM5), in which the two evaluation methods react differently to interference effects so that the type and/or the order of magnitude of interference effects which occur can be obtained from a comparison between the two signals, characterized in that the throughput measuring element (13) is a hot-film air mass flow rate metre, and in that the two throughput measuring elements (HFM2, HFM5) are hot-film air mass flow rate metres and the two evaluation methods require the hot film or the two hot films each to be adjusted to a constant temperature.
  2. Method for determining the throughput of a flowing medium according to Claim 1, characterized in that in the first evaluation method the required heating power is measured.
  3. Method for determining the throughput of a flowing medium according to Claim 1, characterized in that in the second evaluation method a temperature profile is determined.
  4. Method for determining the throughput of a flowing medium according to Claim 3, characterized in that the temperature difference between a temperature-dependent resistor which is upstream with respect to the direction of the flowing medium and a temperature-dependent resistor which is downstream of the heating region is evaluated, each of the resistors serving as a temperature sensor.
  5. Method for determining the throughput of a flowing medium according to Claim 3, characterized in that the two temperature sensors are temperature-dependent resistors which are located in a bridge circuit, and in that the bridge voltage which occurs as a result of the prevailing temperature difference is evaluated as a measurement signal.
  6. Device for determining the throughput of a flowing medium, characterized in that the device comprises means which carry out a method according to one of the preceding claims.
EP01271494A 2000-12-21 2001-12-07 Method and device for determining the throughput of a flowing medium Expired - Lifetime EP1356198B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10063752A DE10063752A1 (en) 2000-12-21 2000-12-21 Method and device for determining the throughput of a flowing medium
DE10063752 2000-12-21
PCT/DE2001/004624 WO2002050412A1 (en) 2000-12-21 2001-12-07 Method and device for determining the throughput of a flowing medium

Publications (2)

Publication Number Publication Date
EP1356198A1 EP1356198A1 (en) 2003-10-29
EP1356198B1 true EP1356198B1 (en) 2006-03-08

Family

ID=7668106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01271494A Expired - Lifetime EP1356198B1 (en) 2000-12-21 2001-12-07 Method and device for determining the throughput of a flowing medium

Country Status (7)

Country Link
US (1) US7096723B2 (en)
EP (1) EP1356198B1 (en)
JP (1) JP2004516465A (en)
KR (1) KR20020081337A (en)
CN (1) CN1283917C (en)
DE (2) DE10063752A1 (en)
WO (1) WO2002050412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030952A1 (en) 2010-07-05 2012-01-05 Innovative Sensor Technology Ist Ag Device for determining and monitoring e.g. volume flow rate of biological fluid, calculates correction value based on flow rate values determined using measured temperatures, and power required to maintain temperature of heating element

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163751A1 (en) 2001-12-27 2003-07-17 Bosch Gmbh Robert Method for operating an internal combustion engine
JP3964347B2 (en) * 2003-04-18 2007-08-22 株式会社ケーヒン Intake device for internal combustion engine
JP2006242748A (en) * 2005-03-03 2006-09-14 Hitachi Ltd Heating resistor type air flow measurement apparatus and its measurement error correction method
CN100491931C (en) * 2005-04-14 2009-05-27 中国科学院电工研究所 Flow detecting device
DE102006010710B4 (en) * 2006-03-08 2009-03-19 Audi Ag Method for air mass determination in internal combustion engines
JP4202400B1 (en) * 2007-07-27 2008-12-24 三菱重工業株式会社 Crack growth prediction method and program
DE102009000067A1 (en) * 2009-01-08 2010-08-26 Innovative Sensor Technology Ist Ag Device for determining and/or monitoring mass flow rate of e.g. liquid, has evaluation unit determining information about measurement of measuring units and correction value for determination of values
JP2012207925A (en) * 2011-03-29 2012-10-25 Denso Corp Thermal air flowmeter
DE102013102398B4 (en) 2013-03-11 2024-05-02 Innovative Sensor Technology Ist Ag Thermal flow sensor for determining the composition of a gas mixture and its flow velocity
CN105181544A (en) * 2015-09-21 2015-12-23 劲天环境科技(上海)有限公司 Detection device and detection method for concentration of particulate matter in air
DE102019110876A1 (en) * 2019-04-26 2020-10-29 Endress+Hauser Flowtec Ag Method for operating a probe of a thermal flow measuring device and a thermal flow measuring device with such a probe
JP7268533B2 (en) * 2019-08-23 2023-05-08 トヨタ自動車株式会社 engine controller

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043196A (en) * 1976-02-09 1977-08-23 Technology Incorporated Method and apparatus for effecting fluid flow measurement in a single sensor
JPH0750099B2 (en) * 1987-09-29 1995-05-31 三菱電機株式会社 Fuel property detection device for internal combustion engine
KR940002956B1 (en) * 1987-09-29 1994-04-09 미쓰비시전기주식회사 Air-fuel ratio controlling apparatus for internal combustion engine
DE3917908A1 (en) * 1989-06-01 1990-12-06 Siemens Ag METHOD FOR DETERMINING THE AIR FILLING OF THE WORKING VOLUME OF A COMBINED PISTON INTERNAL COMBUSTION ENGINE AND FOR DETERMINING THE FUEL INJECTION LEVEL
DE3925377A1 (en) 1989-08-01 1991-02-07 Bosch Gmbh Robert METHOD FOR CORRECTING THE MEASURING ERRORS OF A HOT FILM AIRMETER
GB2270165B (en) * 1992-08-28 1995-11-08 Delco Electronics Corp Method and apparatus for determining air pressure in an engine
DE4334090C2 (en) * 1992-10-07 1998-04-09 Hitachi Ltd Method and system for measuring an air flow rate
JP3141762B2 (en) * 1995-12-13 2001-03-05 株式会社日立製作所 Air flow measurement device and air flow measurement method
DE19740916B4 (en) 1997-04-01 2007-05-10 Robert Bosch Gmbh Method for operating an internal combustion engine
US6109249A (en) * 1997-09-17 2000-08-29 Robert Bosch Gmbh System for operating an internal combustion engine
US6370935B1 (en) * 1998-10-16 2002-04-16 Cummins, Inc. On-line self-calibration of mass airflow sensors in reciprocating engines
DE19927674B4 (en) * 1999-06-17 2010-09-02 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19933665A1 (en) * 1999-07-17 2001-01-18 Bosch Gmbh Robert Device for detecting a pulsating variable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030952A1 (en) 2010-07-05 2012-01-05 Innovative Sensor Technology Ist Ag Device for determining and monitoring e.g. volume flow rate of biological fluid, calculates correction value based on flow rate values determined using measured temperatures, and power required to maintain temperature of heating element
DE102010030952B4 (en) 2010-07-05 2022-05-25 Innovative Sensor Technology Ist Ag Device for determining and/or monitoring a volume flow and/or a flow rate

Also Published As

Publication number Publication date
WO2002050412A1 (en) 2002-06-27
DE10063752A1 (en) 2002-06-27
CN1411534A (en) 2003-04-16
US20030177843A1 (en) 2003-09-25
DE50109150D1 (en) 2006-05-04
US7096723B2 (en) 2006-08-29
CN1283917C (en) 2006-11-08
EP1356198A1 (en) 2003-10-29
JP2004516465A (en) 2004-06-03
KR20020081337A (en) 2002-10-26

Similar Documents

Publication Publication Date Title
EP1356198B1 (en) Method and device for determining the throughput of a flowing medium
DE102007023840B4 (en) Thermal mass flow meter and method of operation
DE102013218271B4 (en) Thermal air flow meter
DE102015121298B4 (en) Air flow meter
EP1114244B1 (en) Device for measuring a pulsating quantity
EP0485418B1 (en) Process for correcting measurement errors of a hot-film device for measuring air masses
DE4201646A1 (en) Air=fuel mixt. control for IC engine - checks inlet air-flow monitor against computed air-flow and switches standby control if monitopr fails
EP2758755B1 (en) Method for capturing a flow property of a flowing fluid medium
DE10154521B4 (en) A method of calculating an intake air amount and apparatus that performs the method
DE4498938C2 (en) Device for detecting the amount of intake air of an engine
DE10206767A1 (en) Process to determine the atmospheric pressure on the basis of the inlet air pressure in a combustion engine uses mass flow and also detects air filter contamination
EP0700508B1 (en) Method of correcting the output signal of an air mass flowmeter
EP0955524A3 (en) Mass air flow sensor
DE3224834A1 (en) MEASURING DEVICE AND METHOD FOR ENGINE INTAKE
DE102010030952B4 (en) Device for determining and/or monitoring a volume flow and/or a flow rate
DE102010033175B3 (en) Method for determining a resulting total mass flow on an exhaust gas mass flow sensor
DE102004026124B4 (en) System and method for determining mass of engine intake air with return flow compensation
DE4342481C2 (en) Method of measuring the intake air mass
DE3732856C2 (en)
DE19633680B4 (en) Device for correcting a measurement error
DE102021100561B4 (en) FLOW METER
DE102005000964B3 (en) Apparatus for measuring a flow quantity difference between an inspiratory incoming flow and an expiratory outgoing flow in a breathing apparatus using the ouputs of a voltage splitter
DE112004002987B4 (en) Method and apparatus for monitoring fuel injection
DE10322012A1 (en) Flow sensor with improved operating behavior
DE2247090A1 (en) FUEL INJECTION SYSTEM FOR COMBUSTION ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLEINHANS, JOSEF

Inventor name: HECHT, HANS

Inventor name: KONZELMANN, UWE

Inventor name: KIENZLE, WOLFGANG

Inventor name: TANK, DIETER

Inventor name: MUELLER, WOLFGANG-MICHAEL

Inventor name: STROHRMANN, MANFRED

Inventor name: HAAG, AXEL-WERNER

17Q First examination report despatched

Effective date: 20040212

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLEINHANS, JOSEF

Inventor name: HAAG, AXEL-WERNER

Inventor name: STROHRMANN, MANFRED

Inventor name: MUELLER, WOLFGANG-MICHAEL

Inventor name: TANK, DIETER

Inventor name: KONZELMANN, UWE

Inventor name: KIENZLE, WOLFGANG

Inventor name: HECHT, HANS

REF Corresponds to:

Ref document number: 50109150

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060621

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160224

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109150

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171207